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Abstract

Sphingolipids are bioactive molecules associated with oxidative stress, inflammation, and
neurodegenerative diseases, but poorly studied in the context of age-related macular
degeneration (AMD), a prevalent sight-threatening disease of the ageing retina. Here, we
found higher serum levels of hexosylceramide (HexCer) d18:1/16:0 in patients with choroi-
dal neovascularization (CNV) and geographic atrophy (GA), two manifestations of late
stage AMD, and higher ceramide (Cer) d18:1/16:0 levels in GA patients. A sensitivity analy-
sis of genetic variants known to be associated with late stage AMD showed that rs1061170
(p-Y402H) in the complement factor H (CFH) gene influences the association of Cer d18:1/
16:0 with GA. To understand the possible influence of this genetic variant on ceramide lev-
els, we established a cell-based assay to test the modulation of genes in the ceramide
metabolism by factor H-like protein 1 (FHL-1), an alternative splicing variant of CFH that
also harbors the 402 residue. We first showed that malondialdehyde-acetaldehyde adducts,
an oxidation product commonly found in AMD retinas, induces an increase in ceramide lev-
els in WERI-Rb1 cells in accordance with an increased expression of ceramide synthesis
genes. Then, we observed that cells exposed to the non-risk FHL-1:Y402, but not the risk
associated variant FHL-1:H402 or full-length CFH, downregulated ceramide synthase 2 and
ceramide glucosyltransferase gene expression. Together, our findings show that serum cer-
amide and hexosylceramide species are altered in AMD patients and that ceramide levels
may be influenced by AMD associated risk variants.
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Introduction

Age-related macular degeneration (AMD) is a multifactorial progressive disease of the central
retina and the leading cause of blindness in developed countries in people over 60 years of age
[1]. There are two forms of late stage AMD including the non-exudative form, also known as
geographic atrophy (GA), and the exudative form. Pathological changes leading to GA are
characterized by drusen, which are deposits of lipids and proteins, loss of retinal pigment epi-
thelium (RPE), and gradual degeneration of the outer layers of the neurosensory retina,
together with atrophy of the choriocapillaris [2]. The hallmark of exudative AMD is choroidal
neovascularization (CNV), which involves mainly the formation of new blood vessels typically
growing from the choroid through Bruch’s membrane and the RPE.

Strong genetic risk factors for AMD were found in the complement factor H (CFH) gene
locus [3-5], and the age-related maculopathy susceptibility 2/ HtrA serine peptidase 1
(ARMS2/HTRAI) interval [6-8]. Although with lower effect sizes, several lipid pathway genes
have also been significantly associated with AMD risk, including apolipoprotein E (APOE),
cholesteryl ester transfer protein (CETP), hepatic triglyceride lipase (LIPC), ATP-binding cas-
sette transporter A-1 (ABCA1), ABCA7, lipoprotein lipase (LPL), and fatty acid desaturase 1
(FADSI) [9-11]. The proteins encoded by these genes are involved in lipid transport between
lipoproteins and from lipoproteins to tissues/cells, and vice-versa. The fact that lipoproteins
and cholesterol are major constituents of drusen has motivated previous studies to investigate
into circulatory lipid levels of AMD patients. Contradictory results were reported regarding
the association of HDL-cholesterol, LDL-cholesterol, total cholesterol and triglycerides levels
with AMD status, and some studies even failed to find an association altogether [12-28].
Regarding circulating fatty acids, higher levels of total n3 fatty acids, o-linolenic acid (18:3-n3)
and long chain n3 fatty acids were associated with a reduced risk for late AMD, with no signifi-
cant association of docosahexaenoic acid (22:6-n3) or eicosapentanoic acid (20:5-n3) [29]. A
subsequent study showed an association of circulating eicosapentanoic acid with lower risk for
CNV [30]. Besides unesterified cholesterol and triglycerides, other lipid classes present in lipo-
proteins are phospholipids, cholesteryl esters, and sphingolipids such as sphingomyelins (SM)
and ceramides [31].

Many sphingolipids are bioactive molecules and participate in signaling pathways involved
in apoptosis, autophagy, inflammation, and stress response [32-34]. Ceramide can activate
inflammatory pathways via induction of transcription factor families such as nuclear factor-kB
(NF-kB) [35], and CCAAT/enhancer binding proteins (c/EBP) [36], which in turn induce
genes encoding cytokines, chemokines and pro-inflammatory enzymes. It was also demon-
strated that exogenous ceramides can induce oxidative stress and apoptosis in human RPE
cells, an effect that can partially be prevented by antioxidants [37]. In the context of neurologi-
cal disorders, a pioneering study showed that serum SM and ceramides were suited to predict
cognitive impairment, and ceramide (Cer) d18:1/16:0 and stearoyl ceramides predicted
impairment on delayed and immediate memory recall, and psychomotor speed [38]. Subse-
quently, Cer d18:1/16:0, Cer d18:1/24:0 and lactosylceramide were associated with a higher
risk of Alzheimer’s disease (AD) [39]. Also, several ceramide and hexosylceramide species
were found altered in plasma of patients with sporadic Parkinson’s disease and cognitive
impairment compared to controls [40]. In a non-targeted lipidomics study of plasma, lower
levels of eight SM species containing long aliphatic chains, and higher levels of two ceramide
species (Cer d18:1/16:0 and Cer d18:1/21:0) were observed in AD patients compared to con-
trols [41]. In addition, plasma SM ratios were found to be associated with depression and anxi-
ety symptoms [42].
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There is limited clinical research that evaluated the role of sphingolipids in the pathogenesis
of AMD. A recent case-control study examined plasmatic gangliosides, that are synthesized by
sequential glycosylation of ceramides, but failed to find significant differences in the levels of
these glycosphingolipids between controls, GA and CNV patients [43]. In the present study,
serum levels of ceramides and SM from late stage AMD patients and healthy age-matched con-
trols were quantified by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our
main goal was to determine if serum sphingolipid levels were altered in late AMD, and to
examine the influence of genetic variants previously associated with the disease. We found that
specific ceramide species are elevated in patients with late stage AMD compared to controls.
Interestingly, genetic variant rs1061170 (p.Y402H) in CFH and variant rs10490924 in ARMS2
tend to increase the association between Cer d18:1/16:0 and disease. Given these interesting
findings, we established a cell-based assay to test the hypothesis that variant rs1061170 in CFH
may be involved in regulating ceramide metabolism.

Materials and methods
Study population

A total of 373 participants above the age of 55 years from Cologne, Germany, were included in
this study (The European Genetic Database, EUGENDA, www.eugenda.org). The study was
performed in accordance with the tenets of the Declaration of Helsinki and the Medical
Research Involving Human Subjects Act (WMO), and was approved by the local ethics com-
mittee of the University Hospital in Cologne. Informed written consent was obtained from all
participants.

AMD and control status were assigned by multimodal image grading that included stereo
fundus photographs, fluorescein angiograms, and spectral domain optical coherence tomo-
grams. The grading was performed according to the standard protocol of the Cologne Image
Reading Center (CIRCL) by certified graders. The classification of AMD and grading proce-
dures were performed as described previously [44]. Demographic data were obtained by stan-
dardized interviewer assisted questionnaires.

Genetic analysis

Genomic DNA was extracted from peripheral blood samples using standard procedures. A
total of ten SNPs in the ARMS2, CFH, LIPC, CETP, APOE, FADSI, LPL, and ABCAI genes (see
S1 Table) were genotyped using the KASPar SNP Genotyping System by LGC Genomics.

Lipid mass spectrometry

For lipid analysis, cells were harvested in 0.1% sodium dodecyl sulfate (SDS) and protein con-
tent quantified using BCA protein assay (Pierce). Lipids from cell extracts and serum samples
were extracted according to the method by Bligh and Dyer [45] in the presence of non-natu-
rally occurring lipid species used as internal standards (PC 14:0/14:0, PC 22:0/22:0, PE 14:0/
14:0, PE 20:0/20:0 (di-phytanoyl), LPC 13:0, LPC 19:0, Cer d18:1/14:0, Cer d18:1/17:0, D7-free
cholesterol (FC), CE 17:0 and CE 22:0).

Sphingolipid species were quantified by ESI-MS/MS using methods validated and described
previously [31]. Serum samples were processed in two different batches. In brief, samples were
analyzed by direct flow injection on a Quattro Ultima triple quadrupole mass spectrometer
(Micromass, Manchester, UK) by direct-flow injection analysis using a HTS PAL autosampler
(Zwingen, Switzerland) and an Agilent 1100 binary pump (Waldbronn, Germany) with a sol-
vent mixture of methanol containing 10 mM ammonium acetate and chloroform (3:1, v/v). A
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flow gradient was performed starting with a flow of 55 mL/min for 6 s followed by 30 mL/min
for 1.0 min and an increase to 250 mL/min for another 12 s.

A precursor ion scan of m/z 184 specific for phosphocholine containing lipids was used for
PC, SM, and LPC. Ceramides were analyzed similarly to a previously described methodology
[46] using N-heptadecanoyl-sphingosine as internal standard.

Quantification was achieved by calibration lines generated by addition of naturally occur-
ring lipid species to serum. All lipid classes were quantified with internal standards belonging
to the same lipid class, except SM (PC internal standards). Calibration lines for sphingolipids
were generated for the following naturally occurring species: SM 34:2, 36:2, 36:1; Cer d18:1/
16:0, 18:0, 20:0, 24:1, 24:0. These calibration lines were also applied for not calibrated species,
as follows: concentrations of saturated, monounsaturated, and polyunsaturated species were
calculated using the closest related saturated, monounsaturated, and polyunsaturated calibra-
tion line slope, respectively.

Correction of isotopic overlap of lipid species as well as data analysis was performed by self-
programmed Excel macros for all lipid classes according to the principles described previously
[47]. Lipid species were annotated according to the “Shorthand Notation for Lipid Structures
Derived from Mass Spectrometry” [48]. SM species annotation is based on the assumption
that the main base contains two hydroxyl groups.

Malondialdehyde-acetaldehyde (MAA)-BSA adducts

Albumin bovine Fraction V (BSA fatty acid free, SERVA) was incubated with 20 mM malondial-
dehyde tetrabutylammonium salt (MDA; Sigma-Aldrich, St. Louis, MO, USA) and 20 mM acet-
aldehyde water free (Sigma-Aldrich) in 50 mM sodium phosphate buffer (pH 7.2) at 37°C for 24
h to produce MAA-BSA. Unreacted aldehydes were removed by extensive dialysis against PBS.
BSA used as control of MAA-BSA in the experiments was treated in parallel with the same buft-
ers and under the same conditions than MAA-BSA but excluding the addition of aldehydes.
Increase in mobility due to loss of positive charge in reaction with malondialdehyde was
observed in native PAGE. The degree of modification was assessed by the amount of specific
MAA fluorescence present (Ex. 430/10 nm, Em. 480/10 nm). MAA specific modifications were
corroborated by indirect enzyme-linked immunosorbent assay (ELISA) using the 1F83 mono-
clonal antibody against MDHDC (4-methyl-1,4-dihydropyridine-3,5-dicarbaldehyde) [49]. BSA
treated with 1.33 or 20 mM malondialdehyde (MDA-BSA), and commercial MDA-BSA (Acad-
emy Bio-Medical Company, Houston, USA) were used for comparison purposes (S1 Fig).

BSA acetylation

BSA was acetylated with acetic anhydride according to a method by Basu et al. [50] with some
modifications. Briefly, 0.5 mL of 0.15 M NaCl solution of BSA (15 mg/mL) was added to 0.5
mL of sodium-acetate saturated solution. Then multiple small aliquots of anhydride acetic
were added over a period of 1 h until reaching a proportion of 2 pL of acetic anhydride per mg
of BSA. The mixture was incubated an additional period of 2 h, and then dialyzed against 0.15
M NaCl for 24 h and further in PBS for another 24 h. BSA used as control of acetylated BSA
(acetyl-BSA) was treated under the same conditions but without adding acetic anhydride. The
higher mobility of acetyl-BSA in comparison to BSA in native PAGE indicates the loss of posi-
tive charge (S2 Fig).

Complement proteins

Expression of recombinant FHL-1 Y402 and H402 in Pichia pastoris or baculovirus expression
system was previously described [51,52]. Purified human CFH from two different batches was
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purchased from CompTech (Tyler, USA) and, according to the company, 16 or more serum
units were used as starting material for the protein isolation.

Cell culture and treatments

WERI-Rb1 cells (HTB-169, obtained from ATCC Manassas, VA, USA) were cultured in
RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) and 100 U/mL penicil-
lin/streptomycin (P/S). All media and cell culture supplies were purchased from Life Technol-
ogies (Carlsbad, CA, USA). Cells were grown in an incubator at 37°C in 5% CO,. For
experiments, WERI-Rb1 cells (4x10° cells/cm?) were plated on wells coated with poly-L-lysine
(0.1 mg/mlL, Sigma-Aldrich) and cultured for 48 h before starting the experiments. Then, cells
were serum starved for 24 h and treated with MAA-BSA, acetyl-BSA or BSA for another 24 h
in serum-free medium. For CFH and FHL-1 treatments, medium containing 80 pg/mL BSA
or MAA-BSA and 200 pg/mL CFH, 80 ug/mL FHL-1 or PBS was pre-incubated for 30 min at
RT and added to the cells for 24 h.

MTT assay

Cells were incubated in media with 0.5 mg/mL Thiazolyl Blue Tetrazolium Bromide (MTT,
Sigma-Aldrich) for 30 min at 37°C. Cell media was carefully removed and 4 mM HCl in iso-
propanol added. After 15 min of incubation under darkness at room temperature, absorbance
of the supernatant at 540 nm was measured in a Varioskan Flash Reader (Thermo Scientific).

RNA isolation and PCR

Total RNA was isolated from cultured cells using the RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s reccommendations. Genomic DNA was removed by
DNAse treatment (Roche, Mannheim, Germany). The RNA was quantified using a ND-1000
NanoDrop Spectrophotometer (PeqLab, Erlangen, Germany) and stored at -80°C. First-strand
cDNAs from 1 g of total RNA were synthesized using the RevertAid H Minus First-Strand
cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany) and random hexamer oligonucleo-
tide primers. For RT-PCR, 50 ng of cDNA was used as templates for PCR with Go Taq Poly-
merase (Promega, Mannheim, Germany) at a final volume of 25 pL. PCR products were
electrophoretically separated in a 2% agarose gel. For quantitative RT-PCR, amplification of 50
ng cDNA was performed with an ABI7900HT machine (Applied Biosystems, Darmstadt, Ger-
many) in 10 pL reactions containing 1x TagMan Universal PCR Master Mix (Applied Biosys-
tems, Darmstadt, Germany), 200 nM of primers and 0.25 uL of dual-labeled probe (Roche
ProbeLibrary, Roche Applied Science, Mannheim, Germany). Measurements were performed
in triplicates and results were analyzed with an ABI sequence detector software version 2.3
(Applied Biosystems, Darmstadt, Germany) applying the AACt method for relative quantifica-
tion. Rates of mRNA expression were normalized to HPRT1. For each qPCR run and gene, the
lowest value was set to 1 and all the other values scaled accordingly. Primer sequences for
amplification of target genes are listed in S2 Table.

Data analysis

From the two lipid classes measured, 17 SM and 9 ceramides fulfilled the retention criteria of:
a) <5% of cases with a value of zero, and b) lipid species representing >0.5% of the lipid class.
For each lipid species, we carried out a linear regression analysis corrected for age, sex and
batch between controls and late AMD patients. Within each lipid class, we corrected for multi-
ple comparisons using the Benjamini-Hochberg (BH) method [53]. A subsequent linear
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regression analysis that consider the two different late AMD stages was performed to evaluate
differences between controls and GA or CNV patients. Logistic regression was used to calcu-
late odd ratios controlling for age, sex and batch. For sensitivity analysis, logistic regressions
adjusted for age, sex, batch and genetic polymorphisms were performed in a reduced dataset
of genotyped subjects (Control, n = 94; GA, n = 31; CNV, n = 161). Regression analyses were
carried out using R software (r-project.org).

Pearson’s ) test for categorical data, analyses of variance (ANOV As), and two-tailed Stu-
dent’s t-tests were done using the Infostat 2011 Software (UNC, Cérdoba, Argentina). Blocked
ANOVAs and paired t-tests were carried out when necessary. Normality and homogeneity of
variance were tested using Shapiro-Wilks and Levene tests, respectively.

Results
Sphingolipid species in AMD serum and the influence of genetic variants

Levels of ceramides and SM were measured in serum samples from 244 late stage AMD
patients and 129 age-matched healthy controls (Table 1). Multiple linear regression analyses
adjusting for age, sex and batch effect were performed, with corrections for multiple compari-
sons within each of the two lipid classes (Table 2, S3 Table). In the joint late stage AMD analy-
sis, we found higher levels of hexosylceramide (HexCer) d18:1/16:0 in AMD patients
compared to controls (Table 2). Hexosylceramide species include both glucosylceramide and
galactosylceramide species, which are ceramides with a glucose or galactose residue, respec-
tively. When separating the two late stage forms of AMD, we found higher levels of Cer d18:1/
16:0 specifically in GA patients compared to controls (Table 2).

In addition, we carried out logistic regression analyses to evaluate the odds of AMD per
unit increase in ceramide species, adjusting for age, sex and batch effect. Increasing Cer d18:1/
16:0 (OR =4.89,95% CI 1.37-18.32, p = 0.016) and HexCer d18:1/16:0 (OR = 11.00, 95% CI
2.80-47.15, p = 0.00086) were significantly associated with increasing odds of suffering from
GA or late AMD (i.e. GA + CNV), respectively.

We next carried out a sensitivity analysis to evaluate the influence of AMD genetic risk vari-
ants in the association between serum ceramide species and disease state. We used a reduced
dataset of genotyped subjects (Control, n = 94; GA, n = 31; CNV, n = 161), and included
genetic variants with strong effects on AMD risk (rs10490924:ARMS2 and rs1061170:CFH)
[54], in addition to variants in genes from lipid metabolism (S1 Table). Genetic variants in
lipid-related genes appear not to influence the associations observed (Fig 1). In contrast, vari-
ants rs10490924 and rs1061170 tend to increase the association between Cer d18:1/16:0 and
GA (Fig 1A). Moreover, a model adjusted for these two variants showed a significant differ-
ence between GA and controls in the reduced dataset (Fig 1A).

Table 1. Characteristics of the study subjects.

Controls Geographic atrophy Choroidal neovascularization
n 129 47 197
Mean Age + SD, y 772+ 8.4 78.9 +9.8 77.8 £8.9
Age-range 59-97 57-95 56-98
Female sex, % 55.8 57.4 62.9

No significant differences among the groups were observed for age (AMD vs. control: Student’s ¢-test, T = -0.86, p = 0.39; GA vs. CNV vs. control: ANOVA, F = 0.62,
p = 0.54) or sex (Pearson’s xz; AMD vs. control: x2 =1.29, p = 0.26; GA vs. CNV vs. control: Xz =1.77,p=041).

https://doi.org/10.1371/journal.pone.0200739.t001
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Table 2. Measurement of sphingolipid species in serum of late stage AMD patients with GA or CNV compared to healthy controls.

Lipid species
Ceramides
Cer d18:1/16:0
Cer d18:1/18:0
Cer d18:1/20:0
Cer d18:1/22:0
Cer d18:1/23:0
Cer d18:1/24:1
Cer d18:1/24:0
HexCer d18:1/16:0
HexCer d18:1/24:1
Sphingomyelins
SM 32:1
SM 33:1
SM 34:2
SM 34:1
SM 34:0
SM 35:1
SM 36:2
SM 36:1
SM 38:2
SM 38:1
SM 40:2
SM 40:1
SM 41:2
SM 41:1
SM 42:3
SM 42:2
SM 42:1

?p-value of the linear regression analysis adjusted for age, sex and batch effect (versus controls). p-values < 0.05 are in bold font.

Controls
Mean + SD (uM)

0.69 £ 0.24
0.27 £ 0.08
0.29 £0.14
1.22 £ 0.38
1.18 £ 0.40
1.74 £ 0.59
327 +1.11
0.53 +0.17
0.67 +0.23

12.56 + 4.45
6.88 +2.48
23.55+6.71
111.60 + 30.59
5.64 £2.07
5.70 £ 2.07
15.37 + 5.42
22.38 £7.00
8.18 +2.86
14.34 £ 6.19
32.97 £9.54
25.76 +7.82
16.18 +5.52
12.35 +3.91
33.42 +10.05
78.50 = 21.30
16.80 + 4.78

All late stage AMD

Mean * SD (uM)

0.74 £ 0.25
0.29 +£0.08
0.31+0.13
1.35+0.44
1.26 £ 0.41
1.87 +0.57
3.66 + 1.33
0.64 +0.22
0.76 £ 0.27

12.71 +4.17
7.17 £2.53
24.36 £ 6.79
116.55 + 29.99
6.24 £2.12
597 £2.21
15.96 + 5.07
23.59 £7.32
8.47 +2.86
16.58 + 6.62
33.69 £9.17
27.52 +7.62
16.48 +4.97
12.48 + 3.62
34.68 + 10.06
81.13 +£23.23
17.68 + 4.82

a

p

0.0249
0.0749
0.2266
0.1752
0.8171
0.4423
0.4152

0.0009°
0.0766

0.3365
0.1214
0.1919
0.0379
0.3267
0.0871
0.2026
0.0261
0.1600
0.1822
0.5561
0.1619
0.1853
0.2863
0.1663
0.0421
0.0814

GA
Mean + SD (uM)

0.83 +0.31
0.28 +0.07
0.34 £0.18
1.20 £ 0.35
1.11 £0.29
1.78 £ 0.50
2.97 +0.85
0.57 +0.18
0.67 +0.27

13.78 +3.70
7.69 £ 2.00
26.13 £ 5.65
122.97 + 22.87
5.73+1.79
6.41 +£1.73
16.77 + 4.29
24.64 £ 5.66
8.87 +2.87
13.37 +5.03
34.80 +£7.53
26.44 + 6.24
18.11 +3.93
13.17 £ 3.10
38.65 +9.87
89.94 + 22.58
17.93 +4.13

a

p

0.0041°
0.5131

0.0276
0.5058

0.8037

0.2760

0.7694

0.0478

0.4043

0.2418
0.1535
0.0406
0.0711
0.2830
0.1305
0.1571
0.1319
0.2454
0.8302
0.2340
0.2954
0.0620
0.2953
0.0035
0.0096
0.1230

CNV
Mean * SD (uM)

0.72 +£ 0.24
0.30 £ 0.08
0.30 £0.12
1.38 +0.45
1.30 +0.43
1.90 + 0.58
3.83+1.38
0.66 + 0.22
0.78 £0.27

12.45 +4.24
7.04 £ 2.63
23.94 +6.98
115.02 + 31.30
6.37 £2.18
5.87 £2.30
15.77 £ 5.23
23.34 £ 7.66
8.37 +£2.86
17.34 +6.73
33.42 +£9.51
27.78 £7.91
16.09 + 5.12
12.31+3.73
33.73 £9.90
79.03 £ 22.95
17.61 +4.98

Pp-values that remained significant after adjusting for multiple comparisons within each lipid class using the Benjamini-Hochberg method.

https://doi.org/10.1371/journal.pone.0200739.1002

MAA adducts regulate the ceramide metabolism in WERI-Rb1

Ceramide metabolism in photoreceptor cells has previously been shown to be altered under

p

0.1307
0.0578
0.5971
0.1704
0.6957
0.6397
0.2603

0.0013°
0.0708

0.5035
0.2013
0.4760
0.0783
0.4623
0.1500
0.3437
0.0384
0.2239
0.1234
0.8379
0.2082
0.4153
0.3946
0.6625
0.1698
0.1428

oxidative-stress conditions [55,56]. To establish a cell-based assay for testing the modulation
of sphingolipid gene expression, we investigated the possibility that MAA protein adducts reg-
ulate the synthesis of these lipids in the human cell line WERI-Rb1, an early stage cone lineage
cell line [57]. First, WERI-Rb1 cells were treated with 20 and 80 ug/mL of MAA-BSA adducts
(Fig 2A) to check for the influence of these oxidation-derived adducts in cell survival and acti-
vation of the cellular stress response. Cells exposed to 80 pg/mL MAA-BSA showed a reduced
cell survival compared to BSA control (Fig 2B), and induction of the stress response as indi-
cated by an increase in gene expression of NAD(P)H dehydrogenase [quinone] 1 (NQOI) and
Heme oxygenase 1 (HMOX1) (Fig 2C).
We then evaluated gene expression of selected enzymes involved in ceramide metabolism
(Fig 3A and S3 Fig). From de novo and salvage ceramide synthesis pathways, expression of
SPTLCI, DEGS1, CERS2 and CERS6 was upregulated under MAA-BSA treatment compared to
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Fig 1. Sensitivity analysis of ceramide species against selected AMD associated genetic variants. A subgroup of
genotyped samples including controls (n = 94), geographic atrophy (GA, n = 31) and choroidal neovascularization
(CNV, n = 161) was used to determine the influence of genetic variants in the association of lipid species and disease
by multiple logistic regression. Regressions were adjusted for age, sex, batch and genetic variants for: (A) Ceramide
(Cer) d18:1/16:0 association with GA, (B) Hexosylceramide (HexCer) d18:1/16:0 association with all late AMD (i.e.
AMD = GA + CNV). The vertical grey lines indicate the slope of the regression non-adjusted for genetic variants. Odd
ratios (OR) * 95% confidence intervals (CI) are shown together with the p-values of the regressions. CFH/ARMS2:
adjusted for both CFH rs1061170 and ARMS2 rs10490924.

https://doi.org/10.1371/journal.pone.0200739.g001

BSA control (Fig 3B). Additionally, gene expression of SGMSI involved in SM synthesis, and
UGCG involved in glucosylceramide synthesis, one of the two types of hexosylceramides, were
also upregulated under MAA-BSA treatment (Fig 3C). No significant differences were
observed for the gene expression of sphingomyelinases (SMPD1-3) that synthesize ceramide
by hydrolysis of SM (Fig 3D). Mass spectrometry measurements confirmed the increase in
ceramide species, and also a tendency for increased hexosylceramide species under MAA-BSA
treatment (HexCer d18:1/16:0, p = 0.18; HexCer d18:1/24:1, p = 0.11) (Fig 3E). Levels of two
SM species were also significantly increased under MAA treatment (Fig 3F). MAA-BSA pro-
duced a significant increase in UGCG and SGMSI gene expression levels as a possible response
to reduce ceramide toxicity by generating less toxic sphingolipid species. However, this was
not enough to counteract the increase in ceramide levels, as the ratios of total ceramide to total
SM or total hexosylceramide were greater in MAA-BSA than in BSA treated cells (Fig 3G and
3H).
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Fig 2. Cell survival and alteration of the stress response under MAA-BSA treatment in WERI-Rb1 cells. (A)
Schematic structure of MDHDC (4-methyl-1,4-dihydropyridine-3,5-dicarbaldehyde), the most prominent adduct in
malondialdehyde-acetaldehyde (MAA) protein modifications. (B-C) Cells treated with 20 or 80 ug/mL of BSA or
MAA-BSA for 24 h. (B) Cell viability (%) measured by MTT assay; the repetition with the highest value was considered
as 100% (each value corresponds to the mean + SEM of six-fold independently performed replicates). (C) Gene
expression of NAD(P)H dehydrogenase [quinone] 1 (NQOI) and Heme oxygenase 1 (HMOX1) (each value
corresponds to the mean + SEM of three-fold independently performed replicates). Statistics: 2-way ANOVA and
simple effect test (when significant interaction). ***p<0.001, **p<0.01.

https://doi.org/10.1371/journal.pone.0200739.9002

To rule out the possibility that the regulation of genes by MAA-BSA may be associated with
the loss of positive charge as a consequence of MAA adduction on amino groups, we treated
WERI-Rb1 cells with 80 ug/mL of acetylated-BSA (acetyl-BSA) or BSA. Acetylation of proteins
was shown to block amino groups and remove positive charges from proteins [50,58]. We
observed no significant differences between acetyl-BSA and BSA treated cells in the expression
of NQOI or genes in the ceramide synthesis pathway that were consistently increased by
MAA-BSA in comparison to BSA treatments (S2 Fig). Therefore, the loss of positive charge in
BSA is not sufficient to explain the effects of MAA-BSA on WERI-Rb1 gene expression.

Risk and non-risk isoforms of FHL-1 differentially regulate gene expression
of ceramide metabolism

To test whether variant rs1061170:CFH (p.Y402H) differentially influences the regulation of
ceramide metabolism in WERI-Rb1 cells, we used two variants of recombinant FHL-1, a splic-
ing variant of CFH shown to be the predominant complement regulator in Bruch’s membrane
[59] (Fig 4A). Full-length CFH isolated from pooled human serum was included as a control
of FHL-1 effects on cells. MAA-BSA or BSA were pre-incubated with FHL-1:Y402, FHL-1:
H402 or CFH in an equimolar concentration, and then added to WERI-Rb1 cells for 24 h.
Quantitative RT-PCR analysis revealed that NQO1I gene expression was higher in MAA-BSA
compared to BSA in spite of FHL-1 or CFH addition, showing that the stress response under
MAA-BSA was not affected by these complement proteins (Fig 4B). Gene expression of
SGMSI and SPTLCI, the rate limiting enzyme of de novo ceramide synthesis, was significantly
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Fig 3. Alteration of the sphingolipid metabolism under MAA-BSA treatment in WERI-Rb1 cells. (A) The sphingolipid pathway depicting the gene
symbols of the enzymes involved (complete protein names in S2 Table). (B-H) Cells were treated with 80 pg/mL of BSA or MAA-BSA for 24 h, and gene
expression or lipid levels were measured. (B) Genes from the de novo and salvage ceramide synthesis pathways. (C) Genes involved in the synthesis of SM from
ceramides, and synthesis of glucosylceramides (GlcCer) and galactosylceramides (GalCer), both hexosylceramides (HexCer). (D) Genes involved in the
generation of ceramide by sphingomyelin (SM) hydrolysis. (E) Ceramide (Cer) species levels. (F) SM species levels; only results from most abundant species
are shown. (G) Ratio of total ceramide to total SM levels. (H) Ratio of total ceramide to total HexCer levels. Each value corresponds to the mean + SEM of six-
fold independently performed replicates evaluated in two batches. Statistics: Linear regression adjusted for batch of analysis; ***p<0.001, **p<0.01, *p<0.05.

https://doi.org/10.1371/journal.pone.0200739.9003

decreased under the influence of both FHL-1 variants compared to the PBS control (Fig 4C
and 4D). DEGS], which is also participating in de novo ceramide synthesis, showed a signifi-
cant decrease of expression for non-risk associated variant FHL-1:Y402 compared to PBS and
CFH (Fig 4E). Finally, our results demonstrated that FHL-1:Y402, but not the AMD risk vari-
ant FHL-1:H402 or the full-length CFH, significantly downregulated the expression of CERS2,
which participates in de novo and salvage ceramide synthesis pathways, and of UGCG, involved
in glucosylceramide synthesis, in the presence and absence of MAA-BSA (Fig 4F and 4G).
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Fig 4. Influence of FHL-1 variants in expression of ceramide metabolism genes. (A) Schematic representation of CFH and FHL-1 proteins. CFH
is composed of 20 short consensus repeats (SCR), and its alternative splicing variant FHL-1 of 7 SCR and a unique extension of 4 amino acids. The
complement regulatory region (SCR 1-4), and surface recognition domains (SCR 19-20) are indicated. Residue 402 is located in the SCR 7 of both
proteins. (B-G) WERI-Rb1 cells treated with 80 ug/mL BSA or MAA-BSA during 24 h with or without addition of 200 ug/mL CFH or 80 pg/mL FHL-1
proteins. Expression of genes from (B) NAD(P)H dehydrogenase [quinone] 1 (NQO1), (C) Phosphatidylcholine:ceramide cholinephosphotransferase 1
(SGMS1), (D) Serine palmitoyltransferase 1 (SPTLCI), (E) Sphingolipid delta(4)-desaturase DES1 (DEGSI), (F) Ceramide synthase 2 (CERS2), (G)
Ceramide glucosyltransferase (UGCG). Each value corresponds to the mean + SEM of four-fold independently performed experiments. Statistics: two-
way blocked ANOVA and Tukey’s test (no significant interaction between principal effects was observed); (C-G) only the significance from the Tukey’s
test comparing PBS, CFH, FHL-1:Y402 (Y), and FHL-1:H402 (H) are shown in the graphs; all genes showed significant differences between MAA-BSA
and BSA treatments: (C, F) p<0.001, (G, E) p<0.01, (D) p<0.05. ***p<0.001, *p<0.05.

https://doi.org/10.1371/journal.pone.0200739.g004
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Discussion

Here, we show for the first time that levels of ceramide species are significantly elevated in
serum of late stage AMD patients compared to healthy control individuals in a population
based study. We observed a 1.20-fold increase of Cer d18:1/16:0 in GA and a 1.21-fold increase
of HexCer d18:1/16:0 in all late AMD compared to controls. The differences reported here for
AMD are in accordance to fold-changes in ceramides observed in other neurodegenerative
disorders. For example, Han et al. [41] showed that plasma Cer d18:1/16:0 was approximately
1.27-fold significantly increased in AD patients compared to controls, while a more recent
study that evaluated plasma of autopsy-confirmed AD dementia patients reported a 1.21-fold
increase of the same ceramide species [60]. Further studies in different cohorts of AD patients
corroborated the association of circulating ceramides in AD and its neuropsychiatric symp-
toms [61-63]. Moreover, circulating Cer d18:1/16:0 has been consistently associated with neu-
rological disorders, including Parkinson’s disease, AD, dementia with Lewy bodies and
memory impairment [38-41,60-62]. The increased levels of circulating ceramides in AD are
consistent with increased levels of these bioactive lipids in cerebrospinal fluid soluble fractions
[64] and brains [65] of patients with the disease. It would be of great interest to measure sphin-
golipid levels in vitreous humor of AMD patients, as the proximity to the retina may give a bet-
ter understanding of the possible role of these lipids in AMD.

The significant result for higher Cer d18:1/16:0 in GA but not CNV patients compared to
controls points to a possible differential role of specific lipid species between AMD late stages.
The levels of these ceramide species in plasma seem to depend on the rate of de novo synthesis
in solid tissues, mainly the liver and adipose tissue [66,67]. Although no correlation analysis
was undertaken between ceramide species in plasma and the retina, ratios of omega-3 to
omega-6 polyunsaturated fatty acids (PUFA) in serum and phosphatidylethanolamine species
containing PUFA in red blood cells were found to be good biomarkers of retinal PUFA levels,
including docosahexaenoic acid [68,69]. The lipid composition of plasma has previously been
considered as a reflection of the overall lipid metabolism of individuals, although concentra-
tions of lipids between plasma and tissue may differ depending on other factors such as genet-
ics or oxidative-stress generated as a consequence of alcohol consumption and smoking [69].

Our sensitivity analysis revealed no influence of genetic variants in lipid-related genes in
the association between ceramides and AMD. However, a suggestive tendency for the influ-
ence of AMD-associated variants rs10490924:ARMS2 and rs1061170:CFH was observed for
the association between Cer d18:1/16:0 and GA. To better understand such a possible connec-
tion, we used an early stage cone lineage cell line, WERI-Rb1, as a model to evaluate sphingoli-
pid modulation at the gene expression level. Previous studies showed an increase in ceramide
synthesis in rat retina neuronal cultures exposed to the oxidative stress inducer paraquat [55],
and ceramide and/or sphingosine, which is synthetized from ceramide by ceramidases, then
trigger apoptosis [70]. In the mouse retina-derived 661W cell line, ceramide was shown to be
responsible for the activation of the mitochondrial apoptotic pathway after sodium nitroprus-
side treatment [56]. Photoreceptors present a high metabolic activity and demand for oxygen
and nutrients, and together with the high-energy light that reaches the retina and their high
content of PUFA particularly vulnerable to oxidation, they are a main source of peroxides and
organic radicals [71]. Malondialdehyde is a by-product of lipid peroxidation previously shown
to be present in AMD lesions [72], and circulating levels of malondialdehyde were found ele-
vated in AMD patients compared to controls [73,74]. Therefore, we investigated the possibility
that MAA protein adducts may regulate the synthesis of these lipids in WERI-Rb1 cells, to
later estimate the effects of FHL-1 variants Y402 and H402 on the gene regulation of the cer-
amide metabolism.
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Here, we demonstrated that treatment of WERI-Rb1 cells with MAA-BSA adducts
increased the expression of SPTLCI, DEGS1, CERS2, and CERS6, genes from the de novo and
salvage pathway of ceramide synthesis, and significantly increased the levels of Cer d18:1/18:0,
20:0, 22:0, 24:0, and 24:1. We also observed an increase in SGMSI and UGCG gene expression
suggesting a possible response to hamper ceramide cytotoxicity by further synthesis of the less
toxic sphingolipids SM and glucosylceramide from ceramide. Although an increase in gluco-
sylceramide provides an escape route from apoptosis by decreasing ceramide levels, pathologi-
cal accumulation of glucosylceramide in Gaucher disease results in retinal neuronal cell death
[75], and also seems to contribute to the pathogenesis of diabetic retinopathy. In this regard,
inhibition of glucosylceramide synthesis in retinal neurons of a diabetic rat model was shown
to increase insulin sensitivity and reduce neuronal death [76]. Future investigation of sphingo-
lipids in an AMD animal model may contribute to better understand their role in the disease.

Finally, we focused on the possible regulation of ceramide genes by FHL-1 variant Y402
and AMD risk-associated isoform FHL-1:H402 in WERI-Rb1 cells. We showed that FHL-1:
Y402, but not FHL-1:H402 or full-length CFH, decreased the expression of CERS2 and UGCG
in the presence and absence of MAA-BSA. CFH variant H402 was previously shown to have
an impaired ability to bind MAA-BSA compared to CFH variant Y402 [72], and therefore we
expected FHL-1:Y402 incubated with MAA-BSA adducts to reduce the effect of this peroxida-
tion product when compared to FHL-1:H402. However, the binding of FHL-1 to MAA-BSA
adducts in WERI-Rb1 cell media is not enough to explain the differential influence of FHL-1
variants in CERS2 and UGCG gene expression, as the effect was observed also for the BSA con-
trol treatment. A similar decrease of relative expression under FHL-1 Y402 in the BSA control
was observed for SGMSI, SPTLCI and DEGS], although the difference between FHL-1 variants
in the expression of these genes was not statistically significant. Moreover, the fact that full-
length CFH isolated from pooled serum did not exert the same effect as FHL-1 suggest a spe-
cific role of FHL-1 in the modulation of WERI-Rb1 sphingolipid metabolism.

It has been previously shown that FHL-1, but not CFH, promotes cell attachment of mink
epithelial-like cell-line CCL64, human melanoma C32 cells and human fibroblast-like MRC-5
cells, even though both proteins display the RGD motif that is necessary for this function at
identical positions in SCR 4 [77]. RGD motif is recognized by members of the integrin family
of adhesion proteins [78], and it has been demonstrated that inhibition of endothelial cell
anchorage by blockade of RGD-binding integrins increases endogenous ceramide [79]. There-
fore, it may be possible that FHL-1 promotes regulation of the ceramide metabolism in WER-
I-Rb1 cells in a membrane receptor-dependent manner using the RGD motif and triggering
an intracellular response, which may explain our observation that both FHL-1 variants statisti-
cally decreased the gene expression of SGMSI and SPTLCI compared to PBS control. More-
over, a recent study has shown that the binding of FHL-1 to C-reactive protein and pentraxin-
3 differs from the binding of CFH to these proteins, and that the interaction between FHL-1
and pentraxin-3 is altered by the Y402H polymorphism [80]. These results show that FHL-1
has binding abilities different from CFH that are influenced by the Y402H variant. As cer-
amide synthesis involves three pathways modulated by different stimuli and cellular conditions
[81,82], our results showing that only FHL-1 Y402 decreased the gene expression of CERS2
and UGCG compared to controls may be associated with a specific binding ability of this vari-
ant to the cell surface and a subsequent response. Further studies are needed to understand the
interaction of FHL-1 variants with WERI-Rb1 cells and their regulation of ceramide
metabolism.

A recent study demonstrated that C5aR1 regulates glucosylceramide cellular accumulation
in experimental and clinical Gaucher disease, which induces complement-activating IgG auto-
antibodies that drive C5a generation and C5aR1 activation, feeding a cycle of glucosylceramide
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accumulation and immune response activation [83]. Another study demonstrated that two iso-
forms of the ceramide transporter protein (CERT) bind to C1q and initiate the classical com-
plement pathway in normal human serum, and that C1q binds to the longer splicing isoform
CERT}, in the surface of apoptotic cells [84]. The results from these studies and our findings
that FHL-1 regulates the gene expression of ceramide metabolism in WERI-Rb1 cells highlight
the importance to further investigate the connection between the sphingolipid metabolism
and the complement system. Future experiments should evaluate the regulation of sphingoli-
pids by FHL-1 in the presence of other complement proteins to better understand the possible
in vivo implication of these findings.

In conclusion, our study reports for the first time higher levels of serum ceramides in AMD
patients that may reflect alterations in the sphingolipid metabolism as a consequence of pro-
oxidant environments. Moreover, the genetic variant rs1061170 (p.Y402H) in CFH which is a
strong risk factor for AMD seems to influence the levels of ceramides in serum, and FHL-1
variants Y402 and H402 differentially regulate the expression of ceramide synthesis genes in
retinoblastoma-derived cells. These findings point to a possible influence of CFH variant
rs1061170 in cellular processes regulated by sphingolipid levels, such as cell survival, prolifera-
tion and autophagy.
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BSA and MAA-BSA proteins from four synthesis batches (mean + SEM).

(DOC)

S2 Fig. Influence of acetylated-BSA (acetyl-BSA) in gene expression of WERI-Rb1 cells.
(A) Native PAGE of bovine serum albumin (BSA) and BSA treated with 2 pL of acetic anhy-
dride per mg of protein to produce acetyl-BSA. The gel was stained with Coomassie Blue. The
table shows the retention factor relative to BSA (Rfgga) calculated as the ratio of the distance
each protein has travelled over the distance travelled by BSA. Rfgs, for MAA-BSA was
obtained from the gel showed in S1 Fig. (B-C) WERI-Rb1 cells treated with 80 pg/mL of BSA
or acetyl-BSA for 24 h. (B) Gene expression of NAD(P)H dehydrogenase [quinone] 1 (NQOI)
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(each value corresponds to the mean + SEM of three-fold independently performed experi-
ments). (C) Gene expression of serine palmitoyltransferase 1 (SPTLCI), sphingolipid delta(4)-
desaturase DES1 (DEGSI), ceramide synthase 2 (CERS2), and ceramide synthase 6 (CERS6)
(each value corresponds to the mean + SEM of three-fold independently performed experi-
ments). Statistics: Paired Student’s t-test, p>0.05 for all genes evaluated.

(DOC)

S3 Fig. Expression of selected genes in the ceramide metabolism in WERI-Rb1 cells.
Expression of 15 genes from the ceramide metabolism evaluated by RT-PCR in retinoblastoma
cell line WERI-Rb1. CERS3 presented a very low expression and was not included in later
experiments. Ctrl lanes for each gene represent a control without cDNA addition. The lower
molecular weight band in UGCG and Ctrl UGCG lanes correspond to primer dimers.

(DOC)
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