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Abstract 

Motor priming studies have suggested that human movements are mentally represented in the 

order in which they usually occur (i.e., chronologically). In this study, we investigated 

whether we could find evidence for these chronological representations using a paradigm 

which has frequently been employed to reveal biases in the perceived temporal order of 

events – the temporal order judgment task (TOJ). We used scrambled and unscrambled 

images of early and late movement phases from an everyday action sequence (“stepping”) 

and an expert action sequence (“sprinting”) to examine whether participants’ mental 

representations of actions would bias their temporal order judgments. Additionally, we 

explored whether motor expertise mediated the size of temporal order judgment biases by 

comparing the performances of sprinting experts to those of non-experts. For both action 

types, we found significant temporal order judgment biases for all participants, indicating that 

there was a tendency to perceive images of human action sequences in their natural order, 

independent of motor expertise. Although there was no clear evidence that sprinting experts 

showed larger biases for sprinting action sequences than non-experts, considering sports 

expertise in a broader sense provided some tentative evidence for the idea that temporal order 

judgment biases may be mediated by more general motor and/or perceptual familiarity with 

the running action rather than specific motor expertise. 

Key words: movement perception; anticipation of future states; TOJ; athletic expertise; 

psychophysics
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Introduction

To successfully interact with our environment, we must be able to anticipate and 

understand the actions of other people when planning our own actions. For example, when 

navigating a busy street, we must anticipate the movement directions of fellow pedestrians 

and adjust our own movements accordingly to avoid bumping into them. Along with our 

intuitions about physics and familiarity with behavioural conventions, knowledge of how 

human bodies usually move helps us to make predictions about potential future movements.

The anticipatory nature of movement perception has been most convincingly 

demonstrated by the representational momentum effect, which refers to the observation that 

the last remembered location of a moving stimulus is reliably displaced further along its 

movement path (e.g., Finke & Freyd, 1985; Freyd & Finke, 1984; Hubbard, 2005). More 

recently, it was found that this effect also translates to human movements (Hudson, 

Nicholson, Simpson, Ellis, & Bach, 2016) and is modulated by motor expertise (Nakamoto, 

Mori, Ikudome, Unenaka, & Imanaka, 2015). For example, basketball players showed a clear 

tendency to perceive the next likely state of play when provided with static images or moving 

videos of a basketball game (Didierjean & Marmèche, 2005; Gorman, Abernethy, & Farrow, 

2012). Although the representational momentum effect constitutes an “error” of perception – 

i.e., the perceived stimulus location differs from the actual stimulus location – it is assumed 

to function as an adaptive anticipatory mechanism that helps to extrapolate the future position 

of a target. The effect compensates for neural delays in the visual system, which allows us to 

time our actions more precisely (e.g., intercepting a thrown ball). 

In contrast to simple objects in motion, such as a ball in a game, humans in general do 

not move along easily predictable trajectories as their movements are complex and under 

voluntary control. It has been hypothesised that the prediction of these complex human 

movements relies on internal representations that are stored in long term memory in a 

structured way. Schack (2004a) hypothesised that these mental movement representations are 

built from several so-called Basic Action Concepts (BACs). BACs are thought to represent 

the most relevant action elements and body postures of a movement and are assumed to 

provide the basis for any kind of action anticipation. Schack and colleagues examined the 

categorical structure of mental representations of motor experts and non-experts in long term 

memory for various sports movements, such as volleyball, golf, tennis and gymnastics, using 

structural dimension analysis of motor mental representations – a technique that requires 

individuals to provide explicit ratings on the interrelatedness of the BACs in an action 
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sequence. (e.g., Bläsing, Tenenbaum, & Schack, 2009; Heinen, Schwaiger, & Schack, 2002; 

Land, Volchenkov, Bläsing, & Schack, 2013; Schack, 2004b; Schack & Mechsner, 2006). 

The results consistently revealed that the underlying action representations were indeed 

spatially distinct and hierarchically ordered, and thus very similar to the real, physical actions 

that they represented. Furthermore, there was strong evidence that mental action 

representations varied with the motor expertise of individuals. More specifically, it was found 

that motor experts, such as athletes, possessed more detailed mental movement 

representations than novices for actions related to their respective field of expertise (Bläsing 

et al., 2009; Land et al., 2013; Schack & Mechsner, 2006). Schack and Mechsner (2006), for 

example, compared mental representations of the tennis serve in high-ranking tennis players, 

low-ranking tennis players, and novices. The results revealed that the high-ranking tennis 

players’ mental representations corresponded to the functional movement structure, were 

hierarchically organised, and were similar between individuals. Conversely, the low-ranking 

and novice players’ mental representations were less hierarchically organised and did not 

reflect the biomechanical demands of the task as precisely. These differences in mental 

representations between experts and non-experts suggest that motor learning leads to the 

development of more accurate and detailed task-specific representations, which are in turn 

crucial for action execution and control (Elsner & Hommel, 2001). 

Importantly, if the ability to anticipate future states of a movement crucially relies on 

the distinct representations of action units, it seems sensible to assume that they are also 

organised and represented in the accurate temporal order (i.e., chronologically). While the 

approach of Schack and colleagues does not allow conclusions about the representation of the 

temporal order of action components, there is some indirect evidence from psychophysical 

studies for the assumption that movement phases and components of familiar human actions 

are represented chronologically (e.g., Kourtzi & Shiffrar, 1999; Verfaillie & Daems, 2002). 

Using a priming paradigm, Kourtzi and Shiffrar (1999) presented participants with two static 

images (primes) of a human movement which were either linked by apparent motion or not. 

The first prime image depicted an early posture of a human movement whereas the second 

prime image depicted a later, rotated posture of the same movement. Participants were 

required to press a key whenever two subsequent target images matched each other. They 

found that participants showed priming effects for intermediate postures in both the apparent 

motion and static image conditions. Furthermore, there was an additional priming effect in 

the static image condition for target views falling outside the end of the primed motion path 
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(i.e., for future postures). Priming effects neither occurred for target pictures preceding the 

presented movement nor for biomechanically impossible postures. These findings suggested 

that human movements are represented dynamically and in a specific spatial direction. In a 

later study, Verfaillie and Daems (2002) further confirmed this view by examining long-term 

priming of postures from movement phases. Participants were shown short animations of 

human-like movements in the priming phase and were later presented with static images of 

movement postures in the test phase. Participants were asked to determine whether the 

images in the test phase depicted possible or impossible body postures. They found priming 

effects when participants were presented with a priming animation in which the actor would 

have reached the test posture if the animation had lasted longer (future-posture priming) but 

not when they had seen an animation in which the actor would have been in the test posture if 

the animation had started earlier (past posture priming). Based on these findings, they 

concluded that individuals anticipated future postures of observed actions and that this 

anticipation facilitated the subsequent perceptual identification task. Taken together, these 

studies suggest that human movements are represented in chronological order, which in turn 

seems to facilitate perceptual anticipatory processes. 

Since, as discussed above, chronologically ordered mental representations are crucial 

for the ability to anticipate actions, differences in the accuracy of those representations 

between experts and non-experts are likely to result in differences in their anticipatory skills. 

Evidence for this comes from a study by Güldenpenning, Kunde, Weigelt, and Schack 

(2012). Using a priming paradigm, they found that motor experts were more sensitive to the 

temporal order of expertise-related movement sequences than novices. Specifically, they 

presented high-jump athletes (motor experts) and non-athletes (motor novices) with prime-

target pairs that depicted different body postures from a high-jump action. The high-jump 

action sequences were divided into different movement phases, e.g., approach and flight 

phase, and each of these phases was further divided into four movement components (earlier 

to later movement components). The prime-target pairs could either show body postures 

selected from the same movement phase (e.g., approach & approach) or postures selected 

from different movement phases (e.g., approach & flight). Furthermore, the prime-target pairs 

were either presented in their chronological order (earlier movement as prime followed by 

later movement as target) or reversed order (later movement as prime followed by earlier 

movement as target). Participants had to indicate whether the target image depicted a posture 

from the approach phase or the flight phase. The results revealed a temporal-order priming 
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effect, where participants were faster to respond to the target when prime-target pairs 

reflected the chronological order of the movement (e.g., approach phase prime followed by 

flight phase target). Importantly, while all participants showed a temporal-order priming 

effect for between-phase prime-target pairs (i.e., approach phase prime followed by a flight 

phase target), only motor experts showed a temporal-order priming effect for within-phase 

prime-target pairs (i.e., earlier approach phase movement followed by later approach phase 

movement). Güldenpenning et al. (2012) concluded that knowledge about the high jump 

movement is represented in a specific (chronological) order and that more accurate mental 

representations may be linked to superior anticipatory skills.

In summary, the reviewed studies support the notion that movement representations 

are ordered chronologically since the presentation of a (static) image of a movement seems to 

automatically activate the visual representation of the next state of that movement, which 

suggests that humans have knowledge about the chronological order of familiar actions. In 

other words, humans expect movement sequences to appear in the order in which they 

commonly occur. Here, we aimed to test the existence of temporally ordered movement 

representations and their influence on our perception using a novel approach. We 

hypothesised that our perception of temporal order might be biased when temporally-ordered 

movement representations are activated. To investigate this, we used a temporal order 

judgment task (TOJ): a classical psychophysical paradigm frequently employed to examine 

the processing times of information in different modalities (Hendrich, Strobach, Buss, 

Mueller, & Schubert, 2012; Sternberg & Knoll, 1973) and the prioritisation of visual 

information (e.g., Ariga, Yamada, & Yamani, 2016 for object affordances; Constable, Welsh, 

Huffman, & Pratt, 2019 for self-relevant stimuli; Rajsic, Perera, & Pratt, 2017 for valued 

stimuli). In our experiment, participants were presented with two images depicting different 

phases of a movement. The images were either presented simultaneously or separated by 

temporal offsets of various durations. The temporal offset separating the two images is 

referred to as stimulus onset asynchrony (SOA). Participants were asked to indicate which of 

the two images was displayed first. We hypothesized that when participants were uncertain 

about the presentation order due to the simultaneous presentation of the images or to short 

SOAs, the activation of ordered movement representations may result in a bias to prioritise 

movement order over the order of image presentation. In other words, we hypothesise that 

mental representations may act as a prior that increases the participants’ tendency to report 

the picture depicting the earlier movement phase to have occurred first even when it actually 
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occurred simultaneously with, or shortly after, the picture showing a later movement phase. 

Note that, in theory, the TOJ-task is purely perceptual as in order to perform this task 

successfully the picture content does not have to be evaluated and motor expertise should not 

be required. However, as image content is difficult to ignore, it often affects performance.

As previous studies seem to suggest that there are systematic differences between the 

action representations of athletes and non-athletes, with athletes being more sensitive to the 

temporal order of movements (Güldenpenning et al., 2012) and better at anticipating future 

states of movements they are experts in (Aglioti, Cesari, Romani, & Urgesi, 2008; Gorman et 

al., 2012), we also tested whether and how temporal order judgments are moderated by motor 

expertise. To this end, we tested a group of track and field sprinters (expert athletes) and a 

group of non-sprinters, with images of two different action sequences: one with which all 

participants should be similarly familiar (phases of a stepping movement) and one for which 

motor familiarity should vary between experts and non-experts (phases of a sprinting 

movement). We expected that track and field sprinters would show temporal order judgment 

biases for both the sprinting movement (specific to their motor expertise) and the everyday 

movement (stepping). In contrast, for the non-sprinters we predicted a similar temporal order 

judgment bias as for sprinters for the everyday movement, but a significantly smaller bias for 

the expert sprinting movement which they should be less familiar with (i.e., they should have 

less accurate mental representation). We are particularly interested here in the motor 

experience and familiarity with sprinting movements as previous studies suggest that action 

capabilities affect the perception (as well as the neural processing) of actions within the field 

of expertise (Calvo-Merino, Grèzes, Glaser, Passingham, & Haggard, 2006; Casile & Giese, 

2006). Specifically, these studies suggest that perceptual sensitivity increases for trained 

expert actions. The observation that motor expertise makes observers selectively sensitive to 

the perceptual features of those actions was coined “perceptual resonance” by Schütz-

Bosbach and Prinz (2007). Thus, while most humans may be reasonably familiar with a 

general running movement, both perceptually and motorically, the competitive sprinters 

tested in our sample spent years refining their sprinting technique to optimise the distinct 

phases of the sprinting action depicted in our stimuli (i.e., posture during acceleration and 

posture during high velocity). This implies that expert sprinters possess very specific motor 

expertise with respect to these different phases of the sprinting movement which in turn 

might enhance their perceptual sensitivity to their correct chronological order. 
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Methods

Participants

Forty-five volunteers participated in the experiment. As we were interested in whether 

temporal order judgments of action sequences were moderated by motor expertise, we 

recruited a group of participants with several years’ experience of regular training in track 

and field sprinting and a group of participants without any specific expertise in sprinting. Our 

athletic sprinting group consisted of fifteen participants (9 female, mean age = 21.7 years, age 

range: 19-25 years) who had trained in track and field athletics for an average of 9.5 years 

(SD = 3.6 years) and have had a main training focus on sprinting for an average of 7.0 years 

(SD = 2.9 years). The mean frequency of training in the sprinting group was 5.2 sessions per 

week (SD = 0.9 sessions per week).

Thirty participants with no specific experience of track and field athletics were 

recruited for the non-sprinter group (23 female, mean age = 22.1 years, age range: 18-33 

years). The data set of one female participant who did not understand the task instructions, 

performed close to chance level for all SOAs, and whose decision times were classified as 

outliers was excluded from analysis. Many of the participants in the non-sprinter group were 

also physically active (mean frequency of training = 2.4 sessions per week, SD = 2.0 sessions 

per week) and participated in a range of different sports, such as football, netball, volleyball, 

rugby, and mixed martial arts. 

All participants reported that they had normal or corrected-to-normal vision and no 

neurological problems. All participants were naïve to the purpose of the experiment and 

provided written informed consent before the start of the experiment which lasted 

approximately 1 hour. The study was approved by the School of Psychology Ethics 

Committee at the University of Aberdeen.

Apparatus and Stimuli

The experiment was run using a Dell Precision M6500 Intel Core i5 computer (OS: 

Ubuntu 18.04) and programmed in Matlab® R2018b (MathWorks, Inc.: Matick, MA, USA, 

2018) using the Psychtoolbox extension (Brainard, 1997; Kleiner, 2010). Stimuli were 

presented on a 23.5” LCD monitor (EIZO Foris FG2421, 52.0 x 29.5 cm, resolution: 1920 x 

1080 pixel) with the refresh rate set to 100 Hz. 
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The stimuli were 8 grey-scale photographs (see Figure 1) which were scaled to have 

the same mean grey-value (0.5, mid-grey; see Figure 1). The size of each stimulus was set to 

10.2 × 12.1 cm (378 × 444 pixels). Two of the images depicted a sprinting movement of a 

female expert, who is also the first author of this paper (“sprint condition”): one image 

depicted the acceleration phase (movement phase 1) and the other depicted the maximum 

velocity phase (movement phase 2). Another two images depicted stepping movements of the 

same female (“step condition”): one image depicted stepping onto a box (movement phase 1) 

and the other depicted stepping off the other side of the box (movement phase 2). All four 

images depicted body postures that are representative of the respective movement phase. 

Stepping on and off a box was chosen as the non-expert movement as it is perceptually 

similar to sprinting (i.e., lifting the knee while maintaining an upright body posture) and also 

consists of clearly distinct phases. For both movements, the trunk is more inverted in the first 

phase of the action as compared to the second phase. Additionally, stepping and sprinting are 

both cyclical actions but consist of higher order phases allowing a categorical distinction 

between the different sequences. 

The remaining four images were scrambled versions of the image pairs in the sprint 

condition (“sprint scrambled condition”) and the step condition (“step scrambled condition”), 

respectively. The scrambled images were created from the original images by first dividing 

each of them in as many blocks of 50 × 50 pixel as possible and then randomly repositioning 

these blocks as well as the remainder of smaller blocks. The rationale for this method of 

creating the scrambled images was to effectively obscure the type of movement and 

movement phase while at the same time keeping the low-level features of the scrambled 

images as similar to the original images as possible (e.g., perceived contrast). We piloted 

pixel-wise scrambling, but the images appeared largely identical and homogenously grey 

(i.e., white noise) with this method. Consequently, we decided to use larger blocks as the 

images still contained recognisable features of the moving person and the surround – thereby 

making the scrambled images similar in salience to the original images. Note that in each trial 

of the experiment we always presented image pairs belonging to the same condition (i.e., 

movement phase 1 and 2 from either the sprint, step, sprint scrambled or step scrambled 

condition). The two stimuli were presented on a mid-grey background and horizontally 

centred on the screen. The vertical distance between the stimuli from the centre of the screen 

was ± 50 pixels (1.35 cm).
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--- Insert Figure 1 about here ---

Procedure 

Participants sat at a table in a darkened room at a viewing distance of 75 cm from the 

monitor. A height-adjustable chin rest was used to maintain a constant viewing distance 

throughout the experiment. A button box with two buttons arranged in vertical order was 

placed on the table in front of the participants. They were instructed to hold the box with both 

hands and place the index fingers (or thumbs) of each hand on the upper and lower button, 

respectively. To start a trial, participants pressed both buttons simultaneously. A black 

fixation cross (50 × 50 pixel) appeared in the centre of the screen and remained there until the 

end of the trial. Subsequently, one of the four stimulus pairs appeared on the screen. The two 

images could either be presented simultaneously (SOA: 0 ms) or with a short temporal offset 

between them (SOA: 30 ms, 50 ms or 100 ms). Both images remained visible on the screen 

together for a duration of 500 ms. After this interval, the stimuli were replaced by a response 

screen, and participants were required to indicate which image they thought had appeared 

first on the screen by pressing the corresponding button on the button box (i.e., if they 

thought that the image presented above the fixation cross appeared first, they pressed the top 

button on their button box and vice versa). As the picture content was irrelevant to the task, 

participants were not made aware of the presentation of different movement phases and types.

The presentation sequence of SOA, image type (i.e., “sprint”, “sprint-scrambled”, 

“step”, “step-scrambled”) and presentation location of the first image (i.e., below or above 

the fixation cross) was randomised for each participant. Seven SOAs were employed in this 

experiment: -100 ms, -50 ms, -30 ms, 0 ms, +30 ms, +50 ms, and +100 ms. Positive SOAs 

indicate that the images were presented in their natural movement order (i.e., the image 

depicting movement phase 1 was followed by the presentation of the image depicting 

movement phase 2), whereas negative SOAs indicate that the images were presented in 

reversed movement order (i.e., the image depicting movement phase 2 was presented first). 

The image that was presented first appeared equally often in the top half of the screen and the 

bottom half of the screen. All of these manipulations generated a total of 56 different 

combinations: 7 SOAs × 2 locations (top or bottom) × 4 image types. Each of these 
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combinations was presented 20 times resulting in 1120 experimental trials in total. After 

every 50 trials, a screen would appear to encourage participants to take a short break. 

Prior to the start of the main experiment, participants completed a short practice 

session to become accustomed to the task. The practice trials followed the same procedure as 

the experimental trials but used different stimuli (images of mugs), and a constant SOA of 

100 ms between the appearance of the first and second image. In addition, participants 

received auditory feedback about their performance during practice (beeps with a duration of 

250 ms; high-pitched for correct responses (1000 Hz) and low pitched (500 Hz) for incorrect 

responses). Participants indicated verbally to the experimenter when they felt familiar with 

the task and wished to begin the experimental session during which no performance feedback 

was given.

Data processing and analysis

To analyse the data, we determined the point of subjective simultaneity (PSS) for each 

participant and image condition. The PSS indicates the SOA at which a participant would 

have perceived the images as being presented in their natural order in 50% of the trials. We 

first computed the proportion of trials in which a participant perceived the images as being 

presented in their natural movement order (i.e., movement phase 1 followed by movement 

phase 2) separately for each participant, image type and SOA. The proportions of perceived 

natural movement order were then used to fit psychometric functions (cumulative normal 

functions) using the Palamedes toolbox (Prins & Kingdom, 2018). Thresholds and slopes 

were free parameters in the fit while the guess rate was fixed at 0 and lapse rate at 0.01. A 

negative PSS indicates a tendency to perceive images as appearing in their natural movement 

order despite being presented simultaneously or in reversed order, whereas a positive PSS 

indicates a tendency to perceive images as appearing in reversed movement order despite 

being presented in their natural order. For example, a PSS of -5 ms would indicate that 

participants showed a temporal order judgment bias in the expected direction and would be 

predicted to perform at chance level if movement phase 2 was presented 5 ms before 

movement phase 1 (i.e., SOA of -5 ms). 

Additionally, we analysed the time it took participants to provide their answer (i.e., 

decision time). The decision time reflects the time between the appearance of the response 

screen after the presentation of the images and the moment participants provided their button-

press response. 
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The PSS-data were initially analysed using a 2 × 2 × 2 mixed ANOVA with the 

within-subject factors movement type (sprint vs. step) and scrambling (scrambled vs. 

unscrambled) and the between-subject factor sprinting expertise (sprinter vs. non-sprinter). 

All post-hoc tests were conducted one-sided (as all our hypotheses predict a clear direction of 

the order of effects) and were Bonferroni corrected for multiple comparisons, if applicable. 

All values are presented as means ± 1 SEMs. A significance level of α =0.05 was used for all 

statistical analyses.

Results

Point of Subjective Simultaneity (PSS) 

Figure 2 shows the data and fitted psychometric functions of two representative 

participants who showed a temporal order judgment bias for both the step and sprint 

conditions. The 2 × 2 × 2 mixed ANOVA on the PSS values revealed a main effect of 

movement type, F(1,42)=4.82, p=.034, ηp
2 = .10 and a main effect of scrambling, 

F(1,42)=9.76, p=.003, ηp
2 = .19. The main effect of movement type indicates that across both 

scrambling conditions, the temporal order judgment bias was slightly larger for the sprinting 

images (-2.6 ms ± 0.57 ms) than for the stepping images (-0.57 ms ± 0.77 ms). More 

importantly, the main effect of scrambling indicates that the PSS reflected, as expected, a 

larger temporal order judgment bias for unscrambled images (-2.8 ms ± 0.68 ms) than for 

scrambled images (-0.4 ms ± 0.54 ms). There was no main effect of sprinting expertise 

(p=.45) and no significant interaction effects between any of the factors (all p>.11). Thus, 

contrary to our hypothesis that sprinting experts might show a selectively larger temporal 

order judgment bias in the sprint condition than non-sprinters, there was no three-way 

interaction between the variables. Descriptively, it appears that sprinting experts showed 

larger temporal order judgment biases for both the sprint and the sprint-scrambled conditions 

(Figure 3A, see Discussion for further information). 

--- Insert Figure 2 about here ---

Importantly, however, the finding that there was a main effect of scrambling seems to 

suggest that our sample, as a whole, showed a temporal order judgment bias and thus a 

tendency to perceive earlier movement phases as being presented first for both of the action 
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sequences. To test whether a temporal order judgment bias occurred reliably across the entire 

sample, we averaged the data across both groups; sprinters and non-sprinters (see Figure 3B). 

--- Insert Figure 3 about here ---

To determine the existence of a temporal order judgment bias (which would be 

reflected in negative PSS values), one-sample t-tests comparing the PSS against zero were 

conducted for each of the four image types (note that the ANOVA only tests for differences 

between conditions but does not provide information on whether values are larger or smaller 

than zero and thus, does not determine whether a temporal order judgment bias exists in the 

expected direction). 

For the stepping condition, we found a significant temporal order judgment bias for 

the unscrambled images, t(43)= -2.47, p=.034, d=0.37 (Bonferroni corrected), but not for the 

scrambled versions, t(43)= -0.96, p=.684, d=0.14. Similarly, for the sprint condition, PSS 

were also significantly smaller than zero in the unscrambled condition, t(43)= -3.88, p<.001, 

d=0.58, but not in the scrambled condition, t(43) = -2.04, p=.094, d=0.31. Overall, these 

findings seem to indicate that participants show statistically significant temporal order 

judgment biases for both action sequences tested, independent of their motor expertise. 

Since a number of participants in the non-sprinting sample still had considerable 

experience in other sports, we wondered whether sports expertise defined more broadly may 

moderate the temporal order judgment bias for the different movement types. To explore this, 

we recoded our sample according to their general sports expertise. Every participant who 

trained consistently for a certain sport at least 4 times per week was coded as an “athlete”. 

Most of these participants participated in team-sports that involved sprinting and running 

such as football, rugby, volleyball and netball. There were, however, three participants who 

performed sports at a competitive level but whose primary sport did not involve a significant 

element of running (i.e., a dancer, a mixed martial arts and ballet performer and a competitive 

horse rider). We decided to keep these three participants in the athlete sample because we 

deemed it likely that these participants also incorporated running into their general health, 

training and exercise regime (which we did not assess and cannot determine retrospectively). 

Additionally, their primary sports are extremely posture-oriented which may increase these 
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participants’ perceptual sensitivity to body postures in general. Therefore, we felt that these 

three participants fitted in better with the athlete sample than the non-athlete sample. This 

resulted in a more even split of our sample with 22 participants assigned to the athlete and 

non-athlete groups, respectively. For this recoded sample, we re-computed the 2 × 2 × 2 

mixed ANOVA which confirmed the main effect of scrambling, F(1,42)=10.28, p=.003, ηp
2 = 

.20. In addition, the analysis showed an interaction effect between movement type and sports 

expertise, F(1,42)= 5.85, p=.02, ηp
2 = .12. Figure 4 shows that this interaction effect seems to 

be mainly driven by the fact that athletes showed overall larger temporal order judgment 

biases in the expected direction in the sprint condition than non-athletes. Surprisingly, this 

seems to be true for both unscrambled and scrambled sprinting images, suggesting that 

athletes might still have been able to detect some features in the scrambled pictures that 

indicated movement order (see Discussion for more information). 

The finding that temporal order judgment biases were generally larger for athletes 

than non-athletes for images in the sprint condition may thus provide some tentative evidence 

for the notion that the size of the temporal order judgment bias may be mediated by more 

general motor and/or perceptual familiarity with the running movement. The main effects of 

movement type (p=.07) and sports expertise (p=.25) were not significant. There were no other 

significant interaction effects (all p>.31).

--- Insert Figure 4 about here ---

Decision time

As a pre-analysis of the data revealed that the two different types of movements 

displayed in the images (i.e., step vs. sprint) had no effect on the decision times, data were 

averaged across this factor. Moreover, as there was no main effect of the between-subject 

factor “expertise” or interactions between “expertise” and any of the other factors (neither 

when defined as the original sprinter sample nor when defined as the recoded athlete sample), 

the final analysis was conducted across the whole sample. The data is shown as a function of 

SOA and scrambling in Figure 5A. As can be seen in this figure, decision times were longest 

when both images were presented simultaneously and decreased considerably for longer 

SOAs. Note that participants were given no instructions about the speed with which they had 
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to provide their answers and that answers were only recorded after the response screen had 

been displayed (see Methods section). Nevertheless, participants’ decision times decreased 

considerably when SOAs increased (and hence for easier trials). We were particularly 

interested in whether presenting movements in their natural order (i.e., with no conflict 

between the order of presentation and the order of the action sequence depicted in the 

images) may lead to faster responses (facilitation effect) while presenting images in an order 

depicting reverse action sequences (i.e., with a conflict between order of presentation and 

order of image content) may lead to prolonged decision times (interference effect). To 

determine this, we conducted a 2 (scrambling) × 2 (presentation order: natural vs. reversed) 

× 3 (SOA duration: 30, 50 and 100 ms) repeated measures ANOVA. Note that the SOA = 0 

ms condition was omitted from this analysis as in this condition both images were presented 

simultaneously. As expected, this analysis revealed a strong main effect of SOA duration, 

F(2,86)=56.05, p<.001, ηp
2 = .57, with decision times decreasing for longer SOAs. 

Importantly, there was also a significant 3-way interaction between all factors, F(2,86)=6.12, 

p=.003, ηp
2 = .13. Due to this 3-way interaction effect the main effects of scrambling (p=.04) 

and presentation order (p=.047) cannot be meaningfully interpreted. All other interaction 

effects were not statistically significant (all p>.20). The 3-way interaction suggests that SOA 

duration and presentation order had differential effects for scrambled and unscrambled 

images. In order to better understand this 3-way interaction, we conducted for each SOA (i.e., 

30, 50 and 100 ms) separate repeated-measures ANOVA with the factors scrambling and 

presentation order. For the 30 ms SOA, this analysis revealed a significant interaction effect, 

F(1,43)=6.00, p=.019, ηp
2 = .12. Paired samples t-tests confirmed that participants were about 

20 ± 6 ms faster to provide their responses when unscrambled images were presented in their 

natural order (positive SOA) than when they were shown in reversed order, t(43)=3.27, 

p=.004, d=0.49. In contrast, decision times were unaffected by the order of presentation for 

scrambled images, t(43)=0.26, p=.80, d=0.04 (see Figure 5B). Thus, for the shortest SOA 

condition (±30 ms) in which participants should be most uncertain about the order in which 

the images had been presented, decision times increased if there was a conflict between the 

order of presentation and the order of the action sequences depicted in the presented images. 

The same analysis for the 50 ms SOA condition and the 100 ms SOA condition revealed no 

significant interaction effects between scrambling and presentation order (all p>.06). For the 

100 ms SOA condition, we observed a significant effect of scrambling, F(1,43)=9.00, p=.004, 

ηp
2 = .17, that indicated that participants were slightly slower to respond when unscrambled 

images were presented (306 ± 18 ms) as compared to scrambled ones (295 ± 17 ms). 
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--- Insert Figure 5 about here ---

Discussion

The aim of this study was to determine whether individuals are biased towards 

perceiving images of human movement phases as appearing in their natural movement order, 

and, if this is the case, whether these temporal order judgments are influenced by motor 

expertise. We investigated these questions by presenting images of stepping and sprinting 

action sequences to sprinters and non-sprinters in a temporal order judgment task. We 

predicted that participants would show a temporal order judgment bias, meaning that at short 

SOAs they should show an increased tendency to rate pictures depicting earlier movement 

phases to have been presented before pictures showing later movement phases, even if they 

were actually presented simultaneously or second. We further hypothesised that the size of 

bias would be moderated by motor familiarity with the movement. Specifically, we predicted 

that the sprinters would show temporal order judgment biases for both the sprinting action 

(specific to their motor expertise) and the everyday action (stepping), whereas the non-

sprinters were expected to show a significantly smaller bias for the sprinting action, 

compared to the stepping action and also compared to the sprinters. Our results suggest that, 

regardless of motor expertise, participants show a significant bias towards perceiving images 

of movement phases in the order in which they naturally occur. However, we found no 

significant differences in the size of the temporal order judgment biases of sprinters and non-

sprinters for expertise-related actions.

The main novel finding of our study is that participants exhibited temporal order 

judgment biases for images of action sequences. This finding provides the first direct 

experimental evidence for the idea that mental representations of movements are 

chronological in nature. In the temporal order judgment task, we created a conflict between 

the expected order in which movements occur and the order in which these movements were 

presented. When there is high perceptual uncertainty about presentation order, this conflict 

may result in mental movement representations overriding perceptual signals and therefore 

guiding the judgment of temporal order. In other words, participants’ mental representations 

of movements were strong enough to change temporal order perception when images of 

movement phases were presented (in contrast to the scrambled pictures), despite these 

movements being task-irrelevant. While the magnitude of the temporal order judgment biases 
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found in the current study might seem small, they are of comparable size to those observed in 

previous studies using the temporal order judgment task to measure the prioritisation of 

visual information (e.g. Ariga et al., 2016; Constable et al., 2019).

Our findings add to the motor priming literature that revealed temporal order priming 

effects for human movements and support their suggestion that human movements are 

represented in their natural temporal order (e.g., Güldenpenning et al., 2012; Kourtzi & 

Shiffrar, 1999; Verfaillie & Daems, 2002). While priming studies demonstrate that humans 

anticipate future movement phases when presented with static images of action sequences, 

the temporal order judgment task measures directly how perception of temporal order is 

biased by our implicit expectations. The temporal order judgment bias is likely to be the 

result of adaptive processes that consolidate chronological movement representations. 

Although this results in an erroneous perception in the artificial temporal order judgment task 

(creating a conflict between perceptual order and naturally-occurring movement order which 

is unlikely to be observed in real-life), it is advantageous in real-life as these representations 

are thought to aid the anticipation of movements (Güldenpenning et al., 2012; Schack, 

Schütz, Krause, & Seegelke, 2016). 

Regarding decision times, we found that participants’ decision times were longest for 

simultaneous presentations (SOA = 0 ms) and shortened with increasing SOAs both for 

scrambled and unscrambled images. More interestingly, the decision time data also provided 

further evidence that natural movement order affected temporal order judgments. At the two 

shortest SOAs (+/-30 ms), participants tended to respond faster when unscrambled images 

were presented such that there was no conflict between the presentation order and the natural 

order of the depicted movement (i.e., for SOA = +30 ms). In contrast, their decision times 

increased when the presentation order was the inverse of the natural movement order (i.e., for 

SOA = -30 ms). Note that this effect only occurred for the +/-30 ms SOAs. For longer SOAs, 

we observed no facilitation or interference effects of natural movement order on decision 

times for temporal order judgments. The asymmetry in decision times between the +/- 30 ms 

SOAs for unscrambled pictures (longer for -30 ms and shorter for +30 ms) can be seen as a 

consequence of the negative PSS (resulting from a temporal order judgment bias towards 

natural movement order). For unbiased participants, whose judgments are just based on 

presentation order and not influenced by natural movement order, we would expect no 

difference in task difficulty for positive and negative SOAs with the same duration. The task 

should be most difficult for the 0 ms SOA, and then difficulty should decrease symmetrically 
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for negative and positive SOAs. Accordingly, we would expect the longest decision times for 

the 0 ms SOA and symmetrically decreasing decision times for longer SOAs (i.e., similar 

duration for positive and negative SOAs). For a biased participant, however, the task should 

be most difficult at the (non-zero) PSS. The negative PSS that we found is considerably 

closer to the 0 ms SOA than to the next longer SOA (-30 ms), so we would still expect the 

task to be most difficult at the 0 ms SOA. However, the -30 ms SOA is closer to the PSS than 

the +30 ms SOA and therefore should have a higher task difficulty. Our analysis of the 

decision time data for the +/-30 ms SOAs shows exactly the behaviour expected for biased 

participants for the unscrambled images, and performance for the scrambled images is in line 

with the behaviour expected for unbiased participants. With further increasing SOA duration, 

the presentation order begins to dominate perception, and the decision times show no longer a 

statistically significant effect of the temporal order judgment bias. 

The second question of our study concerned the moderating effect of motor expertise. 

Specifically, we aimed to test whether the size of the temporal order judgment bias would be 

larger for sprinting athletes who have high motor familiarity with the movement and the 

different body postures due to years of training. Previous studies have shown that motor 

training and motor familiarity affect the perception of trained movements (e.g., Casile & 

Giese, 2006) as well as the neural processing of them (Calvo-Merino et al., 2006) even when 

there are no differences in the perceptual familiarity between motor experts and non-experts 

with those movements. For our study, this means that even if experts and non-experts are 

both perceptually similarly familiar with the movement, that is, they all have seen and 

observed a large number of human sprinting and running movements in their lifetime, their 

sensitivity to temporal order may still differ due to differences in their motor familiarity and 

expertise with these movements. More generally, the perceptual processing and sensitivity to 

actions is thought to be moderated by the motor ability to produce them  (Schütz-Bosbach & 

Prinz, 2007). Yet, our data provided no evidence for this assumption. We found that PSS 

values did not statistically differ between sprinters and non-sprinters for both movement type 

conditions (i.e., sprinting and stepping images). 

While track and field sprinting at a competitive level involves years of technical 

training to optimise the different movement phases (i.e., acceleration and high velocity), the 

general body postures and their temporal order are very similar for all forms of running. That 

is, in order to accelerate, the body must be inclined to pick up some speed; followed by a 

phase of “upright running” at a constant high speed. Thus, this more general motor and/or 
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perceptual familiarity with the running movement may be sufficient to elicit a temporal order 

judgment bias. We found some tentative evidence for this idea when we re-coded our sample 

to include participants who either very regularly performed sports that involved running or 

sprinting as part of a team game, or sports that were very posture-oriented (such as dancing or 

mixed martial arts). For this recoded sample, we found larger temporal order judgment biases 

for athletes as compared to non-athletes for the sprinting images but independent of 

scrambling (see Figure 4). Still, as this recoding was done post-hoc, these findings should be 

interpreted with caution. The fact that athletes tended to show larger temporal order judgment 

biases for sprinting movements - independent of scrambling - may suggest that they were still 

able to identify certain features in the scrambled images that indicate movement phases and 

thus may have been able to perceive, to some extent, temporal order in those pictures. Note, 

that we used relatively large blocks for scrambling (i.e., 50 × 50 pixels) and presented the 

same images across all trials and conditions (instead of scrambling images on a trial-by-trial 

basis). Even though this may have confounded our current data, the finding is in itself 

interesting as it may indicate that there is a difference between athletes’ and non-athletes’ 

perception of human movement and that athletes may require a higher level of scrambling 

than non-athletes in order to no longer recognise action sequences and their temporal order, 

in particular in images with high motor and/or perceptual familiarity. Future research could 

address this question by presenting images of human movement with varying degrees of 

scrambling and investigating whether the perceptual threshold for discriminating human 

movement differs between motor experts and non-experts. 

Since general running/athletic rather than motor expertise specific to track printing, 

seemed to moderate the extent to which perception was influenced by temporal order 

information inherent in the sprinting images, the question arises if perhaps expertise-

modulated performance differences only begin to emerge when the task is sufficiently 

difficult. For example, Güldenpenning et al. (2012) found that both motor experts and non-

experts exhibited a temporal order priming effect for between-movement-phase stimulus 

pairs (e.g., approach vs. flight) depicting postures from a high jump movement, but only high 

jump athletes demonstrated a temporal order priming effect for within-movement-phase 

stimulus pairs (e.g., early vs. late approach). Thus, it was only with the use of within-

movement-phase stimulus pairs that the performance of athletes and non-athletes began to 

diverge. Since the present study used between-movement-phase stimulus pairs (i.e., 

acceleration and maximum velocity), it is possible that by using within-movement-phase 
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stimulus pairs (e.g., earlier acceleration posture and later acceleration posture) differences in 

performance may arise between sprinting experts and non-experts. Related to this question, 

one reviewer of this article raised the question of whether or not temporal order is easily 

identifiable for non-experts in both our sprinting and stepping stimuli. To address this issue, 

we presented our stimulus pairs to a large number of observers (N=63) using an online 

questionnaire. The scrambled image pairs were presented first (with sprinting and stepping 

counterbalanced) followed by the unscrambled pairs (again both movement types were 

counterbalanced). Observers were asked to judge which image would come first and which 

second in a movement sequence. We found that all observers correctly identified the temporal 

order for the unscrambled sprinting pictures and all, but one, for the unscrambled stepping 

pictures. As for the scrambled pictures, the correct order was identified by 49.2% of the 

sample for stepping and 57.1% for the sprinting pictures, suggesting that scrambling 

successfully obscured the temporal order of the movements. This further highlights the 

necessity of future studies to test movements that are less common and more specific to 

participants’ expertise (e.g., pole vault, pirouette) to examine if there are reliable effects of 

expertise on temporal order judgment biases in these instances.

In conclusion, our study provides novel evidence that depicted movement order can 

influence temporal order judgments. All participants showed a bias towards perceiving 

sprinting and stepping movements in their natural order. The question of whether and how 

this effect is moderated by expertise could not be answered conclusively. In sum, these 

findings support the notion that the mental representations of actions are chronological.
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Figure Captions

Figure 1. The four stimulus pairs used for the experiment. Natural movement order was 

characterised by movement phase 1 appearing before movement phase 2. Reversed 

movement order was characterised by movement phase 2 appearing before movement phase 

1. In any given trial, the two images would always be from the same stimulus pair (e.g., step 

condition phase 2 followed by step condition phase 1).

Figure 2: Psychometric functions for two different participants (A and B) who showed a 

temporal order judgment bias in both the step and sprint conditions. The upper row shows the 

results for the STEP condition, and the lower row shows results for the SPRINT condition. 

Grey data points indicate the proportion of responses where the image showing movement 

phase 1 was judged as being presented before the image depicting movement phase 2. A 

negative PSS indicates a bias towards perceiving the images in their chronological order.

Figure 3: A: Points of subjective simultaneity (PSS) for all four image type conditions in the 

two expert groups. Negative values indicate a temporal order judgment bias such that an 

image representing the first movement phase is perceived as being presented first even 

though it occurred second. B: PSS averaged across both groups. Error bars represent ±1 SEM 

between participants.

Figure 4: Points of subjective simultaneity (PSS) for all four image type conditions and the 

re-coded expert groups. Error bars represent ±1 SEM.

Figure 5: (A) Decision time as a function of scrambling and SOA. Participants’ responses 

became faster the longer the SOA between the presentations of the two images. (B) Decision 

time for the unscrambled and scrambled images at the shortest SOA of 30 ms. Negative 

SOAs indicate that images were presented in the reverse movement order (i.e., second 

movement phase presented first) and positive SOAs indicate that images were presented in 

their natural order (i.e., first movement phase presented first). For unscrambled actions, 
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participants showed quicker responses when images were presented in their natural order. 

Error bars represent ±1 SEM between participants.
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Figure 1. The four stimulus pairs used for the experiment. Natural movement order was characterised by 
movement phase 1 appearing before movement phase 2. Reversed movement order was characterised by 

movement phase 2 appearing before movement phase 1. In any given trial, the two images would always be 
from the same stimulus pair (e.g., step condition phase 2 followed by step condition phase 1). 
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Figure 2: Psychometric functions for two different participants (A and B) who showed a temporal order 
judgment bias in both the step and sprint conditions. The upper row shows the results for the STEP 
condition, and the lower row shows results for the SPRINT condition. Grey data points indicate the 

proportion of responses where the image showing movement phase 1 was judged as being presented before 
the image depicting movement phase 2. A negative PSS indicates a bias towards perceiving the images in 

their chronological order. 
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Figure 3: A: Points of subjective simultaneity (PSS) for all four image type conditions in the two expert 
groups. Negative values indicate a temporal order judgment bias such that an image representing the first 
movement phase is perceived as being presented first even though it occurred second. B: PSS averaged 

across both groups. Error bars represent ±1 SEM between participants. 
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Figure 4: Points of subjective simultaneity (PSS) for all four image type conditions and the re-coded expert 
groups. Error bars represent ±1 SEM. 
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Figure 5: (A) Decision time as a function of scrambling and SOA. Participants’ responses became faster the 
longer the SOA between the presentations of the two images. (B) Decision time for the unscrambled and 

scrambled images at the shortest SOA of 30 ms. Negative SOAs indicate that images were presented in the 
reverse movement order (i.e., second movement phase presented first) and positive SOAs indicate that 

images were presented in their natural order (i.e., first movement phase presented first). For unscrambled 
actions, participants showed quicker responses when images were presented in their natural order. Error 

bars represent ±1 SEM between participants. 
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