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Abstract 

The catalytic performance of AuxPdy nanoparticles prepared by colloidal synthesis and immobilised 

on ceria nanorods (Ce-NR) in the selective oxidation of glucose has been studied under initially basic 

and relatively mild conditions. Activity was found to be strongly dependent on the bimetallic 

composition with Au-rich catalysts being more active in glucose oxidation. Catalyst recycling revealed 

negligible deactivation or metal loss from leaching, and continuing high selectivity to gluconic acid 

(≥97.7%). Defects on the Ce-NR surface appear to serve as anchoring sites for Au-Pd NPs giving rise 

to small and very stable NPs. 
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1 Introduction 

 Valorisation of bio-renewable resources by conversion to chemical products is currently the 

subject of intensive research. In particular, sugars derived from biomass can provide a versatile 

platform for the production of high-value chemicals [1] in which the selective oxidation of glucose to 

gluconic acid, and its further oxidation to glucaric acid are important steps. Gluconic acid (GLO) and 

its salts have a large number of applications in several industries such as the food and pharmaceuticals 

industries [2-4]. Glucaric acid (GLA) has been classified by the U.S. Department of Energy as one of 

the “top value-added chemicals” derived from biomass [5] and is considered to be a potential bio-

derived intermediate in the synthesis of adipic acid [5-7]. Currently, GLO and its salts are produced 

mainly via the enzymatic oxidation of glucose [2], while GLA is produced primarily by glucose 

oxidation with nitric acid [8, 9]. The use of heterogeneous catalysts for the direct catalytic selective 

oxidation of glucose under mild conditions is an attractive alternative to current processes, and could 

lead to a lower environmental impact [10, 11]. 

 The oxidation of glucose to gluconic acid (or it salts) with air, O2 or H2O2 over heterogeneous 

catalysts has been studied extensively, mainly over Pd or Pt supported on carbon [12-14]. It has been 

shown that Au and Au alloys are also good catalysts for the oxidation of glucose to gluconic acid [15-

17]. The activity and selectivity of Au nanoparticles (NPs) have been ascribed to the ability of gold to 

resist oxygen poisoning and to convert the aldose groups to their corresponding aldonic acids such as 

gluconic acid [18, 19]. Under mild reaction conditions, the optimal pH for the selective oxidation of 

glucose to GLO with transition metal catalysts is typically 9-11. In this pH range, metal leaching and 

catalyst deactivation are significantly reduced, and lactone formation is minimised [20]. A gluconic 

acid selectivity above 98% can be attained at these conditions [3]. Interest in the production of GLA 

from glucose has increased significantly since it has been recognised as an important platform [5] and 

GLA yields over 70% have been reported in both acidic and basic conditions using Pt based catalysts 

[21, 22] 

 The separation of gluconate and glucarate salts, which are the products under basic 

conditions, is easier than the separation of the free acids. Armstrong et al. [21] have recently reported 

on a new process based on ion exchange and azeotropic evaporation for the recovery of high purity 

glucaric acid (> 99.96%) from the glucarate salts. This approach avoids formation of lactone and 

dilactone glucarate derivatives, which can arise easily during separation and water removal. In 

principle, therefore, the use of base in the catalytic oxidation of glucose can be justified by catalytic 

performance and ease of product separation. Catalysts containing gold are often not the most 

promising in acidic conditions due to significant leaching. The use of high pH makes Au-based 

catalysts more attractive for glucose selective oxidation. 

 We have recently reported on the catalytic activity of bimetallic Au-Pd NPs prepared by 

colloidal synthesis and immobilised on titanate nanotubes (Ti-NT) for the selective oxidation of 
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glucose [22]. Ti-NTs have large surface area and high surface hydroxyl group density (ca. 5.8 

OH/nm
2
) [23]. These physiochemical and morphological properties make Ti-NT very attractive as a 

catalyst support. The Au-Pd NPs are located on the external surfaces of Ti-NT as opposed to the 

internal pore volume or interstitial sites of Ti-NT, allowing easy accessibility of the reactants to the 

active metal sites, and product escape [24]. In addition to being active catalysts for glucose oxidation, 

it was shown that the yield of GLA is close to linearly dependent on the atomic composition of Au in 

the Au-Pd catalysts [22]. However, it was speculated that this apparent correlation of GLA yield with 

Au content was associated with catalytically active Au nanoclusters in solution produced by leaching 

of Au, as demonstrated in a recent study of hydrocarbon oxidation on Au catalysts [25]. Ceria is also 

well known as a good support for Au and Pd NPs as catalysts for oxidation [26-30]. We have shown 

recently that in fact Au-Pd supported on nanostructured ceria supports, particularly ceria nanorods, are 

superior to Ti-NT in the solvent-less selective oxidation of benzyl alcohol over Au-Pd [31]. This 

superiority of ceria based catalysts over Ti-NT was attributed to a combination of several factors: the 

metal-support interaction and the high Au-Pd surface concentration, which is related to the ability of 

the Ce-NR surface to stabilise highly-dispersed Au-Pd NPs, and the high concentration of oxygen 

vacancies in Ce-NR surface which can activate oxygen [31-33]. It follows that Au-Pd/Ce-NR are 

likely to be good catalysts for the oxidation of glucose. 

 In this paper we report for the first time the catalytic performance of Au, Pd, and AuxPdy NPs 

immobilised on CeO2 nanorods in the selective oxidation of glucose under relatively mild and basic 

conditions with molecular oxygen. Ceria nanorods (Ce-NR) have been used as support since as noted 

above Au-Pd supported on ceria nanorods have been shown previously to be highly active catalysts 

for selective oxidation [31, 34, 35]. Of particular interest are the catalytic activity and selectivity to 

gluconic and glucaric acids, and the dependence on NP bimetallic composition. The high dispersion 

and high degree of alloying of Au-Pd NPs prepared by colloidal synthesis and immobilised on the 

nanostructured ceria support make these ideal materials to examine the dependence of activity and 

selectivity on bimetallic alloy composition. It is shown for glucose oxidation that under initially basic 

conditions, the addition of Au atoms to Pd NPs leads to enhancement in the catalytic activity reaching 

a maximum at 61 at.% Au in the Au-Pd NP, while the selectivity to gluconic acid remains essentially 

independent of composition at > 98%. This is in sharp contrast to the behaviour over Au-Pd/Ti-NT 

reported previously [22]. A study of recycling of a representative Au-Pd/Ce-NR catalyst in glucose 

oxidation showed the catalyst to be exceptionally stable in terms of both activity and selectivity. 

 

2 Materials and methods 

2.1 Materials  

All chemical reagents and metal precursors and were purchased from Sigma Aldrich and used as 

received: NaOH (99.99% trace metals basis), H2SO4(≥97.5% purity), Ce(NO3)3·6H2O, poly(vinyl 

alcohol) (PVA) (MW 9,000-10,000, 80% hydrolyzed), HAuCl4.3H2O (99.999% purity), PdCl2 (5 wt. 
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% in 10 wt. % HCl), NaBH4 (Aldrich ≥98.0%), D-glucose (>99.5% purity), gluconic acid (49-53 wt. 

% in H2O), glycolic acid (99% purity), oxalic acid (≥99.0% purity ), fructose (≥ 99% purity). Glucaric 

acid with 99.96% purity was provided by Cardiff Catalysis Institute. O2 (100% pure) for catalytic tests 

was supplied by BOC.  

 

2.2 Catalyst preparation 

Synthesis of ceria nanostructures 

 Ceria nanorods were prepared by the alkaline hydrothermal treatment method reported 

previously [36]. Usually, 0.6 g of Ce(NO3)3.6H2O was added to a 40 mL of NaOH solution of 15M 

and stirred for 1h in a 45 mL PTFE-lined autoclave. The autoclave was then placed in an air-

circulating oven for 24 hours at 100°C. Following the hydrothermal synthesis, the autoclave was 

cooled down to room temperature and the powder obtained was filtered, washed several times with 

both deionized water and a deionized water-ethanol mixture, and dried overnight at 120°C. The dried 

powder was calcined at 400°C for 4h in synthetic air with a flow rate of 100 mL/min, and a heating 

rate of 10°C/min. 

 

Catalyst preparation by sol-immobilisation 

 The Au-Pd colloidal solution was prepared following previously reported procedures [22, 35]. 

The Ce-NR supports were acidified to a pH value of 3.0 (i.e. below the PZC of Ce-NR) by the drop-

wise addition of 1.0 M solution of H2SO4. The zeta potential of Ce-NR has been studied previously 

and the PZC of Ce-NR was reported to be ca. 8.5 [31]. The Au-Pd colloidal NPs were produced by 

dissolving HAuCl4.3H2O and PdCl2 in 100 mL of de-ionised (DI) water at 5°C while stirring 

vigorously. Subsequently, 2,400 mg of 1.0 wt.% PVA solution was freshly prepared at room 

temperature and added to the metal precursors solution and stirred. The weight ratio of PVA/(Au+Pd) 

was maintained at 1.2. The amount of metal precursors dissolved in DI water was as follows: Au/Ce-

NR (HAuCl4·3H2O = 0.102 mmol), Pd/Ce-NR (PdCl2 = 0.189 mmol), Au61Pd39/Ce-NR 

(HAuCl4·3H2O = 0.153, PdCl2 = 0.047mmol), Au39Pd61/Ce-NR (HAuCl4·3H2O =0.051, PdCl2= 0.094 

mmol), Au21Pd79/Ce-NR (HAuCl4·3H2O = 0.026 mmol, PdCl2 = 0.142 mmol). The metal precursors 

were reduced by the addition of 7.5 mL of 0.1 M NaBH4 (NaBH4:(Au+Pd)=5:1 molar ratio). The Au-

Pd colloid was left stirring at 1,500 rpm for 1h before 1.0 g of the acidified support was added. The 

slurry was stirred for 1h, filtered, and washed with DI water several times until the pH of the mother 

liquor reached ∼7.0.  

 The catalysts were dried overnight at 100 °C, and refluxed in hot water (90°C) for 60 minutes, 

filtered and dried again overnight at 100 °C. The dried catalysts were used without any further 

treatment. All the monometallic and bimetallic catalysts prepared in this study had nominal metal 

loadings of 2.0 wt.%.  
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2.3 Reaction procedure  

 Glucose oxidation was carried out in a 25 mL glass-lined miniclave (Buchiglas, Switzerland) 

reactor. In a typical run, glucose solution (3.0 mL, 0.25 M, pHinitial = 9.5) and the prerequisite amount 

of catalyst (ca. 50-90 mg) were added to the reactor. The glucose: catalytic metal molar ratio was 

100:1, and Na:glucose = 1:7900 mol/mol. The pH of the reaction solution was adjusted by addition of 

NaOH. The reactor was purged three times with pure O2 before being pressurised to the desired 

pressure (6 bar at room temperature). The temperature of the reactor was subsequently set to 80˚C, 

and reactor was stirred at 1000 rpm. At the end of each reaction, the reactor was cooled down to 

ambient temperature and vented slowly. Subsequently, 7.0 mL DI water was added to the reactor to 

dilute the reaction mixture. The catalyst was separated from the liquid phase by centrifugation at 5000 

rpm for 20 minutes. A sample (7.0 mL) was taken from the supernatant and mixed with 50 μL formic 

acid (internal standard) for product analysis. Analysis of the reaction products was carried out using 

HPLC (CTO-20AC, Shimazdu, Japan) fitted with a SUPELCOGELTM C-610H HPLC column (30 cm 

x 7.8 mm ID, filter: 25 mm ID with 0.45 μm pores) and UV and refractive index detectors, using 0.1 

% v/v phosphoric acid as the mobile phase. HPLC was calibrated with high purity standards acquired 

from Sigma Aldrich prior to product analysis. The spent catalyst was collected at the end of each run 

and washed several times with diluted ethanol (20 vol.% in water), and centrifuged before it was dried 

overnight at 90 ˚C. The dried catalyst was then used in the following reaction cycle. The conversion 

of glucose (XG), product yield (Yi), selectivity (Si), and carbon balance were calculated using the 

following equations: 

 

 

Where n is the number of moles of glucose or carbon containing product i. The standard deviation in 

the carbon balance was 2.8%.  

 

2.4 Catalyst characterisation   

 X-ray diffraction (XRD) measurements were recorded using a PANalytical X’Pert Pro Multi-

Purpose Diffractometer using CuKα radiation. The analysis was conducted over a scan angle of 

2θ=5–70° with a step size 0.0167°. The bulk metal loading was determined using ICP-OES by 
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MEDAC Ltd. (UK). TEM images were obtained using a JEOL JEM-2100F microscope operating at 

200 kV. Typically, samples were dispersed in ethanol and sonicated for 30 min before being dispersed 

on copper grids with a lacy carbon film (300 mesh size). The particle size distribution and average 

particle size of the metal NPs were determined from the TEM images by analysing 100 randomly 

selected NPs. X-ray photoelectron spectroscopy (XPS) measurements were acquired using a Thermo 

K-Alpha Spectrometer equipped with an Al Kα source gun. Samples were fixed on adhesive carbon 

tape, and the spectra were collected using an X-ray spot size of 400 μm with a pass energy of 20 eV 

and 0.1 eV increments. The binding energies (B.E.) were referenced to the C 1s peak of adventitious 

carbon at 284.8 eV. The error in the XPS measurement is typically ± 0.2 eV. XPS data were analysed 

using Avantage software provided by Thermo Scientific. 

 

3 Results and discussion 

3.1 Characterisation of ceria nanostructures  

 Characterisation of the as-synthesised Ce-NR by TEM, XRD, and nitrogen adsorption-

desorption measurements has been reported previously [35]. The BET surface area of the Ce-NR 

support was 61.7 m
2
/g. The rod-like shape of Ce-NR is clearly visible in the TEM images (Figure 

S1a). The XRD patterns for the ceria nanorods are shown in Figure S1b. Cerium oxides display a 

crystalline structure with multiple sharp diffraction peaks at 2θ of 28.5°, 33.0°, 47.4°, 56.3°, and 

69.6°, which respectively correspond to the (111), (200), (220), (311), (400) crystalline planes of the 

pure cubic phase (ceria fluorite structure, JCPDS 34-0394) [37].  

 In the Ce 3d XPS spectra of Ce-NR (Figure S2), two primary peaks associated with Ce
4+

 

appear at ∼882.5 and 901.1 eV and correspond to Ce 3d5/2 and Ce 3d3/2, respectively; while four 

additional satellite peaks assigned to Ce
4+ 

appear at ∼889.1, 989.8, 907.6, and ∼916.9 eV. The peaks 

at ∼880.5, 885.6, 898.5, and 903.1 eV are assigned to Ce
3+

[37-39]. Deconvolution of the 3d XPS 

spectra showed a high concentration of Ce
3+

 (ca. 31%) for the as-synthesized ceria nanorods.   

 

3.2 Catalyst characterisation 

 All the catalysts were prepared by sol-immobilisation using the procedure described in 2.2 

above. The adsorption of colloidal metal NPs is strongly influenced by the surface charge of the 

support and the metal NPs. It is vital, therefore, that the surface charge of the support is determined 

beforehand, and the pH is controlled to enhance the adsorption of the metal sol. The zeta potentials of 

the Ce-NR support and Au-Pd sol as a function of pH and the PZC were determined previously [35]. 

The actual final metal compositions for the various catalysts used in this study are given in Table 1. 

The actual metal loadings of the catalysts were found to be reasonably close to the nominal loadings. 

 

Table 1 Catalyst bulk composition.  

Catalyst Au (wt.%) Pd (wt.%) actual weight 
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nominal actual 
a
  nominal actual 

a
 

ratio 
Pd/Au 

Au/Ce-NR 2.00 1.70 - - - 

Pd/Ce-NR - - 2.00 1.72 - 

Au61Pd39/Ce-NR 1.50 1.47 0.50 0.50 0.34 

Au39Pd61/Ce-NR 1.00 1.13 1.00 0.94 0.83 

Au21Pd79/Ce-NR 0.50 0.49 1.50 1.00 2.04 
a
 Bulk composition; weight percentage per gram of sample, obtained by ICP-OES analysis. 

 The XRD diffraction patterns of the various monometallic and bimetallic Ce-NR supported 

catalysts are shown in Figure 1. The monometallic gold catalyst (i.e. Au/Ce-NR) displayed a weak 

and rather broad peak at 38.41°, which is ascribed to the pure Au(111) reflection plane. The bimetallic 

catalyst rich in gold (i.e. Au61Pd39/Ce-NR) displayed an Au(111) peak at a higher 2θ as a result of the 

change in the lattice constant and the formation of a Pd-Au alloy phase [40]. No clear diffraction 

peaks corresponding to either Au or Pd were detected in Pd/Ce-NR or the other Pd-rich bimetallic 

catalysts due to the low metal concentration and relatively small metal particle size (<4 nm).  

 

 

Figure 1 XRD of Au-Pd/Ce-NR catalysts. Au(111) reflection planes are shown in the inset. 

 

 HRTEM and STEM images of the various catalysts are shown in Figures 2. The bimetallic 

catalysts exhibited similar particle size distributions and mean particle sizes (2.1 to 2.9 nm), indicating 

that the bimetallic composition does not strongly influence the final particle size distribution on the 

Ce-NR support. The metal dispersion in Table 2 was calculated from the particle size distribution 

determined from TEM using the approximation method reported by Mori et al. [41]. The Au-Pd/Ce-

NR catalysts showed a shallow maximum in dispersion (ca. 55%) at an intermediate Au content of 39 

at.% (i.e. Au39Pd61/Ce-NR). 
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Figure 2 HRTEM image of (a) Au/Ce-NR, (d) Pd/Ce-NR, (c) Au61Pd39/Ce-NR, (d) Au39Pd61/Ce-NR, and (e) 

Au21Pd79/Ce-NR. The inset in each figure represents the corresponding particle size distribution. (d) STEM 

image of Au21Pd79/Ce-NR. 

 

Table 2 Physicochemical properties of catalysts.  

Catalyst 
Mean particle size 

(nm)
 a
 

Metal dispersion  
(%) 

a, b
 

Au/Ce-NR 2.8 ± 1.5 47 

Pd/Ce-NR 3.5 ± 1.5 32 

Au61Pd39/Ce-NR 2.9 ± 1.1 44 

Au39Pd61/Ce-NR 2.1 ± 0.7 55 

Au21Pd79/Ce-NR  2.7 ± 0.7 46 
a
 Determined from the particle size distribution from TEM  

b
 See ESI for calculation details

 

 

 The XPS spectra for Au 4f and Pd 3d are shown in Figures 3 and 4, respectively. The binding 

energy (B.E.) of the Au 4f7/2 component for the monometallic gold catalyst (Au/Ce-NR) was observed 

at 83.8 eV, while the bimetallic catalysts (AuxPdy/Ce-NR) exhibited Au 4f7/2 peaks at lower binding 

energies. The doublet peak appearing at >87 eV arises from the Au 4f5/2 component. The negative 

peak shift in the B.E. (Figure 3) is indicative of the close interaction between the Au and Pd atoms 

and the formation of an Au-Pd alloy phase[42]. 
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Figure 3 XPS of Au-Pd/Ce-NR catalysts. 

 

 The Pd 3d spectra for Pd/Ce-NR and AuxPdy/Ce-NR catalysts imply the presence of both 

metallic palladium (Pd
0
)

 
and oxidized palladium species (i.e. Pd

δ+
) in the dried catalysts. The Pd 3d 

spectra were deconvoluted using one component for Pd
0
 and two components for Pd

2+
 and Pd

4+
 

(Figure 4). The portion of metallic and oxidised palladium species present in each catalyst was 

determined from the fitted Pd 3d spectra and are given in Table 3. The XPS analysis revealed the 

presence of a high concentration of oxidised palladium species (ca. 76%) on the surface of catalyst 

Pd/Ce-NR. Although the presence of Pd
δ+ 

species is expected due to surface oxidation arising from 

drying and storage of the catalysts as was also observed previously for Pd/Ti-NT [22], the markedly 

high concentration of oxidised Pd species suggest that it is likely to be related to the ability of the 

ceria support to supply oxygen to the metal NPs (i.e. via oxygen spillover). 
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Figure 4 XPS spectra of Pd 3d for Pd/Ce-NR and AuxPdy/Ce-NR catalysts. 

  

 As the Au content increases (i.e. ratio Au/Pd increases) the proportion of Pd
0
 increases with 

respect to Pd
δ+

, so that the catalyst with the highest gold content (i.e. Au61Pd39/Ce-NR) displayed the 

lowest concentration of Pd
δ+

 (see Table 3). These results are in agreement with earlier findings for 

Au-Pd/Ti-NT catalysts in relation to the impact of Au content on Pd
δ+ 

concentration [22]. However, 

catalysts supported on Ce-NR exhibit consistently higher Pd
δ+ 

concentration than similar bimetallic 

compositions supported on Ti-NT. This observation underlines the fact that ceria is able to supply 

surface oxygen to the metal NPs. 

 

Table 3 Quantitative XPS data for the different catalysts 

Catalyst 
Binding Energy (eV) 

(Au + Pd)/Ce 
a
 

Pd 3d 

Au
0
 Pd

0
 Pd

0
 (%) Pd

δ+
 (%) 

b
 

Au/Ce-NR 83.8 - 0.07 - - 

Pd/Ce-NR - 335.1 0.15 24 76 

Au61Pd39/Ce-NR 83.5 334.8 0.15 66 34 

Au39Pd61/Ce-NR 83.4 334.9 0.21 59 41 

Au21Pd79/Ce-NR 83.3 334.9 0.12 32 68 
a
 Atomic ratio from Au 4f, Pd 3d and Ce 3d. 

b
 Combined value for Pd

2+
 and Pd

4+
 species.  
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The surface atomic composition of the catalysts was estimated from the fitted XPS data. The atomic 

ratio of Au/Pd, and (Au+Pd)/Ce for the different catalysts is given in Table 3. The high Au+Pd/Ce 

ratio in both the monometallic and bimetallic catalysts implies high metal surface concentration and 

highlights the advantage of using sol-immobilisation and Ce-NR as a catalyst support. For low 

loadings on the same support, the XPS surface ratios (Au+Pd)/Ce give a reasonably accurate 

assessment of the variations in metal dispersion of the various catalysts and are consistent with the 

variation in values from TEM.  

 

3.3 Catalytic reaction 

The selective oxidation of glucose was run under initially basic conditions with no adjustment of the 

pH during the runs as done in the earlier study of AuxPdy/Ti-NT and at the same reaction conditions: 

T=80°C, pH=9.5, and pO2=6.0 [22]. Typically, 50-90 mg of catalyst was loaded into the reactor. In 

this range of catalyst weight, the reactions are kinetically controlled with no evidence of mass transfer 

limitations.     

 

3.3.1 Composition dependence of selective oxidation of glucose 

 The two major products in the selective catalytic oxidation of glucose were gluconic acid 

(GLO) and glucaric acid (GLA). Several other minor side products such as oxalic acid, 5-

ketogluconic acid, and glycolic acid can also be produced during glucose oxidation. Furthermore, 

isomerisation products such as fructose and mannose can also be produced in the process. 

Nonetheless, these by-products were minimal in the present study, and the Ce-NR supported catalysts 

exhibited very high selectivity to the primary selective oxidation product, GLO. 

 Glucose conversion and product selectivity for the various ceria-supported catalysts are given 

in Table 4. In the absence of any catalyst, a glucose conversion of ca. 5.8% was obtained as a result of 

glucose isomerisation to fructose under the mildly basic reaction conditions used. In the presence of 

catalyst, negligible isomerisation was detected. Regardless of the bimetallic composition, the different 

AuxPdy/Ce-NR catalysts displayed fairly similar selectivity to the primary oxidation product gluconic 

acid (GLO) of over 97%. This is quite different to the behavior of glucose oxidation over Au and Au-

Pd/Ti-NT (see Table 5) catalysts where selectivity to glucaric acid reached 18-19% at the same 6h 

reaction-time under the same conditions [22]. The mean particle size of the Ce-NR supported NPs (ca. 

2-3nm) is smaller than for Ti-NT (ca. 4-5nm) suggesting that the NP-support interaction is stronger in 

the case of ceria [35]. The impact of this on the selectivity and stability is discussed further below. 
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Table 4 Catalytic performance of the catalysts in the selective oxidation of glucose. 

Catalyst 
Conversion

 a
 

(%) 

Product selectivity (%) 
b,c

 Carbon balance 
(%) GLO GLA GY OX TA FT 

No catalyst 5.8 nd 
c
 nd 

c
  nd 

c
  nd 

c
 nd 

c
 100 97 

Au/Ce-NR 46.7 98.8 0.7 0.3 nd 
c
 0.2 nd 

c
 94 

Pd/Ce-NR 4.7 99.6 0.4 0.0 nd 
c
 nd 

c
 nd 

c
 101 

Au61Pd39/Ce-NR 100 97.7 1.7 0.2 0.1 0.3 nd 
c
 99 

Au39Pd61/Ce-NR 64.4 97.9 1.9 0.1 0.1 nd 
c
 nd 

c
 101 

Au21Pd79/Ce-NR 37.4 99.2 0.8 nd 
c
 nd 

c
 nd 

c
 nd 

c
 96 

a
 Reaction conditions: T= 80°C, pO2 =6 bar, stirring rate=1000 rpm, glucose conc. = 0.25 M, pHinitial= 9.5, glucose/metal 

(mol/mol)= 100, time=6h. 
b 

Product selectivity: GLO = gluconic acid; GLA = glucaric acid; FT = Fructose. GY = glycolic acid; OX = oxalic acid; 
TA= tartronic acid were detected only in very low levels. 
 b 

nd = not detected.  

 

 The dependence of glucose conversion on the Au-Pd composition in the catalyst series 

AuxPdy/Ce-NR is shown in Figure 5. Pd/Ce-NR was found to have a very low activity for glucose 

oxidation, while Au/Ce-NR displayed moderate activity. For glucose oxidation, Au is catalytically 

more active than Pd in alkaline medium due to the promoting role of OH
-
. It is also known that Pd is 

very prone to deactivation by oxygen poisoning during glucose oxidation. This is one of the reasons 

that Pd is often modified with promoters to improve its resistance to deactivation by oxygen poisoning 

[43]. Activity as measured by glucose conversion rises steadily with increasing Au content reaching a 

maximum at 61 at.% Au (the maximum Au content in Au-Pd studied) after which it declines and 

reaches a lower value at 100% Au. The bimetallic catalysts were considerably more active than the 

closest monometallic catalyst in terms of composition, highlighting the synergetic effect between Au 

and Pd. It has been suggested in the literature that negatively charged Au surface atoms are the active 

sites in glucose oxidation, and that the concentration of these negatively charged Au atoms is higher 

in very small Au clusters and in the presence of alloying elements such as Pd [44]. This is reflected in 

the negative chemical shift in Au 4f discussed above. 

 The composition dependence of activity for glucose oxidation exhibited by AuxPdy/Ce-NR in 

Figure 5 is quite different to that exhibited by AuxPdy/Ti-NT catalysts, where although the conversion 

was also higher for AuxPdy than for Pd/Ti-NT, it was effectively independent of Au content in the NPs 

at the same reaction conditions as used in the present study [22]. In addition, the most active 

AuxPdy/Ce-NR supported catalyst studied here, is notably more active than any AuxPdy/Ti-NT catalyst 

(100% conversion for Au61Pd39/Ce-NR versus 57-73% for AuxPdy/Ti-NT). 
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Figure 5. Glucose conversion as a function of Au content in AuxPdy for Ce-NR supported catalysts. Reaction 

conditions: T= 80°C, pO2 =6 bar, stirring rate=1000 rpm, glucose= 0.25M, pHinitial = 9.5, glucose/metal = 100, 

time=6h. Error bars represent the standard deviation in conversion. 

 The higher activity of Ce-NR supported catalysts compared to Ti-NT supported catalysts is 

likely to be associated with several factors. Firstly, the Au-Pd metal dispersion on the Ce-NR is higher 

than Au-Pd NP dispersion on Ti-NT, which we assume reflects a stronger metal NP-support 

interaction. Secondly, the redox properties and local basicity of the ceria surface itself. Recent studies 

have shown that both the redox properties and acid-base properties of ceria nanostructures are shape-

dependent [45]. Ceria nanorods often expose a mixture of (110) and (100) surfaces, and the different 

exposed facets results in a highly defective surface [36]. These defect sites have been shown to play 

an important role in the stabilization of small metal NPs, which tend to form preferentially on the 

surface defects sites where the contact area with the support is maximized [46]. The result is a 

stronger metal support interaction and small NPs in the case of the present Au-Pd catalysts. In 

addition, the surface oxygen vacancies of Ce-NR contribute to the surface basicity and are able to 

activate oxygen thereby increasing the activity for selective oxidation catalysis [45]. 

 Rather surprisingly, the present Au/Ce-NR catalyst is less active than the Au/Ti-NT catalyst 

[22]. Furthermore, the Ce-NR supported catalysts are highly selective for gluconic acid and show 

almost no activity for the deep oxidation to glucaric acid at the conditions used, in contrast to Au-Pd 

supported on Ti-NT [22]. Previously, we speculated that the oxidation of gluconic to glucaric acid 

might be catalyzed by Au nanoclusters leaching into solution, following the recent study of 

cyclooctene epoxidation by Qian et al [25], and that this explained the apparent strong correlation of 

glucaric acid yield with Au content. The Au and Au-Pd particle sizes on Ti-NT are in the range 3-

5nm, while on the Ce-NR support the NPs are less than 3nm. We speculate that the smaller NP size on 

the Ce-NR support and the stronger metal-support interaction leads to a suppression of the release of 
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Au nanoclusters. Conversely, the larger Au and Au-Pd NPs on the Ti-NT support probably reflects a 

weaker metal-support interaction, which releases Au nanoclusters more easily. Indeed, we show 

below that the Ce-NR supported catalysts are very stable with negligible leaching, in contrast to Au 

and Au-Pd supported on Ti-NT [22]. As a consequence, oxidation to glucaric acid hardly takes place 

on the Ce-NR supported catalysts. 

 The differing dependence of activity on AuxPdy composition for Ce-NR and Ti-NT supported 

catalysts may also be related to their respective stabilities. Possibly, the exposed surfaces of the Au-Pd 

NPs on Ti-NT are Au-rich due to the leaching, whereas on the more stable Ce-NR supported NPs the 

surface composition is closer to the bulk values. 

 The activities of the present catalysts are compared in Table 5 with recent studies of glucose 

oxidation in the literature. The Au-Pd/Ce-NR catalyst has comparable activity to Pt catalysts. 

Although PtCu3/TiO2 has superior GLO productivity, which to an extent reflects the very high basic 

conditions used (pH>13), it is notably less selective. 

 

Table 5 Comparison of the catalytic performance of monometallic and bimetallic catalysts 

a
 Values calculated based on data provided in literature.   

b
 Catalyst prepared by sol-immobilisation.  

c
 Catalyst obtained from a commercial vendor.  

 

3.3.2 Catalyst recycling in glucose oxidation 

 The catalytic performance of the most active Ce-NR supported catalyst (Au61Pd39/Ce-NR) 

was assessed with repeated usage, since catalyst stability and recyclability are essential for industrial 

application. The spent Au61Pd39/Ce-NR catalyst was recycled after each 6-hour run with intermediate 

washing several times with water and ethanol, centrifuging and drying. The results are shown in 

Figure 6. Remarkably, after four catalytic cycles, the catalytic performance of Au61Pd39/Ce-NR was 

virtually unchanged – both in terms of activity as measured by conversion and selectivity to gluconic 

Catalyst pH 
T 

(°C) 
P 

(bar) 
Time 
(h) 

Conversion 
(%) 

Selectivity 
(mol%) 

Productivity 
GLO Ref. 

GLO GLA mol mol
-1
 h

-1
 

Au/Ce-NR 
9.5 

uncontrolled 
80 

6.0 
O2 

6 46.7 98.8 
0.7 

7.7 
This 
study 

Au61Pd39/Ce-NR 
9.5 

uncontrolled 
80 

6.0 
O2 

6 100.0 97.7 1.7 16.3 
This 
study 

Au/Ti-NT 
b
 

9.5 
uncontrolled 

80 
6.0 
O2 

6 73 75.6 18.5 9.2 [22] 

Au15Pd85/Ti-NT 
b
 

9.5 
uncontrolled 

80 
6.0 
O2 

6 64 98.1 1.7 10.5 [22] 

Au/TiO2 
b
 

9.5 
uncontrolled 

80 
6.0 
O2 

6 9.3 99.9 0.1 1.5 [22] 

Pt/C 
c
 

9.5 
uncontrolled 

80 
6.0 
O2 

10 97 83 16.0 8.1 [22] 

Pt/SiO2 
c
 

9.5 
uncontrolled 

80 
6.0 
O2 

10 45 93 7.0 4.2 [22] 

Au/C  
9.5 

controlled 
50 

1.0 
air 

0.5 100 >99 - - [15] 

Pt/C 
8.5 

uncontrolled 
80 

6.2 
O2 

1 100 41 58 22.1
a
 [47] 

Pt1Cu3/TiO2 
pH>13 

uncontrolled 
45 

1.0 
O2 

6 100 38 9 65.0
a
 [48] 
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acid. Metal leaching is typically the primary reason for catalyst deactivation in glucose oxidation. 

Glucose and the highly oxygenated reaction products are strong chelating agents that often accelerate 

the leaching of active metal components during the reaction (i.e. lixiviation). The pH of the reaction 

medium was measured at the end of each run and was found to be highly acidic (ca. pH= 2.5). 

Elemental analysis of the spent Au61Pd39/Ce-NR catalyst showed no significant metal loss after 4 

catalytic cycles (see Table S1). The ability of the Ce-NR supported catalyst to resist deactivation and 

metal leaching even in the highly acidic environment of the final reaction mixture is certainly 

remarkable, although it is possible that deactivation would become observable with more extended 

recycling. Furthermore, selectivity to gluconic acid after the 4
th
 cycle was essentially unchanged at 

>97%. Given our previous speculation discussed above that oxidation of gluconic to glucaric acid 

may involve a homogeneous catalytic component associated with leached Au clusters, the low 

selectivity to GLA even after four cycles is further evidence of the remarkable stability of the 

Au61Pd39/Ce-NR catalyst. 

 The leaching behavior of the Au61Pd39/Ce-NR catalyst is in sharp contrast to the behavior of 

Au15Pd85/Ti-NT where considerable leaching of both Au and Pd was observed over four cycles at the 

same reaction conditions leading to deactivation (see Figure 6 for comparison). Again, this underlines 

the greater stability of the ceria nanorod supported catalysts, which we attribute to the stronger metal-

support interaction and the smaller NP size as discussed above. 

 

 

Figure 6 Glucose conversion for Au61Pd39/Ce-NR and Au15Pd85/Ti-NT over 4 runs. Reaction conditions: T= 

80°C, pO2 =6 bar, stirring rate=1000 rpm, glucose= 0.25M, pHinitial = 9.5, glucose/metal = 100, time=6h. 

Recycling data for Au15Pd85/Ti-NT reproduced from ref. [22].  
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4. Conclusion 

 This work has demonstrated that ceria nanorod is an excellent support material for colloidal 

Au-Pd NPs. The catalytic activity of AuxPdy/Ce-NR was found to be strongly dependent on the 

bimetallic composition for the selective oxidation of glucose: Au-rich bimetallic catalysts were more 

active in glucose oxidation than Pd-rich catalysts, the most active being Au61Pd39/Ce-NR. AuxPdy/Ce-

NR catalysts were highly selective for GLO in sharp contrast to previously reported AuxPdy/Ti-NT 

which are increasingly selective to GLA with increasing Au content [24]. Au-Pd supported on Ce-NR 

also exhibited superior activity in comparison to Au-Pd supported on Ti-NT or TiO2. It is likely that 

the basicity of ceria and its ability to activate oxygen contribute to the enhanced activity of 

Au61Pd39/Ce-NR catalyst in comparison to Ti-NT or TiO2-supported catalysts. 

 The most active glucose oxidation catalyst (i.e. Au61Pd39/Ce-NR) gave the same catalytic 

performance with no apparent deactivation or loss of Au or Pd on recycling 4 times. The outstanding 

activity, selectivity, and resistance to deactivation exhibited by Au61Pd39/Ce-NR in glucose oxidation 

is remarkable, and can be ascribed to interaction of the Au-Pd NPs with the surface of the Ce-NR. 

Defects on the Ce-NR surface are likely to serve as anchoring sites for Au-Pd NPs, leading to small 

NPs, and prevent leaching of Au or Pd into solution during glucose oxidation. 
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