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Abstract This study developed an alternative boundary element method (BEM) to simulate the transient
flow behavior of groundwater induced by well extraction in a confined fractured aquifer containing a
network of discrete or connected fractures. Thematrix flow, network‐fracture flow, andmatrix‐fracture fluid
exchange were considered. The aquifer was treated as a heterogeneous whole that consisted of fracture
and matrix blocks with locally homogeneous hydraulic properties. The fractures were explicitly represented
to be of true finite volume rather than nonrepresentational line sources. A semianalytical solution was
developed based on the theory of a BEM in the Laplace transform domain, but the analytical Green's
function was used for the bounded domain rather than the free‐space Green's function in a conventional
BEM. Case studies were presented in order to investigate the flow exchange behavior between the matrix
and fractures and the corresponding transient drawdown response. The results showed that (1) exchange
flux distribution calculated with the classical infinitesimal fracture model was consistent with the difference
of the normal drawdown derivative values on both sides of the fracture body in our model. (2) When the well
was in the matrix, the fractures acted as both highly conductive conduits and leaky faults, and the
drawdown derivative behaviors resembled the characteristics of a dual‐porosity reservoir model. (3) When
the well was in the network fracture and when the volume of fracture was of the same order of magnitude as
the matrix, the drawdown derivative might exhibit the look‐alike behavior of a dual‐porosity model.

1. Introduction

All geological settings/rocks are fractured with a variety of scales to some extent. There are a great number of
fractures in certain types of geological formations, such as naturally fractured reservoirs, fractured
low‐permeability rocks, and fractured confined aquifers (Jiang et al., 2013; Kuhlman et al., 2015;
Marechal & Dewandel, 2004; Sedghi & Zhan, 2019; Smith & Schwartz, 1984). As highly efficient flow chan-
nels, fractures play an important role in conducting fluids throughout the groundwater system into a well-
bore. Matrixes and fractures have different scales, each being assigned to different geometrical properties.
The general equation for describing the fluid flow in fractured porous media is given as a quasi‐Laplace
equation:

∇ k r!� ��∇p� � ¼ φμc
∂p
∂t

; (1)

where the permeability k is likely to have strong nonuniformity. This flowmodel can be adopted to describe
both groundwater and hydrocarbon flows based on the flowing analogy between an aquifer and reservoirs.
The modeling of fractured aquifers and reservoirs is a long‐standing research topic. Many studies have dealt
with groundwater flows in discrete fracture system in unconfined aquifers and the interactions between
aquifers and fractures. These studies have generally solved the complicated model with a numerical
approach. For the mesh‐reliant numerical method, the exchange rate between a fracture and matrix cells
in two dimensions is evaluated by

Qxð Þiþ0:5;j ¼ −Txiþ0:5;j
piþ1;j − pi;j

Δx
and Qy

� �
i;jþ0:5 ¼ −Tyi;jþ0:5

pi;jþ1 − pi;j
Δy

; (2)

and Txi + 1/2,j and Tyi,j + 1/2 are the internodal transmissivities. Internodal transmissivity is calculated with
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the use of various averaging methods, such as a harmonic mean, arithmetical mean, or exponentially
weighted mean. It should be emphasized that these algorithmic errors increase with the increase of the per-
meability heterogeneity. To capture the strong heterogeneity between a fracture and a matrix, various tech-
niques have been presented to subdivide the grids, such as local refined gridding, unstructured gridding, and
an embedded discrete fracture model (EDFM) (Karimi‐Fard & Durlofsky, 2016; Xu et al., 2017, 2019; Zidane
& Firoozabadi, 2014). A flexible finite element Galerkin method has also been used to describe the transient
flux of fluid from a matrix into fractures in a confined leaky aquifer (Duguid & Lee, 1977). However, obtain-
ing accurate transmissibility by computing the irregular connections between fracture segments is still a
huge challenge. Considering the high computational burden and the great difficulties in describing geome-
trical complexity, mess‐free analytical and semianalytical methods have been developed as an alternative to
numerical simulation methods.

The first dual‐porosity continuum model was developed by Barenblatt et al. (1960) and Warren and
Root (1963). In the double‐porosity model, a matrix and a fracture are considered to be two porosity types
that coexist at the same spatial location, and the mass transfers between those two porosity types are coupled
through a transfer function. Afterwards, various semianalytical solutions in the hydrogeology literature
were presented for the interpretation of the transient drawdown behaviors in all types of wells (e.g., vertical,
horizontal, partially penetrating) and aquifer configurations (e.g., fractured wedge‐shaped and
unconfined‐fractured aquifers). Moench (1984) determined the analytical solutions of the flow to a well in
a double‐porosity groundwater reservoir with consideration of a thin layer of low permeability at the
fracture‐matrix block interface. Park and Zhan (2003) obtained the analytical solution of the groundwater
flow to a horizontal well in fractured confined, leaky, and unconfined aquifers by considering the interpor-
osity flux based on a spherically approximatedmatrix block. Kuhlman et al. (2015) presented amultiporosity
extension for double‐ and triple‐porosity models for the flow modeling in fractured rock reservoirs, whose
models included a fracture continuum and an overlapping distribution of multiple rock matrix continua.
Sedghi et al. (2018) adopted the dual‐porosity concept to develop a semianalytical solution for modeling
the interporosity flow in an unconfined fractured aquifer system. Wang and Xue (2018) presented a semia-
nalytical model for a pumping test in irregularly shaped double‐porosity aquifers using the novel boundary
element method (BEM). Sedghi and Zhan (2019) presented the analytical solutions of groundwater
dynamics in an unconfined dual‐porosity aquifer subjected to a time‐dependent areal recharge. Over the
years, for the continuum model, more focus has been put on characterizing the transient behavior of the
interporosity fluid exchange between a matrix and fractures.

In fact, the continuummodel is a spatial averaging approach based on the representative elementary volume
(REV) concept (Kuchuk & Biryukov, 2014; Ren et al., 2017). The model is justified only when a formation
contains a dense network of highly interconnected fractures, where a fractured formation would behave
more like a continuum. In other words, it is an equivalent model, and the effect of fractures is averaged
out over the continuum region. For a discretely fractured formation that is more realistic in nature, the char-
acteristic volume considered in the continuummodel is generally greater than the REV of the discretely frac-
tured formation, so it is very difficult for the continuum model to capture the flow behavior of this type of
fractured formation no matter howmany levels of continuum are used. As a result, the discrete fracture net-
work (DFN) model was developed to improve the continuum model. In principle, the DFN model is a rigor-
ous “discontinuum” approach that could describe the anisotropy in the permeability of a fractured rock
mass. The geological and hydraulic characteristics of each fracture are explicitly considered throughout
the formation. Smith and Schwartz (1984) developed a modeling technique to investigate how fracture geo-
metry influences the velocity distributions and mass transport within a DFN with two orthogonal fracture
sets. Based on a field‐scale representation of the hydraulic fracture properties from the Sellafield area,
Leung et al. (2012) simulated the steady‐state constant density groundwater flow through a
two‐dimensional fracture network using a DFN model. Jiang et al. (2013) used the variational inequality
(VI) theory to solve the free‐surface unconfined seepage flow in a percolating fracture network. Fang and
Zhu (2018) simulated groundwater flow using an overlying unconfined aquifer, an underlying DFN, and
their exchange. Liu et al. (2018) presented a numerical study on the geometrical and hydraulic properties
of a three‐dimensional intersected fracture model, and then the evaluations of the aperture distributions,
flow channels and equivalent permeability of fractures were studied. However, these previous studies
assumed that the rock matrix was impermeable and the groundwater could only flow through the DFN.
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In fact, the contribution of the matrix flow cannot be neglected in many types of leaky fractured aquifers
(Berkowitz, 2002; Marechal & Dewandel, 2004). Roubinet et al. (2012) developed a semianalytical solution
for the transport of conservative solutes in a single fracture. Houseworth et al. (2013) derived an analytical
model for solute transport that used a water‐saturated single fracture in a permeable rock matrix. Although
these semianalytical models could consider the fluid transfer between a matrix rock and each individual
fracture, more emphasis was placed on the consideration of flow mechanisms in an individual fracture
and matrix. In addition to numerical approaches, few semianalytical approaches could account for the geo-
metrical complexity of a DFN and the matrix flow along with fracture flow.

Due to the flexibility in accounting for a fracture‐matrix fluid transfer and the interconnection of a fracture
network, the source/sink‐function methods suggested by Cinco‐Ley et al. (1976, 1978) have been widely
applied to model the transient flow and transport in both the fractures and the surrounding rock matrixes
in hydrogeology and petroleum engineering. There are two basic assumptions:

i A fracture is regarded as a (zero‐width) line source, which is obtained by the spatial integration of the con-
tinuous point source function.

ii Fluid enters the fracture at a rate q(x,t) per unit of fracture length, and the flow across the fracture edge
and the fluid compressibility are generally negligible.

Using the Fredholm integral equation, Izadi and Yildiz (2009) investigated the transient flow behavior of a
vertical well near randomly distributed discrete fractures. Luo et al. (2018) presented a semianalytical
method for calculating the pseudo‐steady‐state productivity index of a vertical well near discrete fractures.
When fractures connect with each other in a network configuration, the mass exchange of fluid flow in
the fracture‐fracture nodes must be considered. Zhou et al. (2013) used the principle of mass balance to
establish a constraint condition for each of the intersection points that stated that the inflow must equate
to the outflow. Jia et al. (2016, 2017) introduced a star‐delta transformation to automatically judge the flow
direction at an intersection point with a fracture network. Luo et al. (2019) established a Z‐fold fracture
model to describe the fluid flow in a fracture unit (consisting of two connection nodes and one fracture seg-
ment) based on the Luo‐Tang wing model (Luo & Tang, 2014).

It should be noted that the DFNmodels mentioned above were established based on the assumption that the
volume of a fracture would be neglected compared with the volume of the surrounding matrix. In other
words, a fracture is a primary singularity of the flux density (i.e., the flux divergence on the edges of a frac-
ture) in the mathematical context. Under this assumption, there are two inconsistent phenomena with the
reservoir simulation: (i) For extra‐low contrast where the conductivities of the fractures and matrix are close
enough, a well cannot exhibit the pressure behavior of a homogeneous medium as expected. (ii) For a con-
tinuous fractured reservoir in which fractures are in a network and communicate with each other through-
out the system, the case of a well located within a fracture network cannot resemble the pressure response of
the Warren and Root dual‐porosity geological model (Biryukov & Kuchuk, 2012; Dejam et al., 2018; Kuchuk
& Biryukov, 2014).

Based on the theory of a BEM (Jia et al., 2017; Wang & Xue, 2018) and Green's function (Fen & Yeh, 2012;
Wang et al., 2017), an efficient approach was developed in this work to account for the finite volume of frac-
tures and to relax the assumption of infinitesimal fracture volume. This paper is organized as follows. The
model establishment and a semianalytical solution are introduced in section 2. By performing a
constant‐rate pumping test in a fractured confined aquifer, the characteristics of groundwater flow behavior
and corresponding drawdown response for the pumping well were investigated, as described in section 3.
The discussions of the contradictory phenomena mentioned above are described in section 4. The conclu-
sions are described in section 5.

2. Methodology
2.1. Mathematical Model

In this study, the model was assumed to be two‐dimensional. We assumed that the pumping well fully pene-
trated the aquifer and that the groundwater flow was essentially horizontal. The vertical flow was not con-
sidered. We assumed that the aquifer was a horizontal, isotropic, and finite‐extended confined aquifer with a
uniform thickness. Additionally, a single‐phase slightly compressible fluid flow was considered.
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Figure 1 shows a schematic representation for the model describing the groundwater flow in a confined
aquifer with a set of fractures. The aperture of each fracture did not vary along the fracture length.
Between the matrix and the fractures, the groundwater in the aquifer could flow from the network fractures
to the matrix or from the network fractures to the matrix, that is, fluid exchange. Finally, the extracted
groundwater was released from the aquifer elastic storage to a pumping well. In this study, only
large‐scale fractures were explicitly represented, and small‐scale fractures were considered as the conti-
nuum. As shown in Figure 1, all types of fracture configuration were presented:

• The isolated fracture was identified as the fracture with no interconnection in the fracture.
• The intersected fracture was identified as the fracture directly connected to the pumping well.
• The network fracture was identified as the fracture with an intersection. If the network contained a frac-

ture directly connected to the pumping well, the network was denoted as a connected network; otherwise,
it was denoted as an isolated network.

The confined fractured aquifer was further divided into a set of blocks, as shown in Figure 2. In the figure,
the white block represents the fracture block, which was surrounded by several matrix blocks. Each block
had locally homogeneous properties.

The general two‐dimensional equations describing the drawdown due to well pumping in the matrix or the
fracture block could be expressed as

∂2sα M; tð Þ
∂x2

þ ∂2sα M; tð Þ
∂y2

þ 1
Tα

Fwa M; tð Þ ¼ Sα
Tα

∂sα M; tð Þ
∂t

M ∈ Ωα; t > 0

sα M; tð Þ ¼ 0 M ∈ Ωα; t ¼ 0

∂sα M; tð Þ
∂nB

¼ 1
Tα

qαB M; tð Þ M ∈ ΓBα; t ¼ 0

8>>>>><>>>>>:
; (3)

where the subscript α represents the matrix (m) and the fracture (f) block. ΓBα is the outer boundary of the
αth block, and the non‐homogeneous term Fwα is the function on the inner boundary. In equation 3, sα is the
aquifer drawdown representing the change of the hydraulic head due to pumping and M = (x,y) is a
Cartesian coordinate in local block system.

Figure 1. Schematic presentation of the confined fractured aquifer.

Figure 2. Schematic of the confined aquifer containing a finite‐width fracture.
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In addition, qαB M; tð Þwas the flow exchange rate on the outer boundary. Fwα(M,t) was the production func-
tion caused by fluid withdrawal, which could be represented by a line or a point source. If there was a pump-
ing well, Fwα(M,t) ≠ 0; otherwise, Fwα(M,t) = 0. It was expressed by different functions, which were given as

Fwa M; tð Þ ¼ ∫
Lf
0 qwf u; tð Þδ x − xof − ucosθ

� �
δ y − yof − usinθ
� �

du; for line source

qwv tð Þδ x − xwð Þδ y − ywð Þ; for point source

8<: ; (4)

where qwf is the pumping rate per unit along the line source, qwv is pumping rate per unit of the well, Lf is the
fracture length, (xof, yof) represents the Cartesian coordinate of the fracture tip, θ is the azimuth of fracture,
(xw,yw) is a Cartesian coordinate of the pumping well, and the Dirac delta function is defined as

δ M −M0ð Þ ¼ ∞; M ¼ M0

0; M ≠ M0

(
:

As shown in Figure 2, the interface between two adjacent blocks Ωα and Ωα + 1 was defined as Γα,α + 1, and
flow across the interface between two blocks satisfied the continuities of drawdown and flux:

sα ¼ sαþ1

Tα
∂sα
∂nB

¼ Tαþ1
∂sαþ1

∂nB

8<: at Γα;αþ1: (5)

It should be noted that Γα,α + 1 = ΓBα = ΓBα + 1.

For the special case in which the fracture was assumed to have a one‐dimensionl flow pattern, equation 3
was reduced to the following equation:

∂2sf
∂x2

þ Tf wf

Tm

∂sf
∂y

� �
Γm;f

¼ Sf
Tf

∂sf
∂t

−
1
Tf

Ff M; tð Þ; ∂sf
∂x

� �
Γm;f

¼ 0 on the fracture edge; (6)

where wf is fracture width, (x,y) is the local Cartesian coordinate system in the fracture block, x is the tan-
gential direction, and y is the direction normal to the fracture. Γm,f indicates the fracture‐matrix interface.
When the fracture width was approximately zero‐width, the exchange rate between fracture and the matrix
was satisfied as

∂sf
∂y

� �
Γm;f

¼ lim
y→0þ

∂sf
∂y

� �
− lim

y→0−

∂sf
∂y

� �
: (7)

After substituting equation 7 into equation 6, the right‐hand side of equation 6 was consistent with the
expression of Cinco‐Ley et al. (1978), which was based on the zero‐width assumption. Thus, Cinco‐Ley's
fracture model is a special form of equation 3.

2.2. Boundary Element Solution for the Substructure

The nonhomogeneous equation could be solved with the use of the BEM. After eliminating the nonhomo-
geneous terms in equation 3, the auxiliary equations of Green's function were established:

∇2Gα M; M0; t; τð Þ þ 1
Tα

δ M −M0ð Þδ t − τð Þ ¼ 0; M; M0ð Þ ∈ Ωα; t > τ

Gα M; M0; t; τð Þ ¼ 0; M; M0ð Þ ∈ Ωα; t < τ
∂Gα

∂nB
¼ 0; M; M0ð Þ ∈ ΓBα; t > τ

8>>>><>>>>: ; (8)

where G is Green's function, and the Laplace operators are given as
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∇2 ¼ ∂2

∂x2
þ ∂2

∂y2
−

Sα
Tα

∂
∂t
; ∇02 ¼ ∂2

∂x02
þ ∂2

∂y02
−

Sα
Tα

∂
∂τ

: (9)

Gα(M,M’,t,τ) is defined as the drawdown at (M,t) caused by a source of unit strength at (M’,τ), and nB is the
outward normal direction of the boundary surface. Based on the reciprocity theorem in Green's function
method (Wang & Xue, 2018) and Green's secondary identity, the expression gives

∯
Ωα

sα∇02Gα − Gα∇02sα
� �

dM ¼ ∮
Γα

sα
∂Gα

∂nB
−Gα

∂sα
∂nB

� 	
M∈Γα

dM; (10)

where the boundary Γα includes the inner and outer boundaries, as follows: Γα = ΓB α+Γw α.

By substituting equations 3 and 8 into equation 10, an explicit pressure solution was produced:

sα M; tð Þ ¼ −
Tα

Sα
∫
t

0dτ∮ΓBα Gα M;M0; t−τð Þ∂sα M0; τð Þ
∂nB

−sα M0; τð Þ∂Gα M;M0; t−τð Þ
∂nB

� �
M0∈ΓBα

dM0

þ 1
Sα
∫
t

0dτ∯Ωα
Fwα M; τð ÞGα M; M0; t − τð ÞdM0:

(11)
It should be noted that the main difference from the conventional BEM was that we used the Green's func-
tion for the bounded domain (constrained by the boundary condition in equation 8) rather than the conven-
tional free‐space Green's function. Since the Green's function satisfied the Neumann boundary condition,
the normal derivative of the Green function was equal to zero, ∂G/∂nB = 0. Using Darcy's law to represent

the normal derivatives of pressure on the boundary qαB ¼ −Tα ∂sα=∂nBð Þ
 �
; equation 11 could be rewritten as

sα M; tð Þ ¼ 1
Sα

∫
t

0dτ∮ΓBα qαBGα M;M0; t−τð Þ
 �
M0∈ΓBα

dM0 þ 1
Sα

∫
t

0dτ∯Ωα
Fwα M; τð ÞGα M; M0; t − τð ÞdM0: (12)

The solution of equation 12 was dependent on the knowledge of the flow exchange on the interface bound-
ary (i.e., the outer boundary), while the exchange was an unknown priori. Thus, these boundary quantities
needed to be determined beforehand. To do this, the outer boundary was discretized into a set of linear seg-
ments (j = 1,2,3 …, N). The flow exchange on each segment was assumed to be the uniform flux.

Due to the analogy of the fluid flow between the reservoir and the aquifer, we used the definitions of the
dimensionless variables, as follows:

sαD ¼ 2πkrefh
qwμB

p0 − pαð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
reservoirs

¼ 2πTref

qw
sα|fflfflfflfflffl{zfflfflfflfflffl}

aquifers

; tD ¼ kref t

φcμð ÞrefL2ref|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
reservoirs

¼ Tref t

SrefL2ref|fflfflffl{zfflfflffl}
aquifers

; ςD ¼ ς
Lref

; qξD ¼ qξLref
qw

; GD ¼ 2πL2refG:

The subscript ξ = B and wf, the subscript D represents a dimensionless symbol, and the subscript ref repre-
sents the reference variable. t is the time, B is the volume factor, h is the aquifer thickness, μ is the fluid visc-
osity, qw is the pumping rate of the surface, φ is the matrix porosity, ct is the total compression factor, p is the
pressure, and p0 is the initial pressure. k is the reference permeability, L is the reference length, T is the trans-
missivity, and S is the storage coefficient. With the definition of the above dimensionless variables and dis-
cretization, equation 12 became the following expression:

sαD MD; tDð Þ ¼ Tref

Tα
∑
N

j¼1
∫
tD
0 q

α
BDj τDð ÞSαBDj MD; tD − τDð ÞdτD þ ∫

tD
0 dτD∯ΩDα

FDα MD; τDð ÞGDαðMD;M
0
D; tD − τD

( !
dM

0
Dg;

(13)
where the linear source function for the jth linear segment on the outer boundary is

S
α
BDj MD; tD − τDð Þ ¼ TDα

SDα
∫ΓBDα;j GDα MD;M

0
D; tD−τD

� �h i
M

0
D∈ΓBDα

dM
0
D: (14)
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By applying the Laplace transformation and the convolution‐integral operation to equations 13 and 14, the
following expression was produced:

esαD MDð Þ ¼ 1
TDα

∑N
j¼1eqαBDj νð ÞeSα

BDj MD; νð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
source function on outer boundary

þ ∯ΩDα
eFwDα MD; νð ÞeGDα MD;M

0
D; ν

� �
dM

0
D|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

source function on inner boundary

�;

2664 (15)

where ν is the dimensionless time tD transformed into the Laplace space, and superscript “~” indicates the
Laplace‐transformed variables. Correspondingly, the source function for the inner boundary could be deter-
mined by substituting equation 4 into the secondary term on the right‐hand side of equation 15 and then
using the Fourier cosine transformation. Its expression was equivalent to the conventional analytical solu-
tion in a rectangular medium with impermeable boundaries (Ozkan & Raghavan, 1991).

Equation 15 was the building block of our solution method. It required the fundamental Green's function on
the inner and outer boundaries of the domain. The detailed derivations can be seen in Appendix A. It should
be emphasized that the computational consideration for Green's function was also an important contribu-
tion in our study.

2.3. Coupled Solution

To demonstrate the coupling of multiple blocks, we took the model shown in Figure 3 as an example. The
example included four rectangular blocks, and each block contained two outer boundaries (denoted by
the green line) and an inner boundary (the red line). Thus, the pressure drop on the center of the jth line
segment within the αth block was expressed as

esαD MDj
� � ¼ 1

TDα
∑
2

n¼1
∑
NB

i¼1
eqα
BDn;i

eSα

BDn;i MDj
� �þ ∑

Nw

i¼1
eqαwD1;ieSα

wD1;i MDj
� �" #

: (16)

qwD and qBD represent the rate strengths for the line segments on the inner and outer boundaries, SwD is the
dimensionless source function on the inner boundary, and SBD is the dimensionless source function on the
outer boundary.

Writing equation 16 at the center of all of the inner and outer boundaries yielded the following set of linear
equations in unknowns, which were given by

esαBDm;j ¼
1

TDα
∑
2

n¼1
∑
NB

i¼1
eqα
BDn;i

eSα

BD m;j;n;ið Þ þ ∑
Nw

i¼1
eqαwD1;ieSα

wD m;j;1;ið Þ

" #

esαwDm;j ¼
1

TDα
∑
2

n¼1
∑
NB

i¼1
eqα
BDn;i

eSα

BD m;j;n;i½ � þ ∑
Nw

i¼1
eqαwD1;ieSα

wD m;j;1;i½ �

" #
8>>>>><>>>>>:

; (17)

where (m,j;n,i) indicates the drawdown of the jth segment on themth outer boundary, while [m,j;n,i] indi-
cates the drawdown of the jth segment on the mth inner boundary.

We assumed thatNB = 2 andNw = 2. Based on the continuity conditions of the pressure and flux at the outer
boundary, adjacent blocks were coupled together to form a linear system, which could be expressed in
matrix‐vector form:

A1 A2

A3 A4

� 	
� X

!
1
X
!

2

� �
¼ B

!
1
B
!

2

� �
: (18)

The unknown vectors had the following components:
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X
!T

1 ¼ eq1BD1;1; eq1BD1;2; eq|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}1BD2;1; eq
1

BD2;2

; eq1
wD1;1

; eq1wD1;2Block1⋯eq4BD1;1; eq4BD1;2; eq|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}4BD2;1; eq
4

BD2;2

; eq4wD1;1; eq4wD1;2Block4
0B@

1CA;

(19)

and

X
!T

2 ¼ es1BD1;1; es1BD1;2; es|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}1BD2;1; es
1

BD2;2

; es1
wD1;1

; es1wD1;2Block1⋯es4BD1;1; es4BD1;2; es|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}4BD2;1; es
4

BD2;2

; es4wD1;1; es4wD1;2Block4
0B@

1CA:

(20)

Equation 18 treated the domain of interest as a whole. The boundary element discretization rendered the
domain as a mess‐free semianalytical solution, rather than discretizing it into small grid blocks and time
steps as a numerical finite‐difference method. The details for the coefficient matrix structure A and the
known vector B in equation 18 are provided in Appendix B.

The equations could be solved by the Gauss elimination method in the Laplace transformation domain. The
Stehfest numerical inversion algorithm (Stehfest, 1970) was used to obtain the solutions in the real‐time
domain. The solution of the linear equations provided the fluxes and drawdowns for the outer boundary
and inner boundary segments. When compared with the numerical methods, the presented approach could
compute the drawdown at any grid point and time with equation 16, and it took much less time to obtain the
required results.

3. Results

In the following section of groundwater flow modeling, we discuss the transient response behavior of two
benchmark cases based on semianalytical solutions. The first benchmark case showed a conceptual confined
fractured aquifer as a base case. The second benchmark case provided a realistic example for investigating
the applicability of the present model. It should be noted that when a pumping well was drilled in the con-
fined fractured aquifer, there were only two possibilities: (i) The well did not intercept any fractures, that is,
the well was in the matrix, and (ii) the well intersected a fracture.

3.1. Behavior of the Fracture‐Matrix Fluid Exchange
3.1.1. Discretely Confined Fractured Aquifer
In this section, the term discretely confined fractured aquifer refers to an aquifer that contained an isolated
or intersected fracture. The ratio of fracture width to the length was set to 0.001 (i.e., the fracture

Figure 3. Discretization scheme to demonstrate the coupling of four blocks.
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approximated the assumption of a zero‐width volume), the fracture‐matrix diffusivity ratio was 105 (i.e., the
flow in the fracture was approximately incompressible), and the exchange across the fracture edge, which
was given by (∂sf/∂x)|Γ = 0, was ignored. It should be noted that the fracture conductivity was defined as

CfD ¼ Tfwf

TmLref
; whereLref ¼ Lf =2: (21)

As seen in Figure 4a, we compared the dimensionless drawdown solution for the case of the wellbore inter-
secting of a finite‐conductivity fracture (Cinco‐Ley et al., 1978) with our solution. The fracture asymmetry
could be flexibly considered by altering the location of the wellbore in the fracture‐block domain.
Figure 4b compares our solutions with the solutions for an asymmetrically fractured well (Berumen
et al., 2000). It was considered that for the symmetry of the fracture body in the direction normal to the frac-
ture, at any location of the fracture face (xD∈Γ), the flux density function given by Cinco‐Ley et al. (1978) was
equal to the difference of the normal pressure derivative values at both sides of the fracture:

qfD xDð Þ ¼ lim
yD→0þ

∂sfD
∂yD

� �
Γ
− lim

yD→0−

∂sfD
∂yD

� �
Γ
¼ 2 lim

yD→0þ

∂sfD
∂yD

� �
Γ
¼ −2 lim

yD→0−

∂sfD
∂yD

� �
Γ
: (22)

It should be noted that the exchange rate is a vector, where a positive
value represents the outflow (or withdrawal) and a negative value repre-
sents the inflow (or injection). According to equation 22, Figure 5 shows
the exchange flux distributions along the fracture for early and late time
periods. The line plot indicates the calculated results from our model,
and the scatter plot indicates the influx rate using Cinco‐Ley's method.
As seen from these two figures, our results matched very well with
Cinco‐Ley's method results.

For convenience, as shown in Figure 6a, the matrix that contained a ver-
tical well was defined as the right‐hand side (RHS) region, and the oppo-
site matrix was defined as the left‐hand side (LHS) region. Figure 6b
shows that along the fracture surface in the LHS region, the fluids were
always withdrawn from the matrix and then injected back into fracture
body. The fracture face in the RHS received fluid from the matrix region
far away from the vertical well. In the RHS region near the vertical well
(0.9 < xfD < 1.1), a mass of fluids within the fracture outflowed into the
matrix, which was attributed to the withdrawal by the production well.
According to the dimensionless pressure field shown in Figure 6c, the
fracture was a combination of a conductive channel and a leaky fault.

Figure 4. Comparison of our solution and the classical solution for (a) a symmetrically fractured well (Cinco‐Ley et al., 1978) and (b) an asymmetrically fractured
well (Berumen et al., 2000).

Figure 5. Flux distribution along the fracture calculated using equation 22
for the case of a wellbore‐intersecting fracture (CfD = π).
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The fluid passed through/across the leaky fault, which was described by the following equation (Biryukov &
Kuchuk, 2012):

Tm
∂sþ

∂y
¼ Tm

∂s−

∂y
¼ Tf

wf
sþ − s−ð Þ in the region of 9:8 < xD < 10:2; (23)

where s+ and s− are the hydraulic drawdowns on the RHS and LHS, respectively. In the other region, the
fluids entered the fracture and they were then conducted through the frac-
ture towards the leaky fault region.

Based on equation 22, Figure 7 compares the calculated exchange flux dis-
tribution with the Izadi and Yildiz (2009) solution (the fracture conductiv-
ity was considered). This showed that the fluids entered the fracture at the
far end and left the fracture at the region close to the wellbore.
3.1.2. Continuously ConfinedFractured Aquifer
As described in this section, the fractures created a network and commu-
nicated with each other throughout the system. The matrix blocks were
uniformly distributed, and fractures were orthogonal and of uniform con-
ductivity. The size of the network‐fractured zone was finite, and the aqui-
fer resided in a homogeneous matrix beyond the extent of fractured zone.
In this section, we provide two examples according to the well location: in
a matrix block and an intersecting fracture. Figure 8 shows that the solu-
tions from our model agreed very well with the numerical simulation (the
accurate numerical solutions were generated with the use of the techni-
que of the local gridding refine [LGR] presented by Berumen et al., 2000).
The computation times for our model and the numerical method were

Figure 6. Flow behavior of an isolated fracture characterized by (a) the schematic for the flow exchanges between the fracture and the matrix, (b) flux distribution
on the RHS and LHS of the fracture body, and (c) dimensionless drawdown field in both the fracture and the matrix.

Figure 7. Flux distribution along the fracture calculated using equation 22
for the case of a wellbore near an isolated fracture.
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compared based on of the same hardware platform. For the above simulations, the computation times were
30.6 and 52.5 s in this study and in the numerical model, respectively. The advantage of the computation
performance of this model was not demonstrated because of the number of fractures (six fractures) and
network configuration (orthogonal). As a result, the improvement of the computation speed was not
remarkable. The computation cost could be efficiently reduced by using the case with a complex geometry
for the network fractures.

It should be noted that when the fracture and matrix storativity had the same order of magnitude, the
matrix‐fracture diffusivity ratio was given as

χ f ¼
km
kf

� φcð Þf
φcð Þm

~
wfD

CfD
; (24)

which was generally a large value. It was considered that the volume of the fracture was small compared
with the matrix, and the transient response in the fracture reached the pseudo steady state quickly (Zeng
et al., 2012). Thus, the compressibility effects in the fracture were neglected in this example.

Figure 9 displays the dimensionless drawdown field and the flux exchange. The distributions of the flow rate
and the drawdown field were symmetrical to the connecting line between the wellbore and the
fracture‐fracture interconnection. In Region III, as shown in Figure 9a, the fluids in the matrix entered
Fracture 3 through LHS3, and the exchange flow rate decreased from the fracture tip to the interconnection

Figure 8. Comparison of our model and the numerical simulations of a continuously fractured confined aquifer for the case of the well (a) in the fracture network
and (b) in the matrix block.

Figure 9. Flow exchange between the fracture and the matrix for the network fracture with interconnection: (a) dimensionless drawdown field within the
network fractures, (b) exchange flow rate of the fracture segment (CfD = 10π, tD = 0.1).
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monotonously, which was reflected by the third plot in Figure 9b. Part of the fluids in Region II entered
Fracture 3 through RHS3, and they were transmitted along Fracture 3 towards the fracture‐fracture inter-
connection. There were two methods of conducting fluids around the interconnection. In the first methods,
some fluids on the segments of RHS3 close to the interconnection (second plot in Figure 9b) outflowed from
Fracture 3 and entered Region II. Afterwards, these fluids entered Fracture 2 through LHS2 (fourth plot in
Figure 9b). In the second method, the rest of the fluids entered Fracture 2 through the interconnection. The
rest of the fluids in Region II entered Fracture 2 directly. Thus, the flow process in Region II was diagram-
matized a:

Region II: RHS3|fflffl{zfflffl}
inflow

→Fracture3→

interconnection→Fracture2

RHS3|fflffl{zfflffl}
outflow

→RegionII→LHS2|fflffl{zfflffl}
inflow

→Fracture2:LHS2|fflffl{zfflffl}
inflow

→Fracture2::

8><>:
8><>: (25)

The fluids in Region I entered Fracture 1 through the faraway segments on RHS1, and they were then con-
ducted towards the segments near the wellbore. Finally, all the fluids were withdrawn through the segments
of Fracture 1 that were close to the wellbore on RHS1. It should be noted that because of the symmetry, the
characteristics of the flow exchange in Region IV were the same as those in Region II and likewise for RHS1
versus RHS2 in Region I.

To highlight the influence of the interconnection in the continuously fractured system, Figure 10 displays
the flux exchange without the interconnection. These characteristics displayed similar observations to those
presented in Figure 9. The main difference was that the magnitude of the outflow on RHS3 was increased
(second plot in Figure 10b) and the influx on LHS2 increased (fourth plot in Figure 10b). The reason for this
was explained by the fact that all the fluids in Fracture 3 outflowed through the segments of RHS3 and were

Figure 10. Flow exchange between the fracture and the matrix for the network fracture without interconnection: (a) drawdown field within the network
fractures, (b) exchange flow rate of the fracture segment (CfD = 10π, tD = 0.1).

Figure 11. Fracture set in a confined aquifer modified from the work of Flemisch et al. (2017).
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then injected into Fracture 2 through LHS2. In other words, no fluids in Fracture 3 entered Fracture 2
through the interconnection.

It should be noted that the dimensionless drawdown in Figure 9a was higher than that in Figure 10a, which
indicated that the interconnection indeed enhanced the ability of the conducting fluids for the continuous
fracture network. In addition, the characteristics of the flow exchange of Fracture 1–Fracture 4 in
Figures 9 and 10 were consistent with Figure 6a, so the network fractures also played the combined role
of a highly conductive channel and a leaky fault when the well was located at the matrix.

3.2. Application of the Present Model to Confined Fractured Aquifers

In the real world, confined fractured aquifers are ubiquitous in a hydrogeology system. This is caused by tec-
tonic forces, cooling stresses in magma, thermal loading, and the weathering process (Kuchuk &
Biryukov, 2014; Marechal &Dewandel, 2004). If the location of a fracture was known, the fracture was deter-
ministically presented in the model. Otherwise, the fractures were generated stochastically based on the
probability distributions of the fracture length, orientation, and aperture derived from field observations.
The method of fracture representation is not addressed in the present work.

To demonstrate the groundwater flow problems in a hydrogeological application, a realistic case based on an
interpreted outcrop in Sotra Island presented by Flemisch et al. (2017) was
introduced, with a slightly modified inner boundary condition and a com-
putational domain. We used a pumping well as an inner boundary condi-
tion in this example. The interpreted outcrop and a more complex
two‐dimensional example with discrete and continuous fractures are pre-
sented in Figure 11. For simplicity, the matrix properties were assumed to
be homogeneous throughout the aquifer and the fracture conductivity
was assumed to be infinite for all the fractures. It is worth noting that
the length of the domain size was regarded as the reference length.

As shown in Figure 12a, the set was composed of 57 fractures grouped in
five different subsets (denoted by different colors) according to the defini-
tion in section 2.1. Each group was not connected with the others. For the
red, blue, and green groups, the fractures were interconnected in a net-
work. Each group had a unified drawdown system. The pumping well
was positioned either at the matrix or intersecting a fracture. Figure 12b
shows the illustration of a network element. The element consists of four
fractures (Fractures 16–18 and 29) and three interconnections. The rela-
tionships of flux exchange (outflow or inflow) among different units are

Figure 12. (a) Numbered group of the set of fractures and (b) discretization scheme of a network element.

Figure 13. Effect of the location of the pumping well on the dimensionless
wellbore drawdown of the aquifer when the well was in the matrix.
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determined automatically based on continuous condition of drawdown and flux rate on fracture tips. Note
that the interconnection in this case is regarded as a virtual one for enhancing the computation efficiency.
3.2.1. Pumping Well in the Matrix
For the first subsection, the pumping well was positioned at the matrix. We set five scenarios with different
locations of the wellbore. Given the same distribution of fractures, the location of the pumping well made a
significant difference in the wellbore drawdown responses. As observed in Figure 13, all the curves behaved
the same way at the early times (tD < 10−4) before the drawdown disturbance that was generated at the well-
bore reached the nearest fracture. After that, the participation of the fractures led to the decrease of the draw-
down. The drawdown behaviors between Scenarios 1 and 2 were similar, as were the drawdown behaviors

between Scenarios 3 and 4. However, there were noticeable differences for
the drawdown derivatives between Scenarios 1 and 2, as there were in
Scenarios 3 and 4. It should be noted that only one downward dip was
observed on drawdown derivative curves. The reason for this was that
the wellbore drawdown was mainly affected by the network fractures that
were closet to well. The effect caused by other fractures was almost dis-
sembled by the nearest network fracture. Therefore, the effects of all the
fractures were shown in one dip valley. It was also noticed that the length
of the nearest fracture was longer in each scenario (Scenarios 1–5). As a
result, the example could not exhibit the two‐valley drawdown
derivative behavior.

The distributions of the hydraulic drawdown when tD = 1 are shown in
Figure 14. In Scenario 5, when the well was placed at xwD = 0.5 and
ywD = 0.5, the distance between the wellbore and the nearest network
fracture was the smallest. As expected, Figure 14e shows a region with a
more uniformly distributed drawdown, which resulted in the lowest well-
bore drawdown in Figure 13. This indicated that the drawdown distur-
bance arrived almost simultaneously at three groups of network fractures
(i.e., red [#1–12], blue [#12–29], and green [#30–51]). In contrast,
Figure 14 presents a lower wellbore drawdown in Scenarios 1 and 2,

Figure 14. Representation of the drawdown field for Figure 13 when tD = 1 in (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4, and (e) Scenario 5.

Figure 15. Effect of the location of the fracture network and the number of
fractures on the dimensionless wellbore drawdown of the aquifer when the
well was in the matrix.
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which was consistent with only one group of network fractures being
employed, as shown in Figures 14a and 14b. In Scenarios 3 and 4, the dis-
tance between the wellbore and the nearest fracture was relatively larger.
Hence, a larger wellbore drawdown was caused as shown in Figure 14. It
was more difficult to employ any group, which was confirmed by
Figures 14c and 14d.

As shown in Figure 15, the pumping well was positioned at xwD = 0.8 and
ywD = 0.35, which was close to an isolated fracture (#54) rather than a net-
work. The length of Fracture 54 was shorter than the other neighboring
fractures. Figure 15 displays the effects of the number of fractures and
the location of the fracture network on the wellbore drawdown. We
assume that only one fracture (#54) existed in Scenario 1. In Scenario 1,
one dip was observed on the drawdown derivative curve. When three frac-
tures (#52–54) were considered in Scenario 2, as expected, a deeper dip of
the derivative was displayed. In Scenarios 1 and 2, only one dip was
observed, which was explained by the fact that the lengths of these three
fractures (#52–54) were similar and the effects of all of the fractures were
shown in one dip valley. In Scenario 3, it was assumed that there were 21
fractures, that is, #52–54 and #12–29 (blue group). The increase of the

number of fractures led to a decrease of the drawdown. It should be noted that the average length of the blue
group was longer than that of #52–54. As a result, the second dip behavior appeared as soon as the blue
group fractures were felt. Similar behavior occurred in Scenarios 4–6. The degree of drawdown decrease
was determined by the distance between the wellbore and the network fractures, as well as the total length
of the network. Generally, the more network fractures there were, the smaller the distance was and the dee-
per the dip on the derivative curve was.
3.2.2. Pumping Well Intersecting Fracture
For the second subsection, the pumping well intersected either one isolated fracture or network fractures.
Due to the assumption of infinite conductivity of the network, the wellbore drawdown was independent
on the location of the wellbore when the pumping well intersected one of the red, blue, or green group net-
works. Figure 16 presents the effect of the position of the pumping well intersecting different network
groups. In Scenarios 1–3, the pumping well intersected one fracture of the red (#1–12), blue (#12–29), and
green (#30–51) group networks. In Scenario 4, these three groups (#1–57) were assumed to have a unified
hydraulic head system. In other words, Fractures 1–57 generated a network. The wellbore drawdown was
mainly affected by the total length and the density of the connected network at which the pumping well
was located. The total dimensionless length of the blue group network was 4.513, the total dimensionless
length of the green group network was 4.692, and the total dimensionless length of the red group network
was 5.045. In addition, the configuration of the blue group network is the densest, while that of the red group
network was the most sparse. Among Scenarios 1–3, the wellbore drawdown of the blue group (Scenario 2)
was the largest, while the drawdown of the red group (Scenario 1) was the smallest. To highlight the effect of
the fracture‐fracture interconnection, three groups were assumed to be interconnected in an integrated net-
work in Scenario 4, and the resulting wellbore drawdown was significantly decreased.

Figure 16. Effect of the location of the pumping well on the dimensionless
wellbore drawdown of the aquifer when the well intersected the network
fracture.

Figure 17. Representation of the drawdown field for Figure 16 when tD = 0.01 for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, and (d) Scenario 4.
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Figure 17 presents the corresponding distribution of the hydraulic
drawdown when tD = 0.01. For Scenarios 1–3, Figure 17a displays
the fact that the red group network occupied the largest region, and
a more effective communication with the blue group network was
created with the help of Fracture 11. Figure 17b shows that the region
occupied by the blue group network was the smallest, and the deple-
tion of the hydraulic head was mainly concentrated in the region.
Figure 17c shows that the region covered by the green group network
was larger than that of the blue group network and that the interac-
tion of the drawdown within the green group network was weaker
than that of the blue group network because of the sparse configura-
tion of the green group network. For Scenario 4 presented in
Figure 17d, the entire region could be depleted due to the assumption
of an integrated network. The distribution of the drawdown was
more uniform.

Figure 18 presents the effect of the number of fractures and the dis-
tance between the intersected fracture and the network when the
pumping well intersects Fracture 54. The corresponding field of the
hydraulic drawdown is presented in Figure 19. In Scenario 1, only
one fracture (#54) was assumed to exist. An integrated evolution of

the drawdown behavior, which was dominated by the classical hydraulic fracture, is displayed in the figure.
In Scenario 2, when three fractures (#52–54) were considered, the increase of the number of fractures con-
tributed to a lower drawdown and derivative. Furthermore, the red, green, and blue group networks were
considered throughout Scenarios 3–5. As soon as the drawdown disturbance was influenced by the network,
the second valley on the derivative curve was observed. It should be noted that the total length of the net-
work had the same order of magnitude among Scenarios 3–5. Therefore, the distance had a significant influ-
ence. In Scenario 5, since the distance between Fracture 54 and the blue group network was smallest, the
wellbore drawdown was the lowest among Scenarios 3–5. Correspondingly, as shown in Figure 19c, the
region covered by the blue group network could be depleted more efficiently and vice versa, as shown in
Figures 19a and 19b. Therefore, the closer the network was to Fracture 54, the lower the drawdown was.
In Scenario 6, when all the fractures (#1–57) were considered, the lowest drawdown was observed among
Scenarios 1–6. The entire region was also depleted, as shown in Figure 19d. Hence, the more fractures there
were, the lower the drawdown was. In summary, the phenomenon displayed nearly the same behavior as
that presented in Figure 15.

4. Discussions: Warren‐Root's Model Versus the Present Model

As shown by previous figures including Figures 13, 15, and 18, the derivatives for different scenarios exhib-
ited some look‐alike behaviors similar to the Warren and Root (1963) dual‐porosity model. Of course, the
model used in these figures had nothing to do withWarren and Root's physical model. According to the phy-
sical configuration of the dual‐porosity model for which the well was located at the connected fracture net-
work, flow took place in the fracture network, and the matrix blocks acted as local source elements to supply
the fractures. However, the derivative curves for the case of the well intersecting fracture network

Figure 18. Effect of the location of the fracture network and the number of
fractures on the dimensionless wellbore drawdown of the aquifer when the
well intersected isolated fracture.

Figure 19. Representation of the drawdown field for Figure 18 when tD = 0.01 in (a) Scenario 3, (b) Scenario 4, (c) Scenario 5, and (d) Scenario 6.
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(Figure 15) did not exhibit the characteristics of the Warren and Root dual‐porosity model (i.e., a dip on the
drawdown derivative curves). On the contrary, the cases of a well in the matrix or an intersecting isolated
fracture (Figures 13, 15, and 18) exhibited dual‐porosity model derivative behavior.

It should be noted that Warren and Root's dual‐porosity model is a fictitious homogeneous porous medium
that does not contain any fractures, while our model explicitly represented each fracture without any upscal-
ing or homogenization, as required for dual‐porosity media. To obtain the characteristics of the Warren and
Root dual‐porosity model, an actual model of the fractured medium was established in which the
well‐interconnected fractures were distributed and the well was in the fracture network. As shown in

Figure 20, the ratio between the linear sizes of the submedia eΩn−1 and the media eΩnwas the same as the ratio

for the fracture that eΩn−1=eΩn . Each cell contained a matrix block surrounded by a set of fractures. We
assumed that the fracture volume had the same order of magnitude as the fracture volume. According to
the dimensionless definitions in Warren and Root's model (Kuchuk & Biryukov, 2014), the relationships

between the dimensionless transmissivity (λfD, λmD) and the diffusivity
coefficients in our model (ηfD, ηmD) and the interporosity flow coefficient
(λ) and storativity ratio (ω) in the Warren and Root dual‐porosity model
are given as

ηmD ¼ λmD

1 − ω
; ηfD ¼ λfD

ω
; ω ¼ φVcð Þf

φVcð Þf þ φVcð Þm
; λ ¼ αL2ref

km
kf

; (26)

where λfD = 1 and λmD∝λ. Thus, the compressibility effect in the fracture
had to be considered for this case.

Figure 21 presents the dimensionless drawdown transient behavior for
various fracture‐to‐matrix diffusivity ratios when ω = 0.5 (i.e., when the
storage capacity of the matrix was equal to the fracture). The figure illus-
trates the more pronounced drawdown derivative behavior similar to the
Warren and Root dual‐porosity model with the increase of ηmD. When
ηmD = 1 (i.e., when the conductivities of the matrix and the fracture were
the same), as expected, the transient drawdown was approximated to the
homogeneous medium.

The drawdown field is shown in Figure 22a, where the streamlines in the
matrix and fracture were in the same direction of the overall flow. When

Figure 20. Schematic of a cell in the continuously fractured model with uniformly distributed fractures and matrix blocks.

Figure 21. Dimensionless drawdown transient behavior for the
continuously fractured model.

10.1029/2019WR026581Water Resources Research

LUO ET AL. 17 of 23



ηmD > 1, a valley behavior similar to the characteristics of the dual‐porosity model was observed on the
derivative curve, which decelerated the appearance of pseudo steady state. Figure 22b plots the
corresponding field. The fluids in faraway matrix blocks entered the block containing the wellbore
through the fracture network, and a radial system of streamlines was generated. When ηmD < 1, the
transient response reached the pseudo steady state (PSS) in advance, which contributed to a larger
drawdown compared with the case of ηmD = 1. The corresponding field is plotted in Figure 22c. The
streamlines in the overall flow were approximate to the pattern of radial flow, but the local streamlines in
the matrix block were slightly bent towards the fractures, which indicated that the matrix began to supply
the fluids towards the fractures (i.e., the characteristics of a dual‐porosity model).

The phenomenon in Figure 22c was more outstanding when the matrix storage capacity was much larger
than the fracture. Figure 23 displays the corresponding field, where the matrix‐fracture diffusivity ratio
and the storativity ratio were set to be small enough values to magnify the phenomenon. This shows that
the matrix behaved like a source of fluid for the fracture. In each matrix block, the fluids flowed along the
radial‐shaped streamlines towards the fracture. The matrix blocks did not directly participate in the overall

Figure 22. Flow patterns in the continuously fractured model.

Figure 23. Flow pattern of the look‐alike dual‐porosity model in the continuously fractured model.
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flow, and only the fractures transferred the fluids towards the wellbore. The characteristics were highly con-
sistent with the description in the Warren and Root (1963) dual‐porosity model.

5. Conclusions

With the theory of BEM and Green's function, an alternative modeling approach was developed to investi-
gate the transient hydraulic drawdown response and the details of the flow exchange between thematrix and
fracture in the discretely and continuously confined fractured aquifer. Based on this work, some important
conclusions were drawn, as follows.

Although the mess‐free semianalytical solution in the Laplace domain without loss of fracture properties
and particularities did not require space or time discretization in the domain of interest, it allowed us to
achieve the hydraulic head distribution for any spatial and temporal dimensions.

1. For the case in which the well was in the matrix, the fractures not only transmitted the fluids as a
high‐conductive channel, but also conducted the fluids across themselves like a leaky fault.

2. When the fracture volume was regarded as infinitesimal compared with the matrix volume, in the case of
the well in the matrix, a valley was exhibited on the drawdown derivative curve in both the discretely and
continuously confined fractured aquifers. However, in the case of the wellbore‐intersecting fracture, the
valley‐like behavior was not observed unless the length of the wellbore‐intersecting fracture was less
than the others in the discretely fractured aquifer were.

3. When the volume of the fractures was of same order of magnitude as the matrix, in the continuously con-
fined fractured aquifer with a uniform conductivity and fracture length, the case of the
wellbore‐intersecting fracture might resemble the well‐known characteristics of the Warren and Root
dual‐porosity reservoir model.

More specifically, the characteristics of the flow exchange and the drawdown transient behavior were depen-
dent on the fracture‐matrix diffusivity ratio, the fracture‐matrix capacity ratio, the fracture‐matrix volume
ratio, the configuration of the fracture (network), and the relative location of the wellbore. In a physical con-
text, these parameters were of the same significance as the equivalent permeability and equivalent porosity
in the equivalent homogenized model. Detailed mathematical derivations of the equivalent flow model can
be found in the work of Rasoulzadeh and Kuchuk (2019).

Appendix A: Improved Green's function for equation 8
In the closed rectangular domain with the Neumann condition, the Fourier cosine transformation was used
to derivate equation 8. Further using relevant mathematical relationships (Wang et al., 2018), the solution
for equation 8 is given as the following equation:

xeD TDeGD

� �
α

π
¼ cosh ε0 yeD − jyD ± y

0
Dj

� �
 �
ε0sinh ε0yeDð Þ þ 2 ∑

∞

k¼1
cos ukxDð Þcos ukx

0
D

� � cosh εk yeD − jyD ± y
0
Dj

� �
 �
εksinh ε0yeDð Þ ; (A1)

where we have defined

uk ¼ kπ=xeD; εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα þ u2k

q
; cosh z − jx ± yj½ � ¼ cosh z − jx þ yj½ � þ cosh z − jx − yj½ �: (A2)

It should be noted that equation A1 is exact in the mathematical context. However, the components con-
verge slowly, as if they are divergent series. Based on equation A1, we could obtain the source function on
the inner and outer boundary by use of spatial integral with regard to (x’D, y’D). From the computational
viewpoint, the integral cannot provide a solution that is convenient for computational purposes, which is dif-
ficult to terminate computations and ensure the convergence. Wang et al. (2018) provided an effective com-
putational solution to recast the integral for fast computation. However, it is still difficult to calculate the

term of∑∫K0
ffiffiffi
v

p
f u − αð Þ½ �dα for an extremely small value of v (corresponding to the late real time). In addi-

tion, we also encountered some other computation issues. For example, for the case of the elongated frac-
ture, the ratio of yeD/xeD was very small, which made the infinite series converge slowly. Thus, the
asymptotic approximations for different time scopes were developed to improve the rate of convergence.
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For the late time (i.e., v→0), the transient response fully reaches the boundary‐dominant state. The approx-
imate solution of equation A1 is given by

TDeGD

� �
α
¼ 2πTDα

xeDyeDν
þ 2πyeD

xeD

1
3
−

∣yD ± y
0
D∣

2yeD
þ y2D þ y

0
D

� �2
2y2eD

 !
þ 2 ∑

∞

k¼1
Hk þ ∑

∞

k¼1
Tk

� 	
: (A3)

For an intermediate time, when the transient response is mainly affected by parallel boundaries in the x
direction, equation A1 is approximated by

TDeGD

� �
α
¼ π

xeD

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα

p
yeD − jyD ± y

0
Dj

� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα

p
yeD

� � þ 2 ∑
∞

k¼1
Hk þ ∑

∞

k¼1
Tk

� 	
: (A4)

When the transient response is mainly affected by parallel boundaries in the y direction, equation A1 is
replaced by

TDeGD

� �
α
¼ 2πyeD

xeD

1
3
−
∣yD ± y

0
D∣

2yeD
þ y2D þ y

0
D

� �2
2y2eD

 !
−
2πxeD
yeD

1
3
−
∣xD ± x

0
D∣

2xeD
þ x2D þ x

0
D

� �2
2x2eD

 !

þ π
yeD

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα

p
xeD − jxD ± x

0
Dj

� �ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν=TDα

p
xeD

� � þ 2 ∑
∞

k¼1
Hk þ ∑

∞

k¼1
Tk

� 	
;

(A5)

where

Hk ¼
cos ukxDð Þcos ukx

0
D

� �
k

cosh uk yeD − jyD ± y
0
Dj

� �
 �
sinh ukyeDð Þ − ξ

 !
; Tk ¼ ξ

cos ukxDð Þcos ukx
0
D

� �
k

; (A6)

when yD = y’D = 0, ζ= 2; when yD = y’D≠ 0, ζ= 1; and when yD≠ y’D, ζ= 0. It is noted that the series of∑1/k
is not convergent. In the computation process in equations A3–A5, we first introduced the Lobachevskiy
function to calculate the infinite series, which is given by

L xð Þ ¼ ∑
∞

k¼1

sin kxð Þ
k2

¼ −∫
x

0ln 2sin t=2ð Þ½ �dt: (A7)

As is known, the alternate computational forms are more important than the direct analytical solution for
performing an accurate numerical calculation. We believe that the observations in this study are an impor-
tant contribution to the computational techniques.

Appendix B: Coefficient matrix in the linear system of equations
In equation 18, the components of the right‐hand side vector are

B
!T

1 ¼ 0 0 0 0 0 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Block1

⋯0 0 0 0 0 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Block4

Þand B
!T

2

¼ 0 0 0 0 0 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Block1

⋯0 0 0 0 0 1=s|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Block4

Þ:

0B@
0B@ (B1)

The coefficient sub matrixes are diagonal matrixes, as illustrated in Figure B1. The components of the coef-
ficient matrix A1 are diagonal matrixes, given by

A1 ¼ diag
Aq

B1

TD1
;
Aq

B2

TD2
;
Aq

B3

TD3
;
Aq

B4

TD4

� 	
; (B2)

where the matrix in the αth block (α = 1,2,3,4) is expressed as follows:
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Aq
Bα ¼

eSα

BD 1;1;1;1ð Þ
eSα

BD 1;1;1;2ð Þ
eSα

BD 1;1;2;1ð Þ
eSα

BD 1;1;2;2ð Þ
eSα

wD 1;1;1;1ð Þ

eSα

wD 1;1;1;2ð ÞeSα

BD 1;2;1;1ð Þ
eSα

BD 1;2;1;2ð Þ
eSα

BD 1;2;2;1ð Þ
eSα

BD 1;2;2;2ð Þ
eSα

wD 1;2;1;1ð Þ

eSα

wD 1;2;1;2ð ÞeSα

BD 2;1;1;1ð Þ
eSα

BD 2;1;1;2ð Þ
eSα

BD 2;1;2;1ð Þ
eSα

BD 2;1;2;2ð Þ
eSα

wD 2;1;1;1ð Þ

eSα

wD 2;1;1;2ð ÞeSα

BD 2;2;1;1ð Þ
eSα

BD 2;2;1;2ð Þ
eSα

BD 2;2;2;1ð Þ
eSα

BD 2;2;2;2ð Þ
eSα

wD 2;2;1;1ð Þ

eSα

wD 2;2;1;2ð ÞeSα

BD 1;1;1;1½ �
eSα

BD 1;1;1;2½ �
eSα

BD 1;1;2;1½ �
eSα

BD 1;1;2;2½ �
eSα

wD 1;1;1;1½ �

eSα

wD 1;1;1;2½ �eSα

BD 1;2;1;1½ �
eSα

BD 1;2;1;2½ �
eSα

BD 1;2;2;1½ �
eSα

BD 1;2;2;2½ �
eSα

wD 1;2;1;1½ �

eSα

wD 1;2;1;2½ �

266666666666666666666666666664

377777777777777777777777777775

: (B3)

Similarly, the coefficient matrix A2 is also a diagonal matrix,

A2 ¼ diag Ap
B1;A

p
B2;A

p
B3;A

p
B4

� �
; (B4)

and

AP
Bα

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

26666666664

37777777775
: (B5)

The continuity conditions of pressure and flux at the outer boundary (i.e., the interface between adjacent
blocks) satisfy the following expressions:

Figure B1. Coefficient matrix structure for A
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es 1BD1;j ¼ es4BD1;jeq1BD1;j þ eq4BD1;j ¼ 0
n

; es 1BD2;j ¼ es2BD2;jeq1BD2;j þ eq2BD2;j ¼ 0
n

; es 2BD1;j ¼ es3BD1;jeq2BD1;j þ eq3BD1;j ¼ 0
n

; es 3BD2;j ¼ es4BD2;jeq3BD2;j þ eq4BD2;j ¼ 0
n

; for j ¼ 1; 2:

(B6)

Thus, equation B5 can also be written as a constant matrix, which is explicitly rearranged as

AB3 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

2666666666666664

3777777777777775
; (B7)

and

Aw3 ¼ 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1½ �: (B8)

In addition, the inner boundary was assumed to equal to the wellbore pressure, given by

Aw3 ¼

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

2666666666666664

3777777777777775
: (B9)
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