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Abstract
Supervised deep learning has been highly successful in recent years, achieving state-of-the-art results in most tasks.

However, with the ongoing uptake of such methods in industrial applications, the requirement for large amounts of

annotated data is often a challenge. In most real-world problems, manual annotation is practically intractable due to time/

labour constraints; thus, the development of automated and adaptive data annotation systems is highly sought after. In this

paper, we propose both a (1) deep Bayesian self-training methodology for automatic data annotation, by leveraging

predictive uncertainty estimates using variational inference and modern neural network (NN) architectures, as well as (2) a

practical adaptation procedure for handling high label variability between different dataset distributions through clustering

of NN latent variable representations. An experimental study on both public and private datasets is presented illustrating

the superior performance of the proposed approach over standard self-training baselines, highlighting the importance of

predictive uncertainty estimates in safety-critical domains.

Keywords Bayesian CNN � Variational inference � Self-training � Uncertainty weighting � Deep learning �
Clustering � Representation learning � Adaptation

1 Introduction

With the advent of Big Data in industrial applications, the

ability to automatically label datasets using limited super-

vision is increasingly sought after. In most real-world

problems, manual annotation is practically intractable due

to time and labour constraints. Furthermore, recent

advances in supervised deep learning have shown that

training over parameterised models on large datasets sig-

nificantly increases performance [1]. With that in mind—

and despite the high demand for annotated data—deep

learning practitioners have not yet explored or leveraged

many of deep learning tools for automatic annotation sys-

tems. This is evidenced by the scarcity of existing research

in the field, compared to others [2]. Automated annotation

techniques typically involve semi-supervised algorithmic

variants, wherein learning systems are often trained on a

small initial sample of labelled data, and leverage infor-

mation from unlabelled data to generalise better [3]. Well-

established semi-supervised methods such as self-training

[4], transfer learning [5], co-training [6], active learning [7]

and tri-training [8] among others have shown to be useful

for labelling in the past, but some challenges remain with

regard to their scalability to high-dimensional data and

their suitability to modern deep learning settings [2, 9].

Prominent recent works have explored some of these ideas

in the context of modern deep models, proposing new

paradigms such as co-teaching [10], active learning on
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image data [2] and analysing deep transfer learning

[11, 12] with good levels of success. Taking inspiration

from these works, in this paper we primarily focus on

exploring the self-training algorithm in combination with

modern Bayesian deep learning methods and leverage

predictive uncertainty estimates for self-labelling of high-

dimensional data.

1.1 Background on application domain

In addition to public domain datasets, we evaluate our

methods on a real-world task involving optical character

verification (OCV) of real food packaging images,

expanding on earlier work in [13] by reducing manual data

annotation.

Incorrectly labelled food products (e.g. bearing an

incorrect/illegible use-by date) result in product recalls and

food waste, as label faults can lead to food safety incidents.

Label faults are primarily attributed to human error during

error-prone manual checking. Automatic approaches typi-

cally involve OCV, whereby a supervisory system holds

the correct date code string and transfers it to both the

printer and the vision system. The latter will then verify its

read and take appropriate action. Such a system could also

be used alongside other systems such as blockchain, within

the food chain for food traceability [14]. Current OCV

systems require accurately labelled data to be utilised for

training, but the labelling process is time-consuming,

expensive and requires expertise. They also rely on con-

sistency in date code format, packaging and camera view

angle which is difficult to ensure in a manufacturing

environment, so there is a great need for a more robust

solution.

1.2 Contribution

We propose a deep Bayesian self-training methodology

orthogonal to [2] that leverages approximate variational

inference in DNNs to estimate predictive uncertainty dur-

ing a self-training setting. Both aleatoric and epistemic

uncertainties of predicted pseudo-labels for unseen data are

estimated, and the samples with the lowest predictive

uncertainty (highest confidence) are added to the training

set in an automated manner. We offer ways to mitigate the

known problem of propagating errors in self-training by

including: (1) an entropy penalty on the log-likelihood loss

to punish overconfident output distributions and facilitate

thresholding, and (2) an adaptive sample-wise weight on

the influence of predicted pseudo-labelled samples over

gradient updates to be inversely proportional to their pre-

dictive uncertainty. Lastly, we propose a new simple

methodology for visualising and analysing variability

between two dataset distributions in DNNs and attempt to

adapt information from one problem to the other by clus-

tering learnt latent variable representations in the context of

our application domain. An experimental study on both

public and private (real) datasets is presented demonstrat-

ing the increased performance of our algorithm over stan-

dard self-training baselines.

2 Related work

Deep learning model’s ability to learn abstract hierarchical

representations from data has pushed the state of the art in

most machine learning-related tasks [1, 15]. The uptake of

these methodologies in academia and industry has resulted

in many diverse and interesting DNN applications, wherein

patterns learned from data have been adapted to perform

tasks in various domains, including computer vision

[13, 15–17], medical imaging [18–20] and signal process-

ing [21, 22]. Although many important improvements to

DNNs have been made in various domains, there are still

many adversities in training models which can be easily

adapted to other tasks; and the lack of annotated data is one

of the contributing factors.

2.1 Deep semi-supervised learning

Most related work addressing the aforementioned issues is

often related to domain adaptation philosophy and semi-

supervised learning algorithms such as self-training [4],

which is an iterative procedure for self-labelling data points

in an unlabelled pool, and retraining a classifier until stop

conditions are met. Co-training [6] can be considered

multiview variant of self-training wherein two separate

classifiers are trained on different views of the data and

augment each others training sets with their predicted

labels. Tri-training [8] extends co-training by having three

classifiers, and unlabelled examples are added to a classi-

fier’s training set iff the other two agree on the predicted

label. Active learning [7] selects the most informative

samples from a pool of unlabelled data and retrains the

classifier with human given labels in an effort to maximise

performance and minimise data labelling requirements.

Transfer learning [5] is often used when there is a lack of

annotated data in the target domain, and the goal is to adapt

knowledge from one task to another by initialising the

weights of the target task with the pre-trained weights of

another, often performing better than random initialisation.

Among these algorithms, transfer learning has undoubtedly

had the most success in the context of deep models, and it

is widely used in computer vision for adapting visual fea-

tures from large source domains, to target domains with

limited annotated data. Notably, [11] find that initialising a

network with transferred features boosts generalisation that
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lingers even after fine-tuning to the target dataset, and

transferring features from distant tasks is still better than

using random weights. Recent work in [23] suggests that a

single DL model can jointly learn a number of tasks from

multiple domains successfully. In fact, it was observed that

adding knowledge from unrelated tasks never hurts per-

formance, rather mostly improves it on all tasks. This

phenomenon is complimented by research in [24], with

results suggesting that combining tasks, even via a naı̈ve

multihead architecture, always improves performance.

Authors in [25] propose learning a network comprised of

the most successful layers from many different source

networks, which are continuously generated and evaluated

by a recurrent neural network (RNN) controller. Task

transfer learning was recently studied in great depth by

[12], where a fully computational approach termed

taskonomy was proposed. This was achieved by identifying

dependencies between 26 different tasks in latent space,

producing a computational taxonomic map for task transfer

learning. Deep generative modelling is also gaining pop-

ularity in tackling adaptation of knowledge learnt from data

generating distributions to pool sets of unlabelled data

[26–28]. Other notable related works presented more

recently include co-teaching [10], wherein two neural

networks are trained simultaneously and teach each other

to select clean labels and then decide what data to use for

training. Mean teacher models [29] maintain an exponen-

tial moving average of model weights and penalise

inconsistent predictions, enabling training with fewer

labels as an added benefit. Deep co-training [30] extends

the original co-training algorithm by training multiple

DNNs with different views generated by exploiting

adversarial examples. In [31], a simple method termed

pseudo-label similar to entropy regularisation [32] is pro-

posed, and it consists of iteratively assigning pseudo-labels

via the maximum predicted probability of a NN. Although

research on self-training with deep models is scarce,

notable work in [33] presents an unsupervised domain

adaptation (UDA) framework based on self-training for

semantic segmentation using DNNs. They develop a self-

paced policy that increases the number of pseudo-labels

incorporated in each additional round and demonstrate

performance benefits over other popular methods. How-

ever, as is the case with all previous works mentioned thus

far, their proposed approach does not provide principled

predictive uncertainty estimates. The black box nature of

DNNs is a concern in most real-world applications, and by

quantifying what a model does not know with uncertainty

measures, we can not only better trust our predictions but

also avoid potentially harmful outcomes [34]. With that in

mind, perhaps the most significant related work is in [2],

where the authors propose a Bayesian formulation of active

learning for image data using DNNs, obtaining a significant

improvement on existing active learning approaches by

considering uncertainty estimates in approximating acqui-

sition functions.

2.2 Uncertainty estimation

The estimation of uncertainty as a measure of confidence

over a model’s predictions is desirable for self-labelling,

and for safety-critical systems in general [34]. Bayesian

neural networks (BNNs) were studied by many in the past

[35–37] and have more recently regained popularity. In

BNNs, uncertainty is typically captured by placing a prior

distribution such as a Gaussian, over the weights and

averaging over all possible parameters, rather than opti-

mising them directly. Bayesian inference is then used to

compute the posterior over the weights capturing the set of

likely parameters. However, BNNs are difficult to perform

inference in with traditional methods, as they do not scale

well scale to high-dimensional inputs or very complex DL

models [34]. Recent promising methods including

[34, 38, 39] offer alternative ways of capturing uncertainty

by simple modifications to loss functions, having the net-

work to learn/predict aleatoric uncertainty in an unsuper-

vised manner. Aleatoric uncertainty relates to sensory noise

in the acquisition process of the data and is therefore

inherently irreducible [40]. However, we argue that it can

be a great tool for quantifying our uncertainty about

pseudo-label predictions. In [39], dropout was shown to

perform approximate variational inference, wherein

stochastic forward passes with dropout at test time are

effectively samples from the approximate posterior. This

technique is know as Monte Carlo (MC) dropout [39] and

can be used to quantify epistemic uncertainty in NN pre-

dictions. Epistemic uncertainty relates to our uncertainty

about the model parameters, which is in fact reducible as

we observe more data. This is because we can explain the

uncertainties about the model parameters in the limit of

observing all explanatory variables of the data [34, 40].

This type of uncertainty is useful for identifying out-of-

distribution data points and is the most important type of

uncertainty measure when assigning pseudo-labels to data.

In this paper we argue that with some modifications,

uncertainty estimation techniques in Bayesian deep learn-

ing can also be useful in a self-training setting, and to the

best of our knowledge, these ideas have yet to be explored

in this context. All things considered, we propose a deep

Bayesian self-training algorithm, in which a DNN assigns

pseudo-labels to new data and automatically weighs their

sample-wise importance for the next self-training iteration

to be inversely proportional to the predictive uncertainly of

the assigned pseudo-label. In this way, we can reduce the

burden of manual data annotation requirements and also
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offer a measure of uncertainty about our predictions which

is important in safety-critical domains.

3 Deep Bayesian self-Training

In this section, we provide a brief background on Bayesian

NNs and explore the idea of uncertainty estimation of

pseudo-label predictions for unlabelled data, in a deep

Bayesian self-training framework (see Algorithm 1). In

order to quantify what our algorithm does and does not

know, we extend existing approaches for estimating

uncertainty in deep CNNs [34, 41]. To this end, we con-

sider the following Bayesian formulation of a deep CNN

for estimating both aleatoric and epistemic uncertainties.

3.1 Bayesian neural networks

Let D ¼ fðX;YÞg denote a dataset given as N pairs of

inputs xi 2 Rd of dimension d, and class labels yi 2
f1; . . .Kg of K total classes. Assuming a Bayesian neural

network (BNN) formulation, we place a Gaussian prior

probability distribution pðxÞ over the set of trainable

parameters x ¼ fW1; . . .;W‘g. We define the likelihood

conditional output distribution pðYjX;xÞ of NN for map-

ping inputs to labels, by finding parameters x that yield the

maximum likelihood estimate (MLE). MLE is the pillar of

supervised learning in DNNs and is defined as

bxML ¼ arg max
x

X
N

i¼1

log pðyijxi;xÞ; ð1Þ

yielding a point estimate for the most likely parameters to

have generated the data. In a Bayesian sense, the MLE is a

special case of maximum a posteriori (MAP) estimation

when a uniform prior is assumed. In practical classification

tasks, the MLE estimator is obtained by minimising the

negative log-likelihood of a Bernoulli or softmax distri-

bution depending on the number of classes. We define the

softmax negative log-likelihood of our classification NN

model as

� log pðyi ¼ kjx;xÞ ¼ �
�

zk � log
X

k0
expðzk0 Þ

�

ð2Þ

where z denotes the vector of output logits by the network

and k denotes a class. Having defined a prior and a like-

lihood, we would like to compute the posterior probability

distribution over the weights given the data by Bayes rule

pðxjX;YÞ ¼ pðYjX;xÞpðxÞ
pðYjXÞ / pðYjX;xÞpðxÞ; ð3Þ

with which we can also formulate the predictive distribu-

tion given new inputs x� and labels y�

pðy�jx�;X;YÞ ¼
Z

pðy�jx�;xÞpðxjX;YÞdx; ð4Þ

enabling predictions using a full distribution over the

parameters x, which captures uncertainty over the model

parameters, rather than using a point estimate. However, in

most cases, the posterior distribution pðxjX;YÞ cannot be

evaluated analytically. This is because to compute the

marginal probability pðYjXÞ we must integrate over all

possible model parameters x with weighted probability

pðxÞ, in order to obtain the normalising constant, also

known as the model evidence. Since the true posterior

distribution pðxjX;YÞ is intractable, various approxima-

tions exist [36, 37, 42]. Most of them were important early

steps towards performing approximate inference in Baye-

sian NNs, but are unfortunately difficult to employ in

modern applications due to scalability constraints or expert

knowledge requirements. More recent work in [41, 43–45]

addressed some of these issues with variational inference,

reigniting interest in the field of Bayesian NNs.

3.2 Variational inference

Next, we provide a background on variational inference

(VI) to contextualise some of the ideas presented in [41],

wherein dropout is shown to perform approximate varia-

tional inference in NNs when used at test time. In VI, a

factorised variational distribution from a tractable family

qhðxÞ, parameterised by h, is defined for approximating the

posterior distribution by minimising the Kullback–Leibler

(KL) divergence between qhðxÞ and pðxjX;YÞ. Intuitively,

the KL divergence is a non-negative asymmetric measure

of similarity between the two distributions

KLðqhðxÞ jj pðxjX;YÞÞ, which we minimise via the vari-

ational parameters h of our approximating distribution

qhðxÞ
bh ¼ arg min

h
EqhðxÞ

�

log qhðxÞ � log pðxjX;YÞ
�

: ð5Þ

However, optimising the KL divergence directly requires

knowledge of the intractable posterior. This is circum-

vented by instead maximising the evidence lower bound

(ELBO) on the marginal log-likelihood log pðYjXÞ,
derived via Jensen’s inequality logðE½X�Þ � E½logðXÞ�

LELBOðhÞ ¼ log pðYjXÞ � KLðqhðxÞ jj pðxjX;YÞÞ; ð6Þ

and given that the KL divergence � 0 then

log pðYjXÞ ¼ LELBOðhÞ þ KLðqhðxÞ jj pðxjX;YÞÞ: ð7Þ

By maximising the lower bound, we implicitly maximise

log pðYjXÞ and minimise the KL divergence as intended.

We extend these ideas in the light of recent developments
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in [41] with the Monte Carlo dropout approximation using

qhðxÞ, further explained in the following section.

3.3 Continuous relaxation of dropout

Concrete dropout is based on concrete relaxation of dis-

crete distributions [46], allowing the replacement of

dropout’s discrete Bernoulli distribution with its continu-

ous relaxation [47]. To obtain calibrated uncertainty esti-

mates with Monte Carlo dropout, it is necessary to tune the

dropout probabilities. A grid search is a common but costly

approach for large models, highlighting the benefit of

optimising them directly with gradient descent. This

requires formulating an objective for minimising epistemic

uncertainty [41] using the variational interpretation of

dropout.

Formally, dropout can be treated as an approximating

distribution qhðxÞ to the posterior in a BNN, where x

represents the weight matrices of the ‘th of L layers in the

network x ¼ fW‘gL‘¼1, and h are the variational parame-

ters to optimise [47]. Let FðxÞ be the model with weight

matrix realisation x; given a random set S comprising M of

all N data points, denote the model’s output on the xi input

as Fðxi;xÞ. The following NN objective function can then

be formulated

L̂MCðhÞ ¼ � 1

M

X

i2S
log pðyijF ðxi;xÞÞ

þ 1

N
KLðqhðxÞ jj pðxÞÞ;

ð8Þ

where pðyijFðxi;xÞÞ is the model’s likelihood, a Gaussian

with a predictive mean given by Fðxi;xÞ. KL is a

regularisation term which constrains the approximate pos-

terior qhðxÞ from deviating too far from prior pðxÞ. Fol-

lowing [38], we can approximate the KL term with

KLðqMðWÞ jj pðWÞÞ / l2ð1 � pÞ
2

jjMjj2 � KH½p�; ð9Þ

where fM‘; p‘gL‘¼1 is a set of mean weight matrices and

dropout probabilities, such that (s.t.) qM‘
ðW‘Þ ¼

M‘ � diag½Bernoullið1 � p‘ÞK‘ � for a single NN weight

matrix W‘ 2 RK‘þ1�K‘ . H½p� is simply the entropy of a

Bernoulli random variable with probability p

H½p� :¼ �p log p� ð1 � pÞ logð1 � pÞ; ð10Þ

which can be interpreted as a regularisation term that only

depends on dropout probability p, so minimising the KL

term is equivalent to maximising the entropy of a Bernoulli

random variable with probability ð1 � pÞ. Rather than

sampling the random variable from the discrete Bernoulli

distribution, by adopting the concrete distribution [46, 47]

with some temperature t, it is possible to sample variables

in the interval [0, 1], s.t. the concrete relaxation distribu-

tion ez

ez ¼ sigmoid

�

1

t
�
�

log p� logð1 � pÞ

þ log u� logð1 � uÞ
�

�

;

ð11Þ

parameterised by means of u�Unifð0; 1Þ, provides a

relationship between ez and u, which is differentiable w.r.t.

p. With the concrete relaxation of the dropout masks, the

dropout probabilities for each layer fp‘gL‘¼1 can be opti-

mised using the path-wise derivative estimator [47].
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3.4 Entropy penalty on output distributions

The probabilities assigned to incorrect classes at test time

help quantify a model’s ability to generalise. By penalising

output distributions with low entropy (i.e. confident pre-

dictions), we can obtain a similar effect to label smoothing

and improve generalisation [48]. This can be useful in self-

training, since we assign pseudo-labels based on low

uncertainty predictions, which are in some cases wrongly

assigned. We suggest that by penalising very confident

output distributions we can improve generalisation and

make thresholding easier since the output distributions are

smoother, rather than overly concentrated at 0 or 1. The

entropy of a NNs output conditional distribution is given

by

H
�

pðyjx;xÞ
�

¼ �
X

i

pðyijx;xÞ log pðyijx;xÞ; ð12Þ

with pðyjx;xÞ as the probability distribution obtained from

a softmax function. To penalise very confident predictions,

we can simply take the negative log-likelihood and subtract

the entropy of the output distribution as

LNLLðxÞ ¼ �
X

log pðyjx;xÞ � bH
�

pðyjx;xÞ
�

; ð13Þ

where the scaling hyperparameter b balances how much we

would like to penalise non-uniformity of the softmax.

3.5 Inverse uncertainty weighting

A known limitation of self-training is the potential accu-

mulation of wrongly pseudo-labelled samples being added

to the training set. A common approach is to remove less

confident samples from the training set and leave them in

the unlabelled set. However, this tends to underperform in

practice, as the algorithm can become biased by continu-

ously adding the easiest unlabelled samples to the training

set. This can hinder learning over time, as more difficult

and potentially informative samples are neglected.

In attempt to mitigate this behaviour, we propose a

sample-wise weighting scheme during training that places

a weight on each training sample fxi;byi; kig, proportional

to the predictive uncertainty over its pseudo-label byi, such

that its contribution to the loss function is inversely pro-

portional to its predictive uncertainty (see Algorithm 1). To

calculate the predictive uncertainty, we can have the net-

work predict the aleatoric uncertainty as one of its outputs

and add the epistemic uncertainty obtained from the vari-

ance of Monte Carlo dropout samples.

Formally, let bpt ¼ softmaxðFðx; bxtÞÞ denote the soft-

max out of a BNN, and fbpgTt¼1 be the set of outputs from T

Monte Carlo dropout samples at test time, each parame-

terised by weights drawn from the approximate posterior

bxt � qĥðxÞ. We propose calculating the predictive uncer-

tainty from these samples by generalising the binary vari-

ant approach in [49] to a multivariate classification setting.

By the definition of variance of a multinomial distribution,

we can decompose the variance of bp into

Var
�

bp
�

	 tr
�

E
�

diagðbpÞ � bpbp
>�þ E

�

bp
2�� E

�

bp
�2
�

;

ð14Þ

where the first term represents aleatoric uncertainty r2
a, and

the second is the epistemic r2
e. Each diagonal entry of the

resulting matrix is the variance of a binomially distributed

random variable, and the off-diagonals are negative

covariances for fixed T. Since we are only interested in a

single number to measure our uncertainty, we take trace of

the resulting uncertainty matrix.

Alternatively, we can have the NN predict the input

noise variance r2
a as one of its outputs [34], by assuming

measurement error in our target function y ¼ FðxÞ þ �,

where ��Nð0; r2
aÞ. The predictive variance in a multi-

variate classification setting is then given by

Var
�

by
�

	 1

T

X

t

expðbstÞ �
X

j

E
�

bp
�

log E
�

bp
�

¼ E½expðbsÞ� þH
�

softmaxðFðx; bxÞÞ�;
ð15Þ

the entropy term measures epistemic uncertainty in the

output softmax distributions, whereas the log aleatoric

uncertainty bsi :¼ log r2
a;i term is regressed by the NN for

each input xi, for numerical stability. To capture aleatoric

uncertainty in our classification task, we can use Monte Carlo

integration on the NNs Gaussian log-likelihood objective

function, by drawing t 2 T samples of Gaussian noise-cor-

rupted NN output logits FðxÞ, yielding the following loss

LNLL ¼ � logE
�

softmaxðFðxÞ þ �t 
 exp ðbsjxÞÞ
�

; ð16Þ

with �t �Nð0; IÞ parameterised by the predicted aleatoric

uncertainty exp ðbsjxÞ for each sample xi, which learns to

capture measurement error.

Having calculated the predictive uncertainty Var½bp� of

our pseudo-labels, we calculate a per-sample importance

weight fxi;byi; kig with

ki ¼
1

expðVar½bpi�Þ/ðrÞ
; ð17Þ

where /ð�Þ is a parameterised hyperbolic tangent function

/ðrÞ ¼ 1 � exp ðc � r þ bÞ
1 þ exp ðc � r þ bÞ ; ð18Þ

with c, b as scale and intercept terms, and r denotes the

self-training iteration. The weighted penalised log-likeli-

hood of our NN with weights x is then
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LPLL ¼
X

i

ki log pðyijxi;xÞ � bH
�

pðyijxi;xÞ
�

; ð19Þ

where pðyjx;xÞ is computed via softmax, and the optional

confidence entropy penalty term is balanced by b. By

tuning c and b, we can obtain the desired behaviour over

r iterations, s.t. when the uncertainty is low, we assign high

weight to the predicted pseudo-labelled sample

fxi;byi; ki 	 1g. We can incrementally encourage the model

to assign more weight to uncertain pseudo-labelled samples

as self-training progresses, since in the limr!1 /ðrÞ ¼ �1.

Intuitively, this procedure inverts Eq. (17) over time,

incrementally forcing exploration by adding more uncer-

tain, and potentially informative samples, to the training

set. In summary, using this logic along with entropy

penalties on overconfident output distributions, we can

mitigate the effect of pseudo-labelling error accumulation

in the training set and adjust risk taking by tuning c and

b. Once per-sample predictive uncertainties are calculated,

we decide on which pseudo-labelled samples to add to the

training set via a Tukey fence. Intuitively, assume a NN has

been trained on data D ¼
�

ðxi; yiÞgNi¼1, learning a function

Fðx;xÞ for mapping inputs to labels. At inference time, we

take the correct predictions where yi ¼ Fðxi;xÞ and

retrieve their predictive uncertainty. We then summarise

variability by calculating the interquartile range (IQR)

outlier statistic and define an uncertainty upper bound s,

which is used to decide which pseudo-labelled samples

from U ¼
�

exig
eN
i¼1 should be added to D following

D� ¼ 8i 2
�

D [ fexi;byi; kig j Var½pðyijxiÞ�\s
	

; ð20Þ

where byi denotes the pseudo-label assigned to sample xi
computed as byi ¼ arg max bpi, and D� is the augmented

training set. Lastly, we can also easily adjust the uncer-

tainty upper bound s by selecting higher or lower quartiles

to reflect how confident we would like to be about pre-

dictions before adding samples to D�.

4 Latent variable adaptive clustering

We propose a new simple methodology for visualising and

analysing variability between distributions and attempt to

adapt information from one problem to another in DNNs.

In Fig. 1, an illustration of our adaptation framework is

shown using an example backbone InceptionV3 CNN. Let

the following denote two training sets from separate data-

sets targeting the same task

D1 ¼
�

ðxðiÞ1 ; y
ðiÞ
1 Þ ; i ¼ 1; . . .;N1

	

;

D2 ¼
�

ðxðiÞ2 ; y
ðiÞ
2 Þ ; i ¼ 1; . . .;N2

	

;
ð21Þ

and the two respective test sets as

T 1 ¼
�

ðexðiÞ1 ; ey
ðiÞ
1 Þ ; i ¼ 1; . . .; eN1

	

;

T 2 ¼
�

ðexðiÞ2 ; ey
ðiÞ
2 Þ ; i ¼ 1; . . .; eN2

	

:
ð22Þ

Let FðD1;W1Þ and FðD2;W2Þ denote two architecturally

identical CNNs trained separately on each dataset. For each

CNN, we extract the final fully connected layer activations

fxðiÞ1 ; ex
ðiÞ
1 g 2 R2048 and fxðiÞ2 ; ex

ðiÞ
2 g 2 R2048 as latent vari-

ables representations, by simply forward-propagating each

image through as is typically done at inference time.

Utilising these, our adaptation methodology is then

performed as follows:

1. Given D2, produce a set of clusters C ¼ fc1; . . .; ckg by

minimising the within-cluster L2 norms of the follow-

ing clustering objective function

bCk�means ¼ arg min
C

X
k

i¼1

X

x2Ci











x� li












2
: ð23Þ

2. Repeat step 1 with D1 to generate k clusters U ¼
fu1; . . .; ukg and compute the k closest instances in D1

to each centroid in U. Fetch the corresponding set of

images S ¼ fS1; . . .;Skg, whose latent variables are

closest to U;

3. Forward-propagate S through FðD2;W2Þ to obtain a

new set of adapted clusters Z ¼ fz1; . . .; zkg, where S

is considered an approximation of U from FðD1;W1Þ;
4. Derive an augmented cluster representation that encap-

sulates knowledge from both facets of the trained

CNNs, by concatenating the respective C and Z

clusters into a set A ¼ fc1; . . .; ck; z1; . . .; zkg;

5. Compute the Euclidean distance between T 1 and A

and evaluate the classification performance;

6. Iteratively remove the lowest performing cluster in A

and repeat step 5 until the performance stops

improving.

In all cases, the k-means?? [50] seeding strategy was

used, whereby the first cluster centre c1 is chosen uniformly

at random from X , and all preceding cluster centres x 2 X
are chosen with probability

ci ¼
DðxÞ2

P

x2X DðxÞ2
; ð24Þ

where DðxÞ denotes the distance between x and the closest

ci. Moreover, we assign the class label of a given cluster ci
as simply the mode class j of all data points within it

c j
i ¼ max

j2J





ci \ j




: ð25Þ

In the experimental study of Sect. 6, we demonstrate that

our method distils and adapts knowledge from both trained
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CNNs on real data, achieving better performance than

direct inference of T 1 with FðD2;W2Þ, without any

parameter retraining.

5 Experimental study

This section is divided into two separate subsections: the

first subsection presents experiments using deep Bayesian

self-training applied to the MNIST public domain dataset.

An ablation study is presented and comparisons are made

with baseline methods. The second subsection comprises a

study using private (real) datasets, in which we perform

some preliminary experiments using transfer learning and

then we evaluate our proposed latent variable adapt-

able clustering method. We then finish off the second

subsection by evaluating deep Bayesian self-training on the

self-annotation of the real datasets.

5.1 MNIST dataset

In order to validate our algorithm, we conduct a series of

self-labelling experiments on the popular MNIST dataset.

The MNIST dataset is comprised of 60,000 training and

10,000 testing handwritten digit examples, respectively.

Firstly, we try to create a realistic scenario by splitting the

60,000 training examples into a smaller but balanced

training set of only 50 examples per class and a validation

set of 500 training examples per class and allocate all

remaining data to the unlabelled pool set. We begin by

defining our backbone NN architecture of choice as a

DenseNet [15]. DenseNets have revealed several well-

founded advantages over previous architectures, from

mitigating vanishing gradients to encouraging feature

propagation and reuse with shorter connections between

layers [15, 51]. The dense connectivity in DenseNets can

be formally defined as

A½‘� ¼ f

�

BN
�

W½‘� �
�

A½0�;A½1�; . . .;A½‘�1��
�

�

; ð26Þ

where f ð�Þ is the ReLU activation function, BNð�Þ is batch

normalisation [52] and
�

A½0�;A½1�; . . .;A½‘�1�� represents

feature map-wise concatenation of all layers preceding ‘. A

sequential composite function consisting of BN, ReLU and

3 � 3 convolution can then be defined as H½‘�. Each func-

tion H½‘� produces x feature maps, known as the growth

rate of the network, and each layer ‘ takes as input f þ
x� ð‘� 1Þ total feature maps, where f denotes the number

of channels in the visible layer. To reduce spatial dimen-

sionality of feature maps, a transition layer is introduced

between densely connected DenseBlocks. Transition layers

in [15] are composed of BN followed by 1 � 1 convolution

and 2 � 2 average pooling with a feature map compression

factor h ¼ 0:5.

Following Algorithm 1 closely, we propose a progres-

sively growing NN scheme by starting off with a 40 layer

deep DenseNet with a growth rate k ¼ 12, and incremen-

tally increasing the growth rate (width) of the network as

more data are added to the training set. In the first iteration,

the network has only 181k parameters to avoid overfitting

on the small initial training set, but complexity of the

network is incrementally increased in an automated way.

As described in greater detail in Sect. 3.5, we employ

Monte Carlo dropout at test time to calculate the predictive

uncertainty of the assigned pseudo-labels samples. In all

cases, we take T ¼ 30 samples, equating to 30 different

dropout masks. We compare the performance of our pro-

posed approach with a baseline ensemble method (DEST)

similar to [53] for estimating predictive uncertainty, and

the vanilla self-training methodology, albeit in a deep

learning model, considering only the output probability of

the NN as a measure of confidence, similarly to [31]. We

also evaluate the effect of our inverse uncertainty weight-

ing scheme, as well as the entropy penalty on confident

output distributions on the performance of our Bayesian

self-training algorithm.

5.1.1 Training details

In all MNIST experiments, we use the same DenseNet

model and hyperparameters for fair comparisons. Specifi-

cally, we train the networks using stochastic gradient

descent (SGD) with a Nesterov momentum of 0.9, a batch

size of 32 and an initial learning rate of 0.1. We train all

models for 75 epochs and reduce the learning rate by a

factor of 10 at 50 and 75% of the way through training. All

models are trained using the same train/valid/test/unla-

belled splits, no data augmentation is used aside from

simple image standardisation (mean 0 sd. 1), and we take

T ¼ 30 Monte Carlo dropout samples to at test time as

explained in Sect. 3.5. With regard to the ensemble, we

train M ¼ 5 models each initialised with random weights

and capture the predictive uncertainty following Eq. (15),

but without using dropout at test time. Lastly, the stop

conditions can be adjusted depending on the application at

hand, but here they were kept consistent in all experiments

for fairness of comparison. Specifically, we stipulate that if

less than the current batch size number of images are

selected to be added to the training set in the next self-

training iteration, the algorithm stops.

5.1.2 Ablation study

The results are reported in Table 1 and illustrated in

Figs. 2, 3, 4 and 5. In our experiments, we simply have the
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NNs predict the labels for the 54,500 unlabelled MNIST

samples and evaluate how well the system is doing at

predicting the correct labels at the end of each self-training

iteration. The evaluation is primarily considered in terms of

the Cohen’s kappa statistic (j) as it is more robust than

accuracy by taking into account random luck, and the

number of images left unlabelled after self-training. As can

be observed from the results, the addition of our proposed

inverse uncertainty weighting scheme improves the per-

formance of the algorithm by leaving less images unla-

belled and achieving a higher j score (DBST-1 to DBST-

2). We also test the effect of the quartile uncertainty

thresholds for s from Q3 to Q2 (DBST-2 to DBST-3),

meaning we are more strict about which pseudo-labelled

samples we can add to the training set. This only considers

very highly confident pseudo-label predictions resulting in

a higher j score, at the cost of labelling less examples as

expected. In the DBST-4 model, we combine both the

sample-wise inverse uncertainty weighting scheme and the

entropy penalty on the log-likelihood loss (LPNLL) using

b ¼ 1 as described in Sect. 3.5. As reported in Table 1, the

number of examples left unlabelled is significantly less,

whilst maintaining a good Cohen’s j agreement between

predicted and actual labels. In comparison with the others,

Table 1 Deep Bayesian self-

training results on self-labelling

the MNIST dataset

Deep Bayesian self-training (DBST) Results on MNIST

Model s ki LPNLL Precision Recall F1-score Unlabelled Cohen’s j r iters

DST – 7 7 .0103 .0103 .0103 781 :0115 15

DEST Q3 4 7 .0044 .0044 .0044 4391 .0049 20

DBST-1 Q3 7 7 .0042 .0043 .0043 5044 .0045 15

DBST-2 Q3 4 7 .0032 .0032 .0032 4092 .0035 21

DBST-3 Q2 4 7 .001 .001 .001 17,828 :0011 27

DBST-4 Q2 4 4 .0071 .007 .0071 762 .0079 26

s is the upper bound uncertainty threshold for augmenting D�, ki are sample-wise inverse uncertainty

weights, and r is the number of self-training iterations taken before stop conditions were met. All metrics

(precision, recall, F1-score and Cohen’s j) are reported in 1�metric format

Fig. 1 Illustration of the multiple CNN facet adaptation framework proposed, which is based on clustering of extracted latent variable

representations. The architectural details of each CNN are as described in Fig. 8

Fig. 2 Self-training model comparisons regarding number of images

left unlabelled after r iterations. Notice how the baseline self-training

(DST) is overconfident by wrongly pseudo-labelling more samples

early and propagating these errors, resulting in a lower Cohen’s j
score as reported in Table 1
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(a) (b)

Fig. 3 Model performance comparisons over r self-training iterations.

a MNIST test set performance after each self-training iteration. b As

in a but comparing validation set performance. Notice that every

model uses the same stop condition for fair comparison, but they stop

at different times due to their uncertainty level. DBST-4 using both

inverse uncertainty sample weights and an entropy penalty on the log-

likelihood loss (LPNLL) generalises better as reported in Table 1

(a) (b)

Fig. 4 Box plots (IQR) depicting the quartiles for setting the

uncertainty upper bound threshold s over r iterations in the DBST-2

model as an example. Note: these IQR stats are calculated using the

predictive uncertainties of correctly classified samples in the

train/valid/test sets only. a Shows all iterations (r ¼ 21) whereas

b omits the first one for better visibility

(a) (b) (c) (d) (e)

Fig. 5 Examples of images left in the unlabelled pool set for model

DBST-2. Images with the highest epistemic uncertainty were selected

for each digit class, along with their corresponding aleatoric

uncertainties reported in the x-axis. The actual label of each image

is found on top. As we can see from these difficult examples, these

digits were automatically identified as problematic (too uncertain) in

the DBST pseudo-labelling process, so they were not added to the

training set D�
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the DBST-4 model provides the best balance between the

number of unlabelled images left after self-training and a

high Cohen’s j score.

5.1.3 Comparative discussion

Lastly, we compare our Bayesian models (DBST) with two

baseline method for estimating uncertainty in a similar way

to [53], known as a deep ensemble of NNs (DEST), and the

standard self-training (DST) following the logic in [31],

and simply using the NNs predicted probability of an

assigned pseudo-label as a level of confidence. The pre-

dictions from each NN in the ensemble (DEST) can be

used as to calculate predictive uncertainty as the deviations

capture model parameter uncertainty. Here, we do not

employ any bootstrap methods as the randomness from the

NN weight initialisation and shuffled training has been

shown to be sufficient experimentally [53]. We use the

same DenseNet architecture, including related hyperpa-

rameters and identical dataset splits to train an ensemble of

five models. Table 1 shows that our methods (DBST) are

better than using an ensemble (M ¼ 5) for predicting

uncertainty for our self-training purpose, whilst taking

approximately 5� less time to run in our experiments. Note

that Monte Carlo dropout samples are very cheap to

compute at inference time compared to training multiple

models; thus, we can afford to take multiple samples, i.e.

T ¼ 30 as compared to an ensemble of M ¼ 5, which is

also an advantage of our approach.

With regard to the vanilla self-training baseline (DST),

again we use the exact same DenseNet architecture and

related hyperparameters for fair comparisons. As previ-

ously outlined, in standard self-training we take the NNs

predicted probability as a measure of confidence, and to

demonstrate the inadequacy of this method, we threshold

with a very high confidence probability of .99. This simply

means that only pseudo-label predictions above the .99

probability (confidence) threshold in a 10-way softmax

(MNIST digit classes) are added to the training set. As

reported in Table 1 and Fig. 2, DST underperforms com-

pared to our methods since it is overconfident early on,

resulting in the addition of more wrong pseudo-labels to

the training set, thus propagating the errors forward.

Although the number of images left unlabelled is low, the

Cohen’s j score is significantly lower

5.2 Real datasets

Four datasets of food package photographs were collected

by a leading food company and provided to us for research

purposes. The four sets include 1404, 6739, 1154 and

13948 captured images, respectively. In order to produce

trainable datasets, a portion of the images was first

manually annotated w.r.t. the presence of use-by dates, and

lack thereof. In the case of unreadable images, in which

dates were not discernible from the background—poten-

tially due to heavy distortion—non-homogeneous illumi-

nation or blur was then set aside in a separate category.

Conversely, images in which either day or month, or both

were missing, were considered as incomplete and subse-

quently grouped into their own category. Lastly, images of

good quality, reporting the date including both the day and

month, were considered as good candidates for OCV.

The first three sets of images were annotated as men-

tioned above to form five categories: complete dates,

missing day, missing month, no date and unreadable

(Table 2), whereas photographs belonging to the fourth

dataset were annotated as good or bad candidates for OCV

and utilised to test our proposed Bayesian self-annotating

framework. After annotating all the images in the first three

datasets, it was possible to plot some statistics (see Fig. 6)

on the frequency of specific dates within each dataset, and

thus devise a methodology for conducting experiments

with balanced sets of classes. Moreover, by inspecting the

images with partially missing data, it was observed that

most of them were photographs of package labels which

had been folded at crucial points, included photographic

glare, digits fainting over time, or included human made

occlusions. With regard to the fourth dataset, 8931 images

were annotated as including readable dates, and the

remaining 5017 as unreadable (Fig. 7).

5.2.1 Transfer learning

It was of particular interest to conduct transfer learning in

order to assess the adaptability of pre-trained CNN weights

[54] on the current food datasets. Specifically, each image

from our datasets was fed through a previously trained

InceptionV3 CNN on the ImageNet dataset, up to the last

global average pooling (GAP) layer, where a 2048-di-

mensional vector representation of each instance was

extracted. The 2048-dimensional vectors then became the

input to a new series of FC layers and a final softmax layer

Table 2 Number of images per category in each dataset

Annotation (DD/MM) Dataset

1 2 3

Missing/missing 375 3715 0

Missing/complete 59 68 16

Complete/missing 10 39 0

Complete/complete 645 2847 1138

Unreadable 315 46 0
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able to predict N classes (see Fig. 8). In order to optimise

the training performance of the new FC layer network, a

series of architectural decisions were made empirically,

and the best performances were achieved using a FC net-

work consisting of two 2048 unit hidden layers with rec-

tified linear unit (ReLU) activations and batch

normalisation (BN) [52] layers.

The risk of overfitting rises as the number of parameters

increases w.r.t. number of training examples. Due to the

limited amount of training data, available for experimen-

tation, it is infeasible to train state-of-the-art models from

scratch. Therefore, we introduced an effective regulariser

in the new network as well as adapted previously learned

low-level features through transfer learning. One of the

most effective regularisation techniques is dropout [55]. In

practice, to preserve more information in the input layer

‘ð0Þ (of L total layers) in the network and thus aid learning,

the probability of keeping (pðzðiÞÞ : 6¼ 0) any given neuron

zðiÞ in layer i was as defined per the following schema

‘ðiÞ ¼ pðzðiÞÞ ¼ 0:8 if i ¼ 0

pðzðiÞÞ ¼ 0:5 otherwise:

(

ð27Þ

In view of the unbalance present among the various classes,

it was beneficial to use a weighted negative log-likelihood

as a loss function (28). In (28), kj is a weight coefficient

computed for the jth of all classes J as a function of the

proportion of instances Nj compared to the most densely

populated class (29). During training, k encourages the

model to focus on under-represented classes

LNLL ¼ �
X

i

kjyi logðbyiÞ � ð1 � yiÞ logð1 � byiÞ ð28Þ

calculating the per-class weight parameter kj with

kj ¼
1

Nj

max
�

�

Ni

	

i¼½1:J�

�

: ð29Þ

In the case of multiclass classification, where J[ 2, the

weighted cross entropy loss function can be defined as

LNLL ¼ �
X
M

i¼1

X
J

j¼1

kjyij logðbyijÞ; ð30Þ

where log pðby ¼ jjzjÞ is calculated as
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Fig. 6 Left: Frequency (ln scale) of appearance per ‘Day’ in use-by dates. Right: Respective appearance per ‘Month’

Fig. 7 Per category examples of images in our datasets. a Complete Date (day and month visible). b Partial Date (no day visible). c Partial Date

(no month visible). d Unreadable. e No date (neither day or month visible)

Fig. 8 Depiction of the classification architecture. From left to right,

input images were resized to 299 � 299 � 3 to accommodate the

CNN’s convolutional layer parameters and arithmetic. There exist

two hidden layers with 2048 units each and ReLu activations. The

number of units N in the softmax layer was adjusted as per the number

of classes being classified in different experiments
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log softmaxðzjÞ ¼ log

"

expðzjÞ
P

k expðzkÞ

#

; ð31Þ

z is a vector of NN output logits, and M denotes the batch

size of choice for stochastic optimisation of LNLL via

backpropagation. In all cases, we use adaptive moment

estimate (Adam) as an optimiser [56]. In this framework,

three sets of experiments were conducted and the obtained

results are reported in Tables 3 and 4.

The goal of the first experiment was to establish a

baseline for images that would be classified as accept-

able according to human standards. The appearance of

unreadable images was especially prominent in the first of

the three datasets. Conversely, the average image quality of

the second and third datasets was higher; therefore, they

were not considered in this experiment. Moreover, the first

dataset contained images from seven different locations,

and as such, there were at least seven different types of

food packaging present. To devise a balanced experiment,

images from all locations were combined and categorised

into two classes: ‘Complete Dates’ and ‘Unreadable’. As

reported in Table 3, 90:1% classification accuracy was

achieved over all seven locations.

The second experiment aimed at distinguishing between

acceptable and not-acceptable, missing dates. This meant

that the absence of either day or month digits in a use-by

date is not acceptable. The second dataset was the largest,

containing approximately 50% of examples with partial or

missing dates. Images missing the day/month or both were

assigned to one class and ‘complete dates’ to the other. As

reported in Table 3, an accuracy of 96:8% was achieved.

Similarly, a performance of 94:8% was achieved when

applying the same procedure to the first dataset. As for the

third dataset, it includes images of higher quality, but there

is a very small number of missing value examples avail-

able. To address this, we performed data augmentation in

order to produce a larger set of ‘Partial Dates’. The accu-

racy achieved on this synthetic set was 85:8%. Lastly, a

small variation of this experiment (2.1 in Table 3) was

conducted in order to assess how well the network can

identify the presence of any type of date, be it complete or

partial, versus the absence of a date altogether. This

experiment offered insight into how well the network can

produce inferred localisation of dates, as it must learn to

filter out the abundant non-date-related text/numbers in the

images. Table 3 shows that good accuracies were achieved

across all three datasets, with the best case of 96:2% date

presence detection on the second dataset.

In a brief third experiment, a global approach to OCV

was tested by targeting the classification of specific digits

and letters. Successful text recognition systems typically

begin with the detection of text presence within a given

image, followed by a segmentation or localisation of the

desired region-of-interest (ROI) in order to perform clas-

sification of segmented digits thereafter. Here, we assess

how well the NN can perform without specifying any

additional labels or local information. Given that almost all

images in the third dataset contained ‘Complete Dates’, we

conducted a brief digit classification experiment (see

Table 4 for results). Despite the small number of training

examples (1138) and limited possible class combinations,

four digit classes were identified, namely 5, 8, 16 and 20.

With these labelled examples, an accuracy of 90% was

achieved. Similarly for the second dataset—due to limited

data—a brief global OCV classification experiment

between the months of October and November in use-by

dates was conducted. An accuracy of 92:7% was achieved

despite the small number of training examples. In reflection

of these results, it is important to remember the great

variety of text and numbers included in each image.

Without providing any local knowledge and given limited

training examples, the networks were still able to auto-

matically infer the importance of specific digits and their

respective locations in a global manner, whilst ignoring the

same or other digits located in close proximity.

5.2.2 Latent variable adaptive clustering

A major challenge spanning the three datasets was the high

variability in the captured images characteristics. This

variability made the reuse of a DNN trained on one dataset,

for classifying the data of another, very difficult leading to

poor performances. Fundamentally, this is because each

dataset comes from a different distribution, as the images

Table 3 Experiment results of OCV binary classification

CNN optical character verification

Exper. Dataset OK NOT-OK Accuracy (%)

1 1 645 645 90.1

2 1 645 444 89.3

2 2847 2847 96.8

3 577 577 85.8

2.1 1 714 375 94.8

2 2954 2954 96.2

3 199 199 88.1

Table 4 Experiment results for date character recognition

CNN date character recognition

Exper. Dataset Images per class Accuracy (%)

3 2 381, 381, 381 92.7

3 55, 67, 63, 61 90
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were taken by different people, with different cameras and

at differing supplier locations. With limited data available

to us, the use of transfer learning among different envi-

ronments and datasets was ineffective. To overcome these

challenges, we demonstrate the possibility of designing a

new facet of the same CNN architecture, for learning each

considered problem associated with different datasets. The

approach focuses on: (i) detecting bad image capturing

conditions; (ii) detecting missing dates (i.e. either day and/

or month of use-by date); (iii) showing the ability to

recognise day and/or month of an existing use-by date. The

CNN architectures proved to be quite accurate in identi-

fying the missing/complete dates classification problem.

Subsequently, we explored whether the respective trained

networks were suitable for carrying out the proposed net-

work adaptation approach (see Table 5 for results).

To this end, consider FðD2;W2Þ as a trained CNN with

a test performance of 95:9% on a binary classification

problem of use-by date verification on a real dataset. Let

T 1 be the test set of a dataset from a different distribution

targeting the same classification task. We forward-propa-

gate T 1 through FðD2;W2Þ and achieve a lower accuracy

of 63:8% as expected. We employed our adaptation pro-

cedure to classify T 1 without any parameter retraining,

decreasing the relative error by 34:81% with an improved

accuracy of 76:4%. Interestingly, the original performance

achieved by FðD2;W2Þ on T 2 also increased from 95:9%

to 97:1% when classifying T 2 with A instead of the CNN,

it was originally trained on. Figure 9 depicts a 3D

visualisation of all 2048-dimensional cluster centroids, for

k ¼ 7 for both datasets (14 in total). Squares (Red) and

(Blue) crosses denote the centroids corresponding to the

complete date class in the first and second datasets,

respectively. (Green) circles and (Pink) diamonds are the

centroids in the missing date category, and the (Black) stars

indicate the centroids not used in the final classification as

per the centroid exclusion policy explained previously in

Sect. 4.

5.2.3 Deep Bayesian self-Training on real data

In order to validate our approach, we conducted a series of

experiments on a pool of held-out annotated data com-

prised of 11,948 real food package images. The results can

be seen in Table 6 and Fig. 10. We begin by introducing

concrete dropout layers after every convolutional layer in

the last DenseBlock of a DenseNet-201, pre-trained on

ImageNet. We then fine-tuned the last DenseBlock on a

small portion of 500 images, with binary annotated labels

representing whether the use-by date was readable (OK) or

not (NOT-OK). As observable in Fig. 10a, we first applied

these ideas to the full set of unlabelled 11,948 images and

simply selected the 500 most certain predicted labels to be

added to the initial training set of 500 images. This process

was repeated 10 times in order to collect a total of 5000

images with predicted labels, which we then compared

with our annotated labels as shown in Table 6. In the

remaining set of experiments, instead of selecting a pre-

determined number of images, we filtered out uncertain

predictions based on a threshold s as in Algorithm 1.

Figure 10c, d depicts the confusion matrices for the auto-

matically annotated images w.r.t. true labels and highlights

the benefits of applying a confidence penalty on the log-

Table 5 Experiment results of our adaptation procedure

Latent variable adaptive clustering

Test dataset Classification accuracy ð%Þ

CNN FðD2;W2Þ Our method (A)

T 1 63.8 76.4

T 2 95.9 97.1
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Fig. 9 t-SNE visualisation of the derived centroids A with best k ¼ 7,

achieving the results reported in Table 5. The ‘Excluded centroids’ (2

black stars) were removed as per the policy outlined in step 6 of our

proposed adaptation procedure (colour figure online)

Table 6 Deep Bayesian self-training performance on real datasets.

Cohen’s kappa score j is also reported

Class Precision Recall F1 #img

Bayesian CNN (LPNLLÞ; j ¼ 0:8891

NOT-OK 0.9532 0.9694 0.9612 294

OK 0.9427 0.9136 0.9279 162

Avg./total 0.9494 0.9496 0.9494 456

Bayesian CNN (LNLLÞ; j ¼ 0:8383

NOT-OK 0.9679 0.8538 0.9073 212

OK 0.889 0.9764 0.9306 254

Avg./total 0.9248 0.9206 0.9200 466

Baseline CNN (LNLLÞ; j ¼ 0:6964

NOT-OK 0.9158 0.7682 0.8355 453

OK 0.7989 0.9287 0.8589 449

Avg./total 0.8576 0.8481 0.8472 902

4288 Neural Computing and Applications (2020) 32:4275–4291

123



likelihood loss (LPNLL), as opposed to using a standard log-

likelihood (LNLL) which often outputs overconfident dis-

tributions. The uncertainties were calculated based on 50

Monte Carlo dropout samples at test time, following the

description in Sect. 3.5.

In order to compare our approach to standard self-

training, we took the same network and datasets splits and

trained it without the Bayesian components. The threshold

was set based on the confidence of the CNN output to only

consider very confident predictions with over 0.999 pre-

dicted probability. As can be seen in Table 6, even with a

high threshold, the deterministic CNN tends to be over-

confident in its wrong predictions. This causes an increase

in the propagated error as more images with wrong pre-

dicted labels are added to the training set and the model

starts to underperform. To ensure a fair comparison

between the self-training methods, the stop conditions were

set to be identical s.t. the procedure was interrupted after

three consecutive iterations without selecting more images

to be added to the training set.

6 Conclusion and future work

In this paper, we propose a deep Bayesian self-training

methodology that leverages modern approximate varia-

tional inference in DNNs to estimate predictive uncertainty

during a self-training setting. Both aleatoric and epistemic

uncertainties of predicted pseudo-labels for unseen data are

estimated, and the samples with the lowest predictive

uncertainty (highest confidence) are added to the training

set in an automated manner. We offer ways to mitigate the

known problem of propagating errors in self-training by

including: (i) an entropy penalty on the log-likelihood loss

to punish overconfident output distributions and facilitate

thresholding, and (ii) an adaptive sample-wise weight on

the influence of predicted pseudo-labelled samples over

gradient updates to be inversely proportional to their pre-

dictive uncertainty. Lastly, we propose a new simple

methodology for visualising and analysing variability

between two dataset distributions in DNNs and attempt to

adapt information from one problem to the other by clus-

tering learnt latent variable representations in the context of

our application domain. An experimental study on both

public and private (real) datasets is presented demonstrat-

ing the increased performance of our algorithm over stan-

dard self-training baselines, and also highlighting the

importance of predictive uncertainty estimates in safety-

critical domains.

Our future work will extend the experimental study to

large dataset, consisting of about half a million real food

packaging images, and we intend to apply the presented

DNN-based methodologies for adaptation and self-anno-

tation of these data.
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K, Yu M, Leontidis G, Ye X, Kollias S (2018) An end-to-end

deep neural architecture for optical character verification and

recognition in retail food packaging. In: 2018 25th IEEE inter-

national conference on image processing (ICIP). IEEE,

pp 2376–2380

17. Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting

unreasonable effectiveness of data in deep learning era. In: 2017

IEEE international conference on computer vision (ICCV). IEEE,

pp 843–852

18. Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A (2018)

Microaneurysm detection using fully convolutional neural net-

works. Comput Methods Programs Biomed 158:185–192

19. Kollias D, Yu M, Tagaris A, Leontidis G, Stafylopatis A, Kollias

S (2017) Adaptation and contextualization of deep neural net-

work models. In: 2017 IEEE symposium series on computational

intelligence (SSCI), pp 1–8

20. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A,

Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor

segmentation with deep neural networks. Med Image Anal

35:18–31

21. Caliva F, Sousa Ribeiro FD, Mylonakis A, Demaziere C, Vinai P,

Leontidis G, Kollias S (2018) A deep learning approach to

anomaly detection in nuclear reactors. In: 2018 International joint

conference on neural networks (IJCNN), pp 1–8

22. Sousa Ribeiro FD, Caliva F, Chionis D, Dokhane A, Mylonakis

A, Demaziere C, Leontidis G, Kollias S (2018) Towards a deep

unified framework for nuclear reactor perturbation analysis. In:

2018 IEEE symposium series on computational intelligence

(SSCI), pp 1–8

23. Kaiser L, Gomez AN., Shazeer N, Vaswani A, Parmar N, Jones

L, Uszkoreit J (2017) One model to learn them all. arXiv preprint

arXiv:1706.05137

24. Doersch C, Zisserman A (2017) Multi-task self-supervised visual

learning. In: The IEEE international conference on computer

vision (ICCV)

25. Zoph B, Vijay V, Shlens J, Le QV (2017) Learning transferable

architectures for scalable image recognition. 2(6). arXiv preprint

arXiv:1707.07012

26. Kingma DP, Mohamed S, Rezende DJ, Welling M (2014) Semi-

supervised learning with deep generative models. In: Advances in

neural information processing systems, pp 3581–3589

27. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial

discriminative domain adaptation. In: Computer vision and pat-

tern recognition (CVPR), vol 1, no 4. pp 7167–7176

28. Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D

(2017) Unsupervised pixel-level domain adaptation with gener-

ative adversarial networks. In: The IEEE conference on computer

vision and pattern recognition (CVPR), vol 1, no 7

29. Tarvainen A, Valpola H(2017) Mean teachers are better role

models: weight-averaged consistency targets improve semi-su-

pervised deep learning results. In: Advances in neural informa-

tion processing systems, pp 1195–1204

30. Qiao S, Shen W, Zhang Z, Wang B, Yuille A (2018) Deep co-

training for semi-supervised image recognition. In: Proceedings

of the European conference on computer vision (ECCV)

pp 135–152

31. Lee D-H (2013) Pseudo-label: the simple and efficient semi-su-

pervised learning method for deep neural networks. In: Workshop

on challenges in representation learning, ICML, vol 3, pp 2

32. Grandvalet Y, Bengio Y (2005) Semi-supervised learning by

entropy minimization. In: Advances in neural information pro-

cessing systems, pp 529–536

33. Zou Y, Yu Z, Vijaya Kumar BVK, Wang J (2018) Unsupervised

domain adaptation for semantic segmentation via class-balanced

self-training. In: Proceedings of the European conference on

computer vision (ECCV), pp 289–305

34. Kendall A, Gal Y (2017) What uncertainties do we need in

Bayesian deep learning for computer vision? In: Advances in

neural information processing systems, pp 5574–5584

35. Denker JS, Lecun Y (1991) Transforming neural-net output levels

to probability distributions. In: Advances in neural information

processing systems, pp 853–859

36. Neal RM (2012) Bayesian learning for neural networks, vol 118.

Springer, New York

4290 Neural Computing and Applications (2020) 32:4275–4291

123

http://arxiv.org/abs/1703.02910
http://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1707.07012


37. MacKay DJC (1992) A practical bayesian framework for back-

propagation networks. Neural Comput 4(3):448–472

38. Yarin G (2016) Uncertainty in deep learning. University of

Cambridge, Cambridge

39. Gal Y, Ghahramani Z (2015) Bayesian convolutional neural

networks with Bernoulli approximate variational inference. arXiv

preprint arXiv:1506.02158

40. Kendall A, Gal Y, Cipolla R (2017) Multi-task learning using

uncertainty to weigh losses for scene geometry and semantics.

arXiv preprint arXiv:1705.07115

41. Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approxi-

mation: representing model uncertainty in deep learning. In:

international conference on machine learning, pp 1050–1059

42. Hinton GE, Van Camp D (1993) Keeping the neural networks

simple by minimizing the description length of the weights. In:

Proceedings of the sixth annual conference on Computational

learning theory, ACM, pp 5–13

43. Graves A (2011) Practical variational inference for neural net-

works. In: Advances in neural information processing systems,

pp 2348–2356

44. Welling M, Teh YW (2011) Bayesian learning via stochastic

gradient Langevin dynamics. In: Proceedings of the 28th inter-

national conference on machine learning (ICML-11), pp 681–688

45. Kingma DP, Welling M (2013) Auto-encoding variational Bayes.

arXiv preprint arXiv:1312.6114

46. Maddison CJ, Mnih A, Teh YW (2016) The concrete distribution:

a continuous relaxation of discrete random variables. arXiv pre-

print arXiv:1611.00712

47. Gal Y, Hron J, Kendall A (2017) Concrete dropout. In: Advances

in neural information processing systems, pp 3581–3590

48. Pereyra G, Tucker G, Chorowski J, Kaiser Ł, Hinton G (2017)

Regularizing neural networks by penalizing confident output

distributions. arXiv preprint arXiv:1701.06548

49. Kwon Y, Won J-H, Kim BJ, Paik MC (2018) Uncertainty

quantification using Bayesian neural networks in classification:

application to ischemic stroke lesion segmentation. In: Interna-

tional conference on medical imaging with deep learning

50. Arthur D, Vassilvitskii S (2007) k-means??: the advantages of

careful seeding. In: Proceedings of the eighteenth annual ACM-

SIAM symposium on discrete algorithms. Society for Industrial

and Applied Mathematics, pp 1027–1035

51. Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017)

The one hundred layers tiramisu: fully convolutional densenets

for semantic segmentation. In: 2017 IEEE conference on com-

puter vision and pattern recognition workshops (CVPRW). IEEE,

pp 1175–1183

52. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep

network training by reducing internal covariate shift. arXiv pre-

print arXiv:1502.03167

53. Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and

scalable predictive uncertainty estimation using deep ensembles.

In: Advances in neural information processing systems,

pp 6402–6413

54. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016)

Rethinking the inception architecture for computer vision. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 2818–2826

55. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

56. Kingma DP, Ba J (2014) Adam: a method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:4275–4291 4291

123

http://arxiv.org/abs/1506.02158
http://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1701.06548
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980

	Deep Bayesian Self-Training
	Abstract
	Introduction
	Background on application domain
	Contribution

	Related work
	Deep semi-supervised learning
	Uncertainty estimation

	Deep Bayesian self-Training
	Bayesian neural networks
	Variational inference
	Continuous relaxation of dropout
	Entropy penalty on output distributions
	Inverse uncertainty weighting

	Latent variable adaptive clustering
	Experimental study
	MNIST dataset
	Training details
	Ablation study
	Comparative discussion

	Real datasets
	Transfer learning
	Latent variable adaptive clustering
	Deep Bayesian self-Training on real data


	Conclusion and future work
	Funding
	References




