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CHIRAL DIFFERENTIAL OPERATORS VIA QUANTIZATION
OF THE HOLOMORPHIC σ-MODEL

by Vassily GORBOUNOV, Owen GWILLIAM & Brian WILLIAMS

Abstract.—The curved βγ system is a nonlinear σ-model with a Riemann surface
as the source and a complex manifold X as the target. Its classical solutions pick
out the holomorphic maps from the Riemann surface into X. Physical arguments
identify its algebra of operators with a vertex algebra known as the chiral differential
operators (CDO) of X. We verify these claims mathematically by constructing and
quantizing rigorously this system using machinery developed by Kevin Costello and
the second author, which combine renormalization, the Batalin-Vilkovisky formalism,
and factorization algebras. Furthermore, we find that the factorization algebra of
quantum observables of the curved βγ system encodes the sheaf of chiral differential
operators. In this sense our approach provides deformation quantization for vertex
algebras. As in many approaches to deformation quantization, a key role is played by
Gelfand-Kazhdan formal geometry. We begin by constructing a quantization of the
βγ system with an n-dimensional formal disk as the target. There is an obstruction
to quantizing equivariantly with respect to the action of formal vector fields Wn

on the target disk, and it is naturally identified with the first Pontryagin class in
Gelfand-Fuks cohomology. Any trivialization of the obstruction cocycle thus yields
an equivariant quantization with respect to an extension of Wn by Ω̂2

cl, the closed
2-forms on the disk. By machinery mentioned above, we then naturally obtain a
factorization algebra of quantum observables, which has an associated vertex algebra
easily identified with the formal βγ vertex algebra. Next, we introduce a version of
Gelfand-Kazhdan formal geometry suitable for factorization algebras, and we verify
that for a complex manifold X with trivialized first Pontryagin class, the associated
factorization algebra recovers the vertex algebra of CDOs of X.

Résumé. (X)—Le système bêta gamma incurvé est un modèle sigma nonlinéaire de
source une surface de Riemann et de cible une variété complexe X. Ses solutions clas-
siques sont données par des cartes holomorphes de la surface de Riemann dans X.
Les arguments physiques identifient son algèbre d’opérateurs avec une algèbre vertex
connue sous le nom d’opérateurs différentiels chiraux (CDO) de X. Nous vérifions ces
affirmations de manière mathématique en construisant et en quantifiant rigoureuse-
ment ce système en utilisant sur les techniques développées par Kevin Costello et

© Astérisque 419, SMF 2020
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le second auteur, combinant à la fois les outils de la renormalisation, le formalisme
de Batalin-Vilkovisky, et les algèbres à factorisation. En outre, nous prouvons que
l’algèbre à factorisation des observables quantiques du système bêta gamma courbé
encode les gerbes d’opérateurs différentiels chiraux. En un sens, notre approche four-
nit une quantification par déformation pour les algèbres de vertex. Comme dans de
nombreuses approches à la quantification par déformations, la géométrie formelle de
Gelfand-Kazhdan joue un rôle clé. Nous commençons par construire une quantifi-
cation du système bêta gamma à valeur un disque formel de dimension n. Il existe
une obstruction à l’existence d’une quantification qui soit équivariante par rapport
à l’action des champs de vecteurs formels sur le disque; cette obstruction s’identifie
naturellement à la première classe de Pontryagin de la cohomologie de Gelfand-Fuks.
Toute trivialisation du cocycle d’obstruction donne ainsi une quantification équivari-
ante vis-à-vis d’une extension de champs de vecteurs formels par les 2-formes fermées
sur le disque. D’après les résultats cité ci-dessus, nous en déduisons naturellement une
algèbre à factorisation d’observables quantiques, à laquelle est associée une algèbre de
vertex qui s’identifie à l’algèbre vertex formelle de type beta gamma. Par ailleurs, nous
introduisons une version de la géométrie formelle de Gelfand-Kazhdan adaptée aux
algèbres à factorisation et nous vérifions que, pour une variété complexe munie d’une
trivialisation de sa première classe de Pontryagin, l’algèbre à factorisation associée
décrit l’algèbre vertex.

ASTÉRISQUE 419
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INTRODUCTION

The curved βγ system is an elegant nonlinear σ-model with a Riemann surface Σ as
the source and a complex manifold X as the target. The equations of motion pick out
the holomorphic maps Σ→ X. Thus, from a purely mathematical perspective, it is a
compelling example to study because the classical theory naturally involves complex
geometry and so must the quantization, although the meaning is less familiar. From a
physical perspective, the curved βγ system arises naturally as a close cousin of more
central theories: it is a half-twist of the (0, 2)-supersymmetric σ-model [55], and it
is also the chiral part of the infinite volume limit of the usual (non-supersymmetric)
σ-model (see the appendix). In consequence, the curved βγ system exhibits many
features of these theories while enjoying the flavor of complex geometry, rather than
super- or Riemannian geometry.

In mathematics, however, this theory first appeared in a hidden form in the work of
Beilinson-Drinfeld and Malikov-Schechtman-Vaintrob [2, 45], and it was subsequently
developed by many mathematicians (see [31, 12, 6] among much else). The chiral
differential operators (CDOs) on a complex n-manifold X are a sheaf of vertex alge-
bras locally resembling a vertex algebra of n free bosons, and the name indicates the
analogy with the differential operators, a sheaf of associative algebras on X locally
resembling the Weyl algebra for T ∗Cn. Unlike the situation for differential opera-
tors, which exist on any manifold X, such a sheaf of vertex algebras exists only if
ch2(X) = 0 in H2(X,Ω2

cl), and each choice of trivialization α of this characteristic
class yields a different sheaf CDOX,α. In other words, there is a gerbe over X of ver-
tex algebras [21]. The appearance of this topological obstruction (essentially the first
Pontryagin class, but non-integrally) was surprising, and even more surprising was
that the character of this vertex algebra was the Witten genus of X, up to a constant
depending only on the dimension of X [5]. These results exhibited the now-familiar
rich connections between conformal field theory, geometry, and topology, but arising
from a mathematical process rather than a physical argument.

Witten [55] explained how CDOs on X arise as the perturbative piece of the chiral
algebra of the curved βγ system, by combining standard methods from physics and
mathematics. (In elegant lectures on the curved βγ system [46], with a view toward
Berkovit’s approach to the superstring, Nekrasov also explains this relationship. Ka-
pustin [32] gave a similar treatment of the closely-related chiral de Rham complex.)
This approach also gave a different understanding of the surprising connections with
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2 INTRODUCTION

topology, in line with anomalies and elliptic genera as seen from physics. Let us em-
phasize that only the perturbative sector of the theory appears (i.e., one works near
the constant maps from Σ to X, ignoring the nonconstant holomorphic maps); the
instanton corrections are more subtle and not captured just by CDOs (see [33] for a
treatment of the instanton corrections for complex tori).

In this paper we construct mathematically the perturbative sector of the curved
βγ system via the approach to quantum field theory developed in [14, 16, 17], thus
providing a rigorous construction of the path integral for the curved βγ system. That
means we work in the homotopical framework for field theory known as the Batalin-
Vilkovisky (BV) formalism, in conjunction with Feynman diagrams and renormal-
ization methods. As a very brief gloss, the BV formalism amounts to deforming the
classical action Scl to a “quantized action” Sq = Scl +~S(1) +~2S(2) + · · · satisfying a
condition known as the quantum master equation. This quantized action Sq provides
a formal substitute for the path integral; more precisely, it is a homological version of
the integrand “exp(−S(φ)/~)Dφ” for the path integral. Indeed, given this quantized
action Sq, one can extract the algebraic relations that hold between the expected
values of observables. Thus the quantum master equation encodes homologically the
condition that the associated quantum integrand is well-posed. We find, for instance,
that the curved βγ system admits a quantized action satisfying the quantum master
equation only if the target manifold X has ch2(X) = 0, where ch2(X) is a component
of the Chern character. (Given our context, this condition is that the first Pontryagin
class vanishes.) This condition was found in the earlier mathematical work by quite
different methods.

One key feature of the framework in [16, 17] is that every BV theory yields a fac-
torization algebra of observables. (We mean here the version of factorization algebras
developed in [16, 17], not the version of Beilinson and Drinfeld [2].) In our situation,
the theory produces a factorization algebra living on the source manifold C, and the
machinery of [16, 17] allows one to extract a vertex algebra from this factorization
algebra. Our main result is that this vertex algebra is the CDOs. Thus, we show that
in a wholly mathematical setting, one can start with the action functional for the
curved βγ system and recover the sheaf CDOX,α of vertex algebras on X via the
algorithms of [14, 16, 17]. To accomplish this, we develop machinery that ought to
be useful in constructing nonlinear σ-models in the BV framework and allows one to
analyze explicitly the resulting factorization algebra.

Remark. — In a sense, the curved βγ system is a perfect testing ground for the
formalism of [14, 16, 17]: physical arguments about anomalies and moduli ought to
be codified on the BV quantization side, and the consequences on the factorization
algebra side ought to recover the vertex algebra constructions of [45, 21]. The work
here shows that the formalism passes this test.

Let us explain a little about our methods before stating our theorems precisely.
The main technical challenge is to encode the nonlinear σ-model in a way so that the
BV formalism of [14] applies. In [15], Costello introduces a sophisticated approach by
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INTRODUCTION 3

which he recovers the anomalies and the Witten genus as partition function, but it
seems difficult to relate CDOs directly to the factorization algebra of observables of
his quantization. Instead, we use formal geometry à la Gelfand and Kazhdan [20], as
applied to the Poisson σ-model by Kontsevich [35] and Cattaneo-Felder [9]. The basic
idea of Gelfand-Kazhdan formal geometry is that every n-manifold X looks, very
locally, like the formal n-disk, and so any representation V of the formal vector fields
and formal diffeomorphisms determines a vector bundle V → X, by a sophisticated
variant of the associated bundle construction. (Every tensor bundle arises in this way,
for instance.) In particular, the Gelfand-Kazhdan version of characteristic classes for V
live in the Gelfand-Fuks cohomology H∗GF(Wn) and map to the usual characteristic
classes for V. There is, for instance, a Gelfand-Fuks version of the Witten class for
every tensor bundle.

Thus, we start with the βγ system with target the formal n-disk D̂n =

SpecC[[t1, . . . , tn]] and examine whether it quantizes equivariantly with respect
to the actions of formal vector fields Wn and formal diffeomorphisms on the for-
mal n-disk. (These actions are compatible, so that we have a representation of a
Harish-Chandra pair.) We call this theory the equivariant formal βγ system of rank n.

Theorem. — The Wn-equivariant formal βγ system of rank n has an anomaly given
by a cocycle ch2(D̂n) in the Gelfand-Fuks complex C∗GF(Wn; Ω̂2

n,cl). This cocycle de-
termines a Lie algebra extension W̃n of Wn. The cocycle is exact in C∗GF(W̃n; Ω̂2

n,cl),
and yields a W̃n-equivariant BV quantization, unique up to homotopy. The partition
function of this theory over the moduli of elliptic curves is the formal Witten class in
the Gelfand-Fuks complex C∗GF(Wn,

⊕
k Ω̂kn[k])[[~]].

Gelfand-Kazhdan formal geometry is used often in deformation quantization. See,
for instance, the elegant treatment by Bezrukavnikov-Kaledin [3]. Here we develop a
version suitable for vertex algebras and factorization algebras, which requires allowing
homotopical actions of the Lie algebra Wn. (Something like this appears already in [2,
31, 44], but we need a method with the flavor of differential geometry and compatible
with Feynman diagrammatics. It would be interesting to relate directly these different
approaches.) In consequence, our equivariant theorem implies the following global
version.

Theorem. — Let X be a complex manifold. The curved βγ system admits a BV quan-
tization if the characteristic class ch2(X) vanishes, and each choice of trivialization α
yields a BV quantization, unique up to homotopy. The associated factorization algebra
on X recovers the vertex algebra CDOX,α of chiral differential operators associated
to the trivialization α. Moreover, the partition function is the Witten class Wit(X)

in
⊕

kH
∗(X,Ωk[k]), where Ωk here denotes the sheaf of holomorphic k-forms.

Remark. — In physics, ordinarily, the partition function refers to the full path inte-
gral. What we are referring to is the path integral of the effective action on the zero
modes in perturbation theory.
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To identify CDOX,α as coming from the factorization algebra, we prove general
statements relating factorization algebras for such chiral theories with vertex algebras.
Indeed, our work shows how the elegant formulas uncovered in [45, 21] arise explic-
itly by canceling the anomalies that appear in setting the integrand of the quantum
measure (or to use BV language, in finding a solution to the quantum master equa-
tion). Via the factorization algebra of observables, these BV manipulations become
the computations that Witten and Nekrasov used in explaining why the curved βγ

system should recover the chiral differential operators.

Remark. — We wish to emphasize that our central goal in this paper is not to provide
yet another method for constructing sheaves of vertex algebras or another understand-
ing of the geometry behind the Pontryagin class as an anomaly. Instead our goal is
to offer an explanation for how CDOs appear as a quantization, from a path integral
perspective as rigorously encoded in the BV formalism.

One essential application of this perspective is the establishment of modularity for
characters for general chiral conformal field theories. This manifest modularity for the
characters of observables in the BV formalism is due to their explicit presentation via
Feynman diagrams as integrals over the elliptic curve.

Our techniques for assembling BV theories in families—and their factorization al-
gebras in families—apply to many σ-models already constructed , such as the topolog-
ical B-model [37], Rozansky-Witten theory [11], and topological quantum mechanics
[25, 23]. They also allow us to recover quickly nearly all the usual variants on CDOs
and structures therein, such as the chiral de Rham complex and the Virasoro actions,
and we intend to explain that elsewhere. Other veins of research are also opened up,
notably new approaches to quantum sheaf cohomology and to the curved βγ system
with higher-dimensional source manifold.

Overview

The paper is divided into three parts. Part I is devoted purely to the vertex algebra
of chiral differential operators, Part II constructs the curved βγ system as a BV field
theory and analyzes its associated factorization algebra of observables, and Part III
explains how to recover the vertex algebra from the factorization algebra. Each Part
has its own introduction with a detailed overview of its contents. We emphasize that
Parts I and II can be read independently; only in Part III are the two stories in explicit
dialog.
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The goal of this part is to provide a construction of chiral differential operators
via the methods of Gelfand-Kazhdan formal geometry; this approach is a modest
modification of an approach described for the chiral de Rham complex in [45]. (In
subsequent work we will provide a BV construction of chiral de Rham complex, along
with a family of related sheaves of vertex algebras.) Our phrasing here aims to high-
light the parallels with the next part, where we introduce a homotopy-coherent version
of Gelfand-Kazhdan formal geometry that works nicely with the Batalin-Vilkovisky
formalism and Feynman diagrammatics and thus allows us to construct a factorization
algebra refining CDOs.

Recall that Gelfand-Kazhdan formal geometry is an approach to any “natural”
construction in differential geometry, i.e., to constructions that apply uniformly to
all manifolds of a given dimension (or with some other common, local geometric
structure). The basic idea is that on any n-manifold, the immediate neighborhood
of every point looks the same, and so if some construction can be described on any
sufficiently small neighborhood and is equivariant for local diffeomorphisms, the con-
struction should apply to every n-manifold. In other words, it is a kind of refinement
of tensor calculus. To be more precise, in formal geometry, one works with a “formal”
neighborhood of a point p in Rn, namely the “space” whose algebra of functions is
the ∞-jets of functions at p (aka Taylor series at p of functions). Let us denote this
space by D̂n.The relevant group of “formal” diffeomorphisms then means the ∞-jet
at p of diffeomorphisms that fix p (aka Taylor series at p of diffeomorphisms), which
we will denote by Autn. (Note that for every point p, the group is isomorphic.) Ev-
ery n-manifold X possesses a canonical flat principal Autn-bundle Xcoor whose fiber
over p ∈ X is the space of formal coordinates centered at p and is equipped with a
flat connection valued in formal vector fields Wn (which is slightly larger than the Lie
algebra of Autn). In the context of this paper we are interested in complex manifolds
and there is a corresponding bundle of holomorphic formal coordinates. These are
∞-jets of biholomorphisms.

From this reasoning we see that every Autn-representation V that has a compatible
action of Wn produces a flat vector bundle VX over each n-dimensional manifold X
whose horizontal sections typically encode familiar vector bundles. Such a represen-
tation is called a Harish-Chandra module. As an example, consider Ôn, the functions
on D̂n, whose flat sections over X are smooth functions on X (holomorphic functions
in the complex case). Or consider T̂n, the vector fields on D̂n, whose flat sections
over X are vector fields on X. This construction of a vector bundle on X from an
Autn-representation is an example of Gelfand-Kazhdan descent. In light of this, it
should be no surprise that there is a Gelfand-Kazhdan version of characteristic classes
for these vector bundles that recovers the usual Chern classes.

Remark. — The Gelfand-Kazhdan approach to formal geometry can also be applied
to more interesting geometries. For example, symplectic, Poisson, or even Riemannian
geometry can be encapsulated by the formalism.
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Chiral differential operators, like differential operators, are easy to define locally on
an n-manifold, using coordinates. The challenge is to glue these local descriptions to
produce the global object. The vertex algebra ĈDOn of CDOs on a formal n-disk D̂n is
well-known, but it is not equivariant for the Harish-Chandra pair of automorphisms
of D̂n. The failure to be equivariant is a characteristic class that globalizes to the first
Pontryagin class, or ch2(TX), in Dolbeault cohomology. This class defines an extension
of the Harish-Chandra pair, and ĈDOn is equivariant for this extension. Each choice
of trivialization α of ch2(TX) encodes an extension X̃coor

α of Xcoor to a flat principal
bundle for this extension of pairs. Hence, one can apply Gelfand-Kazhdan descent
to ĈDOn along X̃coor

α to produce a vertex algebra, and it is precisely the chiral
differential operators on X associated to the trivialization α.

Sections 1 and 2 of this part are devoted to articulating rigorously this machinery
in a format convenient for our problem. As mentioned parenthetically, we need a slight
enlargement of the theory of flat vector bundles involving Harish-Chandra pairs, which
consist of a Lie group and a thickening of its Lie algebra.

Specifically, in Section 2 we formulate a version of Harish-Chandra descent that we
call Gelfand-Kazhdan descent that is suitable for our purposes. In Section 3 we recall
well-known facts about the vertex algebra of affine chiral differential operators and
extracting the relavent Harish-Chandra structures. Sections 4 is devoted to developing
an extended version of Gelfand-Kazhdan descent that is applied to CDOs in Section 5.

We will extract some familiar properties and structures of the sheaf of chiral dif-
ferential operators from the perspective of Gelfand-Kazhdan formal geometry. For
instance, we show in Proposition 5.3.5 that chiral differential operators have the struc-
ture of a sheaf of conformal vertex algebras only if X is Calabi-Yau (in addition to
having ch2(TX) = 0, of course). Moreover, we show how the Witten genus appears as
the character of the sheaf of CDOs, which has already appeared in the works [12, 5].

Remark. — We should emphasize here that Part I is not the truly novel aspect of
this paper. As mentioned in [45], the standard arguments of Gelfand-Kazhdan formal
geometry apply to the chiral de Rham complex, and they certainly knew that a minor
extension of such formal geometry should allow one to construct CDOs. Our main
goal in Part I is to explain these standard arguments and this extension carefully and
systematically. We do this for two reasons: first, to allow a systematic comparison
with the BV quantization in Part II, and second, to provide a general tool that ought
to be applicable to constructing many more interesting vertex algebras. There are
elegant machines for such purposes, thanks to [2, 31], but we wanted a version closer
to the concrete computations that most interest us.
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CHAPTER 1

FLAT VECTOR BUNDLES AND HARISH-CHANDRA DESCENT

This section is a discussion of the theory of vector bundles with flat connection
arising from Harish-Chandra pairs. It establishes notation and terminology but can
likely be used as a reference. In this section we have largely treated both smooth and
holomorphic geometry, but throughout the rest of the paper we are concerned with
the latter.

1.1. Algebra of Harish-Chandra pairs

1.1.1. Harish-Chandra pairs. — All Lie algebras and Lie groups will be defined over C.
For G a Lie group, we use Lie(G) to denote its associated Lie algebra, which can be
identified with the tangent space of the identity element. To start, we work with
finite-dimensional groups and algebras, but we will eventually discuss certain infinite-
dimensional examples.

Definition 1.1.1. — A Harish-Chandra pair (or HC-pair) is a pair (g,K) where g is
a Lie algebra and K is a Lie group together with

(i) an action of K on g, ρK : K → Aut(g)

(ii) an injective Lie algebra map i : Lie(K) ↪→ g
such that the action of Lie(K) on g induced by ρK ,

Lie(ρK) : Lie(K)→ Der(g),

is the adjoint action induced from the embedding i : Lie(K) ↪→ g.

Example 1.1.2. — If G is a Lie group and K is a closed subgroup, then the pair
(Lie(G),K) is a HC-pair.

Definition 1.1.3. — A morphism of Harish-Chandra pairs (f, f) : (g,K)→ (g′,K ′) is

(i) a map of Lie algebras f : g→ g′ and
(ii) a map of Lie groups f : K → K ′
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12 CHAPTER 1. FLAT VECTOR BUNDLES AND HARISH-CHANDRA DESCENT

such that the diagram in Lie algebras

Lie(K)
Lie(f)

//

i

��

Lie(K ′)

i′

��

g
f

// g′

commutes.

1.1.2. Modules. — Fix a HC-pair (g,K). In this section we set up the notion of a
module for (g,K). Below, we discuss modules in the category of vector spaces, but
the definition is easily generalized to C-linear symmetric monoidal categories.

Definition 1.1.4. — A (g,K)-module is a vector space V together with

(i) a Lie algebra map ρg : g→ End(V ) and

(ii) a Lie group map ρK : K → GL(V )

such that the composition

Lie(K)
i // g

ρg
// End(V )

equals Lie(ρK).
A morphism of (g,K)-modules is a linear map intertwining the actions of g and K.
Denote the category of (g,K)-modules by Mod(g,K). Denote by Modfin

(g,K) the full
subcategory whose objects consist of modules whose underlying vector space is finite-
dimensional.

1.2. Bundles

We will need the analog of a torsor for a pair (g,K) over a manifold X. Our
definitions are structural and so apply equally well to both smooth and complex
manifolds. In the complex case we will need the notion of a holomorphic (g,K)-torsor.

When X is complex, we use Ohol(X) to denote the space of holomorphic functions
and Xhol(X) to denote holomorphic vector fields, i.e., holomorphic sections of T 1,0X.
We let Ωk(X) denote the space of smooth k-forms and ddR the de Rham differential.
If X is complex, then Ωk,l(X) denotes the smooth (k, l)-forms according to the Hodge
decomposition. We denote by Ωkhol(X) the space of holomorphic k-forms, i.e., holo-
morphic sections of ΛkT ∗,(1,0)X. Finally, when we consider a differential graded vector
space (V,d) we let V # denote the underlying graded vector space V . For instance,
Ω#(X) denotes the graded vector space of differential forms on X.

Definition 1.2.1. — A (g,K)-principal bundle with flat connection (or more concisely,
flat (g,K)-bundle) over X is

(i) a principal K-bundle P → X and

(ii) a K-invariant g-valued 1-form on P , ω ∈ Ω1(P ; g)
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1.2. BUNDLES 13

such that

(1) for all a ∈ Lie(K), we have ω(ξa) = a where ξa ∈ X (P ) denotes the induced
vector field and

(2) ω satisfies the Maurer-Cartan equation

ddRω +
1

2
[ω, ω] = 0,

where the bracket is taken in the Lie algebra g.

In particular, if g = Lie(K), then condition (1) encodes the usual notion of a
connection on a principal K-bundle, while condition (2) says that the connection is
flat, i.e., we have a principal bundle for the discrete group Kδ underlying K.

Recall that one can interpret a connection on a principal K-bundle as a splitting
of the tangent bundle TP into horizontal and vertical components in a K-equivariant
way. Let TπP denote the vertical tangent bundle (i.e., the kernel of the projection
map TP → π∗TX); note that TπP is canonically isomorphic to the trivial bundle
Lie(K) over P . A connection ω ∈ Ω1(P,Lie(K)) then determines a splitting

TP = TπP ⊕Hω,

where Hω ⊂ TP is defined as kerω. That is, Hω|p is the subspace of TpP consisting
of all vectors Xp such that ω(Xp) = 0 so that Hω|a

∼= Tπ(p)X.
There is a similar interpretation for Harish-Chandra pairs. The embedding

i : Lie(K) ↪→ g determines a map of trivial bundles iP : Lie(K) → g over P . Define
TgP to be the pushout

Lie(K) //

��

g

��

TP // TgP

in bundles over P . Then a K-equivariant element ω ∈ Ω1(P ; g) satisfying (ii) above
is equivalent to a K-equivariant splitting

TgP = g⊕Hω,

where Hω|a
∼= Tπ(p)X.

Note that if there is an inclusion of Lie groups K ↪→ G inducing Lie(K) ↪→ Lie(G) = g,
then this data is a flat G-bundle along with a reduction of structure group to a flat
K-bundle. This example indicates that the Harish-Chandra version is a useful re-
placement in the case where the map i : Lie(K) → g does not integrate to a map of
Lie groups.

Example 1.2.2. — The most important example is the case where g = Wn, the Lie
algebra of formal vector fields, and K = GLn. In fact, Wn is not the Lie algebra
of any Lie group. The pair (Wn,GLn) is fundamental for Gelfand-Kazhdan descent,
defined in later sections.
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14 CHAPTER 1. FLAT VECTOR BUNDLES AND HARISH-CHANDRA DESCENT

In the complex case it is natural to include the holomorphic structure.

Definition 1.2.3. — Let X be a complex manifold, K a complex Lie group, and g
a complex Lie algebra. A holomorphic (g,K)-principal bundle with flat connection
is a holomorphic principal K-bundle P → X together with a K-invariant g-valued
holomorphic 1-form ω ∈ Ω1

hol(P ; g) such that

(1) for all a ∈ Lie(K), we have ω(ξa) = a where ξa ∈ Xhol(P );

(2) ω satisfies the Maurer-Cartan equation

∂ω +
1

2
[ω, ω] = 0.

Remark 1.2.4. — Since ω in Definition 1.2.3 is assumed to be holomorphic, i.e.,
∂ω = 0, the Maurer-Cartan equation is equivalent to

ddRω +
1

2
[ω, ω] = 0,

where ddR = ∂ + ∂ is the full de Rham differential decomposed via the complex
structure on P → X. Thus, a holomorphic (g,K)-principal bundle with flat connection
(P → X,ω) is equivalent to an ordinary (g,K)-principal bundle with flat connection
(as in Definition 1.2.1) such that the underlying K-bundle is holomorphic and ω is a
(1, 0)-form.

We now turn to maps between such structures.

Definition 1.2.5. — A morphism of (g,K)-bundles (P → X,ω)→ (P ′ → X ′, ω′) is a
map of K-principal bundles

P
F //

��

P ′

��

X
f
// X ′

such that F ∗ω′ = ω.
Denote the category of flat (g,K)-bundles by Loc(g,K).

Note that there is a forgetful functor from Loc(g,K) to Man, the category of mani-
folds which is either (a) smooth manifolds with smooth maps or (b) complex manifolds
with holomorphic maps. As flat bundles pull back along maps of the underlying man-
ifolds, we have that this functor is a cartesian fibration.

1.3. Descent

Recall the associated bundle construction: given a principal K-bundle π : P → X

and a finite-dimensional K-representation V , form the vector bundle

VX := P ×K V
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1.3. DESCENT 15

over X. (People often use the notation P×K V instead, but we wish to avoid potential
confusion with the fibered product.)

One can view this construction as a pairing between the category of principal
K-bundles and the category of finite-dimensional K-modules, i.e., a functor

−×K − : Bunop
K ×Modfin

K → VB,

where BunK is the cartesian fibration whose fiber over a manifold X is the category
of K-principal bundles on X, where VB→ Man is the cartesian fibration whose fiber
over X is the category of vector bundles on X, and where ModK denotes the category
of K-modules. This is a functor between cartesian fibrations over Man. This functor
exhibits how natural the associated bundle construction is, and it can be used to
produce natural characteristic classes for K-bundles.

In this section, we will produce an analogous functor of Harish-Chandra descent

desc : Locop
(g,K) ×Modfin

(g,K) → VBflat,

where VBflat denotes the cartesian fibration whose fiber over a manifold X is the
category of flat vector bundles on X. It says, in essence, that each (g,K)-bundle
on X produces a family of local systems on X, and these are natural under pullback
of bundles. Similarly, each (g,K)-module produces a functor from flat (g,K)-bundles
to local systems over the site of all manifolds.

Remark 1.3.1. — The construction is often termed Harish-Chandra localization (see
[3] [28]), but this terminology occasionally led to possible ambiguities due to other
uses of of the word “localization,” so we use “descent”.

We will also describe the characteristic map, which is a natural transformation

char : C∗Lie(g,K;−)⇒ Ω∗(−,desc(−)),

where C∗Lie(g,K;−) denotes the relative Lie algebra cochains functor (it is indepen-
dent of the bundle variable) and where Ω∗(−,desc(−)) denotes the de Rham complex
of the flat bundle produced by desc. This natural transformation encodes the sec-
ondary characteristic classes of these flat bundles.

1.3.1. Basic forms. — There is a model for the associated bundle construction that is
useful for our purposes. Let V be a finite-dimensional K-representation. Denote by V
the trivial vector bundle on P with fiber V . Sections of this bundle ΓP (V ) have the
structure of a K-representation by

A · (f ⊗ v) := (A · f)⊗ (A · v) , A ∈ K, f ∈ O(P ) , v ∈ V.
Every K-invariant section f : P → V induces a section s(f) : X → VX , where the
value of s(f) at x ∈ X is the K-equivalence class [(p, f(p)], with p ∈ π−1(x) ∼= K.
That is, there is a natural map

s : ΓP (V )K → ΓX(VX)
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16 CHAPTER 1. FLAT VECTOR BUNDLES AND HARISH-CHANDRA DESCENT

and it is an isomorphism of O(X)-modules. A K-invariant section f of V → P also
satisfies the infinitesimal version of invariance:

(Y · f)⊗ v + f ⊗ Lie(ρ)(Y ) · v = 0

for any Y ∈ Lie(K).
There is a similiar statement for differential forms with values in the bundle VX .

Let Ωk(P ;V ) = Ωk(P )⊗V denote the space of k-forms on P with values in the trivial
bundle V . Given α ∈ Ω1(X;VX), its pull-back along the projection π : P → X is
annihilated by any vertical vector field on P . In general, if α ∈ Ωk(X;VX), then
iY (π∗α) = 0 for all Y ∈ Lie(K).

Definition 1.3.2. — A k-form α ∈ Ωk(P ;V ) is called basic if

(i) it is K-invariant: LY α+ ρ(Y ) · α = 0 for all Y ∈ Lie(K) and

(ii) it vanishes on vertical vector fields: iY α = 0 for all Y ∈ Lie(K).

Denote the subspace of basic k-forms by Ωk(P ;V )bas. Just as with sections, there
is a natural isomorphism

s : Ωk(P ;V )bas

∼=−→ Ωk(X;VX)

between basic k-forms and k-forms on X with values in the associated bundle. In fact,
Ω#(P ;V )bas forms a graded submodule of Ω#(P ;V ) and the isomorphism s extends
to an isomorphism of graded modules Ω#(P ;V )bas

∼= Ω#(X;VX).
It is manifest that this construction of basic forms is natural in maps of (g,K)-bun-

dles: basic forms pull back to basic forms along maps of bundles.

1.3.2. — Fix a (g,K)-bundle P → X with connection one-form ω ∈ Ω1(P ; g). Fix a
(g,K)-module V with action maps ρK and ρg. The subalgebra of basic forms

Ω#(P ;V )bas ⊂ Ω#(P ;V )

only uses the data of the K-representation. The g-module structure induces an oper-
ator

ρg(ω) : Ωk(P ;V )→ Ωk+1(P ;V )

for each k. Let ∇P,V denote the operator

∇P,V := ddR,P + ρg(ω) : Ωk(P ;V )→ Ωk+1(P ;V )

for each k.
A direct calculation verifies the following.

Lemma 1.3.3. — The operator ∇P,V is a differential on the submodule of basic
forms. Under the isomorphism s : Ω#(P ;V )bas

∼= Ω#(X;VX), the cochain complex
(Ω#(P ;V )bas,∇V ) is a dg module over Ω∗(X).
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1.3. DESCENT 17

Definition 1.3.4. — The associated flat vector bundle to the flat (g,K)-bundle P → X

and the finite-dimensional (g,K)-representation V is

desc((P → X), V ) := (P ×K V,∇P,V ),

namely the associated vector bundle on X and its flat connection. Its de Rham complex
is

desc((P → X), V ) :=
(
Ω∗(P ;V )bas,∇P,V

)
,

whose zeroeth cohomology is the horizontal sections of the local system.

As the construction of the flat connection ∇P,V intertwines naturally with maps
of (g,K)-bundles, we obtain the following functors.

Definition 1.3.5. — The (g,K)-descent functor is the functor

desc : Locop
(g,K) ×Modfin

(g,K) → VBflat

sending (P → X,V ) to (VX ,∇P,V ). There is a closely related functor

desc : Locop
(g,K) ×Modfin

(g,K) → ModΩ∗

sending (P → X,V ) to the de Rham complex of desc((P → X,V )).

To every flat vector bundle we can associate a local system by taking the horizontal
sections. We denote by De≠c the composition of the functor desc with taking horizontal
sections. Explicitly, De≠c is the zeroeth cohomology of the de Rham complex of the
flat vector bundle given by descent. In other words, it is the zeroth cohomology of the
complex

(
Ω∗(P ;V )bas,∇P,V

)
.

In the case of a holomorphic (g,K)-bundle with flat connection (P → X,ω), the
(0, 1)-component of the connection ∇P,V agrees with the ∂ operator

(∇P,V )0,1 = ∂P : Ω0(P ;V )bas → Ω0,1(P ;V )bas.

Hence the horizontal sections are also holomorphic.

Example 1.3.6. — Let G be a Lie group and let K ⊂ G be a closed Lie subgroup.
Then the K-principal bundle G → G/K has the natural structure of a (g,K)-prin-
cipal bundle where g = Lie(G). When G is compact, there is a quasi-isomorphism
desc(G → G/K, V ) ' C∗Lie(g,K;V ) for any G-representation V . This quasi-
isomorphism is a relative version of the standard fact that the differential forms on G
are quasi-isomorphic to the absolute Chevalley-Eilenberg complex C∗Lie(g).

Example 1.3.7. — Let K be a Lie group and let k be its Lie algebra. Then (k,K) is a
HC-pair and we have an equivalence of categories

Modfin
(k,K)

∼= Repfin
K .

Let P → X be a principal K-bundle and ω ∈ Ω1(P ; k) a flat connection (in the
traditional sense). Then the functor

desc((P, ω),−) : Modfin
(k,K) → ModΩ∗X
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18 CHAPTER 1. FLAT VECTOR BUNDLES AND HARISH-CHANDRA DESCENT

is equivalent to the functor Repfin
K → ModΩ∗X

that sends a K-representation V to the
de Rham complex of the associated bundle VX = P ×K V equipped with its induced
flat connection, i.e., V 7→ Ω∗(X;VX).

Remark 1.3.8. — We have described these constructions for finite-dimensional repre-
sentations, but they make sense with an infinite-dimensional representation V provided
one knows how smooth manifolds map into V . Given that data, one knows how to
write down functions (or differential forms) on P with values in V . In many examples,
the vector space V comes equipped with that information. For instance, every locally
convex topological vector space has it, as do bornological or convenient vector spaces.
A systematic discussion of these issues can be found in [36], and an overview with
close ties to the examples used here can be found in Appendix B of [16].

1.4. The characteristic map

Recall that on a principal K-bundle P → X with connection one-form
ω ∈ Ω1(P,Lie(K)), the one-form provides a linear map ω∗ : Lie(K)∗ → Ω1(P ).
If the connection is flat (i.e., satisfies the Maurer-Cartan equation), then ω∗ extends
to a map of commutative dg algebras

ω∗ : C∗Lie(Lie(K))→ Ω∗(P ),

which provides some kind of characteristic classes for the flat K-bundle P .
We now adapt this construction to the Harish-Chandra setting. In this case, the

connection one-form ω lives in Ω1(P, g) and as it is flat, it provides a map of commu-
tative dg algebras ω∗ : C∗Lie(g) → Ω∗(P ).This map admits an important refinement:
since ω is K-invariant, it induces a map

ω∗ : C∗Lie(g,K)→ Ω∗(P )bas.

This construction extends to associated bundles, so that for V a (g,K)-module, there
is a map

charP,V : C∗Lie(g,K;V )→ Ω∗(desc((P, ω), V )),

which provides some kind of characteristic classes for flat (g,K)-bundles.
As these constructions manifestly intertwine with pullbacks of bundles, we have

the following.

Definition 1.4.1. — The characteristic map is the natural transformation

char : C∗Lie(g,K;−)⇒ Ω∗(−,desc(−,−))

between the relative Lie algebra cohomology of a (g,K)-module and the de Rham
complex of its associated local system along a flat (g,K)-bundle .
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CHAPTER 2

FORMAL VECTOR BUNDLES
AND GELFAND-KAZHDAN DESCENT

In this section we review the theory of Gelfand-Kazhdan formal geometry and its
use in natural constructions in differential geometry, organized in a manner somewhat
different from the standard approaches. We emphasize the role of the frame bundle
and jet bundles. We conclude with a treatment of the Atiyah class, which may be our
only novel addition (although unsurprising) to the formalism.

We remark that from hereon we will work with complex manifolds and holomorphic
vector bundles.

2.1. A Harish-Chandra pair for the formal disk

Let Ôn denote the algebra of formal power series

CJt1, . . . , tnK,

which we view as “functions on the formal n-disk D̂n”. It is filtered by powers of the
maximal ideal mn = (t1, . . . , tn), and it is the limit of the sequence of artinian algebras

· · · → Ôn/(t1, . . . , tn)k → · · · Ôn/(t1, . . . , tn)2 → Ôn/(t1, . . . , tn) ∼= C.

One can use the associated adic topology to interpret many of our constructions, but
we will not emphasize that perspective here.

We use Wn to denote the Lie algebra of derivations of Ôn, which consists of first-
order differential operators with formal power series coefficients:

Wn =

{
n∑
i=1

fi
∂

∂ti
: fi ∈ Ôn

}
.

The group GLn also acts naturally on Ôn: for M ∈ GLn and f ∈ Ôn,
(M · f)(t) = f(Mt),

where on the right side we view t as an element of Cn and let M act linearly. In
other words, we interpret GLn as acting “by diffeomorphisms” on D̂n and then use
the induced pullback action on functions on D̂n. The actions of both Wn and GLn
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20 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

intertwine with multiplication of power series, since “the pullback of a product of
functions equals the product of the pullbacks”.

2.1.1. Formal automorphisms. — Let Autn be the group of filtration-preserving au-
tomorphisms of the algebra Ôn, which we will see is a pro-algebraic group. Explicitly,
such an automorphism φ is a map of algebras that preserves the maximal ideal, so φ is
specified by where it sends the generators t1,. . . , tn of the algebra. In other words,
each φ ∈ Autn consists of an n-tuple (φ1, . . . , φn) such that each φi is in the maxi-
mal ideal generated by (t1, . . . , tn) and such that there exists an n-tuple (ψ1, . . . , ψn)

where the composite
ψj(φ1(t), . . . , φn(t)) = tj

for every j (and likewise with ψ and φ reversed). This second condition can be replaced
by verifying that the Jacobian matrix

Jac(φ) = (∂φi/∂tj) ∈ Matn(Ôn)

is invertible over Ôn, by a version of the inverse function theorem.
Note that this group is far from being finite-dimensional, so it does not fit imme-

diately into the setting of HC-pairs described above. It is, however, a pro-Lie group
in the following way. As each φ ∈ Autn preserves the filtration on Ôn, it induces an
automorphism of each partial quotient Ôn/mkn. Let Autn,k denote the image of Autn

in Aut(Ôn/mk+1
n ); this group Autn,k is clearly a quotient of Autn. Note, for instance,

that Autn,1 = GLn. Explicitly, an element φ of Autn,k is the collection of n-tuples
(φ1, . . . , φn) such that each φi is an element of mn/mk+1

n and such that the Jaco-
bian matrix Jac(φ) is invertible in Ôn/mk+1

n . The group Autn,k is manifestly a finite
dimensional Lie group, as the quotient algebra is a finite-dimensional vector space.

The group of automorphisms Autn is the pro-Lie group associated with the natural
sequence of Lie groups

· · · → Autn,k → Autn,k−1 → · · · → Autn,1 = GLn.

Let Aut+
n denote the kernel of the map Autn → GLn so that we have a short exact

sequence
1→ Aut+

n → Autn → GLn → 1.

In other words, for an element φ of Aut+
n , each component φi is of the form ti+ O(t2).

The group Aut+
n is pro-nilpotent, hence contractible.

The Lie algebra of Autn is not the Lie algebra of formal vector fields Wn. A direct
calculation shows that the Lie algebra of Autn is the Lie algebra W0

n ⊂Wn of formal
vector fields with zero constant coefficient (i.e., that vanish at the origin of D̂n).

Observe that the group GLn acts on the Lie algebra Wn by the obvious linear
“changes of frame”. The Lie algebra Lie(GLn) = gln sits inside Wn as the linear
vector fields ∑

i,j

aji ti
∂

∂tj
: aij ∈ C

 .
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2.2. THE COORDINATE BUNDLE 21

We record these compatibilities in the following statement.

Lemma 2.1.1. — The pair (Wn,GLn) form a Harish-Chandra pair.

Proof. — The only thing to check is that the differential of the action of GLn cor-
responds with the adjoint action of gln ⊂ Wn on formal vector fields. This is by
construction.

2.2. The coordinate bundle

In this section we review the central object in the Gelfand-Kazhdan picture of
formal geometry: the coordinate bundle.

2.2.1. — Given a complex manifold, its coordinate space Xcoor is the (infinite-
dimensional) space parametrizing holomorphic formal coordinate systems of X. (It is
a pro-complex manifold, as we’ll see.) Explicitly, a point in Xcoor consists of a point
x ∈ X together with an isomorphism of completed commutative algebras

φ : O∧X,x → C[[t1, . . . , tn]] = Ôn,

where O∧X,x denotes the completion lim←OX,x/mkx of the germ at x of holomorphic
functions with respect to powers of the ideal mx of functions vanishing at x. Intuitively,
φ corresponds to an embedding of the formal disk into X, sending the base point to x.

There is a canonical projection map πcoor : Xcoor → X by remembering only the
underlying point in X. The group Autn acts on Xcoor by “change of coordinates,” i.e.,
by precomposing a φ with an automorphism of the disk around the origin in Cn. This
action identifies πcoor as a principal bundle for the pro-Lie group Autn.

One way to formalize these ideas is to realize Xcoor as a limit of finite-dimensional
complex manifolds. Let Xcoor

k be the space consisting of points (x, [φ]k), where φ is
a formal holomorphic coordinate system, as above, and [−]k denotes the projection
on C[[[t1, . . . , tn]]/(t1, . . . , tn)k+1. Let πcoor

k : Xcoor
k → X be the projection. By con-

struction, the finite-dimensional complex Lie group Autn,k acts on the fibers of the
projection freely and transitively so that πcoor

k is a holomorphic principal Autn,k-bun-
dle. The bundle Xcoor → X is the limit of the sequence of holomorphic principal
bundles on X

· · · // Xcoor
k

//

πcoor
k

,,

Xcoor
k−1

πcoor
k−1

++

// · · · // Xcoor
2

πcoor
2

$$

// Xcoor
1

πcoor
1

��

X.

In particular, note that the GLn = Autn,1-bundle πcoor
1 : Xcoor

1 → X is the frame
bundle

πfr : FrX → X,

i.e., the principal bundle associated to the holomorphic tangent bundle of X.
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22 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

2.2.2. The Grothendieck connection. — We can also realize the Lie algebra Wn as an
inverse limit. Recall the filtration on Wn by powers of the maximal ideal mn of Ôn.
Let Wn,k denote the quotient Wn/m

k+1
n Wn. For instance, Wn,1 = affn = Cn n gln,

the Lie algebra of affine transformations of Cn. We have Wn = limk→∞Wn,k.
The Lie algebra of Autn,k is

W0
n,k := mn ·W0

n/m
k+1
n W0

n.

That is, the Lie algebra of vector fields vanishing at zero modulo the (k+ 1)th power
of the maximal ideal. Thus, the principal Autn,k-bundle Xcoor

k → X induces an exact
sequence of holomorphic tangent spaces

W0
n,k → T(x,[ϕ]k)X

coor → TxX;

by using ϕ, we obtain a canonical isomorphism of tangent spaces Cn ∼= T0Cn ∼= TxX.
Combining these observations, we obtain an isomorphism

Wn,k
∼= T(x,[ϕ]k)X

coor
k .

In the limit k → ∞ we obtain an isomorphism Wn
∼= T(x,[ϕ]∞)X

coor at each point.
These isomorphisms glue together to give the following.

Definition 2.2.1. — Let
θ : Wn → Xhol(Xcoor).

denote the Lie algebra morphism encoding the canonical action of Wn on Xcoor by
holomorphic vector fields. (See Section 5 of [48] and Section 3 of [10] for further
discussions of this kind of construction.)

The inverse of the map θ provides a connection one-form

ωcoor ∈ Ω1
hol(X

coor; Wn),

which we call the universal Grothendieck connection on X. As θ is a Lie algebra
homomorphism, ωcoor satisfies the Maurer-Cartan equation

(1) ∂ωcoor +
1

2
[ωcoor, ωcoor] = 0.

Note that the proposition ensures that this connection is universal on all complex
manifolds of dimension n and indeed pulls back along local biholomorphisms.

Remark 2.2.2. — Both the pair (Wn,Autn) and the bundle Xcoor → X together with
ωcoor do not fit in our model for general Harish-Chandra descent above. They are,
however, objects in a larger category of pro-Harish-Chandra pairs and pro-Harish-
Chandra bundles, respectively. We do not develop this theory here, but it is inherent
in the work of [3]. Indeed, by working with well-behaved representations for the pair
(Wn,Autn), Gelfand, Kazhdan, and others use this universal construction to produce
many of the natural constructions in differential geometry. As we remarked earlier, it
is a kind of refinement of tensor calculus.
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2.2. THE COORDINATE BUNDLE 23

2.2.3. A Harish-Chandra structure on the frame bundle. — Although the existence of
the coordinate bundleXcoor is necessary in the remainder of this paper, it is convenient
for us to use it in a rather indirect way. Rather, we will work with the frame bundle
FrX → X equipped with the structure of a module for the Harish-Chandra pair
(Wn,GLn). The Wn-valued connection on FrX is induced from the Grothendieck
connection above.

Definition 2.2.3. — Let Exp(X) denote the quotient Xcoor/GLn. A C∞-section
of Exp(X) over X is called a formal exponential.

Remark 2.2.4. — Following Section 4 of [30], we can realize Exp(X) as the inverse
limit of finite dimensional manifolds Expk(X) = Xcoor

k /GLn. Moreover, we can equip
Exp(X) with the structure of a principal Aut+

n -bundle over X in the following way.
Consider the short exact sequence of pro-Lie groups

1→ Aut+
n → Autn → GLn → 1.

There is a splitting of this determined by the choice of coordinates on the formal disk
which exhibits an isomorphism

Autn = Aut+
n o GLn

and a bijection of sets q : Aut+
n

∼=−→ Autn/GLn.
Further, there is an action of Autn on Aut+

n defined by

f · p := Jac(f) ◦ p ◦ Jac(f)−1

which makes q a Autn-equivariant isomorphism. Using this isomorphism, we equip
Xcoor/GLn with the desired Aut+

n structure.

Note that Aut+
n is contractible, and so smooth sections always exist. A formal

exponential is useful because it equips the frame bundle with a (Wn,GLn)-module
structure, as follows.

Proposition 2.2.5. — A formal exponential σ pulls back to a GLn-equivariant map
σ̃ : FrX → Xcoor, and hence equips (Frx, σ

∗ωcoor) with the structure of a principal
(Wn,GLn)-bundle with flat connection. Moreover, any two choices of formal expo-
nential determine (Wn,GLn)-structures on X that are gauge-equivalent.

For a full proof, see [48], [47], or [34] but the basic idea is easy to explain.

Sketch of proof. — The first assertion is tautological, since the data of a section is
equivalent to such an equivariant map, but we explicate the underlying geometry.
A map ρ : FrX → Xcoor assigns to each pair (x,y) ∈ FrX , with x ∈ X and
y : Cn

∼=−→ TxX a linear frame, an ∞-jet of a biholomorphism φ : Cn → X such
that φ(0) = x and Dφ(0) = y. Being GLn-equivariant ensures that these biholo-
morphisms are related by linear changes of coordinates on Cn. In other words, a
GLn-equivariant map σ̃ describes how each frame on TxX exponentiates to a formal
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24 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

coordinate system around x, and so the associated section σ assigns a formal expo-
nential map σ(x) : TxX → X to each point x in X. (Here we see the origin of the
name “formal exponential”.)

The second assertion would be immediate if Xcoor were a complex manifold, since
the flat bundle structure would pull back, so all issues are about carefully working
with pro-manifolds.

The final assertion is also straightforward: the space of sections is contractible since
Aut+

n is contractible, so one can produce an explicit gauge equivalence.

Remark 2.2.6. — In [52] Willwacher provides a description of the space Exp(X) of
all formal exponentials. He shows that it is isomorphic to the space of pairs (∇0,Φ)

where ∇0 is a torsion-free connection on X for TX and Φ is a section of the bundle

FrX ×GLn W3
n,

where W3
n ⊂Wn is the subspace of formal vector fields whose coefficients are at least

cubic. In particular, every torsion-free affine connection determines a formal expo-
nential. The familiar case above that produces a formal coordinate from a connection
corresponds to choosing the zero vector field.

Definition 2.2.7. — A Gelfand-Kazhdan structure on the frame bundle FrX → X of a
complex manifold X of dimension n is a formal exponential σ, which makes FrX into
a flat (Wn,GLn)-bundle with connection one-form ωσ, the pullback of ωcoor along the
GLn-equivariant lift σ̃ : FrX → Xcoor.

Example 2.2.8. — Consider the case of an open subset U ⊂ Cn. There are thus natu-
ral holomorphic coordinates {z1, . . . , zn} on U . These coordinates provides a natural
choice of a formal exponential. Moreover, with respect to the isomorphism

Ω1
hol(FrU ; Wn)GLn ∼= Ω1

hol(U ; Wn),

we find that the connection 1-form has the form

ωcoor =

n∑
i=1

dzi ⊗
∂

∂ti
,

where the {ti} are the coordinates on the formal disk D̂n.

A Gelfand-Kazhdan structure allows us to apply a version of Harish-Chandra de-
scent, which will be a central tool in our work.

Although we developed Harish-Chandra descent on all flat (g,K)-bundles, it is
natural here to restrict our attention to manifolds of the same dimension, as the
notions of coordinate and affine bundle are dimension-dependent. Hence we replace
the underlying category of all complex manifolds by a more restrictive setting.

Definition 2.2.9. — Let Holn denote the category whose objects are complex manifolds
of dimension n and whose morphisms are local biholomorphisms. In other words, a
map f : X → Y in Holn is a map of complex manifolds such that each point x ∈ X
admits a neighborhood U on which f |U is biholomorphic with f(U).
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There is a natural inclusion functor i : Holn → CplxMan (not fully faithful) and
the frame bundle Fr defines a section of the fibered category i∗VB, since the frame
bundle pulls back along local biholomorphisms. For similar reasons, the coordinate
bundle is a pro-object in i∗VB.

Definition 2.2.10. — Let GKn denote the category fibered over Holn whose objects are
a Gelfand-Kazhdan structure—that is, a pair (X,σ) of a complex n-manifold and a
formal exponential—and whose morphisms are simply local biholomorphisms between
the underlying manifolds.

Note that the projection functor from GKn to Holn is an equivalence of categories,
since the space of formal exponentials is affine.

2.3. The category of formal vector bundles

For most of our purposes, it is convenient and sufficient to work with a small cat-
egory of (Wn,GLn)-modules that is manifestly well-behaved and whose localizations
appear throughout geometry in other guises, notably as ∞-jet bundles of vector bun-
dles on complex manifolds. (Although it would undoubtedly be useful, we will not
develop here the general theory of modules for the Harish-Chandra pair (Wn,GLn),
which would involve subtleties of pro-Lie algebras and their representations.)

We first start by describing the category of (Wn,GLn)-modules that correspond
to modules over the structure sheaf of a manifold. Note that Ôn is the quintessen-
tial example of a commutative algebra object in the symmetric monoidal category
of (Wn,GLn)-modules, for any natural version of such a category. We consider mod-
ules that have actions of both the pair and the algebra Ôn with obvious compatibility
restrictions.

Definition 2.3.1. — A formal Ôn-module is a vector space V equipped with
(i) the structure of a (Wn,GLn)-module;

(ii) the structure of a Ôn-module;
such that
(1) for all X ∈Wn, f ∈ Ôn and v ∈ V we have X(f · v) = X(f) · v + f · (X · v);
(2) for all A ∈ GLn we have A(f · v) = (A · f) · (A · v), where A acts on f by a

linear change of frame.

A morphism of formal Ôn-modules is a Ôn-linear map of (Wn,GLn)-modules
f : V → V′. We denote this category by ModOn

(Wn,GLn).

It is useful to bear in mind that such an object is much like a vector bundle
equipped with a flat connection, due to the action of vector fields by derivations.
More properly this category behaves much like D-modules (i.e., modules over the
ring D of differential operators). For instance, just as the category of D-modules is
symmetric monoidal via tensor over O, we have the following result.
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26 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

Lemma 2.3.2. — The category ModOn
(Wn,GLn) is symmetric monoidal with respect to

tensor over Ôn.

Proof. — The category of Ôn-modules is clearly symmetric monoidal by tensoring
over Ôn. We simply need to verify that the Harish-Chandra module structures extend
in a natural way, but this is clear.

We will often restrict ourselves to considering Harish-Chandra modules as above
that are free as underlying Ôn-modules. Indeed, let

VBn ⊂ ModOn
(Wn,GLn)

be the full subcategory spanned by objects that are free and finitely generated as
underlying Ôn-modules, so we refer to this category as formal vector bundles.

The category of formal Ôn-modules has a natural symmetric monoidal structure by
tensor product over Ô. The Harish-Chandra action is extended by

X · (s⊗ t) = (Xs)⊗ t+ s⊗ (Xt).

This should not look surprising; it is the same formula for tensoring D-modules over O.
The internal hom HomÔ(V,W) also provides a vector bundle on the formal disk,

where the Harish-Chandra action is extended by

(X · φ)(v) = X · (φ(v))− φ(X · v).

Observe that for any D-module M , we have an isomorphism

HomD(Ô,M) ∼= HomWn
(C,M)

since a map of D-modules out of Ô is determined by where it sends the constant
function 1. Hence we find that there is a quasi-isomorphism

RHomD(Ô,V) ' C∗Lie(Wn; V),

or more accurately a zig-zag of quasi-isomorphisms. Here C∗Lie(Wn; V) is the contin-
uous cohomology of Wn with coefficients in V. This is known as the Gelfand-Fuks
cohomology of V and is what we use for the remainder of the paper.

This relationship extends to the GLn-equivariant setting as well, giving us the
following result.

Lemma 2.3.3. — There is a quasi-isomorphism

C∗Lie(Wn,GLn; V) ' RHomD(Ô,V)GLn−eq,

where the superscript GLn − eq denotes the GLn-equivariant maps.

Remark 2.3.4. — One amusing way to understand this category is as Harish-Chandra
descent to the formal n-disk itself. Consider the frame bundle F̂r = D̂n ×GLn → D̂n
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2.3. THE CATEGORY OF FORMAL VECTOR BUNDLES 27

of the formal n-disk itself, which possesses a natural flat connection via the Maurer-
Cartan form ωMC on GLn. Let ρ : GLn → GL(V ) be a finite-dimensional represen-
tation. Then the subcomplex of Ω∗(F̂r) ⊗ V given by the basic forms is isomorphic
to (

Ω∗(D̂n)⊗ V,ddR + ρ(ωMC)
)
.

This equips the associated bundle F̂r×GLn V with a flat connection and hence makes
its sheaf of sections a D-module on the formal disk.

Many of the important Ôn-modules we will consider simply come from linear tensor
representations of GLn. Given a finite-dimensional GLn-representation V , we con-
struct a Ôn-module V ∈ VBn as follows.

Consider the decreasing filtration of Wn by vanishing order of jets

· · · ⊂ m2
n ·Wn ⊂ m1

n ·Wn ⊂Wn.

The induced map m1
n ·Wn → m1

n ·Wn/m
2
n ·Wn

∼= gln allows us to restrict V to a
(m1

n ·Wn)-module. We then coinduce this module along the inclusion m1 ·Wn ⊂Wn

to get a Wn-module V = Homm1
n·Wn

(U(Wn), V ). There is an induced action of GLn

on V. Indeed, as a GLn-representation one has V ∼= Ôn⊗C V . Moreover, this action is
compatible with the Wn-module structure, so that V is actually a (Wn,GLn)-module.
Thus, the construction provides a functor from RepGLn to VBn.

Definition 2.3.5. — We denote by Tensn the image of finite-dimensional GLn-repre-
sentations in VBn along this functor. We call it the category of formal tensor fields.

As mentioned Ôn is an example, associated to the trivial one-dimensional GLn rep-
resentation. Another key example is T̂n, the vector fields on the formal disk, which
is associated to the defining GLn representation Cn; it is simply the adjoint rep-
resentation of Wn. Other examples include Ω̂1

n, the 1-forms on the formal disk; it
is the correct version of the coadjoint representation, and more generally the space
of k-forms on the formal disk Ω̂kn.

The category Tensn can be interpreted in two other ways, as we will see in subse-
quent work.

1. They are the∞-jet bundles of tensor bundles: for a finite-dimensional GLn-rep-
resentation, construct its associated vector bundle along the frame bundle and
take its ∞-jets.

2. They are the flat vector bundles of finite-rank on the formal n-disk that are
equivariant with respect to automorphisms of the disk. In other words, they are
GLn-equivariant D-modules whose underlying Ô-module is finite-rank and free.

It should be no surprise that given a Gelfand-Kazhdan structure on the frame bundle
of a non-formal n-manifold X, a formal tensor field descends to the ∞-jet bundle of
the corresponding tensor bundle on X. The flat connection on this descent bundle is,
of course, the Grothendieck connection on this ∞-jet bundle. (For some discussion,
see Section 1.3, pages 12-14, of [19].)
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28 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

Note that the subcategories

Tensn ↪→ VBn ↪→ ModOn
(Wn,GLn)

inherit the symmetric monoidal structure constructed above.

2.4. Gelfand-Kazhdan descent

We will focus on defining descent for the category VBn of formal vector bundles.
Fix an n-dimensional manifold X. The main result of this section is that the asso-

ciated bundle construction along the frame bundle FrX ,

FrX ×GLn − : Rep(GLn)fin → VB(X)

V 7→ FrX ×GLn V,

which builds a tensor bundle from a GLn representation, arises from Harish-Chandra
descent for (Wn,GLn). This result allows us to equip tensor bundles with interesting
structures (e.g., a vertex algebra structure) by working (Wn,GLn)-equivariantly on
the formal n-disk. In other words, it reduces the problem of making a universal con-
struction on all n-manifolds to the problem of making an equivariant construction on
the formal n-disk, since the descent procedure automates extension from the formal
to the global.

Note that every formal vector bundle V ∈ VB(Wn,GLn) is naturally filtered via a
filtration inherited from Ôn. Explicitly, we see that V is the limit of the sequence of
finite-dimensional vector spaces

· · · → Ôn/mkn ⊗ V → · · · → Ôn/mn ⊗ V ∼= V,

where V is the underlying GLn-representation. Each quotient Ôn/mkn⊗V is a module
over Autn,k, and hence determines a vector bundle on X by the associated bundle
construction alongXcoor

k . In this way, V produces a natural sequence of vector bundles
on X and thus a pro-vector bundle on X.

Given a formal exponential σ on X, we obtain a GLn-equivariant map from FrX
to Xcoor

k for every k, by composing the projection map Xcoor → Xcoor
k with the

GLn-equivariant map from FrX to Xcoor.

Definition 2.4.1. — Gelfand-Kazhdan descent is the functor

descGK : GKop
n ×VB(Wn,GLn) → Pro(VB)flat

sending (FrX , σ)—a frame bundle with formal exponential—and a formal vector bun-
dle V to the pro-vector bundle FrX ×GLn V with flat connection induced by the
Grothendieck connection.

This functor is, in essence, Harish-Chandra descent, but in a slightly exotic context.
It has several nice properties.

Lemma 2.4.2. — For any choice of Gelfand-Kazhdan structure (FrX , σ), the descent
functor descGK((FrX , σ),−) is lax symmetric monoidal.
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2.4. GELFAND-KAZHDAN DESCENT 29

Proof. — For every V,W in VB(Wn,GLn), we have natural maps

(Ω∗(FrX)⊗V)basic ⊗ (Ω∗(FrX)⊗W)basic

→ (Ω∗(FrX)⊗ (V ⊗W))basic → (Ω∗(FrX)⊗ (V ⊗Ôn W))basic

and the composition provides the natural transformation producing the lax symmetric
monoidal structure.

In particular, we observe that the de Rham complex of descGK((FrX , σ), Ôn) is a
commutative algebra object in Ω∗(X)-modules. As every object of VB(Wn,GLn) is an
Ôn-module and the morphisms are Ôn-linear, we find that descent actually factors
through the category of descGK((FrX , σ), Ôn)-modules. In sum, we have the following.

Lemma 2.4.3. — The descent functor descGK((FrX , σ),−) factors as a composite

VBn
d̃escGK((FrX ,σ),−)−−−−−−−−−−−−→ Mod

descGK((FrX ,σ),̂On)

forget−−−→ VBflat(X)

and the functor d̃escGK((FrX , σ),−) is symmetric monoidal.

As before, we let De≠cGK denote the associated local system obtained from descGK

by taking horizontal sections. This functor is well-known: it recovers the tensor bundles
on X.

If E → X is a holomorphic vector bundle on X we denote by J∞hol(E) the holomor-
phic ∞-jet bundle of E. If E0 is the fiber of E over a point x ∈ X, then the fiber of
this pro-vector bundle over x can be identified with

J∞hol(E)|x
∼= E0 × CJt1, . . . , tnK.

This pro-vector bundle has a canonical flat connection.

Proposition 2.4.4. — For V ∈ VBn corresponding to the GLn-representation V , there
is a natural isomorphism of flat pro-vector bundles

descGK((Fr(X), ωσ),V) ∼= J∞hol(FrX ×GLn V ).

In other words, the functor of descent along the frame bundle is naturally isomorphic
to the functor of taking ∞-jets of the associated bundle construction.

As a corollary, we see that the associated sheaf of flat sections is

De≠cGK(ωσ,V) ∼= Γhol(FrX ×GLn V ),

where Γhol(−) denotes the space of holomorphic sections.
In other words, Gelfand-Kazhdan descent produces every tensor bundle. For ex-

ample, for the defining representation V = Cn of GLn, we have V = T̂n, i.e., the
vector fields on the formal disk viewed as the adjoint representation of Wn. Under
Gelfand-Kazhdan descent, it produces the tangent bundle T on Holn.
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30 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

2.5. Formal characteristic classes

2.5.1. Recollection. — In [1], Atiyah examined the obstruction—which now bears
his name—to equipping a holomorphic vector bundle with a holomorphic connection
from several perspectives. To start, as he does, we take a very structural approach.
He begins by constructing the following sequence of vector bundles (see Theorem 1).

Definition 2.5.1. — Let G be a complex Lie group. Let E → X be a holomorphic
vector bundle on a complex manifold and E its sheaf of sections. The Atiyah sequence
of E is the exact sequence holomorphic vector bundles given by

0→ E ⊗ T ∗X → J1(E)→ E → 0,

where J1(E) the bundle of first-order jets of E The Atiyah class is the element
At(E) ∈ H1(X,Ω1

X ⊗ EndOX (E )) associated to the extension above.

Remark 2.5.2. — Taking linear duals we see tha above short exact sequence is equiv-
alent to one of the form

0→ End(E)→ A(E)→ TX → 0,

where A(E) is the so-called Atiyah bundle associated to E.
We should remark that the sheaf A (E) of holomorphic sections of the Atiyah bun-

dle A(E) is a Lie algebra by borrowing the Lie bracket on vector fields. By inspection,
the Atiyah sequence of sheaves (by taking sections) is a sequence of Lie algebras; in
fact, A (E) is a central example of a Lie algebroid, as the quotient map to vector
fields TX on X is an anchor map.

Atiyah also examined how this sequence relates to the Chern theory of connections.

Proposition 2.5.3. — A holomorphic connection on E is a splitting of the Atiyah
sequence (as holomorphic vector bundles).

Atiyah’s first main result in the paper is the following.

Proposition 2.5.4 (Theorem 2, [1]). — A holomorphic connection exists on E if and
only if the Atiyah class At(E) vanishes.

He observes immediately after this statement that the construction is functorial
in maps of bundles. Later, he finds a direct connection between the Atiyah class and
the curvature of a smooth connection. A smooth connections always exists (i.e., the
sequence splits as smooth vector bundles, not necessarily holomorphically), and one is
free to choose a connection such that the local 1-form only has Dolbeault type (1, 0),
i.e., is an element in Ω1,0(X; End(E)). In that case, the (1, 1)-component Θ1,1 of the
curvature Θ is a 1-cocycle in the Dolbeault complex (Ω1,∗(X; End(E)), ∂) for End(E)

and its cohomology class [Θ1,1] is the Atiyah class At(E). In consequence, Atiyah
deduces the following.
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2.5. FORMAL CHARACTERISTIC CLASSES 31

Proposition 2.5.5. — For X a compact Kähler manifold, the kth Chern class ck(E)

of E is given by the cohomology class of (2πi)−kSk(At(E)), where Sk is the k-th
elementary symmetric polynomial, and hence only depends on the Atiyah class.

This assertion follows from the degeneracy of the Hodge-to-de Rham spectral se-
quence. More generally, the term (2πi)−kSk(At(E)) agrees with the image of the kth
Chern class in the Hodge cohomology Hk(X; Ωkhol).

The functoriality of the Atiyah class means that it makes sense not just on a fixed
complex manifold, but also on the larger sites Holn and GKn. We thus immediately
obtain from Atiyah the following notion.

Definition 2.5.6. — For each V ∈ VB(Holn), the Atiyah class At(V ) is the equivalence
class of the extension of the tangent bundle T by End(V ) given by the Atiyah sequence.

Moreover, we have the following.

Lemma 2.5.7. — The cohomology class of (2πi)−kSk(At(V )) provides a section of the
sheaf Hk(X; Ωkhol). On any compact Kähler manifold, it agrees with ck(V ).

2.5.2. The formal Atiyah class. — We now wish to show that Gelfand-Kazhdan de-
scent sends an exact sequence in VB(Wn,GLn) to an exact sequence in VB(GKn) (and
hence in VB(Holn)). It will then remain to verify that for each tensor bundle on Holn,
there is an exact sequence over the formal n-disk that descends to the Atiyah sequence
for that tensor bundle.

We will use the notation descGK(V) to denote the functor descGK(−,V) : GKop
n →

Pro(VB)flat, since we want to focus on the sheaf on GKn (or Holn) defined by each
formal vector bundle V. Taking flat sections we get an O-module De≠cGK(V) which
is locally free of finite rank and so determines an object in VB(GKn).

Lemma 2.5.8. — If
A →B→ C

is an exact sequence in VB(Wn,GLn), then

De≠cGK(A )→De≠cGK(B)→De≠cGK(C )

is exact in VB(GKn).

Proof. — A sequence of vector bundles is exact if and only if the associated sequence
of O-modules is exact (i.e., the sheaves of sections of the vector bundles). But a
sequence of sheaves is exact if and only if it is exact stalkwise. Observe that there is
only one point at which to compute a stalk in the site Holn, since every point x ∈ X
has a small neighborhood isomorphic to a small neighborhood of 0 ∈ Cn. As we are
working in an analytic setting, the stalk of a O-module at a point x injects into the
∞-jet at x. Hence, it suffices to verifying the exactness of the sequence of ∞-jets.
Hence, we consider the ∞-jet at 0 ∈ Cn of the sequence descGK(A)→ descGK(B)→
descGK(C). But this sequence is simplyA→ B → C, which is exact by hypothesis.
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32 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

Corollary 2.5.9. — There is a canonical map from Ext1
(Wn,GLn)(B,A ) to

Ext1
GKn(De≠cGK(B),De≠cGK(A )).

In particular, once we produce the (Wn,GLn)-Atiyah sequence for a for-
mal tensor field V, we will have a very local model for the Atiyah class living
in C∗Lie(Wn,GLn; Ω̂1

n ⊗Ôn EndÔn(V)).

2.5.3. The formal Atiyah sequence. — Let V be a formal vector bundle. We will now
construct the “formal” Atiyah sequence associated to V. First, we need to define the
(Wn,GLn)-module of first order jets of V. Let’s begin by recalling the construction
of jets in ordinary geometry.

If X is a manifold, we have the diagonal embedding ∆ : X ↪→ X×X. Correspond-
ingly, there is the ideal sheaf I∆ on X ×X of functions vanishing along the diagonal.
Let X(k) be the ringed space (X, OX×X/I k

∆) describing the kth order neighborhood
of the diagonal in X × X. Let ∆(k) : X(k) → X × X denote the natural map of
ringed spaces. The projections π1, π2 : X × X → X compose with ∆(k) to define
maps π(k)

1 , π
(k)
2 : X(k) → X. Given an OX -module V, “push-and-pull” along these

projections,
JkX(V) = (π

(k)
1 )∗(π

(k)
2 )∗V,

defines the OX -module of kth order jets of V.
There is a natural adaptation in the formal case. The diagonal map corresponds

to an algebra map ∆∗ : Ô2n → Ôn. Fix coordinatizations Ôn = CJt1, . . . , tnK and
Ô2n = CJt′1, . . . , t′n, t′′1 , . . . , t′′nK. Then the map is given by ∆∗(t′i) = ∆∗(t′′i ) = ti.

Let În = ker(∆∗) ⊂ Ô2n be the ideal given by the kernel of ∆∗. For each k there is
a quotient map

∆(k)∗ : Ô2n → Ô2n/Î k+1
n ,

The projection maps have the form

π
(k)∗
1 , π

(k)∗
2 : Ôn → Ô2n/Î k+1

n ,

which in coordinates are π∗1(ti) = t′i and π∗2(ti) = t′′i .

Definition 2.5.10. — Let V be a formal vector bundle on D̂n. Consider the
Ô2n/Î k+1

n -module V ⊗Ôn

(
Ô2n/Î k+1

n

)
, where the tensor product uses the Ôn-module

structure on the quotient Ô2n/Î k+1
n coming from the map π

(k)∗
2 . We define the kth

order formal jets of V, denoted Jk(V), as the restriction of this Ô2n/Î k+1
n -module to

a Ôn-module using the map π(k)∗
1 : Ôn → Ô2n/Î k+1

n .

Lemma 2.5.11. — For any V ∈ VBn the kth order formal jets Jk(V) is an element
of VBn.

Proof. — For V in VBn there is an induced action of (Wn,GLn) on the tensor product
V⊗Ôn Ô2n/Î k+1

n . For fixed k we see that Ô2n/Î k+1
n is finite rank as a Ôn module. Thus

it is immediate that this module satisfies the conditions of a formal vector bundle.
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2.5. FORMAL CHARACTERISTIC CLASSES 33

As a C-linear vector space we have J1(V) = V ⊕ (V ⊗Ôn Ω̂1
n). For f ∈ Ôn and

(v, β) ∈ V ⊕ (V ⊗ Ω̂1
n), the Ôn-module structure is given by

f · (v, β) = (fv, (fβ + v ⊗ df)).

(This formula is the formal version of Atiyah’s description in Section 4 of [1], where he
uses the notation D.) The following is proved in exact analogy as in the non-formal
case which can also be found in Section 4 of [1], for instance.

Proposition 2.5.12. — For any V ∈ VB(Wn,GLn), the Ôn-module J1(V) has a com-
patible action of the pair (Wn,GLn) and hence determines an object in VB(Wn,GLn).
Moreover, it sits in a short exact sequence of formal vector bundles

(2) V ⊗ Ω̂1
n → J1(V)→ V.

Finally, the Gelfand-Kazhdan descent of this short exact sequence is isomorphic to
the Atiyah sequence

De≠cGK(V)⊗ Ω1
hol → J1De≠cGK(V)→De≠cGK(V).

In particular, J1descGK(V) = descGK(J1V).

We henceforth call the sequence (2) the formal Atiyah sequence for V.

Remark 2.5.13. — Note that J1(V) is an element of the category VBn but it is not a
formal tensor field. That is, it does not come from a linear representation of GLn via
coinduction.

Remark 2.5.14. — A choice of a formal coordinate defines a splitting of the first-order
jet sequence as Ôn-modules. If we write V = Ôn ⊗C V, then one defines

j1 : V → J1V , f ⊗C v 7→ (f ⊗C v, (1⊗C v)⊗O df).

It is a map of Ôn-modules, and it splits the obvious projection J1(V)→ V. We stress,
however, that it is not a splitting of Wn-modules. We will soon see that this is reflected
by the existence of a certain characteristic class in Gelfand-Fuks cohomology.

Note the following corollary, which follows from the identification

Ext1(V ⊗Ôn Ω̂1
n,V) ∼= C1

Lie(Wn,GLn; Ω̂1
n ⊗Ôn EndÔn(V))

and from the observation that an exact sequence in VB(D̂n) maps to an exact sequence
in VB(GKn).

Corollary 2.5.15. — There is a cocycle AtGF(V) ∈ C1
Lie(Wn,GLn; Ω̂1

n ⊗Ôn EndÔn(V))

representing the Atiyah class At(descGK(V)).

We call this cocycle the Gelfand-Fuks-Atiyah class of V since it descends to the
ordinary Atiyah class for desc(V) as a sheaf of O-modules.
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34 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

Definition 2.5.16. — The Gelfand-Fuks-Chern character is the formal sum chGF(V) =∑
k≥0 chGF

k (V), where the kth component

chGF
k (V) :=

1

(−2πi)kk!
Tr(AtGF(V)k)

lives in CkLie(Wn,GLn; Ω̂kn).

It is a direct calculation to see that chGF
k (V) is closed for the differential on formal

differential forms, i.e., it lifts to an element in CkLie(Wn,GLn; Ω̂kn,cl).

2.5.4. An explicit formula. — In this section we provide an explicit description of the
Gelfand-Fuks-Atiyah class

AtGF(V) ∈ C1
Lie(Wn,GLn; Ω̂1

n ⊗Ôn EndÔ(V)).

of a formal vector bundle V.
By definition, any formal vector bundle has the form V = Ôn⊗ V , with V a finite-

dimensional vector space. We view V as the “constant sections” in V by the inclusion
i : v 7→ 1⊗ v. This map then determines a connection on V: we define a C-linear map
∇ : V → Ω̂1

n ⊗Ôn V by saying that for any f ∈ Ôn and v ∈ V ,

∇(fv) = ddR(f)v,

where ddR : Ôn → Ω̂1
n denote the de Rham differential on functions. This connection

appeared earlier when we defined the splitting of the jet sequence j1 = 1⊕∇.
The connection ∇ determines an element in C1

Lie(Wn; Ω̂1
n ⊗Ô EndÔ(V)), as follows.

Let
ρV : Wn ⊗V → V

denote the action of formal vector fields and consider the composition

Wn ⊗ V id⊗i−−−→Wn ⊗V ρV−→ V ∇−→ Ω̂1
n ⊗Ô V.

Since V spans V over Ôn, this composite map determines a C-linear map

αV,∇ : Wn → Ω̂1
n ⊗Ô EndÔ(V)

by
αV,∇(X)(fv) = f∇(ρV(X)(i(v))),

with f ∈ Ôn and v ∈ V .

Proposition 2.5.17. — Let V be a formal vector bundle. Then αV,∇ is a representative
for the Gelfand-Fuks-Atiyah class AtGF(V).

Proof. — We begin by recalling some general facts about the Gelfand-Fuks-Atiyah
class as an extension class of an exact sequence of modules. Viewing Ôn as functions
on the formal n-disk, we can ask about the jets of such functions. A choice of formal
coordinates corresponds to an identification Ôn ∼= C[[t1, . . . , tn]], and that choice pro-
vides a trivialization of the jet bundles by providing a preferred frame. This frame
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2.5. FORMAL CHARACTERISTIC CLASSES 35

identifies, for instance, J1 with Ôn ⊕ Ω̂1
n, and the1-jet of a formal function f can be

understood as (f, ddRf).
For a formal vector bundle V = Ôn ⊗ V , something similar happens after choosing

coordinates. We have J1(V) ∼= V ⊕ Ω̂1
n ⊗Ôn V and the 1-jet of an element of V can

be written as
j1 : V → J1(V)

fv 7→ (fv, ddR(f)v).

where f ∈ Ôn and v ∈ V . The projection onto the second summand is precisely the
connection ∇ on V determined by V = Ôn ⊗ V , the defining decomposition.

The Gelfand-Fuks-Atiyah class is the failure for this map∇ to be a map of Wn-mod-
ules. Indeed, ∇ determines a map of graded vector spaces

1⊗∇ : C#
Lie(Wn; V)→ C#

Lie(Wn; Ω̂1
n ⊗Ô V).

Let dV denote the differential on C∗Lie(Wn; V) and dΩ1⊗V denote the differential
on C∗Lie(Wn; Ω̂1

n ⊗Ω̂ V). The failure for 1⊗∇ is precisely the difference

(3) (1⊗∇) ◦ dV − dΩ1⊗V ◦ (1⊗∇).

This difference is C#
Lie(Wn) linear and can hence be thought of as a cocycle of degree

one in C∗Lie(Wn; Ω̂1 ⊗Ô EndÔ(V)). This is the representative for the Atiyah class.
We proceed to compute this difference. The differential dV splits as dWn

⊗ 1V + d′

where dWn is the differential on the complex C∗Lie(Wn) and d′ encodes the action
of Wn on V. Likewise, the differential dΩ1⊗V splits as dWn

⊗1Ω1⊗V+dΩ1⊗1V +1Ω1⊗d′

where dΩ1 is the differential on the complex C∗Lie(Wn; Ω̂1
n).

The de Rham differential clearly commutes with the action of vector fields so
that (1⊗ ddR) ◦ (dO ⊗ 1) = (dWn

+ dΩ1) ◦ (1⊗ ddR) so that the the difference in (3)
reduces to

(1⊗∇) ◦ d′ − (1Ω1 ⊗ d′) ◦ (1⊗∇).

By definition d′ is the piece of the Chevalley-Eilenberg differential that encodes the
action of Wn on V, so if we evaluate on an element of the form 1 ∈ v ∈ C0

Lie(Wn;V ) ⊂
C0

Lie(Wn; V) the only term that survives is the GF 1-cocycle

X 7→ ∇d′(1⊗ v)(X) = ∇(ρV(X)(v)).

as desired.

Corollary 2.5.18. — On the formal vector bundle T̂n encoding formal vector fields,
fix the Ôn-basis by {∂j} and the Ôn-dual basis of one-forms by {dtj}. The explicit
representative for the Atiyah class is given by the Gelfand-Fuks 1-cocycle

f i∂i 7→ −ddR(∂jf
i)(dtj ⊗ ∂i)

taking values in Ω̂1
n ⊗Ôn EndÔ(T̂n).
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36 CHAPTER 2. FORMAL VECTOR BUNDLES AND GELFAND-KAZHDAN DESCENT

Proof. — We must compute the action of vector fields on Ôn-basis elements of T̂n.
We fix formal coordinates {tj} and let {∂j} be the associated constant formal vector
fields. Then the structure map is given by the Lie derivative ρT̂ (f i∂i, ∂j) = −∂jf i.
The formula for the cocycle follows from the proposition.

We can use this result to explicitly compute the cocycles representing the Gelfand-
Kazhdan Chern characters. For instance, we have the following formulas that will be
useful in later sections.

Corollary 2.5.19. — The second component chGF
2 (T̂n) of the universal Chern character

is the cocycle

Tr(AtGF(T̂n)∧2) : (f i∂i, g
j∂j) 7→ −ddR(∂jf

i) ∧ ddR(∂ig
j)

in C2
Lie(Wn,GLn; Ω̂2

n). As the de Rham differential ddR : Ω̂1
n → Ω̂2

n is Wn-equivariant,
there is an element α in C2

Lie(Wn,GLn; Ω̂1
n) such that

chGF
2 (T̂n) = ddRα,

where
α : (f i∂i, g

j∂j) 7→ ∂jf
i ∧ ddR(∂ig

j).

Moreover, as ch2 is closed for the differential ∂, it lifts to a cocycle in C2
Lie(Wn,GLn; Ω̂2

n,cl).

2.5.5. Extended pair. — The 2-cocycle chGF
2 (T̂n) determines an extension Lie algebras

of Wn by the abelian Lie algebra Ω̂2
n,cl

0→ Ω̂2
n,cl → W̃n →Wn → 0.

We have already discussed the pair (Wn,GLn). We will need that the above ex-
tension of Lie algebras fits in to a Harish-Chandra pair as well. The action of GLn
extends to an action on W̃n where we declare the action of GLn on closed two-forms
to be the natural one via linear formal automorphisms.

Lemma 2.5.20. — The pair (W̃n,GLn) form a Harish-Chandra pair and fits into an
extension of pairs

0→ Ω̂2
n,cl → (W̃n,GLn)→ (Wn,GLn)→ 0

which is determined by the cocycle chGF
2 (T̂n).

One might be worried as to why there is only a non-trivial extension of the Lie
algebra in the pair. The choice of a coordinate determines an embedding of linear
automorphisms GLn into formal automorphisms Autn. The extension of formal auto-
morphisms Autn defined by the group two-cocycle chGF

2 (T̂n) is trivial when restricted
to GLn so that it does not get extended.
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CHAPTER 3

HARISH-CHANDRA STRUCTURE ON CDOS

In this section, we first recall the definition of chiral differential operators on affine
space Cn; this object always exists and there is no obstruction to defining it. Then
we formulate a construction of chiral differential operators on more general complex
manifolds based on the theory of Gelfand-Kazhdan descent developed in the previous
section. The key element of this formulation is the Harish-Chandra module structure
for formal vector fields and automorphisms, much of which has been studied in the
literature on vertex algebras. The two main results we extract is Theorem 3.5.1 which
shows how formal automorphisms act, and Theorem 3.4.1 which shows how formal
vector fields act. We find these actions to be compatible and deduce the structure of
a module

3.1. Recollections on vertex algebras

3.1.1. Recollections. — We briefly recall the definition of a vertex algebra and some
other notions associated to vertex algebras. Our main references are [18] and [29].

Definition 3.1.1. — A vertex algebra is the following data:

(i) a vector space V over C (the state space);

(ii) a nonzero vector |0〉 ∈ V (the vacuum vector);

(iii) a linear map T : V → V (the translation operator);

(iv) a linear map Y (−; z) : V → End(V )Jz±K (the vertex operator);

subject to the following conditions:

(1) For v ∈ V , let
Y (v; z) =

∑
n∈Z

v(n)z
−n−1

in End(V )Jz±K. (We call the endomorphisms v(n) the Fourier modes of Y (v; z).)
Then for each w ∈ V there exists some N ∈ Z such that v(j)w = 0 for all j > N .

(2) Y (|0〉 ; z) = idV and Y (v; z) |0〉 ∈ v + zV JzK for all v ∈ V .

(3) For every v, [T, Y (v; z)] = ∂zY (v; z), and T |0〉 = 0.
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38 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

(4) For any pair v, v′ ∈ V , there exists N ∈ Z≥0 such that

(z − w)N [Y (v; z), Y (v′;w)] = 0.

Remark 3.1.2. — Alternatively, one can formulate the definition of a vertex algebra
in terms of the Fourier modes v(n). Indeed, our definition above provides a family of
bilinear operations

(−)(n)(−) : V × V → V

(v, w) 7→ v(n)w.

These operations satisfy algebraic conditions coming from conditions (1)-(4) above.
For instance, see [29].

We will be interested in, and take advantange of, vertex algebras with the additional
structure of a Z≥0-grading. This grading is not cohomological in nature and does not
follow the Koszul sign rule. We call it the conformal dimension grading.

Definition 3.1.3. — A vertex algebra as above is Z≥0-graded if the underlying state
space V is a Z≥0-graded vector space V =

⊕
N∈Z≥0

V (N) such that

(1) the vacuum |0〉 has dimension zero,

(2) the translation operator T is a dimension 1 map, and

(3) for v ∈ V (N) the dimension of the endomorphism v(m) is −m+N − 1.

Condition (3) ensures that if v ∈ V (N) and w ∈ V (M), then v(m)w ∈ V−m+N+M−1.

3.1.2. Actions on vertex algebras. — We now discuss what it means for a Harish-
Chandra pair to act on a vertex algebra.

It is clear how to define an action of a Lie group on a vertex algebra V . Indeed, if
K is a Lie group then by an action of K on V is a group homomorphism

ρK : K → AutVA(V ),

where AutVA(V ) are the vertex algebra automorphisms. That is, maps of vertex al-
gebras V → V whose underlying C-linear map is invertible.

To define the action of a Lie algebra on V we first recall what a vertex algebra
derivation is. It is the data of a linear map D : V → V such that for all v ∈ V one
has

Y (Dv; z) = [D,Y (v; z)].

The set of all derivations forms a Lie algebra which we denote DerVA(V ). An action
of a Lie algebra g on V is the data of a homomorphism

ρg : g→ DerVA(V ).

It also makes sense to talk about vertex algebras that have actions by apair (g,K).
Indeed, a (g,K)-action on a vertex algebra V is a (g,K)-action is given by actions
of g and K as above such that we have the obvious compatibility.
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3.2. THE βγ-VERTEX ALGEBRA 39

The underlying vector space of a vertex algebra is almost always infinite dimen-
sional, however, and so does not immediately fit into our definition of a module of
a Harish-Chandra pair from Section 1. We sidestep this issue by focusing on vertex
algebras are graded by conformal dimension where the conformal dimension N space
V (N) is finite dimensional for each N (in our case, finite rank over Ôn) so that we
have a well-behaved category of modules. From here on, we will assume the following
definition of an action on a vertex algebra.

Definition 3.1.4. — An action of a Harish-Chandra pair (g,K) on a Z≥0-graded vertex
algebra V =

⊕
N V

(N) is a collection of (g,K)-actions (ρ
(N)
g , ρ

(N)
K ) on the underlying

fixed conformal dimension spaces V (N) such that:

(1) for each x ∈ g the induced map ⊕Nρ(N)
g (x) is a vertex algebra derivation for V ,

and

(2) for each A ∈ K the induced map ⊕Nρ(N)
K (A) is a vertex algebra automorphism

for V .

3.2. The βγ-vertex algebra

One of the main objects that we will focus on is the vertex algebra of chiral dif-
ferential operators on Cn. In the physics literature [55], [46], [49] it is typically called
the n-dimensional βγ vertex algebra.

Definition 3.2.1. — Let CDOn denote the vertex algebra of chiral differential operators
for Cn. The underlying vector space is

C[bjl , c
j
m]1≤j≤n,l<0,m≤0,

the translation operator T is

bjm 7→ −mbjm−1,

cjm 7→ −(m− 1)cjm−1,

and the vertex operator is

Y (bj−1, z) =
∑
m<0

bjmz
−1−m +

∑
m≥0

∂

∂cj−m
z−1−m

and

Y (cj0, z) =
∑
m≤0

cjmz
−m −

∑
m>0

∂

∂bj−m
z−m.

These determine a vertex algebra by a reconstruction theorem (see, e.g., Theo-
rem 2.3.11 of [18]).

This vertex algebra CDOn is a Z≥0-graded. We specify this by saying that cj0 has
conformal dimension 0 and bj−1 has conformal dimension 1. Denote by CDO(N)

n the
conformal dimension N subspace.
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40 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

Remark 3.2.2. — The generators of this vertex algebra are given a variety of symbols:

1. in [45], they use ajm for what we call bjm and bjm for our cjm;

2. in Chapter 11, Section 3.6 of [18], they use aj−m for what we call bjm and a∗j−m
for our cjm.

It is important to note how CDOn relates to the geometry of Cn, and some sub-
tleties thereof. The underlying vector space of CDOn is isomorphic with the under-
lying vector space of the commutative algebra C[bil, c

j
m], where l < 0, m ≤ 0, and

i, j = 1, . . . , d. The map

τ : On = C[t1, . . . , tn] → CDO0
n

ti 7→ ci0.

identifies the commutative algebra On of functions on Cn with the conformal dimen-
sion zero subspace CDO(0)

n ⊂ CDOn, which consists of polynomials in the variables
c10, . . . , c

n
0 . In other words, for any polynomial function f on Cn, we substitute ci0

for ti in the polynomial f . We will express this, somewhat abusively, as τ(f) = f(c).
This relationship shows that one can view the underlying vector space of CDOn as
an On-module.

One might hope that this map τ is a map of commutative algebras, by using the
(−1)-Fourier mode as a bilinear operation

(−)(−1)(−) : CDO(0)
n × CDO(0)

n → CDO(0)
n

to equip CDO(0)
n with a commutative algebra structure. The issue is that this product

is not associative! Hence, we emphasize that CDOn as a vertex algebra is not On-linear.

Remark 3.2.3. — In [4] Borisov develops a clean formalization of this situation by
introducing the notion of an R-loop module over a commutative algebra R, clarifying
how, in our example above, the On-module structure interacts with the vertex algebra
structure on CDOn. This notion of loop module also leads to quasi-loop-coherent
sheaves and then to sheaves of vertex algebras. Borisov used it to globalize the chiral
de Rham complex to complex manifolds, and suitably modified, it should apply to
chiral differential operators too.

3.2.1. Completion. — We use this module structure to complete along powers
of {t1, . . . , tn}. That is, we base change CDOn to a module for Ôn:

ĈDOn := Ôn ⊗On CDOn.

In Theorem 3.1 of [45] it is shown that this module obtains a vertex algebra structure
by extending that on CDOn. The critical step is showing that the vertex operator

Y (−, z) : ĈDOn → End(ĈDOn)Jz, z−1K
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3.3. THE CLASSICAL LIMIT 41

is well defined. Every power series f ∈ Ôn is a limit of polynomials {fk} ⊂ On.
According to the inclusion (3.2), every fk ∈ On determines a field

fk(z) := fk(c10(z), . . . , cn0 (z)) ∈ End(CDOn)Jz, z−1K.

The result of [45] is that the limit of {fk(z)} determines a field

f(z) := f(c10(z), . . . , cn0 (z)) ∈ End(ĈDOn)Jz, z−1K.

Note that ĈDOn is still a Z-graded vertex algebra, inherited from the conformal

dimension Z-grading on CDOn. Indeed, for each N ∈ Z we have ĈDO
(N)

n = Ôn ⊗On
CDO(N)

n .

3.2.2. — The primary complication in gluing chiral differential operators CDOn to a
sheaf on a general manifold is that the group of automorphisms of the disk do not act
as automorphisms of the vertex algebra. This problem appears for the formal disk as
well. The group of formal automorphisms Autn do not act on ĈDOn, as we will see
explicitly at the level of formal vector fields, in way preserving the vertex operator.

If we restrict ourselves to linear automorphisms of the disk, however, we find that
there is no such problem. Indeed we can explicitly describe the action of the Lie
group GLn by vertex algebra automorphisms on CDOn and ĈDOn as follows. Denote
by bm the n-tuple (b1m, . . . , b

n
m) considered as a vector in Cn and cm as the vector

(c1m, . . . , c
n
m). Given A ∈ GLn, the action of A is specified by

A · c0 = Ac0(4)

A · b−1 = (AT )−1b−1,(5)

where on the right-hand side we understand matrix multiplication. Clearly this action
preserves the Z≥0-grading.

3.3. The classical limit

While the βγ vertex algebra does not carry an action of formal automorphisms or
formal vector fields, its “classical limit” does. For this reason, descending the classical
vertex algebra is much simpler and the formalism of Gelfand-Kazhdan descent from
Section 2 directly applies. (For an alternative approach to this see [44]) First, we
discuss what we mean by the classical limit of CDOn.

For each fixed conformal dimension N ∈ Z, there is a filtration on the subspace
CDO(N)

n that we now describe. First we set up some notation.
Let L = ((i1, l1), . . . , (ip, lp)) ∈ ({1, . . . , n} × Z<0)

p, M = ((j1,m1), . . . ,mq)) ∈
({1, . . . , n} × Z≤0)

q be multi-indices of length p and q respectively. Define

bL := bi1l1 · · · b
ip
lp

cM := cj1m1
· · · cjqmq .
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42 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

Then as a vector space, the subspace CDO(N)
n of conformal dimension N is generated

by monomials of the form cMbL where

|L|+ |M | = (l1 + · · · lp) + (m1 + · · ·mq) = −N.

Define the subspace F kCDO(N)
n as the C-linear span of all elements of the form cMbL

such that p ≤ k where p is the length of the multi-index L as above. This construction

also provides a filtration on ĈDO
(N)

n .

Proposition 3.3.1. — The associated graded

Gr CDOn :=
⊕
N∈Z

Gr(CDO(N)
n ) =

⊕
N

(⊕
k

F kCDO(N)
n /F k−1CDO(N)

n

)

has the structure of a Z≥0-graded Poisson vertex algebra, as does Gr ĈDOn.

Roughly, a vertex algebra can be thought of as an integer family of products.
A Poisson vertex algebra is essentially a commutative vertex algebra together with an
integer family of Lie brackets that act on the underlying commutative vertex algebra
by derivations. For the precise definition of a Poisson vertex algebra see Chapter 16
Section 2 of [18]. The fact that Gr CDOn is a Poisson vertex algebra follows from the
well-known fact.

Proposition 3.3.2 (Chapter 16 of [18]). — If V is a filtered vertex algebra such
that Gr V is a commutative vertex algebra, then Gr V carries a canonical structure
of a Poisson vertex algebra.

Remark 3.3.3. — The associated graded Gr CDOn can be thought of as a classical
limit of the vertex algebra CDOn. We can introduce a deformation parameter ~ by
modifying the definition of the vertex operator to

Y (bj−1, z) =
∑
n<0

bjnz
−1−n + ~

∑
n≥0

∂

∂cj−n
z−1−n

and

Y (cj0, z) =
∑
n≤0

cjnz
−n − ~

∑
n>0

∂

∂bj−n
z−n.

These formulas define a vertex algebra CDOn,~ over the ring C~ = C[~] whose spe-
cialization ~ = 1 agrees with CDOn. Moreover, when we specialize ~ = 0 we get the
Poisson vertex algebra above. It is called the “classical” βγ vertex algebra.

For each conformal dimension N , we can thus identify the associated graded
Gr(CDO(N)

n ) with a direct sum of symmetric powers of tensor modules on Cn. Under
this identification, the Lie algebra of polynomial vector fields

Wpoly
n = C[t1, . . . , tn]{∂1, . . . , ∂n}
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3.4. HARISH-CHANDRA STRUCTURE ON CDOn 43

acts via Lie derivative on Gr CDOn. Expressing the Lie algebra of formal vector fields
as Wn = Ôn ⊗On Wpoly

n , we find that Wn acts on the vertex algebra Gr ĈDOn via
derivations.

Proposition 3.3.4. — The construction in the preceding paragraph defines the struc-
ture of a (Wn,GLn)-module on the Z≥0-graded vertex algebra Gr ĈDOn preserving
the family of brackets definining the Poisson vertex algebra structure. Moreover, this
action is compatible with the Ôn-module structure.

Proof. — The associated graded can be written as

Gr ĈDOn
∼=
⊗
0≤k

SymÔn(Ω̂1
n) ⊗

⊗
0<l

SymÔn(T̂n).

The action by Wn and GLn is by Lie derivative and changes of linear frame on the
respective tensor bundles appearing in the large decomposition above.

3.3.1. Conformal structure. — The vertex algebra CDOn, and its completion ĈDOn,
has the additional structure of a conformal vertex algebra of central charge equal to
twice the dimension 2n. This means that ĈDOn receives a map from the Virasoro
vertex algebra, Virc=2n, of central charge c = 2n. The Virasoro vertex algebra is
the Z≥0-graded with underlying vector space Virc = C[Lk, C] where k ≤ −2 and
generating field given by

Y (L−2, z) =
∑
k∈Z

Lkz
−k−2.

where the conformal dimension of L−2 is 2. A conformal vector for ĈDOn is defined
by

L−2 :=

n∑
i=1

bi−1Tc
i
0 =

n∑
i=1

bi−1c
i
−1 ∈ ĈDO

(2)

n .

Remark 3.3.5. — If V is a conformal vertex algebra and L0 ∈ V is the zero Fourier
mode of the Virasoro field, then for every v ∈ V , one has L0v = N(v)v for some
N(v) ∈ Z. If N(v) ∈ Z≥0 for all v, we see that L0 determines the structure of a
Z≥0-graded vertex algebra on V , where V (N) denotes the N -eigenspace of the L0 op-
erator. This fact motivates the use of the term “conformal dimension” for a Z≥0-graded
vertex algebra.

3.4. Harish-Chandra structure on CDOn

As opposed to the classical limit the vertex algebra ĈDOn is not a module for the
pair (Wn,GLn). The main result of this section is to show that there is an extension
of this Harish-Chandra pair that does act on the vertex algebra. This is largely based
on the work of [45] and [21], as well as [22], and we summarize their results below.
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44 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

3.4.1. Extension of vector fields. — On the Lie algebra side, the extension of Lie alge-
bras that acts on ĈDOn is precisely the extension W̃n of formal vector fields by Ω̂2

n,cl

defined by the Gelfand-Fucks second component of the Chern character defined in
Section 2. We now recall the construction in [45] that describes how this extension
acts. We can state the main result as follows.

Theorem 3.4.1 (Section 5.1 of [45]). — There is map of Lie algebras

ρ : W̃n ↪→ DerVA(ĈDOn)

of the extended Lie algebra W̃n into derivations of vertex algebra of chiral differential
operators on the formal n-disk. In particular, ĈDOn is a W̃n-module.

First, we describe how one embeds the vector space of formal vector fields inside
of chiral differential operators on D̂n. We have already described how to map a for-

mal power series f(t1, . . . , tn) to an element f(c10, . . . , c
n
0 ) ∈ ĈDO

(0)

n . This puts the

structure of an Ôn-module on ĈDO
(N)

n for each N . Note that as Ôn-modules we have
a splitting Wn = Ôn ⊗ C{∂1, . . . , ∂n}. We define

τW : Wn → ĈDO
(1)

n ,

f(t)∂j 7→ τ(f)bj−1 = f(c)bj−1.

In other words, we substitute ci0 for ti in the power series f and replace ∂j by b
j
−1.

The subspace of vectors of conformal dimension one ĈDO
(1)

n acts on the vertex
algebra through left multiplication by its zero Fourier mode

(−)(0)(−) : CDO(1)
n × CDOn → CDOn

In fact, for a fixed a ∈ ĈDO
(1)

n the endomorphism a(0) is a derivation of the vertex
algebra. The composite map of taking the zero mode after τW thus produces a linear
map

ρW : Wn → DerVA(ĈDOn),

f(t)∂j 7→ (τ(f)bj−1)(0) = (f(c)bj−1)(0).

Moreover, for any a ∈ ĈDO
(1)

n , the derivation a(0) : ĈDOn → ĈDOn preserves the

Z-grading and so defines a map a(0) : ĈDO
(N)

n → ĈDO
(N)

n for each N ∈ Z. A quick
calculation verifies that this map is not a map of Lie algebras. This issue is remedied
this by introducing an extension of Lie algebras, as we will see shortly.

3.4.2. — We introduce the space of 1-forms Ω̂1
n on the formal disk. Considered as an

abelian Lie algebra this acts on the vertex algebra ĈDOn as we now describe.
The de Rham differential ddR : Ôn → Ω̂1

n has an interpretation in the vertex algebra
ĈDOn as the translation operator T defining the vertex algebra structure. Indeed, we
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3.4. HARISH-CHANDRA STRUCTURE ON CDOn 45

define

τΩ1 : Ω̂1
n → ĈDO

(1)

n ,

f(t)dtj 7→ τ(f)T (cj0) = f(c)T (cj0).

As Ω̂1
n is abelian, the map τΩ1 automatically determines a Lie algebra representation

of Ω1
n on CDOn via the Lie algebra homomorphism

ρΩ1 : Ω̂1
n → DerVA(ĈDOn),

ω 7→ τΩ1(ω)(0).

It is clear that the action by an exact one-form is zero, so ρΩ1 factors as

Ω̂1
n → Ω̂1

n/dÔn ∼= Ω̂2
n,cl

ρ
Ω2

cl−−−→ DerVA(ĈDOn),

where we have identified Ω̂1
n/dÔn ∼= Ω̂2

n,cl via the de Rham differential. The map ρΩ2
cl
is

the desired action by closed two-forms.
We can explicitly describe the action by a closed two-form ω as follows. Let

α = αi(t)dt
i be a one-form such that dα = ω. Then

ρΩ2
cl

(ω) = −
(
∂jαi(c)T (cj0)T (ci0) + αi(c)T (ci0)2

)
(1)
.

3.4.3. — Consider the linear subspace

Wn := Im(ρW)⊕ Im(πΩ2
cl

) ⊂ DerVA(ĈDOn).

A direct calculation shows that Wn is actually a sub-Lie algebra of the vertex algebra
derivations. It is immediate that Im(ρΩ2

cl
) is an ideal in Wn and the quotient is

isomorphic to Wn. Thus, Wn sits in a short exact sequence

0→ Ω̂2
n,cl →Wn →Wn → 0.

The 2-cocycle determining this extension is

αMSV (f i∂i, g
j∂j) = −ddR(∂jf

i) ∧ ddR(∂ig
j).

This cocycle is precisely the cocycle chGF
2 (T̂n) determining the extension W̃n, so that

we have W̃n
∼= Wn.

Remark 3.4.2. — In [45] the connection to the Gelfand-Fuks Chern character is not
present, though our cocycle agrees on the nose with the vertex algebra calculation.

We have thus constructed a map of Lie algebras

ρ̃W = (ρW, ρΩ2
cl

) : W̃n
∼= Wn → DerVA(ĈDOn),

as desired.
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46 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

3.4.4. — We have already described the action of GLn on ĈDOn in (4) and (5).
Combining the results highlighted in the section above we obtain the following. This
action is compatible with the action of Wn just constructed. In conclusion, we can
summarize the above as follows.

Proposition 3.4.3. — The pair (W̃n,GLn) acts on the Z≥0-graded vertex algebra
ĈDOn. Moreover, this action is compatible with the Ôn-module structure.

3.5. Formal automorphisms

The above construction of the action of the pair (W̃n,GLn) on the vertex algebra
of CDOs will be sufficient for our purposes. In this section we review the main re-
sult of [21] which constructs an action of an extension of all formal automorphisms
Ãutn → Autn on CDOs. This action is compatible with our construction above.

Theorem 3.5.1. — Let AutV A(ĈDOn) denote the group of automorphisms of the vertex
algebra ĈDOn. There is a subgroup

Ãutn ↪→ AutVA(ĈDOn)

that fits in a short exact sequence of groups

(6) 0→ Ω̂2
n,cl → Ãutn → Autn → 1.

In [21], this subgroup Ãutn ⊂ AutVA(ĈDOn) is characterized as the “natural”
vertex algebra automorphisms. We will outline their argument and attempt to explain
the sense of “natural” here.

First, as ĈDOn is Z-graded by conformal dimension, it is reasonable to restrict to
dimension-preserving automorphisms, which will be determined by where they send
the generators. As discussed above, the generators are in dimensions 0 and 1: the
dimension 0 component can be identified with Ôn—functions on the formal n-disk—
and the dimension 1 component with Ω̂1 ⊕ T̂ —one-forms and vector fields on the
formal n-disk. We view the dimension 1 component as 2-step filtered, with Ω̂1 as the
submodule.

Before worrying about the vertex algebra structure, let us consider dimension-
preserving maps of the space of generators. This group is Aut(Ôn) × Aut(Ω̂1 ⊕ T̂ ).
Following [21], we restrict our attention to an important subgroup. On the dimen-
sion 0 component, they only consider the subgroup Autn. Note that every element
of Autn acts on the dimension 1 component, since they are tensor fields, so there is
a natural map Autn → Aut(Ω̂1 ⊕ T̂ ). On the dimension 1 component, they restrict
to automorphisms whose action respects the filtration and whose associated graded
action on Gr ĈDOn is simply the action induced by the underlying automorphism on
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3.5. FORMAL AUTOMORPHISMS 47

the dimension 0 component. In other words, such an automorphism φ is “triangular”:
it consists of a term φ0 ∈ Autn and of an Ôn-linear map φ1 : T̂ → Ω̂1, and

φ(f, ω,X) = (φ0 · f, φ0 · ω + φ1(X), φ0 ·X) ∈ Ôn ⊕ Ω̂1 ⊕ T̂ .

Let us use AutGMS
n to denote this group considered in [21]. The underlying set is

isomorphic to the product

Autn ×Matn(Ôn),

by using the natural isomorphism

Ω̂1
n⊗̂ÔnΩ̂1

n
∼= Matn(Ôn).

But this group AutGMS
n has an interesting group structure because of how Autn acts

on the dimension 1 component. In fact, it has the structure of a semi-direct product
Autn npb (Ω̂1

n)⊗2, where the pull-back action is as above.
By definition, the group Ãutn is the subgroup of AutGMS

n consisting of vertex
algebra automorphisms. In other words, we pick out the dimension-preserving auto-
morphisms of generators that intertwine with the vertex operator and so on.

In [21] it is shown that the composition

Ãutn → AutGMS
n → Autn

is surjective and that its kernel is isomorphic to closed 2-forms. That is, one has a
map of extensions

Ω̂2
n,cl

//

��

Ãutn //

��

Autn

��

Ω̂1
n ⊗ Ω̂1

n
// AutGMS

n
// Autn.

This identifies the relevant short exact sequence (6).

3.5.1. An explicit formula for the cocycle. — In this section we describe an explicit
group 2-cocycle

α̃GMS ∈ C2
Grp(Autn; Ω̂2

n,cl).

describing the extension (6). First, we elaborate on what we mean by a group 2-
cocycle.

We use the van Est model for smooth group cohomology and denote the cochains
by C∗Grp. (See Chapter 3 of [19] for more discussion.) Given a Lie group G and M

a representation, let CkGrp(G;M) denote the space of smooth functions C∞(Gk,M).
(Typically we have in mind a finite-dimensional representation, but it is well-defined
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48 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

for any vector space M such that smooth maps C∞(Gk,M) is defined.) The differen-
tial dGrp is defined by

(dGrpα)(g1, . . . , gk+1) = g1α(g2, . . . , gk+1)

+

k∑
i=1

(−1)iα(g1, . . . , gigi+1, . . . , gk+1) + (−1)k+1α(g1, . . . , gk).

When M is itself a cochain complex with differential dM , we naturally obtain a
double complex. Let C∗Grp(G;M) denote the associated total complex, combining the
differential dGrp and dM .

Note that a 2-cocycle α of C∗Grp(G;M) determines an extension

0→M → G̃α → G→ 0,

where the group structure on G̃α is defined by

(g1,m1) · (g2,m2) = (g1g2,m1 + g1m2 + α(g1, g2)),

in the standard way.
We now proceed to write down a formula for the cocycle associated to the exten-

sion (6). Much of the argumentation below is implicit in Section 6 of [22] (in the
context of the closely related Čech approach to CDOs) and also in [21], and we refer
the reader to these sources for more details.

Let Ω̂≥2
n denote a truncation of the de Rham complex: it is the total complex of

the double complex

Ω̂2
n

ddR−−→ Ω̂3
n

ddR−−→ · · · ddR−−→ Ω̂nn.

There is a natural action of Autn on this complex, as Cartan’s formula for the action
of vector fields on differential forms intertwines with the de Rham differential.

First, we write down a 2-cocycle αGMS ∈ C∗Grp(Autn; Ω̂≥2
n ), following [21]. Given

an element f ∈ Autn, we will use Df to denote its Jacobian. We give an explicit
formula for αGMS via a pair of maps (α2, α3), where

α2 : Autn ×Autn → Ω̂2
n

(f1, f2) 7→ tr
(
(Df1)−1ddR(Df1)(ddR(Df2)(Df2)−1)

)
and

α3 : Autn → Ω̂3
n

f 7→ 1
3 tr

(
((Df)−1ddRDf)3

)
.

This cochain is of degree 2 and has no terms of type Ωk for k ≥ 4. One immediately
checks that this is a cocycle. That is,

ddRα2(f1, f2) = (dGrpα3)(f1, f2),

ddRα3(f1) = 0,

(dGrpα2)(f1, f2, f3) = 0,
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3.5. FORMAL AUTOMORPHISMS 49

for all f1, f2, f3 ∈ Autn. The last two equations are immediate by computation. The
first equation follows from the relation

(7) α3(f2 ◦ f1) = α3(f1) + f∗1α3(f2)− ddRα2(f1, f2),

which is an instance of the Polyakov-Wiegmann identity. The Jacobian of the com-
position f2 ◦ f1 is given by D(f2 ◦ f1) = f∗1 (Df2)Df1 as matrix-valued formal power
series. Thus, for instance, we have

ddR (D(f2 ◦ f1)) = f∗1 (ddRDf2)Df1 + f∗1 Df2ddRDf1.

Let Df = Jac(f2 ◦ f1) so that α3(f2 ◦ f1) = 1
3Tr

(
((Df)−1ddRDf)3

)
. Plugging in the

formula for the Jacobian we compute

1

3

(
(Df)−1ddRDf

)3
=

1

3

(
(Df1)−1f∗1 ((Df2)−1ddRDf2)Df1

)3
+

1

3

(
(Df1)−1ddRDf1

)3
+ {cross terms}.

Taking the trace of both sides we see that the first two terms return the first two
terms of Equation (7). In a similar way, a direct (albeit tedious) calculation shows
that the cross terms agree with ddRα(f1, f2).

By the formal Poincaré lemma we know that the inclusion Ω̂2
n,cl ↪→ Ω̂≥2

n is a quasi-
isomorphism. Moreover, this quasi-isomorphism is clearly Autn-equivariant so that
we have a resulting quasi-isomorphism of complexes

C∗Grp(Autn; Ω̂2
n,cl)→ C∗Grp(Autn; Ω̂≥2

n ).

A lift α̃GMS ∈ C2
Lie(Autn; Ω̂2

n,cl) of the cocycle αGMS = (α2, α3) under this quasi-
isomorphism is a representative for the group extension (6).

We can obtain an explicit formula as follows. Since ddRα3(f) = 0 for all f ,
the formal Poincaré lemma assures the existence of a map µ : Autn → Ω̂2

n such
that ddRµ = α3. We define the 2-cocycle

α̃GMS(f1, f2) = α2(f1, f2) + µ(f1) + f∗1µ(f2)− µ(f2 ◦ f1).

Via the Polyakov-Wiegmann identity (7), this element is closed and determines a
2-cocycle in C2

Grp(Autn; Ω̂2
n,cl).

3.5.2. — We discuss how the construction of Ãutn and its action on ĈDOn from
Proposition 3.5.1 is compatible with the action of (W̃n,GLn) on ĈDOn that we con-
structed in Proposition 3.4.3. First, we see that the group cocycle αGMS is compatible
with the cocycle ch2(T̂n) defining W̃n.

Given any Lie group and G-representation M , the derivative at the identity of G
(and its products Gk) determines a cochain map

D1 : C∗Grp(G;M)→ C∗Lie(g;M),
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50 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

where we view M as a g = Lie(G)-module on the right hand side. Explicitly, given a
k-cochain α of G we define

(D1α)(x1, . . . , xk) =
d

dt
(α(x1(t), . . . , xk(t)) |t=0

,

where xi(t) is the flow on G determined by xi ∈ g.
The Lie algebra of formal automorphisms of the n-disk is identified with the sub-

algebra W0
n ⊂ Wn consisting of formal vector fields that vanish at the origin. Thus,

there is a map of vector spaces

(8) D1 : C2
Grp(Autn; Ω̂2

n,cl)→ C2
Lie(W0

n; Ω̂2
n,cl)

induced by taking the tangent space at the identity.

Proposition 3.5.2. — The image of α̃GMS under the map (8) is equal to the restriction
of chGF

2 (T̂n) to formal vector fields that vanish at the origin.

This proposition shows that (W̃n, Ãutn) is a Harish-Chandra pair extending the
pair (Wn,Autn). Combined with Theorem 3.5.1 of [21] we see that (W̃n, Ãutn) acts
on the vertex algebra ĈDOn. This action is compatible with the action of the pair
(W̃n,GLn) we have constructed from Proposition 3.4.3 in the following way.

There is a natural map p : Ãutn → GLn that takes a formal automorphism to-
gether with a closed two-form and maps it to the linear piece of the 1-jet of the
automorphism. This is clearly equivariant for the action of vector fields so that we
have an induced map of pairs p : (W̃n, Ãutn) → (W̃n,GLn). The choice of a for-
mal coordinate determines a splitting s : GLn → Autn and hence a map of pairs
s : (W̃n,GLn) → (W̃n, Ãutn). The action of (W̃n,GLn) on ĈDOn constructed in
Proposition 3.4.3 is the restriction along the map s of the action by (W̃n, Ãutn) con-
structed in [21].

3.6. The conformal structure for the equivariant vertex algebra

We have already seen that the βγ vertex algebra is conformal so that there is a map
of vertex algebras ΦVir : Virc=n → ĈDOn. This map is not equivariant for the action
of the extended Lie algebra W̃n (where we equip Virc=n with a trivial W̃n action).
We will see that the failure for this map to be a map of W̃n-modules is measured by
a certain Gelfand-Kazhdan characteristic class.

The map of vertex algebras ΦVir is completely determined by where it sends the

Virasoro generator, which we called L−2 ∈ ĈDO
(2)

n . Since Virc=n has the trivial
W̃n module structure, we see we see that ΦVir is map of W̃n-modules if and only if
X̃ ·L−2 is zero for all X̃ in W̃n. An immediate calculation shows that closed two-forms
act on L−2 by zero, thus it suffices to look at X · L−2 for X ∈Wn.
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3.6. THE CONFORMAL STRUCTURE FOR THE EQUIVARIANT VERTEX ALGEBRA 51

Given any element a ∈ ĈDO
(2)

n we obtain a linear map given by the second Fourier
mode

a(2) : ĈDO
(1)

n → ĈDO
(0)

n .

For X ∈ Wn, the element X · L−2 ∈ ĈDO
(2)

n thus determines a map (X · L−2)(2) :

ĈDO
(1)

n → ĈDO
(0)

n .

Finally, recall that we have described a map of Wn-modules τΩ1 : Ω̂1
n → ĈDO

(1)

n .
It’s cokernel is identified with T̂n. That is, there is a short exact sequence of Wn-mod-
ules

0→ Ω̂1
n → ĈDO

(1)

n → T̂n → 0.

Proposition 3.6.1. — For each X ∈ Wn the linear map (X · L−2)(2) : ĈDO
(1)

n → Ôn
factors through the quotient T̂n

ĈDO
(1)

n

��

// Ôn

T̂n
α(X)

==

and hence determines an Ôn-linear map α(X) : T̂n → Ôn as in the diagram. Moreover,
the assignment X 7→ α(X) defines a cocycle in C1

Lie(Wn; Ω̂1
n) and is cohomologous to

the Gelfand-Fuks-Chern class cGF
1 (T̂n) ∈ C1

Lie(Wn; Ω̂1
n).

Proof. — The fact that (X · L−2)(2) factors through T̂n follows from the following
short calculation.

Lemma 3.6.2. — For any c ∈ ĈDO
(0)

n we have (L−2)(2)(Tc). Similarly, for X ∈ Wn

one has (X · L−2)(2)(Tc) = 0.

Proof. — Set L = L−2. Since T is a derivation we have T (L(2)c) = L(2)(Ta) +

(TL)(2)a. Thus L(2)(Tc) = T (L(2)c)− (TL)(2)c. For conformal dimension reasons we
have L(2)c = 0, thus L(2)(Tc) = −(TL)(2)c = 2L(1)c, again since T is a derivation.
The element L is a Virasoro vector, thus L(1) = T , so that L(1)c = Tc = 0, since
c is of degree zero. Similarly, for X ∈ Wn, we have (X · L)(2)(Tc) = L(2)(X · Tc) =

L(2)(TX · c)) as X is a derivation of the vertex algebra.

We thus obtain a linear map α : Wn → Ω̂1
n. We verify that this is equal to cGF

1 (T̂n).
The formula for this Chern class is given by

cGF
1 (T̂n)(X) = ddR(∂ifi),
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52 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

where X = fi∂i ∈ Wn. We utilize the following Borcherds identity for how Fourier
modes compose

(a(l)b)(m)c =
∑
j

(−1)j

(
l

j

)(
a(l−j)b(m+j)c− (−1)lb(l+m−j)a(j)c

)
.

First, we simplify X ·L−2 = (fi(c)b
i
−1)(0)(b

k
−1Tc

k
0). Since x(0)(Tc

k
0) = 0 for any x, we

see
X · L−2 =

(
(fi(c)b

j
−1)(0)(b

k
−1)
)
Tck0 .

By the Borcherd’s formula this simplifies to

(−(bk−1)(0)(fi(c))b
j
−1)Tck0 = −(∂kfi)(c)Tc

k
0b
i
−1.

We compute the value of (X · L−2)(2) on the generators bj−1. There is only one term
in the Borcherd’s expansion and it is of the form

(X · L−2)(2)(b
j
−1) =

(
bi−1

)
(1)

(
(∂kfi(c)Tc

k
0)(0)b

j
−1

)
= −(bi−1)(1)

(
(bj−1)(0)(∂kfi(c))Tc

k
0

)
= −δki∂j∂kfi.

Thus α(X) = cGF
1 (T̂n)(X) and the proof is complete.

3.7. The character of a graded vertex algebra

In this section we define and compute the “local character” of the vertex algebra
ĈDOn. It will globalize, under Gelfand-Kazhdan descent, to the character of the sheaf
of chiral differential operators on a complex manifold X.

Definition 3.7.1. — Let V be a Z≥0-graded vertex algebra. The graded character of V is
the following q-expansion

(9) χ(V ) :=
∑
N

qN
(

dimV (N)
)
∈ C[[q]].

Remark 3.7.2. — When V is a conformal vertex algebra, there is a slight variant
of the graded character that involves the central charge c of V . If L0 is the zero
mode of the Virasoro vector in the conformal vertex algebra, the character is defined
by char(V ) := TrV q

L0−c/24. The relationship to the graded character we defined in
Equation (9) is given by q−c/24χ(V ) = char(V ) ∈ q−c/24C[[q]]. The reason for this
extra factor of q is that χ(V ) has nicer modular properties. For more about this
modularity, and motivation for the the definition of the character, see [57].

We wish to define the graded character of a vertex algebra with an action of a
Harish-Chandra pair (g,K). Suppose g acts on a Z≥0-graded vertex algebra V by
grading-preserving derivations. Then, each weight space V (N) is a module for g. The
character of the vertex algebra will be a q-expansion of equivariant characters of the
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3.7. THE CHARACTER OF A GRADED VERTEX ALGEBRA 53

individual spaces of fixed conformal dimension V (N). Thus, it suffices to define what
we mean by the character of a (g,K)-module (in vector spaces).

For simplicity we work just with the Lie algebra g. The generalization to a mod-
ule for the pair (g,K) is a small extension of this. For any g-module W , with ac-
tion ρ : g→ End(W ), its Chern character is given by chg(W ) = Tr (exp(ρ(X))) ∈
Sym(g∨). Since the trace is conjugation invariant the character determines an ele-
ment in the Hochschild homology of the algebra C∗Lie(g):

chg(W ) ∈ HH0 (C∗Lie(g)) ∼= Ŝym(g∨)g.

There is a way to express this character at the cochain level. For this, it is useful to
have an interpretation of the character in terms of Lie algebra cohomology, which will
coincide with the Gelfand-Fuks-Chern characters in the case of (g,K) = (Wn,GLn).

Let Hoch∗(−) denote the complex of Hochschild chains, computing Hochschild
homology. The Hochschild-Rosenberg-Kostant theorem for the commutative ring R
posits a quasi-isomorphism of cochain complexes

Hoch∗ (R) ' Ω−∗R ,

where Ω−∗R is the regraded de Rham complex of the commutative ring R. In the case
that R = C∗Lie(g) this quasi-isomorphism takes the form

Hoch∗ (C∗Lie(g)) ' C∗Lie

g;⊕
k≥0

Symk(g∨)[k]

 .

The definition of the Atiyah class of a g-module W can be found in [25]. This class is
an element Atg(W ) ∈ Ω1

Bg ⊗ End(W ) gives a Chern-Weil description in Lie algebra
cohomology of the Chern character above:

chg(W ) = Tr

(
exp

(
1

2πi
Atg(W )

))
.

We will encounter the Atiyah class later, in Part II. Other characteristic classes also
admit a description in terms of this Atiyah class. For instance, the Todd class of the
g-module W is defined to be the determinant of a certain formal series involving the
Atiyah class:

Tdg(W ) = det

(
1− e−At(W )

At(W )

)
.

The Euler class of the g-module W is defined to be

χg(W ) := Tdg(g[1]) · chg(W ) ∈ C∗Lie

g;⊕
k≥0

Symk(g∨)[k]

 .

IfW is a module for the Harish-Chandra pair (g,K) the same construction defines the
Euler class in relative Lie algebra cochains χ(g,K)(W ) ∈ C∗Lie

(
g,K;

⊕
k≥0 Symk(g∨)[k]

)
.

We now return to the case of a vertex algebra.
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54 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

Definition 3.7.3. — If a pair (g,K) acts on a Z≥0-graded vertex algebra V , the
(g,K)-equivariant graded character of V is the q-expansion

char(g,K)(V ) :=
∑
N≥0

qNχ(g,K)(V (N))

in C∗Lie

(
g,K;

⊕
k≥0 Symk(g∨)[k]

)
[[q]].

3.7.1. — We now turn to computing the character for the main example, the
(W̃n,GLn)-equivariant vertex algebra ĈDOn.

There is one subtlety: the conformal weight spaces of ĈDOn (and CDOn) are not
finite dimensional. They are, however, finite rank over the ring Ôn, and so, whenever
we count dimensions or take duals, we will do so in a Ôn-linear way.

With this modification, the equivariant graded character of ĈDOn as a module
for (W̃n,GLn) will be an element

χ(Wn,GLn)(ĈDOn) ∈ C∗Lie(W̃n,GLn; Ω̂−∗n )[[q]].

Here, Ω̂−∗n is the regraded de Rham complex
⊕

k≥0 Ω̂kn[k] on the formal disk.
Something important happens here: the tilde has vanished on Wn so that the

character is the image of an element from C∗Lie(Wn,GLn; Ω̂−∗n ). To justify this location
for the character, we use the following argument.

Let p : g̃→ g be a morphism of Lie algebras, and let k be its kernel. We say that a
finite-dimensional g̃-module V is off-diagonal for p if there is a filtration

0 = F−1V ⊂ F 0V ⊂ F 1V ⊂ · · · ⊂ FNV = V

such that for all i, k · F iV ⊂ F jV for some j < i. There is an elementary fact about
traces of such modules.

Lemma 3.7.4. — If V is an off-diagonal module for the Lie algebra map p : g̃→ g and
V has finite dimension, then tr(exp(x)) = tr(exp(p(x))) for all x ∈ g̃.

To see this, choose a filtration for V exhibiting the off-diagonal action, and a pick
a basis for V compatible with this filtration. In terms of this basis, each element of k
acts by a matrix that is strictly upper triangular (i.e., off-diagonally), and hence does
not contribute to the trace.

Similarly, we have the following.

Lemma 3.7.5. — Let (g,K) and (g̃,K) be Harish-Chandra pairs with (p, id) : (g,K)→
(g̃,K) a morphism of pairs. If V is a finite-dimensional off-diagonal (g̃,K)-module,
then chg(V ) is in the image of the map

p∗ : C∗Lie

g,K;
⊕
k≥0

Symk(g∨)[k]

→ C∗Lie

g̃,K;
⊕
k≥0

Symk(g∨)[k]

 .
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In our case, we take the map of Lie algebras p : W̃n → Wn and the W̃n-module
ĈDOn. Note that we will exhibit a filtration of infinite length.

Consider the basis of ĈDOn given by products of elements cim, b
j
l . Define the filtered

subspace F qĈDOn to be the subspace spanned by elements of the form

ci1m1
· · · cikmkb

j1
l1
· · · bjqlq .

It is a quick computation to verify that the action of ker(p) = Ω̂2
n,cl on the CDOs is

off-diagonal for this filtration.
A slight modification of Lemma 3.7.5, which applies to the q-graded situation,

implies the following.

Corollary 3.7.6. — The (W̃n,GLn)-equivariant graded character of the vertex algebra
ĈDOn is the image of an element

χ(Wn,GLn)(ĈDOn) ∈ C∗Lie(Wn,GLn; Ω̂−∗n )[[q]]

along the pull-back C∗Lie(Wn,GLn; Ω̂−∗n )→ C∗Lie(W̃n,GLn; Ω̂−∗n ).

For the pair (g,K) = (Wn,GLn) the Chern character in the previous section coin-
cides with the Gelfand-Fuks-Chern character chGF(W ) for any formal vector bundle
W . Set TdGF := Td(Wn,GLn).

Proposition 3.7.7. — The (Wn,GLn)-equivariant graded character of ĈDOn is given
by

χ(Wn,GLn)(ĈDOn) = TdGF · chGF

⊗
l≥1

Symql(Ω̂
1
n ⊕ T̂n)


as an cocycle in C∗Lie

(
Wn,GLn; Ω̂−∗n

)
[[q]].

Remark 3.7.8. — Here we use the notation

Symql(V ) =
⊕
k≥0

qklSymk(V ),

so that
ch
(
Symql(V )

)
=
∑
k≥0

qklch
(

Symk(V )
)
.

Proof. — The conformal dimension zero subspace of ĈDOn is identified with Ôn and
the conformal dimension one subspace is identified with Ω̂1

n⊕ T̂n (all as W̃n-modules).
The full associated graded of CDOs is given by

Gr ĈDOn
∼=
⊗
0≤k

SymÔn(Ω̂1
n) ⊗

⊗
0<l

SymÔn(T̂n).
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56 CHAPTER 3. HARISH-CHANDRA STRUCTURE ON CDOS

Putting this all together we find

char(W̃n,GLn)(ĈDOn) =
∑
N≥0

qNchGF

(
ĈDO

(N)

n

)

= chGF

⊗
N≥1

SymqN (T̂n ⊕ Ω̂1
n)


as desired.
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CHAPTER 4

EXTENDED GELFAND-KAZHDAN DESCENT

Our construction of descent in Section 2 uses the Harish-Chandra pair (Wn,GLn).
We have seen, however, that this pair is not appropriate if we wish to describe descent
for the vertex algebra of chiral differential operators. In this section we develop the
theory of descent for the pair (W̃n,GLn), which does act on the vertex algebra, as we
saw in the preceding section.

4.1. The extended bundle

The central object in the construction of Gelfand-Kazhdan descent is the coordi-
nated bundle Xcoor. This space is a principal bundle for the group of formal automor-
phisms. Using a Gelfand-Kazhdan structure, we obtain from Xcoor a Wn-valued flat
connection on the frame bundle FrX . In this section, we construct and classify lifts
of the bundle Xcoor to an “extended” coordinate bundle X̃coor on which the exten-
sion W̃n acts transitively. Together with the choice of an extended Gelfand-Kazhdan
structure (defined in Section 4.1.5), this extended bundle will give us the data of a
holomorphic (W̃n,GLn)-bundle with flat connection on the frame bundle of X.

4.1.1. — The data of a flat W̃n-valued connection on FrX is a 1-form

ω̃ ∈ Ω1,0(FrX ; W̃n)

satisfying the Maurer-Cartan equation

ddRω̃ +
1

2
[ω̃, ω̃] = 0,

where [−,−] is the Lie bracket for W̃n extended to the de Rham complex. A crucial
issue here is that such a structure on the frame bundle does not always exist.

We have already seen that the Gelfand-Fuks-Chern character chGF(T̂n) maps to
the ordinary Chern character of a complex n-manifold under the characteristic map

charσ :
⊕
k

Hk(Wn,GLn; Ω̂kn,cl)→
⊕
k

Hk(X; ΩkX,cl)
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58 CHAPTER 4. EXTENDED GELFAND-KAZHDAN DESCENT

associated to a Gelfand-Kazhdan structure (X,σ). Assuming we have an extension
X̃coor, the image of ω̃ under the quotient map Ω1(FrX ; W̃n) → Ω1(FrX ; Wn) is the
connection one-form ωσ defined by the Gelfand-Kazhdan structure. Thus, the re-
striction of the second component of the Chern character chGF

2 (T̂n) to an element
in C2

Lie(W̃n; Ω̂2
n,cl) still maps to the ordinary Chern character ch2(TX) using the char-

acteristic map for the flat connection ω̃.
The point here is that in C2

Lie(W̃n; Ω̂2
n,cl), the element ch2(T̂n) is cohomologically

trivial. That is, there is an element αn such that dLieαn = ch2(T̂n) where dLie is the
differential on C∗Lie(W̃n; Ω̂2

n,cl). By naturality of descent, we see that the image of αn
under the characteristic map is a trivialization for ch2(TX). We conclude that lifts
exists only if the second component of the Chern character of the manifold is trivial.
Moreover, we wish to classify such lifts.

Theorem 4.1.1. — Fix a Gelfand-Kazhdan structure σ on X. Then there is a bijection
between lifts of the (Wn,GLn)-bundle (FrX , ωσ) to a (W̃n,GLn)-bundle and trivial-
izations of ch2(TX) ∈ H2(X; Ω2

cl,X). Moreover, if ch2(TX) = 0, such lifts are a torsor
for H1(X; Ω2

cl,X).

Our proof is based on the Dolbeault model for the Chern character, and throughout
this section we will work with Dolbeault representatives for the Atiyah class. This
approach is well studied and an overview can be found in [1] and [30], but we will
briefly review the requisite background.

Fix a complex Kähler manifold X and a holomorphic vector bundle E. Also,
let ∇ be a smooth connection of type (1, 0) on X for a holomorphic vector bundle E.
That is, an operator

∇ : E → Ω1,0(X)⊗ E .

Let ∇′ = ∇+ ∂, then ∇′ is an ordinary connection for E. The curvature of ∇′ splits
as

F∇′ = F 2,0
∇′ + F 1,1

∇′ ∈ Ω2,0(X; End(E))⊕ Ω1,1(X; End(E)).

According to the Dolbeault isomorphism Hp,q

∂
(X;E) ∼= Hq(X; ΩpX ⊗ E ), one has the

following fact about the (1, 1)-component of the curvature.

Proposition 4.1.2 (Proposition 4 in [1]). — The (1, 1)-form F 1,1
∇′ is ∂-closed and is in-

dependent, in Dolbeault cohomology, of the choice of ∇. Moreover, the cohomology
class [F

(1,1)
∇′ ]∂ ∈ H1,1(X; End(E)) is a Dolbeault representative for the Atiyah class

At(E) ∈ H1(X; Ω1,hol
X ⊗O End(E )).

As a corollary, we see that Tr
(

(F
(1,1)
∇′ )k

)
is closed for both ∂ and ∂. Moreover, this

(k, k)-form is a Dolbeault representative for the kth component of the Chern character
chk(E). In particular, trivializations for ch2(TX), as in the theorem, are equivalent
to ∂-trivializations of the element Tr

(
(F

(1,1)
∇′ )2

)
∈ Ω2,2(X).
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4.1. THE EXTENDED BUNDLE 59

4.1.2. Warm-up: Chern-Simons forms on Cn. — Let us consider an open subset
U ⊂ Cn and a hermitian vector bundle E on U . We fix a trivialization E = U × E0

with E0 equipped with a hermitian inner product.
In this situation, there is a unique connection on E that preserves the hermitian in-

ner product compatible with the complex structure. With respect to the trivialization,
it takes the form

ddR +A,

where A ∈ Ω1,0(U ; End(E0)). (This connection is usually called the Chern connec-
tion.) The curvature of the connection is of type (1, 1), and it has the form

FA = F
(1,1)
A = ∂A

and lives in Ω1,1(U ; End(E0)).
Consider the (k, k)-form Θ

(k)
A := Tr(F kA). This form is a local representative for the

kth Chern character. For the following calculations, it is convenient to introduce the
following complex. Define Ω≥2,∗(U) to be the complex

Ω2,∗
∂

(U)
∂−→ Ω3,∗

∂
(U)

∂−→ · · · ,

where Ωp,∗
∂

(U) is the Dolbeault complex of (p, ∗)-forms with differential ∂. In this
complex the degree of a form of type (k, l) is k+ l−2. Equivalently, Ω≥2,∗ is the total
complex of the double complex (Ω≥2,∗, ∂, ∂).

There is an obvious embedding

Ω2,hol
cl (U) ↪→ Ω≥2,∗(U),

where Ω2,hol
cl (U) is concentrated in degree zero. This is a quasi-isomorphism by using

Poincaré lemma for the operators ∂ and ∂ for the open set U together with the obvious
spectral sequence. (Note that the left hand side is concentrated in cohomological
degree zero)

A direct calculation shows that Θ
(k)
A is both ∂ and ∂-closed. In fact, we will use a

preferred one given by the Chern-Simons functional.
In the case k = 2 we evaluate the usual Chern-Simons functional on the Chern

connection A: consider the 3-form

CS(A) = Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
= Tr

(
A ∧ ∂A+A ∧ ∂A+

2

3
A ∧A ∧A

)
= Tr

(
A ∧ ∂A− 1

3
A ∧A ∧A

)
using ∂A+ A ∧ A = 0. Note that CS(A) is an element in Ω≥2,∗(U) of cohomological
degree one. By construction dCS(A) = Θ

(2)
A , where d is the total differential on the

complex.
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60 CHAPTER 4. EXTENDED GELFAND-KAZHDAN DESCENT

We are interested in how the Chern-Simons form interacts with other trivializations
of Θ

(2)
A . Let us fix another trivialization α ∈ Ω≥2,∗(U) of Θ

(2)
A such that dα = Θ

(2)
A .

Notice that the element α − CS(A) is a closed element of degree one in the complex
Ω≥2,∗(U). Thus, there exists an element β ∈ Ω≥2,∗(U) of cohomological degree zero,
i.e., a (2, 0)-form such that

dβ = α− CS(A).

The ambiguity in choosing such a β is precisely the cohomology of the complex which
we already determined to be Ω2,hol

cl (U). That is, if ω is a closed holomorphic two-form
then β + ω satisfies

d(β + ω) = dβ = α− CS(A).

More precisely, given a trivialization α the space of all such β is a torsor for Ω2,hol
cl (U).

Before we proceed to the formal situation, and the construction of the extended
coordinated bundle, we need to understand how all of the trivializations above change
as we make a gauge transformation.

Suppose that our holomorphic vector bundle E is TU , the holomorphic tangent
bundle. Given a biholomorphism f : U → U , we obtain a gauge transformation of A
to the new connection

f ·A := g−1Ag + g−1∂g,

where g = Jac(f) is the Jacobian of f .

Lemma 4.1.3. — There is a (2, 0)-form ρ depending on f and A such that

CS(A)− CS(f ·A) = dρ.

Proof. — For the existence of such a ρ, it suffices to show that the difference
CS(A)− CS(f ·A) is closed. Indeed, under a gauge transformation the Chern-Simons
functional becomes

CS(f ·A) = CS(A) + dTr(g−1∂g ∧A) +
1

3
Tr
(
(g−1∂g)3

)
.

Now Tr((g−1∂g)3) is both ∂ and ∂ closed, so the result follows.

Remark 4.1.4. — The 2-form ρ is only unique up to a holomorphic closed 2-form. We
will need to fix one in the next section when we define the extended bundle.

4.1.3. Formal coordinates. — There is a completely formal version of the above triv-
ializations, and we will use it to construct the bundle Xcoor

α extending the ordinary
coordinate bundle.

Let ϕ be a formal holomorphic coordinate around a point x ∈ X. In the construc-
tion of the coordinate bundle, we viewed a formal holomorphic coordinate as a map
ϕ : D̂n → X where D̂n is the holomorphic formal disk. In this section we view this
coordinate as a “holomorphic” map ϕ : D̂n

C → X where D̂n
C denotes the complex formal

disk in the sense that its ring of functions is

O(D̂n
C) = CJt1, . . . , tn, t1, . . . , tnK.
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4.1. THE EXTENDED BUNDLE 61

Similarly to the non-formal case, we denote the full de Rham complex by

Ω̂∗,∗n :=
(
CJt1, . . . , tn, t1, . . . , tnK⊗ C[dti,dtj ],ddR

)
,

where dti, dtj are placed in cohomological degree one. In this section, to stress holo-
morphic dependence, we denote by Ω̂k,hol

n,cl the space of holomorphic closed k-forms
on D̂n, i.e., ∂-closed k-forms depending only on the formal variables {ti}.
Notation 4.1.5. — In this section we will denote the full de Rham differential by

ddR : Ω̂∗,∗n → Ω̂∗,∗n

and write ddR = ∂ + ∂ where ∂, ∂ are the formal Dolbeault operators.

We define the truncated de Rham complex Ω̂≥2,∗
n to be

Ω̂2,∗ ∂−→ Ω̂3,∗ ∂−→ · · · .
Its differential will be denoted by d. Note that we still have a quasi-isomorphism at
the formal level

Ω̂2,hol
n,cl

'−→ Ω̂≥2,∗
n

by the formal Poincaré lemma.
Fix a Kähler manifold X and equip the holomorphic tangent bundle with the

associated Chern connection ∇. Let us also fix a global trivialization α of the second
component of the Chern character of TX .

Pulling back to the formal disk via the coordinate ϕ : D̂n
C → X, we can write the

connection in the form ddR+Aϕ, where Aϕ ∈ Ω̂1,0
n ⊗End(Cn) is the formal connection

one-form. Just as above, the degree two element

Θ̂
(2)
Aϕ

= Tr((∂Aϕ)2) ∈ Ω̂≥2,∗
n

is a representing form for Θ
(2)
∇ on the formal disk. Note that this element is both ∂

and ∂-closed. Let ĈS(A) ∈ Ω̂≥2,∗
n be the corresponding Chern-Simons form on the

formal disk.

Remark 4.1.6. — It is here that we see the explicit appearance of closed 2-forms, or
really its natural resolution.

For each formal coordinate ϕ, the trivialization α of Θ
(2)
X determines a for-

mal trivialization α̂ϕ ∈ Ω̂≥2,∗
n satisfying dα̂ϕ = Θ̂

(2)
Aϕ

. Just as above, the

difference α̂ϕ − ĈS(Aϕ) is d-closed and hence there exists a βϕ ∈ Ω̂2,0
n such

that dβ = α̂ϕ − ĈS(Aϕ).

Definition 4.1.7. — The extended coordinate bundle Xcoor
α is the set of pairs

(ϕ, βϕ),

where ϕ : D̂n
C → X is a formal coordinate and βϕ ∈ Ω̂2,0

n satisfies

dβϕ = α̂ϕ − ĈS(Aϕ)
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62 CHAPTER 4. EXTENDED GELFAND-KAZHDAN DESCENT

in the cochain complex Ω̂≥2,∗
n .

4.1.4. Defining the bundle. — We have just defined the set corresponding to the ex-
tended bundle. We now show that it is a principal bundle on X for the group Ãutn
lifting the coordinate bundle Xcoor.

Before we define the action of Ãutn we make the following observations. Given
a formal coordinate ϕ and an automorphism f ∈ Autn we obtain a new formal
coordinate f∗ϕ = ϕ ◦ f . If Aϕ is the connection one-form corresponding to ϕ then
Af∗ϕ is given by the gauge transformation

Af∗ϕ = g−1Aϕg + g−1∂g,

where g = Jac(f) ∈ GLn(Ôn) is the Jacobian. Just as in the proof of Lemma 4.1.3 we
have

ĈS(Aϕ)− ĈS(Af∗ϕ) = dTr(g−1∂g ∧A) +
1

3
Tr
(
(g−1∂g)3

)
.

The 3-form χ̂WZW (f) := 1
3Tr

(
(g−1∂g)3

)
is ∂-closed, and hence we may choose a non-

unique cobounding two-form. Explicitly, the choice of a formal coordinate determines
a homotopy

h : Ω̂k,hol
n → Ω̂k−1,hol

n

and we define µ̂f := h(χ̂WZW (f)). Note that µf does not depend on the coordinate ϕ.
Finally, let

ρ̂f,ϕ := Tr(g−1∂g ∧Aϕ) + µf ,

which lies in Ω̂2,0
n .

Recall that the group Ãutn consist of pairs (f, ω) with f ∈ Autn an automorphism
of the holomorphic formal disk and with ω ∈ Ω̂2

n,cl. For a pair (ϕ, βϕ) as in the
definition above, define

f · (ϕ, βϕ) := (f∗ϕ, f∗βϕ + ρ̂f,ϕ).(10)

and

ω · (ϕ, βϕ) := (ϕ, βϕ + ω).(11)

Here f∗ϕ = ϕ ◦ f is precomposition with the automorphism f , i.e., change of coordi-
nates, and f∗βϕ is the pull-back of forms.

Proposition 4.1.8. — Equations (10) and (11) define an action of Ãutn on Xcoor
α .

Moreover, it induces the structure of a Ãutn-principal bundle πcoor
α : Xcoor

α → X

lifting the Autn-principal bundle πcoor : Xcoor → X.

Remark 4.1.9. — Note that the choice of ρ̂f,ϕ is only unique up to a closed holomor-
phic 2-form on the formal disk. That is, for each η ∈ Ω̂2

n,cl we get a different action
of Ãutn defined by

f · (ϕ, βϕ) := (f∗ϕ, f∗βϕ + ρ̂f,ϕ + η).
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4.1. THE EXTENDED BUNDLE 63

This action is equivalent to the original action. Indeed, denote X̃coor
α with this new

action determined by η by X̃coor
α,η . For any two closed 2-forms η, η′ we define

Φη,η′ : X̃coor
α,η → X̃coor

α,η′

(ϕ, βϕ) 7→ (ϕ, βϕ + η − η′).

Then Φη,η′ is a map of Ãutn-spaces. In fact, it is an isomorphism with inverse given
by Φη′,η. Hence we have an isomorphism of principal Ãutn-bundles.

The proof of the proposition is a direct calculation. First, we show that the map is
well defined at the level of sets. That is, for any f we must show that f ·(ϕ, βϕ) ∈ X̃coor

α .
We have

d(f∗βϕ + ρ̂f,Aϕ) = f∗dβϕ + dρ̂f,Aϕ

= f∗(ϕ∗α− ĈS(Aϕ)) + (f∗ĈS(Aϕ)− ĈS(f∗Aϕ))

= f∗ϕ∗α− ĈS(f∗Aϕ).

Thus f∗βϕ + ρ̂f,ϕ trivializes the difference of the Chern-Simons functional associated
to f∗Aϕ and the original trivialization as desired.

It remains to see that we have an action by Ãutn. It suffices, in fact, to show that
for any f1, f2 ∈ Autn ⊂ Ãutn,

(12) f1 · (f2 · (ϕ, βϕ)) = (f2 ◦ f1) · (f2 · (ϕ, βϕ)) + (ϕ, βϕ + αGMS(f, g)),

where α̃GMS is the defining cocycle for the extension (6) defined in Section 3.5.1.
Expanding the left-hand side, we have(

f∗1 f
∗
2ϕ, f

∗
1 f
∗
2βϕ + f∗1 ρ̂f2,ϕ + ρ̂f1,f∗2ϕ

)
.

The last term ρ̂f1,f∗2ϕ
has the following meaning. Choose any (macroscopic) automor-

phism f̃2 : Cn → Cn whose ∞-jet class is f2, and look at the element ρ̂f1,f̃∗2ϕ
. Since

ρ̂f,ψ only depends on the power series expansion of ψ, this element is well defined and
does not depend on the lift f̃2.

Now the right-hand side of (12) is(
(f2 ◦ f1)∗ϕ, (f2 ◦ f1)∗βϕ + ρf2◦f1,Aϕ + α̃GMS(f1, f2)

)
.

Thus, to verify we have an action and finish the proof of Proposition 4.1.8, it suffices
to prove the following.

Lemma 4.1.10. — The cocycle α̃GMS satisfies

(13) α̃GMS(f1, f2) = ρ̂f1,f∗2ϕ
+ f∗1 ρ̂f2,Aϕ − ρ̂f2◦f1,Aϕ

for any f, g in Autn.

Proof. — We recall the formula for the GMS 2-cocycle from Section 3.5.1. In the
notation from that section it reads

α̃GMS(f1, f2) = α2(f1, f2) + µf1
+ f∗1µf2

− µf2◦f1
.
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64 CHAPTER 4. EXTENDED GELFAND-KAZHDAN DESCENT

(We use ∂ this time and not ddR to stress that it is the holomorphic differential.) We
expand the right-hand side of Equation (13):

tr((Df1)−1∂Df2Af∗2ϕ) + f∗1 tr((Df2)−1∂Df2Aϕ)− tr((f∗1 Df2Df1)−1∂(f∗1 Df2Df1)Aϕ)

+ µf1 + f∗1µf2 − µf2◦f1 .

We have used the fact that the Jacobian of f2 ◦ f1 is given by the product f∗1 Df2Df1.
Finally, to complete the proof we notice that the first three terms in the above formula
simplify to

α2(f1, f2) = tr
(
g−1

1 ∂Df1 ∧ f∗1 (∂Df2(Df2)−1)
)
,

and so we are done.

4.1.5. Proof of Theorem 4.1.1. — In this section we prove the theorem. We will use the
data of an extended coordinate bundle to construct a Gelfand-Kazhdan structure for
the frame bundle FrX → X, with a connection one-form valued in the extension W̃n.

Clearly, the action of Ãutn on the set of pairs (ϕ, βϕ) lifts the action of Autn on
formal coordinates ϕ : D̂n → X. This observation, together with the compatibility
of the cocycle α̃GMS and the Gelfand-Fuks-Atiyah cocycle chGF

2 (T̂n) defining the ex-
tension W̃n → Wn, allows us to summarize the construction of previous section as
follows.

Proposition 4.1.11. — For each trivialization α of Θ
(2)
X there exists a transitive action

of W̃n on X̃coor
α that lifts the action of Wn on Xcoor. That is, there is a map of Lie

algebras
θ̃α : W̃n → X (X̃coor

α )

such that for each (x, ϕ, βϕ) ∈ X̃coor
α , the induced map θ̃(x) : W̃n → T(x,ϕ,βϕ)X̃

coor
α is

an isomorphism and the diagram

W̃n

��

θ̃α(x)
// T(x,ϕ,βϕ)X̃

coor
α

��

Wn

θ(x)
// T(x,ϕ)X

coor.

commutes.

The inverse of θ̃α defines a connection one-form ω̃α ∈ Ω1(X̃coor
α ; W̃n). Now, X̃coor

α is
an Ω̂2

cl,n-torsor over Xcoor and so there exists a Autn-equivariant smooth section
σΩ2 : Xcoor → X̃coor

α . Note that this section is not unique, but its choice will not
matter in the end (much as in the case of an ordinary Gelfand-Kazhdan structure).
Given such a section we have an induced map

Ω1(X̃coor
α ; W̃n)

σ∗
Ω2−−→ Ω1(Xcoor; W̃n)

p−→ Ω1(Xcoor; Wn),

where p : W̃n →Wn is the projection. Under this composition, the 1-form ω̃coor
α maps

to the Grothendieck connection 1-form ωcoor ∈ Ω1(Xcoor; Wn).
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4.2. EXTENDED MODULES 65

Now, we would like to apply the theory of Gelfand-Kazhdan descent to this sit-
uation. Recall that in the case of the pair (Wn,GLn), a Gelfand-Kazhdan struc-
ture amounted to choosing a formal exponential. That is, a GLn-equivariant splitting
σ : FrX → Xcoor of the projection πcoor : Xcoor → FrX .

Fixing a section σΩ2 of the Ω2
n,cl-torsor over X

coor as above, we can compose with
the canonical section σΩ2 : Xcoor → X̃coor

α of X̃coor
α over Xcoor to get the section

σΩ2 ◦ σ. This composite defines the connection one-form

ω̃ασ,σΩ2
= (σΩ2 ◦ σ)∗ωcoor = σ∗σ∗Ω2ωcoor,

living in Ω1(FrX ; W̃n).

Definition 4.1.12. — An extended Gelfand-Kazhdan structure on X is a triple
(α, σ, σΩ2) where

(i) α is a trivialization for the second component of the Chern character of X;

(ii) σ is a Gelfand-Kazhdan structure on X; and

(iii) σΩ2 is an Autn-equivariant smooth splitting of X̃coor
α → Xcoor .

The construction in the above paragraph shows that the data of an extended
Gelfand-Kazhdan structure on X determines a holomorphic (W̃n,GLn)-bundle
on FrX → X with flat connection one-form given by ω̃ασ,σΩ2

.
The same argument as in the non-extended case (see Section 2.2.5) gives the fol-

lowing.

Lemma 4.1.13. — Fix a Gelfand-Kazhdan structure σ. Let σ1
Ω2 and σ1

Ω2 be two smooth
splittings of X̃coor

α → Xcoor. Then the induced connection one-forms ωα
σ,σ1

Ω2
and ωα

σ,σ2
Ω2

are gauge equivalent.

To finish the proof of Theorem 4.1.1, we must go the other way: given a lift (FrX , ω̃)

of the (Wn,GLn)-bundle (FrX , ωσ), we must produce a trivialization. This construc-
tion is outlined above in Section 4.1.1. It is a direct calculation to show that these
two constructions are inverse to each other.

Before we define extended descent, we discuss the class of modules that we wish
to consider.

4.2. Extended modules

We have defined the category of “vector bundles” on the formal disk VBn. These
Harish-Chandra modules were especially well behaved from the point of view of
Gelfand-Kazhdan descent. In this section we consider an analogue of this category
of modules for the pair (W̃n,GLn). These modules will be objects that descend along
the extended bundle (FrX , ω̃

α
σ ).

Since W̃n is an extension of Lie algebras, it has a two-step filtration

F 1W̃n = W̃n ⊃ F 0W̃n = Ω̂2
cl.
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66 CHAPTER 4. EXTENDED GELFAND-KAZHDAN DESCENT

The associated graded of this filtration is the Lie algebra Wn ⊕ Ω̂2
cl.

Let Modfil
(W̃n,GLn)

denote the category of filtered modules for the pair (W̃n,GLn),
using the filtration above. Given any such module V, we can consider its associated
graded Gr V. This associated graded forgets down to a graded module for the Lie
algebra Wn. Since V also has a compatible GLn-action, the associated graded has the
structure of a graded (Wn,GLn)-module. There is thus a functor

Gr : Modfil
(W̃n,GLn)

→ Mod
Z/2
(Wn,GLn)

given by taking the associated graded for the two-step filtration. Here, Mod
Z/2
(Wn,GLn) is

the category of Z/2-graded vector spaces together with a grading-preserving action
of the pair (Wn,GLn).

Similarly, there is a full sub-category VBZ/2
n ⊂ Mod

Z/2
(Wn,GLn) consisting of those

(Wn,GLn)-modules that are also elements in VBn by forgetting the grading.

Definition 4.2.1. — The category ṼBn of filtered (W̃n,GLn)-vector bundles is the
pull-back

ṼBn //

��

VBZ/2
n

��

Modfil
(W̃n,GLn)

// Mod
Z/2
(Wn,GLn)

of categories.

Explicitly, an object of ṼBn is a Z/2-graded Ôn-module that is free and finite rank
together with a compatible action of (W̃n,GLn) that respects the two-step filtration
of W̃n.

4.3. Extended descent

We are now in a place to define the extended Gelfand-Kazhdan descent functor for
modules as in the previous section.

Define the category H̃oln to have objects consisting of pairs (X,α), where X is a
complex manifold of dimension n and α is a trivialization of its second component
of the Chern character ch2(TX). Morphisms are defined to be local biholomorphisms
that pull-back trivializations. For instance, if (X,αX) and (Y, αY ) are objects and
f : X → Y is a local biholmorphism, we require f∗αY = αX . We let G̃Kn denote the
category fibered over H̃oln whose objects over (X,α) are extended Gelfand-Kazhdan
structures (X,α, σ, σΩ2).

Definition 4.3.1. — The extended Gelfand-Kazhdan descent is the functor

d̃escGK : G̃K
op

n × ṼBn → Pro(VB(X)flat),
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4.3. EXTENDED DESCENT 67

sending an extended Gelfand-Kazhdan structure (X,α, σ, σΩ2) and an extended module
V ∈ ṼBn to the pro-vector bundle FrX ×GLn V with flat connection induced from
ωα,σ,σ2

Ω
.

Let d̃escGK(X,σ, σΩ2 , α; V) denote the corresponding Ω∗(X)-module. Since differ-
ent choices of sections σ and σΩ2 determine gauge equivalent connections the result-
ing sheaf of flat sections is independent of such choices and we will denote the sheaf
by De≠cGK(X,α; V).
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CHAPTER 5

DESCENT FOR VERTEX ALGEBRAS

In this section we discuss Gelfand-Kazhdan descent for vertex algebras. Namely,
we show how the structure of a vertex algebra that has a compatible action of a pair
(g,K) descends to a sheaf of vertex algebras on complex manifolds via the functors
we have already constructed. Of course, the most important cases will be the pairs
(Wn,GLn) and its extension (W̃n,GLn).

For another approach for constructing sheaves of vertex algebras on manifolds, see
[44], although the case of extended descent is not covered there.

For a Čech style approach to constructing the sheaf of vertex algebras given by
CDOs, see [22].

5.1. General descent

We will define descent for vertex algebras in a similar way as in the general setting
of Harish-Chandra descent. For this to make sense, we need to first say what we mean
by a vertex algebra in the differentially graded setting.

Definition 5.1.1. — A dg vertex algebra is a Z-graded vertex algebra V together with
a vertex algebra derivation d : V → V of degree 1 such that

(i) d2 = 0 and

(ii) the structure maps Y (−; z) : V → End(V )Jz±K have cohomological degree zero.

Moreover, if V has the additional structure of a Z≥0-graded vertex algebra (by what
we call the dimension grading), a dg Z≥0-graded vertex algebra is a dg vertex algebra
such that d preserves the dimension grading.

Consider now a torsor P → X for a Harish-Chandra pair (g,K). If V is a vertex
algebra on which K acts via vertex algebra automorphisms, then invariants for this
group action will be a sub-vertex algebra. Likewise, if g acts on V via vertex algebra
derivations, then the induced connection ∇P,V = ddR + ρg(ω) also acts by vertex
algebra derivations on Ω∗(P ) ⊗ V . If we choose actions that are compatible (as well
as Z≥0-graded) we obtain the following.
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70 CHAPTER 5. DESCENT FOR VERTEX ALGEBRAS

Proposition 5.1.2. — If (g,K) acts on the vertex algebra then desc((P, ω, V )) has the
structure of a dg vertex algebra in Ω∗(X)-modules. If (g,K) acts on the Z≥0-graded
vertex algebra V , then desc((P, ω), V ) has the structure of a dg Z≥0-graded vertex
algebra in dg Ω∗(X)-modules.

This result implies that the sheaf of flat sections De≠c ((P, ω), V ) has the structure
of a sheaf of Z≥0-graded vertex algebras.

5.2. Formal vertex algebras

We now develop what we mean by vertex algebras in the category of formal vector
bundles. The vertex algebras we are interested in are not finite dimensional, so are ill-
behaved in the context of doing ordinary Harish-Chandra descent. The graded pieces,
however, are finite dimensional over Ôn, so we are in a similar context of Gelfand-
Kazhdan descent as in Section 2.

Recall, that the category of formal vector bundles (or formal vector bundles on the
formal n-disk) VBn consists of Ôn-modules together with a compatible structure of a
(Wn,GLn)-module. The category of formal vertex algebras we consider is a modest
generalization of the category of formal vector bundles VBn.

Definition 5.2.1. — A Gelfand-Kazhdan vertex algebra is a Z≥0-graded vertex algebra
V together with an action of (Wn,GLn) as in Definition 3.1.4 such that for each
N ≥ 0 one has a GLn-equivariant identification

(14) V(N) = Ôn ⊗C V
(N),

where V (N) is a finite dimensional GLn-representation. A morphism of Gelfand-
Kazhdan vertex algebras is a (Wn,GLn)-equivariant morphism of Z≥0-graded vertex
algebras. We denote this category by Vertn.

Thus, a Gelfand-Kazhdan vertex algebra is a vertex algebra in the category of
Harish-Chandra modules Mod(Wn,GLn) together with some finiteness property.

Lemma 5.2.2. — The vertex algebra Gr ĈDOn has the structure of a formal vertex
algebra.

Proof. — We have already seen that Gr ĈDOn has an action of the pair (Wn,GLn).
Moreover, from the explicit formula Gr ĈDOn = ⊗̂0<kŜymÔn(Ω̂1

n)⊗̂⊗̂0≤lŜymÔn(T̂n)

shows that the spaces of fixed conformal dimension are finite sum of tensor products
of the (Wn,GLn) modules Ω̂1

n and T̂n. Thus, we can write each space of conformal
dimension N in the presentation of Equation (14).

Definition 5.2.3. — An extended Gelfand-Kazhdan vertex algebra is a Z≥0-graded
vertex algebra together with an action of (W̃n,GLn) as in Definition 3.1.4 such that
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5.3. DESCENDING GELFAND-KAZHDAN VERTEX ALGEBRAS 71

for each N ≥ 0 one has a GLn-equivariant identification

(15) V(N) = Ôn ⊗C V
(N),

where V (N) is a finite dimensional GLn-representation. A morphism of a Gelfand-
Kazhdan vertex algebra is a (W̃n,GLn)-equivariant morphisms of Z≥0-graded vertex
algebras. We denote this category by Ṽertn.

The category Vertn is a full subcategory of vertex algebras in Mod
Z/2
(W̃n,GLn)

con-
sisting of those objects that satisfy the finiteness constraint above.

Lemma 5.2.4. — The vertex algebra ĈDOn is an extended Gelfand-Kazhdan vertex
algebra.

Proof. — We have already seen that ĈDOn has the structure of a (W̃n,GLn)-module.
The same argument as in Lemma 5.2.2 shows that the spaces of fixed conformal
dimension can be expressed as in Equation (15).

Remark 5.2.5. — As noted following Remark 3.2.2, we do not require that a Gelfand-
Kazhdan vertex algebra V be Ôn-linear. The underlying vector space of V is an
Ôn-module but vertex algebra operations do not preserve that action.

5.3. Descending Gelfand-Kazhdan vertex algebras

We show how Section 5.1 carries over to Gelfand-Kazhdan descent for the categories
of equivariant vertex algebras defined in the previous section. We will perform both
an extended and non extended version of descent.

For a Gelfand-Kazhdan vertex algebra V we define the sheaf De≠cGK(V) of vertex
algebras on the category GKn, and hence on the category Holn. For now, let’s fix a
Gelfand-Kazhdan structure σ on X. It will be evident that all constructions are still
functorial in this parameter.

For each N ≥ 0 we have a decomposition V(N) = Ôn⊗CV
(N) and hence a filtration

on V(N) coming from the vanishing order of jets. Thus, applying the same construction
as in Section 2, we obtain the pro-vector bundle FrX ×GLn V(N). Since the action
of (Wn,GLn) preserves the Z≥0 grading, it is a pro-vector bundle equipped with a
flat connection and hence we can define the Ω∗(X)-module

desc(σ,V(N)) =
((

Ω∗(FrX)⊗V(N)
)

bas
,ddR + ωσ

)
.

We now sum over all dimension spaces to obtain the Ω∗(X)-module

desc(σ,V) :=
⊕
N≥0

desc(σ,V(N)).

Lemma 5.3.1. — For any Gelfand-Kazhdan vertex algebra V and Gelfand-Kazhdan
structure (X,σ), the Ω∗(X)-module desc(σ,V) has the structure of a Z≥0-graded dg
vertex algebra over Ω∗(X).
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72 CHAPTER 5. DESCENT FOR VERTEX ALGEBRAS

Thus, we obtain a sheaf of Z≥0-graded vertex algebras De≠c (σ,V) by taking flat
sections. It is clear the construction is natural in the choice of a GK structure so that
we obtain a sheaf De≠c (V) of vertex algebras on the category Holn.

5.3.1. Classical limit of the sheaf of CDOs. — In the example of the Gelfand-Kazhdan
vertex algebra Gr ĈDOn we denote the descent object by

Gr CDOX := De≠c ((X,σ); Gr ĈDOn).

This is a sheaf of vertex algebras defined on any complex manifold. As we remarked
above, functoriality of the construction implies that we have a sheaf of vertex algebra
Gr CDO defined on the category Holn.

Moreover, as the action of the pair (Wn,GLn) preserves the Poisson structure.
This shows that Gr CDO is actually a sheaf of Poisson vertex algebras.

5.3.2. Extended descent for vertex algebras. — The construction for extended formal
vertex algebras is similar, this time we use the bundle of extended coordinates con-
structed in Section 4.

Let us fix an extended Gelfand-Kazhdan structure (X,α, σ, σΩ2), that we simply
denote by σ̃, and an extended Gelfand-Kazhdan vertex algebra V.

By construction, each dimension space V(N) = Ôn ⊗C V (N) has an action
of (W̃n,GLn) and hence we can form the pro-vector bundle FrX ×GLn V(N) that is
equipped with a flat connection. The de Rham complex is the Ω∗(X)-module

d̃esc(σ̃,V(N)) =
((

Ω∗(FrX)⊗V(N)
)

bas
,ddR + ω̃ασ,σΩ2

)
.

Again, by summing over spaces of fixed conformal dimension we obtain the
Ω∗(X)-module

d̃esc(σ̃,V) =
⊕
N≥0

d̃esc(σ̃,V(N)).

The same proof as above carries over with minor modifications to show.

Lemma 5.3.2. — For any extended Gelfand-Kazhdan structure σ̃ and extended
Gelfand-Kazhdan vertex algebra V the Ω∗(X)-module desc(σ̃,V) is a Z≥0-graded dg
vertex algebra over Ω∗(X).

We obtain a sheaf of Z≥0-graded vertex algebras by taking flat sections that we de-
note D̃e≠c (σ̃,V). Again, the construction is natural in the extended Gelfand-Kazhdan
structure so we obtain a sheaf of Z≥0-graded vertex algebras D̃e≠c (V) on the cate-
gory H̃oln.
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5.3. DESCENDING GELFAND-KAZHDAN VERTEX ALGEBRAS 73

5.3.3. The sheaf of CDOs. — We are finally able to to define the central object of
study in this work.

Definition 5.3.3. — Let X be a complex manifold together with a trivialization α

of ch2(TX). The sheaf of chiral differential operators on X is the sheaf of vertex
algebras

CDOX,α := D̃e≠cGK(X,α; ĈDOn).

Remark 5.3.4. — The descent functor d̃escGK depends on the choice of an extended
Gelfand-Kazhdan structure and not just a trivialization of ch2. But, as we have already
mentioned, the sheaf of flat sections does not depend on such a choice so we omit it
from the notation.

This definition of chiral differential operators via Gelfand-Kazhdan formal geom-
etry is similar in spirit to the formulation of the chiral de Rham complex in [45].
There, one defines the sheaf in a similar way as above though with the non-extended
pair (Wn,GLn) (this pair indeed acts on the affine chiral de Rham vertex algebra).
We hope that the above constructions reflect systematically how one can handle de-
scent for objects that require extending the usual action of formal automorphisms
and derivations on the formal disk.

The compatibility of the Gelfand-Fuks-Chern class ch2(T̂n) and the group cocycle
αGMS shows how our definition of chiral differential operators is related to the original
definition given in [21].

5.3.4. The conformal structure. — We address the conformal structure for the sheaf of
chiral differential operators. We have already notes that the vertex algebra ĈDOn has
the structure of a conformal vertex algebra of charge c = 2n. This conformal structure,
however, is not compatible with the action of W̃n on CDO’s on the formal disk. Indeed,
Proposition 3.6.1 implies that the obstruction for these structures to be compatible
is the first Gelfand-Fuks-Chern class cGF

1 (T̂n).

The conformal vector L−2 ∈ ĈDO
(2)

n is preserved, however, by the action of GLn.
Thus, the map of vertex algebras Φ : Virc=2n → ĈDOn, encoding the conformal
structure, determines a map of graded Ω#

X -modules

Φ : Ω#(X)⊗Virc=2n →
(

Ω#(FrX)⊗ ĈDOn

)
bas

.

Now, the action of W̃n on Virc=2n is trivial. So, when we equip the left-hand side
with the differential ddR + ω̃σ,σΩ2 coming from a fixed extended Gelfand-Kazhdan
structure we obtain the constant Ω∗X -module Ω∗X ⊗Virc=n. Thus, the sheaf obtained
via descent De≠c (X; Virc=2n) = Virc=2n is just the constant sheaf.

The right hand side also has a natural differential ddR + ω̃σ,σΩ2 coming from a
fixed extended Gelfand-Kazhdan structure making it a Ω∗X -module. The calculation
of Proposition 3.6.1 implies that the failure for Φ to be a map of Ω∗X -modules is the
image of the cocycle cGF

1 (T̂n) under the characteristic map of the Gelfand-Kazhdan
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structure. This is precisely the usual first Chern class c1(TX). We have arrived at the
following.

Proposition 5.3.5. — Let α be a trivialization of ch2(TX) and suppose that c1(TX) = 0

in H1(X; Ω1
X). Then there exists a map of sheaves of vertex algebras on X

Φ : Virc=2n → CDOX,α.

In other words, in the case that c1(TX) = 0 the sheaf of chiral differential operators
has a global Virasoro vector.

5.3.5. The Witten genus. — It is well-known [5, 12] that the character of the sheaf of
chiral differential operators equals, up to a factor, the Witten genus of the complex
manifold. In this section, we remark on how to recover this fact using the construction
of chiral differential operators via Gelfand-Kazhdan descent.

Recall, in Section 3.7 we have defined the formal graded character of a vertex
algebra. For V = ⊕N≥0V(N) a Gelfand-Kazhdan vertex algebra, it is the element

χ(Wn,GLn)(V) =
∑
N≥0

qN
(

TdGF · chGF(V(N))
)
∈ CLie(Wn; Ω̂−∗n )[[q]].

Given any sheaf of Z≥0-graded vertex algebras VX on a manifoldX, one defines the
character as follows. Note that the sheaf cohomology H∗(X; VX) has the structure
of a graded vertex algebra (that is, a differential graded vertex algebra with zero
differential). In particular, it is a Z/2-graded vertex algebra, with even part equal
to Hev(X; VX) and odd part equal to Hodd(X; VX). The character of VX is the
super character of H∗(X; VX). That is,

χ(VX) :=
∑
N≥0

qN
(

dim(Hev(X; V(N)
X ))− dim(Hodd(X; V(N)

X ))
)
.

Lemma 5.3.6. — Fix a Gelfand-Kazhdan structure (X,σ) and let V be a Gelfand-
Kazhdan vertex algebra one has

χ (De≠c (X; V)) =

∫
X

charσ

(
χ(Wn,GLn)(V)

)
∈ C[[q]],

where charσ : H∗Lie(Wn,GLn; Ω̂−∗n ) → H∗(Ω−∗X ) is the characteristic map associated
to the Gelfand-Kazhdan structure extended q-linearly.

Proof. — As a consequence of Grothendieck-Riemann-Roch for sheaves on X, we
have

χ (De≠c (X; V)) =

∫
X

∑
N≥0

qNTdX · ch(desc(X; V(N))).

The integrand on the right-hand side is precisely the image of the class χ(Wn,GLn)(V)

under the characteristic map associated to the Gelfand-Kazhdan structure.
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Similarly, if V is an extended Gelfand-Kazhdan vertex algebra and σ̃ =

(X,α, σ, σΩ2) is an extended Gelfand-Kazhdan structure then one has

χ
(

D̃e≠c (X; V)
)

=

∫
X

c̃harσ̃

(
χ(W̃n,GLn)(V)

)
∈ C[[q]],

where c̃har(−) is the extended characteristic map H∗Lie(W̃n,GLn; Ω̂−∗n ) → H∗(Ω−∗X )

extended q-linearly.
As a corollary, we recover the appearance of the Witten genus as the character

of chiral differential operators on X. Recall, the Witten class of a manifold X with
ch2(TX) = 0, is defined (see [53, 54]) as the following q-series valued in differential
forms

Wit(X, q) = ÂX · ch

⊗
l≥1

Symql(Ω
1
X ⊕ TX)

∏
k≥1

(1− qk)

2n

∈ Ω−∗X [[q]],

where ÂX is the A-hat class of the tangent bundle of X. The Witten genus is obtained
as the integral

∫
X

Wit(X, q) and is the q-expansion of a modular form. As an imme-
diate consequence of our calculation in Proposition 3.7.7, we obtain the well-known
relation of the character and the Witten genus.

Proposition 5.3.7. — Let α be a trivialization of ch2(TX). The graded character
of CDOX,α satisfies

χ(CDOX,α) =

∏
k≥1

(1− qk)

−2n ∫
X

ec1(TX)/2Wit(X, q).

Proof. — We have identified, in Corollary 3.7.6, the (W̃n,GLn)-equivariant graded
character of ĈDOn with the image of the class

TdGF · chGF

⊗
l≥1

Symql(Ω̂
1
n ⊕ T̂n)

 ∈ C∗Lie(Wn,GLn; Ω̂−∗n )[[q]]

under the map C∗Lie(Wn,GLn; Ω̂−∗n )[[q]] → C∗Lie(W̃n,GLn; Ω̂−∗n )[[q]]. The image of
this class under the characteristic map of the extended Gelfand-Kazhdan structure
is TdX · ch

(⊗
l≥1 Symql(Ω

1
X ⊕ TX)

)
. Thus, by Lemma 5.3.6 we see that the graded

character of CDOX,α is

χ(CDOX,α) =

∫
X

TdX · ch

⊗
l≥1

Symql(Ω
1
X ⊕ TX)

 .

Finally, note that TdX = ec1(TX)/2ÂX .
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Remark 5.3.8. — We have already pointed out that in the case that c1(TX) = 0, the
sheaf CDOX,α is a sheaf of conformal vertex algebras. Recall that the honest character
of a vertex algebra is related to the graded character via char(V ) = q−c/24χ(V ), where
c is the central charge. Thus, in this case we have the following expression for the
character of chiral differential operators:

char(CDOX,α) = η(q)−2n

∫
X

Wit(X, q),

where η(q) = q1/24
∏
k≥1(1− qk) is the Dedekind η-function.
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CHAPTER 6

OVERVIEW

The curved βγ system is an elegant nonlinear σ-model, attractive for both math-
ematical and physical reasons. The source is a Riemann surface S and the target
is any complex manifold X. The fields are γ : S → X a smooth function and
β ∈ Ω1,0(S, γ∗T ∗X) a (1, 0)-form on S with values in the pullback along γ of the
holomorphic cotangent bundle of X. The action functional is∫

S

〈β ∧ ∂γ〉,

where the brackets indicate that one uses the fiberwise evaluation pairing between
the tangent bundle TX and the cotangent bundle T ∗X . The equations of motion for
this action are then

∂γ = 0 = ∂β.

In other words, a solution is a holomorphic map γ from S to X along with a holo-
morphic 1-form β on S with values in the pullback along γ of the cotangent bundle.
(When S admits a nowhere-vanishing holomorphic 1-form, such as when S is an el-
liptic curve, one can view the classical βγ system as picking out holomorphic maps
from S to T ∗X.)

The quantization of the classical βγ system is a chiral conformal field theory whose
chiral algebra is the CDOs of X, as explained by Witten [55] and Nekrasov [46]. To be
more precise, they explain that the “perturbative” sector of the theory—i.e., working
around the constant solutions—admits a quantization for S = C only if ch2(TX)

vanishes and that each choice of trivialization produces a quantization. (To extend to
arbitrary Riemann surfaces, one needs c1(TX) = 0 as well.) They also interpret this
theory as the half-twisted form of a (0, 2)-supersymmetric σ-model.

Our goal in this part is to describe and quantize the curved βγ system using
the renormalization and BV machinery of [14] in combination with Gelfand-Kazhdan
descent. Applying the main theorem of [17], we then obtain a factorization algebra
of quantum observables and extract from it a vertex algebra, which is the CDOs. In
other words, we develop mathematically the physical arguments and results in [55]
and [46]. Along the way, we will see how aspects of those physical arguments, such as
the anomalies, appear in this BV formalism.
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80 CHAPTER 6. OVERVIEW

Remark 6.0.1. — In [13, 15] Costello already used this machinery to quantize the
curved βγ system, but he uses a formalism of L∞ spaces rather than Gelfand-Kazhdan
descent. This approach does not lend itself as easily to direct comparison with CDOs,
so far as we can tell, and so we pursued another approach to encoding the target space,
which is more explicitly analogous to techniques used by Kontsevich, Cattaneo-Felder,
and others. Strictly speaking, we do not rely upon Costello’s results—notably the
L∞ space formalism—and we show that our approach recovers his results when the
target spaces (e.g., complex manifolds) are treatable with Gelfand-Kazhdan descent.
In practice, though, we borrow and re-purpose several lemmas, and we clearly take
our inspiration from his work.

A key idea in our approach, which we learned from Costello’s work, is to encode
the σ-model as a gauge theory. This alternative presentation of the βγ system, with
the formal n-disk D̂n as the target, makes it amenable to Gelfand-Kazhdan descent.
Our approach thus breaks into the following steps:

1. write the classical BV theory of the βγ system as a gauge theory with a natural
action of the Harish-Chandra pair (Wn,GLn),

2. analyze the obstruction (aka anomaly) to quantizing this gauge theory equiv-
ariantly with respect to the (Wn,GLn)-action,

3. construct an Harish-Chandra extension of (Wn,GLn) via the obstruction and
show that there is an equivariant quantization for this extended pair, and

4. describe the bundle of factorization algebras obtained by Gelfand-Kazhdan de-
scent, for this extended pair, applied to the factorization algebra of quantum
observables with target the formal n-disk.

The strong parallels with the CDO story, as articulated in Part I, should be apparent
here: in both cases, the classical situation works nicely with usual Gelfand-Kazhdan
descent, but the quantum situation requires an extended version. Indeed, the primary
changes are that we replace vertex algebras with factorization algebras and that we
use the BV formalism to produce the quantization, rather than a vertex algebra
version of canonical quantization. Both changes require a heavy use of homological
machinery, and so it should be no surprise that we must allow homotopical actions
of the Harish-Chandra pair (Wn,GLn) on cochain complexes and thus develop a
homotopical version of Gelfand-Kazhdan descent.

Throughout this part, we work in the formalism developed in [14, 16, 17] and refer
to them liberally, not aiming to be self-contained here. Nonetheless, we recall essential
ideas and notations along the way and give detailed citations.
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CHAPTER 7

A BRIEF OVERVIEW OF DERIVED
DEFORMATION THEORY AND L∞ ALGEBRAS

Throughout this part, we will use some homological constructions that are not
wholly standard knowledge and can seem rather sophisticated upon first acquaintance.
The actual manipulations are straightforward and amount to exploiting several ways
of writing maps between completed symmetric algebras, these ways being equivalent
but distinct in flavor. The reader familiar with L∞ algebras, Maurer-Cartan elements,
twisting cocycles, and so on, can safely skip this section. For others, it will at least
identify the tricks outside the complicated context in which we use them. Our treat-
ment is succinct and casual, and we cite [40, 27, 43, 17] for detailed treatments.

There is one important idea, and not just manipulation, connected with these
constructions: every dg Lie algebra describes a “formal space” (in some sense a moduli
space parametrizing deformations of something), and conversely every formal space
is described by some dg Lie algebra. This idea is attributed to Deligne, Drinfeld,
Quillen, Schlessinger-Stasheff, and others, and thanks to Lurie [43] and Pridham [50],
it has a precise incarnation in derived algebraic geometry, which provides a suitably
sophisticated notion of “space”.

Here we only need the following dictionary between a formal moduli space X and
its associated dg Lie algebra gX:

— the dg algebra of functions O(X) on X corresponds to C∗Lie(gX), the Chevalley-
Eilenberg cochains,

— the dg coalgebra of distributions on X corresponds to CLie
∗ (gX), the Chevalley-

Eilenberg chains, and

— the dg Lie algebra of vector fields on X corresponds to C∗Lie(gX, gX[−1]).

For us, the Chevalley-Eilenberg chains CLie
∗ (g) has underlying graded vector space

Sym(g[1]), equipped with the standard coproduct where ∆(x) = x⊗ 1 + 1⊗x for x ∈
g[1], and the differential dCLie

∗
is a degree one coderivation determined by

dCLie
∗

(xy) = (dgx)y ± x(dgy) + [x, y]

for any x, y ∈ g[1]. The Chevalley-Eilenberg cochains C∗Lie(g) is the linear dual, so
the underlying graded algebra is the completed symmetric algebra Ŝym(g∨[−1]). (One
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82 CHAPTER 7. A BRIEF OVERVIEW OF DERIVED DEFORMATION THEORY

must be careful about duals with infinite-dimensional vector spaces. In practice our
examples will be tamed by a topology and will mean the continuous linear dual.)
The last identification, for vector fields, might seem strange until one computes that
the cochain complex of derivations of the algebra C∗Lie(gX) has underlying graded Lie
algebra Ŝym(g∨[−1]) ⊗ g[1] with the bracket the usual Lie bracket for vector fields
with power series coefficients.

Let us introduce a toy example that plays an important role for us.

Definition 7.0.1. — Let gn denote the dg Lie algebra Cn[−1], which consists of a copy
of Cn in cohomological degree 1 and hence has zero differential and zero bracket.

Under the dictionary we find

C∗Lie(gn) = Ŝym(g∗n[−1]) ∼= C[[t1, . . . , tn]] = Ôn,

so that gn should encode the formal n-disk D̂n. Under the dictionary, we also find an
isomorphism of vector fields,

C∗Lie(gn, gn[−1]) = Ŝym(g∗n[−1])⊗ Cn ∼=
n⊕
j=1

C[[t1, . . . , tn]]
∂

∂tj
= Wn,

which will be useful for us.
Given the dictionary, it is not unreasonable to imagine enlarging both sides a bit,

by allowing n-ary brackets (not just binary brackets) on the Lie side and by allowing
arbitrary (co)derivations on the (co)commutative (co)algebra side. On the Lie side,
such objects are called L∞ algebras, but we use the following definition, which has
the dictionary built into it.

Definition 7.0.2. — An L∞ algebra g is a graded vector space V along with a degree 1
coderivation Q on the coaugmented cocommutative coalgebra Sym(V [1]) that preserves
the coaugmentation and squares to zero. Its Chevalley-Eilenberg chains CL

∗ (g) is the
dg cocommutative coalgebra (Sym(V [1]), Q).

A coderivation Q is determined by how it maps to cogenerators, so in this case it
is determined by the “Taylor components”

Qn : Symn(V [1])→ V [1],

which encode the n-ary brackets

`gn : (ΛnV )[n− 1] ∼= Symn(V [1])[−1]
Qn[−1]−−−−−→ V

after shifting. A dg Lie algebra gives an L∞ algebra in which `n = 0 for n > 2. Thus,
CL
∗ is a direct generalization of CLie

∗ , recovering it on dg Lie algebras.

Definition 7.0.3. — Let g and g′ be L∞ algebras. A map of L∞ algebras f : g  g′

means a map of coaugmented dg cocommutative algebras

f : CL
∗ (g)→ CL

∗ (g
′).
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CHAPTER 7. A BRIEF OVERVIEW OF DERIVED DEFORMATION THEORY 83

Note that every strict map of dg Lie algebra yields an L∞ map by applying the func-
tor CLie

∗ .

We use  to emphasize that f is not a cochain map from g to g′. This notion
of L∞ map allows for a succinct way of describing a map between dg Lie algebras up
to coherent homotopy.

This notion also leads to a homotopy coherent version of a representation.

Definition 7.0.4. — For M a dg vector space, an L∞ action of g on M means a
map of L∞ algebras ρ : g  End(M), where End(M) denotes the dg vector space of
graded endomorphisms of M with the commutator bracket. We also say ρ makes M a
L∞-representation or L∞-module for g.

We unravel this definition as follows. A map of L∞ algebras ρ : g  End(M) is
determined by the composite

πSym1 ◦ ρ : Sym(g[1])→ End(M)[1] = Sym1(End(M)[1]),

as any coalgebra map is determined by how it maps to cogenerators. Thus, we obtain
a sequence of maps

ρn : Symn(g[1])⊗M →M

of degree 2 − n, which describe more concretely how g acts on elements of M . This
version of the data makes it manifest how to define the Chevalley-Eilenberg chains
of M , CL

∗ (g,M), which generalizes the Lie algebra homology of a representation of a
Lie algebra and which thus encodes the coinvariants of the representation M .

An L∞ algebra g also possesses a Chevalley-Eilenberg cochains C∗L(g), which is the
dg completed commutative algebra (Ŝym(V ∨[−1]), Q∨). When g is a dg Lie algebra,
this definition C∗L(g) recovers the usual cochains C∗Lie(g). (One must be careful about
what one means by the graded linear dual V ∨ if V is not finite-dimensional in each
cohomological degree. In practice our infinite-dimensional vector spaces are tamed by
a topology.) For each representationM , we also have the Chevalley-Eilenberg cochains
of M , C∗L(g,M), which generalizes the Lie algebra cohomology of a representation of
a Lie algebra and which thus encodes the invariants of the representation M . We will
use Der(g) to denote the C∗L(g, g[1]), as it encodes the vector fields (or derivations)
of g viewed as a formal space.

It is often convenient to describe a map of L∞ algebras f : g  g′ in two other
ways:

1. a map of augmented dg commutative algebras f∗ : C∗L(g′)→ C∗L(g) or

2. a Maurer-Cartan element αf in the L∞ algebra C∗L(g)⊗ g′.
Let us explain what we mean in the second case.

First, observe that the tensor product A ⊗ g of a dg commutative algebra A and
L∞ algebra g obtains a natural L∞ structure where

`A⊗gn (a1 ⊗ x1, . . . , an ⊗ xn) = ±(a1 · · · an)⊗ `gn(x1, . . . , xn).
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84 CHAPTER 7. A BRIEF OVERVIEW OF DERIVED DEFORMATION THEORY

In other words, we use the commutative product of A to multiply the A-components
and we use the L∞ structure on g to bracket the g-components. This definition is just
the extension to L∞ algebras of the familiar construction with commutative algebras
and Lie algebras (e.g., recall why the sections of the adjoint bundle of a principal
G-bundle form a Lie algebra). Second, a Maurer-Cartan element of an L∞ algebra g
is a degree one element α such that∑

n≥1

1

n!
`gn(α, . . . , α) = 0.

When g is a dg Lie algebra, this recovers the standard definition. (In principle, this
infinite sum is ill-defined, but we always work in situations where only a finite sum ap-
pears. Alternatively, one needs to introduce some mechanism to make the infinite sum
well-defined, such as with a topology.) Finally, a map of L∞ algebras f is determined
by the composite

πSym1 ◦ f : Sym(g[1])→ g′[1] = Sym1(g′[1]),

as any coalgebra map is determined by how it maps to cogenerators. This composite
provides an element αf ∈ Ŝym(g∨[−1]) ⊗ g′[1], and the condition that f intertwines
the differentials is equivalent to the Maurer-Cartan equation on αf .

We introduce one final bit of notation, since we use it repeatedly below.
Let C∗Lie,red(g) denote the reduced cochains: we remove the constant terms (i.e.,
the span of the unit element). That is, the underlying graded vector space is

C]Lie,red(g) = Ŝym
>0

(g∗[−1]),

namely, the functions that vanish at the base point of the formal moduli space encoded
by g.
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CHAPTER 8

THE FORMAL βγ SYSTEM

We now turn to the case where the target is the formal n-disk D̂n, which was
formulate as a classical BV theory in the style of a gauge theory. This encoding allows
a concise description of how diffeomorphisms on the target act on the theory, and
thence a description as a Wn-equivariant classical BV theory.

8.1. The free βγ system as a BV theory

We briefly recall how to encode the free βγ system—where the target X is the
affine space An—as a BV theory, following [24, 16]. (Note that the name is due to the
traditional choice of letters to denote the fields.)

Definition 8.1.1. — The rank n free βγ system on a Riemann surface S has fields

Ω0,∗(S,Cn)⊕ Ω1,∗(S,Cn),

concentrated in cohomological degrees 0 and 1. We denote by γ = (γ1, . . . , γn) a section
of Ω0,∗(S,Cn), and we denote by β = (β1, . . . , βn) a section of Ω1,∗(S,Cn). The shifted
pairing is “wedge and integrate”:

(16) 〈γ + β, γ′ + β′〉 =

n∑
i=1

∫
S

γi ∧ β′i + βi ∧ γ′i.

The action functional is

Sfree(γ, β) = 〈β, ∂γ〉 =

n∑
i=1

∫
S

βi ∧ ∂γi.

The equations of motion are thus

∂γi = 0 = ∂βi

for i = 1, . . . , n.
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86 CHAPTER 8. THE FORMAL βγ SYSTEM

There is an action of the general linear group GLn on the space of fields of the free
βγ system. Explicitly, for a field of the form (f ⊗v, g⊗λ) ∈ Ω0,∗(S;Cn)⊗Ω1,∗(S;Cn)

we define for A ∈ GLn

A · (f ⊗ v, g ⊗ λ) = (f ⊗Av, g ⊗ (A−1)Tλ).

That is, we view GLn acting on Ω0,∗(S;Cn) through the defining representation on Cn
and on Ω1,∗(S,Cn) through the coadjoint representation on Cn. By construction this
action preserves Sfree.

8.2. The formal βγ system

We now turn to the case where the target is the formal n-disk D̂n, which is closely
related to the free case we just described.

Let S denote a Riemann surface, and let gn be the abelian Lie algebra from Defi-
nition 7.0.1. The dg Lie algebra

gSn := Ω0,∗(S, gn)

plays a central role for us. It is abelian but has a nontrivial differential via ∂. The
Maurer-Cartan equation of this dg Lie algebra is ∂(γ) = 0, where γ : S → Cn is
a smooth function; in other words, a solution is simply a holomorphic map from S

to Cn. Under the dictionary, this dg Lie algebra gSn encodes a formal moduli space that
describes how to deform the constant function with value 0 to a holomorphic functions.
Note that this Maurer-Cartan equation is precisely the Euler-Lagrange equation for γ
in the free βγ system, and the deformations describe the formal neighborhood of the
constant zero map among all holomorphic functions.

To describe the β fields as well, we simply enlarge the dg Lie algebra to its “double”

DgSn = Ω0,∗(S, gn)⊕ Ω1,∗(S, g∨n [−2]).

Note that the shifts mean that in cohomological degree one, we have Ω0,0 ⊗ Cn ⊕
Ω1,0⊗ (Cn)∗, and in cohomological degree two, we have Ω0,1⊗Cn⊕Ω1,1⊗ (Cn)∗. The
Lie bracket is still trivial, and the differential is ∂ in both complexes. If β denotes
an element in Ω1,0 ⊗ (Cn)∗, then the Maurer-Cartan equation is ∂(β) = 0, which is
precisely the Euler-Lagrange equation in the βγ system. Hence the dg Lie algebra
DgSn encodes, in some sense, the free βγ system. To be more precise, it encodes the
βγ system with the formal n-disk D̂n as the target, since this dg Lie algebra describes
deformations of the constant map to the origin.

Remark 8.2.1. — This holomorphic abelian gauge theory is simply a holomorphic
version of BF theory, where the Lie algebra is now in a shifted degree.

Note that under this correspondence, the BV bracket for the BV theory encoding
the βγ system corresponds to the linear pairing on DgSn arising from the evaluation
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8.3. THE Wn ACTION ON gSn AND ON DgSn 87

pairing on gn. Explicitly, for γ, γ′ ∈ Ω0,∗
c (S, gn) and β, β′ ∈ Ω1,∗

c (S, g∨n [−2]), consider
the pairing

(17) 〈γ + β, γ′ + β′〉 =

∫
S

evgn(γ ∧ β′) + evgn(β ∧ γ′),

where ev denotes the evaluation pairing between gn and g∨n and where evgn(γ ∧ β′)
denotes the composite of taking the wedge product of the Dolbeault components and
the evaluation pairing of the Lie algebra components. This pairing is invariant under
the Lie bracket and has cohomological degree −3. (This shift, in conjunction with
the shift in Chevalley-Eilenberg cochains, ensures that one obtains a shifted Poisson
bracket of degree 1, as needed for a classical BV theory.)

Just as in the non-formal case the group GLn acts on DgSn .

Lemma 8.2.2. — The group GLn acts on the dg Lie algebra DgSn in a way that pre-
serves the pairing 〈−,−〉.

Proof. — The action of GLn is induced by the defining representation on gn[1] = Cn
and the coadjoint action on g∨n [−2] = (Cn)∗.

8.3. The Wn action on gSn and on DgSn
We have just seen that the formal βγ system is equivariant for the group GLn.

There is a richer equivariance coming from non-linear automorphisms of the formal
disk that we now wish to describe.

First, consider the global curved βγ-system with source S and target X. Ex-
plicitly, the fields consist of pairs of a map γ : S → X together with a section
β ∈ Γ(KS ⊗ γ∗(T ∗X)). The action is, as in the flat case,

∫
S
β ∧ ∂γ.

Biholomorphisms act on the γ fields in the obvious way: given a biholomorphism
φ : X → X we obtain a new field via composition φ ◦ γ : S → X. Now, a biholomor-
phism induces an action of sections on any tensor bundle. In particular, on sections
of T ∗X the biholomorphism φ acts by the inverse Jacobian Jac(φ)−1. Thus, we have
an action of the biholomorphism φ on the β fields given by Jac(γ∗φ)−1. Thus, the
action on the pair (γ, β) is given by

φ · (γ, β) = (φ ◦ γ, Jac(φ)−1β),

where Jac(φ)−1β is a section of (φ ◦ γ)∗T ∗X ⊗KS . Since φ is holomorphic we have

∂(γ ◦ φ) = Jac(φ) · ∂γ.
It follows that biholomorphisms are a symmetry of the classical theory.

The dg Lie algebras we introduced above describing the formal βγ system arise
via a general method for producing dg Lie algebras: given a dg Lie algebra g and a
commutative dg algebra A, the tensor product A ⊗ g has a natural dg Lie algebra
structure where the differential is

d(a⊗X) = (dAa)⊗X + (−1)aa⊗ dgX
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88 CHAPTER 8. THE FORMAL βγ SYSTEM

and the bracket is

[a⊗X, a′ ⊗X ′] = (−1)Xa
′
(aa′)⊗ [X,X ′].

Above, we took A to be the Dolbeault complex Ω0,∗(S).
Now, if another Lie algebra h acts on g, there is a natural extension to an action

of h on A ⊗ g by simply leaving the A-term alone. We want to use an L∞ version
of this procedure to equip gSn and DgSn with an L∞ action of Wn, extending the L∞
action of Wn on gn. This L∞ action is something familiar in physics, just expressed
compactly via our dictionary. For a σ-model with target X, a diffeomorphism of X
acts on the space of maps into X. If the diffeomorphism preserves structure relevant
to the σ-model (e.g., a metric or complex structure), then the diffeomorphism acts on
the space of solutions to the Euler-Lagrange equations of the theory. This L∞ action
encodes how formal diffeomorphisms of the target formal disk D̂n act on the formal
moduli space of solutions to the equations of motion for the βγ system.

Let us provide an explicit description of this L∞ action in order to make the ex-
tension manifest. Denote the generators of gn by {ξ1, . . . , ξn} and the dual generators
of g∨n by {t1, . . . , tn}. Hence we have

C∗Lie(gn) = Ŝym(g∨n [−1]) = C[[t1, . . . , tn]],

as already mentioned. Moreover we have a natural map

(18) ρW : Wn → Der(C∗Lie(gn)), f(ti)∂j 7→ f(ti)ξj .

Expressed as an L∞ action of Wn on gn, it is given by a sequence of maps

`Wm : Wn ⊗ g⊗mn → gn
of cohomological degree 1 − m, where m ranges over all non-negative integers.
These maps are simply the “Taylor components” of ρW . For instance, the vec-
tor field X = tm1

1 · · · tmnn ∂j ∈Wn acts by zero for any m 6= m1 + · · · + mn, and
for m = m1 + · · ·+mn,

`Wm
(
X, (ξ⊗m1

1 ⊗ · · · ⊗ ξ⊗mnn )
)

= `Wm
(
(tm1

1 · · · tmnn ∂j)⊗ ξ⊗m1
1 ⊗ · · · ⊗ ξ⊗mnn

)
= ξj

and vanishes on any other basis element g⊗mn .
With these formulas in hand, we can equip A⊗ gn with an L∞ action of Wn. Here

the sequence of maps is

`W,Am : Wn ⊗ (A⊗ gn)⊗m → A⊗ gn
with

`W,Am (X, (a1 ⊗ x1)⊗ · · · ⊗ (am ⊗ xm)) = ±(a1 · · · am)⊗ `Wm (X,x1 ⊗ · · · ⊗ xm),

where the sign is determined by Koszul’s rule. Equivalently, we can encode the L∞
action in a Lie algebra map

ρW,A : Wn → C∗Lie(A⊗ gn, A⊗ gn[−1]),

which assembles the `Am maps into a “Taylor series”. If we set A to be Ω0,∗(S), then
we obtain an L∞ action of Wn on gSn . A lift of this action to an L∞ action of Wn
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on DgSn is uniquely determined by the requirement that the action preserve the de-
gree −3 pairing.

Diffeomorphisms of a manifold X naturally determine symplectomorphisms of the
cotangent bundle T ∗X, given simply by the associated map of vector bundles. Thus
diffeomorphisms also act naturally on the space of maps from S into T ∗X. We can
use the L∞ language to provide a concise description of this action of formal diffeo-
morphisms of the disk D̂n on the fields of the formal βγ system.

The action of Wn on the Lie algebra gn induces an action of Wn on the dual space
g∨n via the evaluation pairing:

〈X · v, w〉gn = 〈v,X · w〉gn
for all v + w ∈ gn ⊕ g∨n . This action is linear in the sense that brackets

Wn ⊗ (g∨n)⊗m → g∨n
are zero for m > 1. We can extend this action to the dg vector space Ω1,∗(S, g∨n) and
hence to DgSn ; we denote this L∞-action by

DρW : Wn → Der(DgSn).

Since Wn preserves the dual pairing on gn and g∨n , it is immediate that it preserves
the invariant pairing of degree −3 on DgSn . We summarize these observations in the
following.

Lemma 8.3.1. — The classical BV theory of the formal βγ system is equivariant with
respect to Wn: the action of Wn on the fields preserves the shifted pairing on the fields
and the action functional. In other words, the L∞ action of Wn on DgSn determined
by the canonical action of Wn on gn preserves the shifted pairing and the differential.

8.4. A Noether current and the obstruction-deformation complex

It thus should be no surprise that we can also use a local functional to express
this action of infinitesimal diffeomorphisms. The explicit formula is quite simple and
is just the natural formula from physics written in terms of formal power series. (See
equation (19) below.) To formulate this result, we recall now some useful notation.
We will also see how we can obtain the usual Noether current for the symmetry by
vector fields from this local functional.

8.4.1. Recollections on local functionals. — A systematic exposition of local function-
als and deformation complexes can be found in [14], particularly in Chapter 5, but
here we provide a brief summary with our theory as a running example.

Let E be a dg Lie (or L∞) algebra associated to a classical BV field theory on S.
The underlying graded vector space of E consists of the smooth sections of a certain
graded vector bundle E on S; we call such sections the fields of the field theory. The
key example here is the dg Lie algebra DgSn for the formal βγ system, whose fields are
γ and β.
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90 CHAPTER 8. THE FORMAL βγ SYSTEM

A Lagrangian density is a functional on E that takes values in smooth densities on S
and depends polynomially (or as a power series) on the fields and their derivatives.
This dependence is local: if L (γ) is a Lagrangian density evaluated on the field γ, its
value at a point x ∈ S only depends on the ∞-jet (aka Taylor expansion) of γ at x.
A Lagrangian density L then determines a local functional on fields by integrating
over S. More precisely, one obtains a functional on compactly-supported fields, since
integration is always well-defined so long as the domain is compact. As an example,
let E = DgC1 , the rank 1 formal βγ system on S = C. The Lagrangian density L (γ, β) =

β ∧ ∂γ has local functional given by the action functional.
Note that since total derivatives with compact support have trivial integral, two

Lagrangian densities that differ by total derivatives determine the same local func-
tional. Thus, we define the dg vector space of local functionals on the classical field
theory E by

C∗loc(E ) = DensS ⊗DS C∗Lie,red(J∞(E)).

Here DS denotes the ring of differential operators on S, DensS denotes the smooth
densities on S equipped with its natural right action by DS , and J∞E denotes the
sheaf of ∞-jets of smooth sections of the bundle E. Since E is a sheaf of Lie algebras,
J∞(E) is a sheaf of Lie algebras in DS-modules, and we are computing the Lie algebra
cochains in the category of DS-modules. Such cochains should be viewed as functions
on the ∞-jets of fields with values in functions on S. Hence, this tensor product
produces densities on S that are power series in the jets of fields. Moreover, taking
this tensor product over DS encodes the relation that total derivatives vanish. Note
that we’ve eliminated the constant functions on jets of sections.

This description of C∗loc(E ) is quite abstract, but by restricting to compactly sup-
ported fields, we can provide a more concrete description of the situation. A local
functional is a sum of functionals of the form∫

x∈S
D1γ(x) ∧ · · · ∧Djγ(x) ∧Dj+1β(x) ∧ · · · ∧Dkβ(x) ∧ dµ,

where theDi are differential operators and where dµ is a smooth form. This functional
is homogeneous of order k. (Such a functional can have any cohomological degree.)
As we saw, a prototypical example of a local functional is the action functional itself,
which is quadratic and degree zero.

Definition 8.4.1. — Let Defn = C∗loc(DgSn) denote the cochain complex of local func-
tionals on DgSn. Elements consist of formal sums I =

∑
k>0 Ik where each Ik is a local

functional that is homogeneous of order k. We call Defn the obstruction-deformation
complex for the formal βγ system.

The deformation complex is, in fact, a subcomplex of the Chevalley-Eilenberg con-
tinuous cochains on the dg Lie algebra DgSn . (Essentially, we mean the cochains as
a dg Lie algebra in topological vector spaces, but see Section 11.2 for more thor-
ough discussion of this point.) A cochain in the deformation complex of homogeneous
degree k is a distribution supported, by definition, along the small diagonal X ↪→ Xk.
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8.4. A NOETHER CURRENT AND THE OBSTRUCTION-DEFORMATION COMPLEX 91

The complex Defn has a shifted Lie algebra structure arising from the BV bracket
{−,−}, which is determined by the shifted pairing between the fields γ and β of Equa-
tion (17). In essence, we view the pairing on fields as encoding a shifted symplectic
structure on the space of fields, and hence functionals should have a shifted Poisson
bracket. From this perspective γ and β are conjugate variables (like q and p in tra-
ditional, unshifted symplectic geometry). Given two local functionals F and G, one
computes {F,G} by pairing a γ input from F with a β input from G, and vice versa
(much as {q, p} = 1). With respect to this bracket, the differential on Defn is then
{Sfree,−}. (Note that local functionals do not form a commutative algebra, however,
since the product of two such is no longer local! The bracket does provide a shifted
Lie bracket, just not a Poisson bracket.)

8.4.2. The action of vector fields. — We now describe the action of formal vector
fields on the classical theory using local functionals. Verifying the lemma is a direct
computation using the definitions.

Lemma 8.4.2. — The map DρW : Wn → Der(DgSn) describing the L∞-action of Wn

on the dg Lie algebra DgSn has a lift

Defn[−1]

{−,−}
��

Wn DρW
//

IW
::

Der(DgSn),

with IW a local functional. Explicitly, given a formal vector field

X =

n∑
j=1

∑
m=(m1,...,mn)∈Nn

aj,mt
m1
1 · · · tmnn ∂j ,

the local functional

(19) IW
X (γ, β) =

n∑
j=1

∑
m∈Nn

aj,m

∫
S

γ∧m1
1 ∧ · · · ∧ γ∧mnn ∧ βj

satisfies {IW
X ,−} = DρW (X).

Remark 8.4.3. — When restricted to linear vector fields, the action of Wn on βγ

system with target D̂n agrees with the action of GLn described in Lemma 8.2.2. In
this sense, we have described an action of the Harish-Chandra pair (Wn,GLn) on
the classical βγ system. This theory can thus be treated by Gelfand-Kazhdan formal
geometry. We develop this reasoning more fully in Section 12.4. In particular, in the
next section we will show that this theory descends to the classical curved βγ system
where the target is a complex manifold X; more precisely, we will identify this theory
with the theory defined by Costello in [15].
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92 CHAPTER 8. THE FORMAL βγ SYSTEM

As explained in Section 7, we can identify this map IW with a Maurer-Cartan
element C∗Lie(Wn,C

∗
loc(DgSn)). Explicitly, this identification means that

(20) (dWn
⊗ 1 + 1⊗ ∂)IW +

1

2
{IW, IW} = 0.

In fact, given our formula for the local functional, it is natural to view IW as a function
of X ∈Wn and the fields γ and β. We thus have the following cochain complex, which
plays a crucial role in studying the formal βγ system as a Wn-equivariant BV theory.

8.4.3. The relation to the formal Atiyah class. — In this section we describe how the
local functional IW, which encodes the action of formal vector fields on the classical
theory, is related to the Gelfand-Fuks-Atiyah class from Section 2.

We have already discussed the action of Wn on the dg Lie algebra gn and its dual g∨n
and how this determines an action on the dg Lie algebra DgSn which is encoded by
the Maurer-Cartan element IW ∈ C∗Lie(Wn)⊗ C∗loc(DgSn)[−1].

Fix S = C and use the natural framing of the tangent bundle by ∂z to write
Ω0,∗(S) = C∞(C) ⊗ C[dz]. Similarly, Ω1,∗(C) = C∞(C)[dz]dz. Using this notation,
we find a decomposition

(21) DgSn = C∞(C)⊗ ((gn ⊕ gn dz)⊕ (g∨n [−2]⊕ g∨n [−2] dz) dz)

as the tensor product of a commutative algebra C∞(C) and a graded Lie algebra.
(The differential on the dg Lie algebra does not respect this decomposition.)

It will be convenient to analyze IW in terms of this decomposition. To be more
precise, we consider the local functional IW

X for each formal vector field X of the
form ai∂i, where the coefficient ai ∈ Ôn is a homogeneous polynomial. Observe then
that IW

X is itself a homogeneous local functional of the form

IW
X : Symk+1(DgSn)→ C,

where ai has polynomial degree k. Using the decomposition (21), we can write IW
X

as IW,an
X IW,alg

X , a product of an analytic factor times a algebraic factor with IW,an
X ∈

Symk+1(C∞(C)∨) and with

IW,alg
X ∈ C∗Lie ((gn ⊕ gn dz)⊕ (g∨n [−2]⊕ g∨n [−2] dz) dz) .

Moreover, IW is linear in the inputs gn dz and (g∨n [−2]⊕ g∨n [−2] dz) dz, as there must
be precisely one dz and dz for the integral (19) to be nonzero. Thus, we see that the
algebraic factor is an element in

IW,alg
X ∈ C∗Lie (gn; (gn dz)∨[−1]⊗ gn[1]) .

For the rest of this section, we suppress dz from the notation and identify the right-
hand side with Ôn ⊗ End(T0) where T0 = gn[1] = Cn is the space of constant vector
fields.

The formal de Rham differential ddR : Ôn → Ω̂1
n determines a map

ddR ⊗ 1 : Ôn ⊗C End(T0)→ Ω̂1
n ⊗C End(T0),

ASTÉRISQUE 419



Ép
re

uv
e S

M
F

M
ay

7,
20

20
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which is reminiscent of equipping a vector bundle with a connection after specifying
a global frame.

We have, as a corollary of Proposition 2.5.17, the following relationship of the
functional IW,alg to the Gelfand-Fuks-Atiyah class.

Corollary 8.4.4. — For each X ∈Wn of homogenous degree k,

(ddR ⊗ 1)IW,alg
X = AtGF(T̂n)(X) ∈ Ω̂1

n ⊗Ô End(T̂n),

where AtGF(T̂n) is the Gelfand-Fuks-Atiyah class of the formal vector bundle T̂n.

Proof. — We can think of X 7→ IW,alg
X as a linear map

IW,alg : Wn → Ôn ⊗C End(T0),

or equivalently as a linear map IW,alg : Wn⊗T0 → T̂n. This map is, in fact, the restric-
tion of the action ρT̂n

of Wn on the formal tangent bundle T̂n to the space T0 = Cn,

the space of constant sections of T̂n. That is, ρT̂n |Wn⊗T0
= IW,alg. Proposition 2.5.17

then implies that (ddR ⊗ 1)IW,alg is a representative for the Gelfand-Fuks-Atiyah
class.

8.4.4. Equivariant deformation complex. — We can now make the following deforma-
tion complex that controls Wn-equivariant deformations of the classical theory.

Definition 8.4.5. — The Wn-equivariant obstruction-deformation complex is the
graded vector space Ŝym(Wn

∨[−1]) ⊗ C]loc(DgSn) equipped with the differential
dWn

+∂+{IW,−}, where dWn
denotes the differential from C∗Lie(Wn) and ∂ denotes

the differential from C∗loc(DgSn). We use DefW
n to denote this complex.

In other words, this complex is the tensor product C∗Lie(Wn)⊗ C∗loc(DgSn) twisted
by IW as the twisting cochain. It encodes succinctly how the formal vector fields Wn

act on the local functionals of the field theory. Its role in the equivariant BV formalism
is analogous to the role of the non-equivariant obstruction-deformation complex in the
BV formalism:

— first-order deformations of the formal βγ system as a Wn-equivariant classical
BV theory live in the zeroth cohomology and

— the obstruction to equivariant BV quantization modulo ~2 lives in the first
cohomology.

Hence it behooves us to compute its cohomology. We will find a particularly nice
answer after further constraining the problem.

There are two further symmetries of this theory that we will exploit. First, there
is a natural scaling action of C× on the fibers of the cotangent bundle (as on any
vector bundle) that scales the β fields of the βγ system. The action functional has
“weight one” with respect to this scaling action. In our setting there is thus an action
of C× on DgSn given by scaling the β fields. Second, we restrict now to the Riemann
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94 CHAPTER 8. THE FORMAL βγ SYSTEM

surface is S = C and note that affine linear automorphisms Aff(C) = CnC× preserve
the action functional of the βγ system. We are only interested in the subcomplex
of DefWn consisting of local functionals that are weight zero under the scaling action
and invariant under the Aff(C) action. Then we have the subcomplex

(Defn)C
××Aff(C) ⊂ Defn

and its equivariant version (DefW
n )C

××Aff(C) ⊂ DefW
n .

Proposition 8.4.6. — There is a quasi-isomorphism of Wn-modules

J : Ω̂2
n,cl[1]

'−→ (Defn)C
××Aff(C).

Applying the functor C∗Lie(Wn;−), we obtain a quasi-isomorphism

(22) JW : C∗Lie(Wn, Ω̂
2
n,cl[1])

'−→ (DefW
n )C

××Aff(C).

The proof of this result is in Section 8.5.2, but first we will have to describe the
map J in the above proposition, which is the subject of the next section.

This quasi-isomorphism J is, in fact, (Wn,GLn)-equivariant. Let us note an im-
portant consequence of this proposition.

Corollary 8.4.7. — The Gelfand-Kazhdan descent along a complex manifold X of the
(Wn,GLn)-module (Defn)C

××Aff(C) returns a sheaf of dg vector spaces that is quasi-
isomorphic to the sheaf Ω2

X,cl[1].

In particular we have the following description over a general manifold:

(1) the space of anomalies of the theory over X is H2(X,Ω2
X,cl),

(2) the space of deformations over X is H1(X,Ω2
X,cl) and

(3) the space of automorphisms over X is H0(X,Ω2
n,cl).

This description matches precisely with the study of deformations of the curved βγ
system as in [55, 46].

8.5. Closed two-forms as local functionals

We have already seen how vector fields yield local functionals of the formal βγ-sys-
tem and thus give it the structure of an equivariant BV theory. In this section we will
show how closed two-forms yield local functionals of γ, i.e., only of the subspace of
fields Ω0,∗(S; gn[1]). That is, we define a linear map

J : Ω̂2
n,cl → C∗loc(gSn)

and use Jω to denote the image of ω. This map will exhibit the quasi-isomorphism of
Proposition 8.4.6.
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Remark 8.5.1. — This map has the following geometric interpretation. On the formal
disk, every closed two-form ω is exact, so that ω = dθ for some θ ∈ Ω̂1

n. Use the field
γ : S → D̂n to pull back this one-form to the one-form γ∗θ on S. We interpret this
one-form as a current; we can integrate it around any closed one-cycle in S to get a
function of γ. We denote this current by J̃θ, where J̃θ(γ) = γ∗θ. By Stokes theorem,
this current vanishes if θ is exact, so the local functional only depends, in fact, on the
corresponding closed two-form dθ. Hence we write Jdθ = J̃θ.

8.5.1. Defining J . — Although pulling back forms is easy, we wish to rewrite this
construction in terms of gn and hence we need to describe pullback under Koszul
duality. Thus, to define J , we need to introduce a few constructions.

First, there is an assignment

(−)S : Ôn → HomC

(
Sym(Ω0,∗

S ⊗ gn[1]),Ω0,∗
S

)
,

that promotes a function on the formal n-disk to a function on the formal moduli
space gSn with values in holomorphic functions on S. It goes as follows. Given an
input f ∈ Ôn, let fk denote its homogeneous component of degree k. View fk as a
linear map fk : Symk(gn[1])→ C. We then define

fSk : Symk(Ω0,∗
S ⊗ gn[1]) → Ω0,∗

S

(γ1 ⊗ ξ1) · · · (γk ⊗ ξk) 7→ (γ1 ∧ · · · ∧ γk)f(ξ1, . . . , ξk).

Extend to non-homogenous elements by linearity so that fS =
∑
k f

S
k .

Similarly, a one-form on the formal disk θ ∈ Ω̂1
n = C∗Lie(gn; g∨n [−1]) encodes a linear

map θ : Sym(gn[1]) → g∨n [−1]. Let θk : Symk(gn[1]) → g∨n [−1] be its homogenous
component of degree k. As above, there is a natural linear map

θSk : Symk(Ω0,∗
S ⊗ gn[1]) → Ω0,∗

S ⊗ g∨n [−1]

(γ1 ⊗ ξ1) · · · (γk ⊗ ξk) 7→ (γ1 ∧ · · · ∧ γk)⊗ θk(ξ1, . . . , ξk).

Let θS =
∑
k θ

S
k , as above.

Each one-form θ thus determines a local function J̃θ ∈ C∗loc(gSn) by the formula

J̃θ(γ) =
∑
k

∫
S

〈
θSk
(
γ⊗k

)
, ∂γ

〉
gn
.

Explicitly, if θ = tm1
1 · · · tmnn dtj is monomial one-form, then we have

J̃θ(γ) =

∫
S

γm1
1 ∧ · · · ∧ γmnn ∧ ∂γj .

For shorthand notation, we will write J̃θ =
∫
S

〈
θS(γ), ∂γ

〉
gn

where the sum over
homogenous components is implicit.

We tie up the properties of the functional J̃ in the following proposition, proved
below.

Proposition 8.5.2. — The assignment θ 7→ J̃θ satisfies:
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(1) For all θ, the local functional J̃θ is ∂-closed inside Defn and lies in the subcom-
plex (Defn)C

××Aff(C).

(2) The assignment θ 7→ J̃θ is Wn-equivariant. That is, J̃LXθ = X ·Jθ where X ·(−)

denotes the action of vector fields on functionals and LX is the Lie derivative.

(3) The functional J̃θ is identically zero if θ is an exact one-form.

Thus, J̃ descends to a Wn-equivariant map

J : Ω̂2
n,cl[1]→ (Defn)C

××Aff(C)

that we denote ω 7→ Jω. Here Jω = J̃θ, where θ is any one-form satisfying dθ = ω.

8.5.2. Understanding J . — The formula for the functional J̃θ is best understood as
integration over S after applying an operator J valued in densities. We continue to
describe everything via the homogeneous components θk of θ.

First, for each homogeneous degree k, consider the composition

Symk(Ω0,∗
S ⊗ gn[1])⊗ (Ω0,∗

S ⊗ g[1])
1⊗∂−−−→ Sym(Ω0,∗

S ⊗ gn[1])⊗ (Ω1,∗
S ⊗ g)

θSk⊗1−−−→ (Ω0,∗
S ⊗ g∨n [−1])⊗ (Ω1,∗

S ⊗ gn[1])

〈−,−〉g−−−−→ Ω1,∗.

Here, 〈−,−〉g is the evaluation pairing between gn[1] and g∨n [−1]. We then symmetrize
the composite to obtain the (k + 1)th homogenous component of Jθ:

(Jθ)k+1 : Symk+1(Ω0,∗
S ⊗ gn)→ Ω1,∗

S .

In this notation, we have J̃θ =
∫
S
Jθ.

Before proving the main result, we make the following simple observations about
the functional J.

Lemma 8.5.3. — For f ∈ Ôn and θ ∈ Ω̂1
n,

(1) Jfθ = fS ∧ Jθ and

(2) JddRf = ∂ ◦ fS.

Proof. — For simplicity, suppose f is of homogenous degree k and θ of homogenous
degree l. Then fθ defines a linear map

Symk+l(gn[1])→ Symk(gn[1])⊗ Syml(gn[1])→ g∨n [−1]

ξ1, . . . , ξkξ
′
1, . . . , ξ

′
l 7→ (ξ1, . . . , ξk)⊗ (ξ′1, . . . , ξ

′
l) 7→ f(ξ1, . . . , ξk)θ(ξ′1, . . . , ξ

′
l).

Thus, (fθ)S = fSθS , from which (1) follows.
We now show (2). Consider the special case of a linear functional τ : gn[1] → C,

viewed as linear element of Ôn. The one-form ddR(τ) corresponds to the very simple
functional Sym0(gn[1])→ g∨n [−1] sending 1 7→ τ . Thus, JddRτ = ∂(τS). To see (2) in
general, we note that both the left and right hand sides are derivations with respect
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to the product of functions. Indeed, if f, g ∈ C∗Lie(gn), then ∂((fg)S)) = ∂(fSgS) =

∂(fS) ∧ gS + fS∂(gS).

Proof of Proposition 8.5.2. — Observe that the functional Jθ is described by ap-
plying a constant coefficient holomorphic differential operator to the fields γ. Thus
Jθ is clearly holomorphic and invariant under affine linear transformations. It follows
that J̃θ is holomorphic, that is ∂J̃θ = 0, and hence it is closed in Defn. This proves (1).

The formula in (2) in Lemma 8.5.3 implies (3) since the integral of a ∂-exact form is
zero. Hence J̃ defines a map J : Ω̂2

n,cl → C∗loc(gSn). Explicitly, given a closed two-form ω

with ddRθ = ω we have Jω = J̃θ. This proves (3).
Finally, we show (2). We have seen in our discussion of the Noether current that

the action of a formal vector field X on the deformation complex is through the BV
bracket with IW

X . Thus, we must show for all one-forms θ that J̃LXθ = {IW
X , J̃θ}. For

simplicity, suppose X = ∂i, a constant vector field. Then, if we choose a homogenous
one-form θ = tm1

1 . . . tmnn dtj then

LXθ = mit
m1
1 · · · tmj−1

k · · · tmnn dtj .

Now, to compute {IX , θ̃}. The functional IX has a single βi input that pairs with
a single γi input from the functional J̃θ. There are mi + δij such γi inputs, the δij
coming from the factor ∂γj in the definition of J̃θ. So, we obtain

{IX , J̃θ}(γ) = mi

∫
S

γm1
1 ∧ · · · ∧ γmi−1

j ∧ · · · γmnn ∂γj + δij

∫
S

∂(γm1
1 ∧ · · · ∧ γmnn ).

The first term is J̃LXθ. Being the integral of a total derivative the second term van-
ishes, so we are done. The case of a general formal vector field X is similar. Indeed,
suppose X is homogeneous of the form X = tk1

1 · · · tknn ∂i. Then for θ as above we have

LXθ = mit
k1+m1
1 · · · tki+mi−1

i · · · tkn+mn
n dtj + δijt

m1
1 · · · tmnn d(tk1

1 · · · tknn ).

On the other hand, we compute directly

{IX , J̃θ} = mi

∫
S

γk1+m1
1 ∧ · · · ∧ γki+mi−1

i ∧ · · · ∧ γkn+mn
n ∂γj

− δij
∫
S

∂(γm1
1 ∧ · · · ∧ γmnn )γk1

1 ∧ · · · ∧ γknn .

The first line comes from pairing the βj input from the functional IW
X with the γmii

input from J̃θ. The next term comes from pairing the βi input with the ∂γj input
from J̃θ (there is a sign from integrating by parts). Integration by parts again returns
J̃LXθ as desired.

Proof of Proposition 8.4.6. — We have just seen that J : Ω̂2
n,cl → Defn is Wn-equiv-

ariant. To complete the proof it suffices to show that we have a Wn-equivariant
equivalence (Defn)C

××Aff(C) ' Ω̂2
n,cl[1]. With gn as the choice of the L∞ algebra g,

this equivalence appears as Proposition 15.1.1 in [15], whose proof we will review in
order to keep track of the Wn-action.
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First, observe that by restricting to weight zero local functionals under the scaling
action, we only consider functionals that are independent of β. This constraint implies
that

(Defn)C
××Aff(C) ∼= C∗loc(Ω0,∗(C, gn))Aff(C),

since we can write any such functional as a wedge product of β with a nontrivial
Lagrangian in γ. Following Chapter 5, Section 6 of [14], we exploit a description of
translation invariant local functionals via D-modules:

(23) C∗loc

(
Ω0,∗(C, gD̂n)

)C ∼= C dz dz ⊗DC C∗Lie,red

(
Jet0(Ω0,∗(C; gn))

)
,

where Jet0 denotes jets of sections at zero of Ω0,∗(C; gn).
Using z for the holomorphic coordinate on C, we have

Jet0(Ω0,∗(C, gn)) ∼= gnJz, z,dzK
and thus the identification (23) is manifestly Wn-equivariant. It follows that we have
a Wn-equivariant quasi-isomorphism

(Def)C
××C ' C dz ∧ dz ⊗C[∂z,∂z ] C∗Lie,red(gnJz, z,dzK),

where on the left-hand side we are taking ivariants with respect to C× × C ⊂ C× ×
(C n C×) = C× × Aff(C). So, we only need to compute the C×-invariants of the
right-hand side. Here C× acts by scaling space-time.

The quasi-isomorphism of dg Lie algebras

(gnJzK, 0)
'−→
(
gnJz, z,dzK, ∂

)
is obviously Wn-equivariant. Finally, Costello’s calculation implies that (in the case
that g = gn) we have(

Cdz ∧ dz ⊗L
C[∂z,∂z ] C∗Lie,red(gnJzK)

)
' (C→ Ω̂0

n → Ω̂1
n)[3].

(That means the cochain complex on the right hand side starts with C in degree −3.)
Moreover, the right-hand side is quasi-isomorphic via the de Rham differential to(

Ω̂2
n[1]→ Ω̂3

n[0]→ · · ·
)
' Ω̂2

n,cl[1].

This identification is clearly Wn-equivariant.

8.6. Holomorphic vector fields on the source

We digress momentarily to describe another important symmetry present in the
βγ system: the holomorphic σ-model possesses a natural symmetry of the Lie algebra
of holomorphic vector fields TS = T 1,0

S , much as the usual σ-model is conformal as a
classical field theory. We will formulate this symmetry on the formal βγ system.

It is convenient for us to work with the Dolbeault resolution of holomorphic vector
fields: define the dg Lie algebra

TS = Ω0,∗(S;TS)
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8.6. HOLOMORPHIC VECTOR FIELDS ON THE SOURCE 99

with differential given by ∂ and Lie bracket given by the extension of the Lie bracket
of vector fields to (0, ∗)-forms. There is an action of TS on the Dolbeault complex
Ω0,∗(S;C)⊕n given by Lie derivative of (0, ∗)-forms:

ξ · (γ ⊗ v) = (Lξγ)⊗ v.
(We use the script L to denote the Lie derivative with respect to vector fields on the
source, to avoid confusing it with LX , the Lie derivative of vector fields on the target.)
This action extends to an action of TS on the “double” dg Lie algebra DgSn so that it
preserves the shifted pairing between γ and β fields.

This action can be encoded by a local functional, and hence we obtain a T̂S-equiv-
ariant field theory.

Lemma 8.6.1. — The map of dg Lie algebras L : TS → Der(DgSn), sending a holo-
morphic vector field ξ on S to the derivation Lξ, describes an action of holomorphic
vector fields on the rank n free βγ system. Moreover, it has a lift to a map of dg Lie
algebras

IT : TS → Defn[−1]

ξ 7→ 〈β, Lξγ〉
along the map determined by the BV bracket {−,−} : Defn[−1]→ Der(DgSn).

8.6.1. — We wish to describe the equivariant obstruction-deformation complex for the
action of TS . The functional IT endows the direct sum TS⊕DgSn with the structure of
a local Lie algebra. By definition, this equivariant obstruction-deformation complex
is given by the local cochains of this local Lie algebra

DefT
n = C∗loc

(
TS nDgSn

)
,

where Defn is the deformation complex for the formal βγ system defined earlier.
As C∗loc always involves taking the reduced Lie algebra cochains, there is a useful
splitting of the deformation complex

DefT
n
∼= C∗loc(TC)⊕ C∗loc(TC; Defn),

where Defn is the deformation complex for the free βγ system.
For any complex manifold Y , the complex C∗loc(TY ) has an interpretation in terms

of the diagonal cohomology of Y , studied by [42]. In the case of Y = C it has a simple
interpretation in terms of Gelfand-Fuks cohomology.

Proposition 8.6.2 (Proposition 5.3 of [51]). — The cohomology of C∗Lie(TC) is concen-
trated in degree one and is isomorphic to H3

Lie(W1). Hence, H∗(C∗loc(TC)) ∼= C[−1].

An explicit generator for the cohomology is given by the local cocycle

ωGF : TC × TC → Ω1,1(C)

(α⊗ ∂z, β ⊗ ∂z) 7→ 1
2π

1
12

(
∂3
zα

0β0,1 + ∂3
zα

0,1β0
)

d2z,
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100 CHAPTER 8. THE FORMAL βγ SYSTEM

where α = α0 +α0,1dz and similarly for β. (Note that we can integrate the density on
the right whenever α or β is compactly-supported, but otherwise it is not integrable.
This situation is just like that with action functionals, where the Lagrangian density
is the important information rather than the purported function.)

Proposition 8.6.3. — There exists a map of dg Lie algebras

(ωGF, J,K) : C[−2]⊕ Ω̂1
n[−1]⊕ Ω̂2

n,cl → DefT
n [−1]

sending (1, ω, η) to (ωGF, Jω,Kη) where

— ωGF ∈ C∗loc(TC) ⊂ DefT
n represents the generator of the Gelfand-Fuks cohomol-

ogy H3
Lie(W1) ∼= C;

— for every µ ∈ Ω̂2
n,cl, the functional Jµ ∈ Defn ⊂ DefT

n is the one defined in
Section 8.5; and

— for η ∈ Ω̂1
n, Kη is the cocycle in C1

loc(TC; Defn) defined by

Kη(ξ, γ) =

∫
C
∂zξ

0
〈
ηS(γ), ∂γ

〉
gn

+

∫
C
∂zξ

0,1dz
〈
ηS(γ), ∂γ

〉
gn
,

where ξ = ξ0∂z + ξ0,1dz ∂z is an element of TC.

Moreover, this map is equivariant for the action of formal vector fields Wn.

Proof. — The assignment C → C∗loc(TC) sending 1 7→ ωGF is tautologically
Wn-equivariant. Moreover, we have already shown that the assignment J : Ω̂2

n,cl[1]→
Defn is Wn-equivariant.

Thus, it suffices to show thatK : Ω̂1 → C∗loc(TC; Defn) is Wn-equivariant. It suffices
to check that for all η ∈ Ω̂1

n and X ∈Wn,

KLXη = {IW
X ,Kη}.

This computation is parallel to the calculation in the proof of Proposition 8.5.2.

As a corollary we obtain a map of cochain complexes upon applying the functor
C∗Lie(Wn;−):

(ωGF ,K, J) : C[−1]⊕ C∗Lie

(
Wn; Ω1

n ⊕ Ω2
n,cl[1]

)
→ C∗Lie(Wn; DefT

n ).

The complex C∗Lie(Wn; DefT
n ) controls equivariant deformations for both the Lie al-

gebra Wn and TC. The map (ωGF,K, J) will allow us to identify elements of the
deformation complex with ordinary characteristic classes.
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CHAPTER 9

EQUIVARIANT BV QUANTIZATION
OF THE FORMAL βγ SYSTEM

The free βγ system is a free BV theory and hence admits a natural quantiza-
tion. (See Chapter 6 of [24] for an extensive development.) This quantization is easily
modified to encompass the formal βγ system, but here we want to quantize equiv-
ariantly with respect to the action of Wn. We will find that there is an obstruction
to quantizing equivariantly, given by the Gelfand-Fuks Chern class chGF2 (T̂n) defined
in Section 2.5.3. This obstruction is a very local avatar of the anomaly described by
Witten and Nekrasov [55, 46], and we will see in Part III that it corresponds in a very
precise way to the obstruction to constructing CDOs found by [45, 21] as described
in Section 3.

There is, however, an equivariant quantization for a natural action of W̃n, the ex-
tension of formal vector fields Wn by closed two-forms Ω̂2

cl introduced in Section 2.
In fact, we will see that the space of closed two-forms is precisely the space of defor-
mations for the βγ system. We construct this quantization explicitly using Feynman
diagrams and, in later sections, explain when and how it descends to complex mani-
folds.

Most of this section is devoted to formulating precisely what equivariant BV quan-
tization means and then proving the following result.

Theorem 9.0.1. — There is a unique (up to contractible choice) W̃n-equivariant and
C× ×Aff(C)-invariant quantization of the βγ system on C with target D̂n.

By an Aff(C)-invariant quantization, we mean one that is invariant with respect to
the action of affine symmetries of the complex line (i.e., translation and dilation by
complex numbers). The C×-symmetry condition says that the quantization has weight
one with respect to scaling the β fields, which can viewed as scaling the cotangent
fibers of T ∗D̂n. (See the discussion preceding Proposition 8.4.6.)

Remark 9.0.2. — Subsequent to the writing of this paper, Si Li developed general
technology that should imply this theorem [39]. (His results, as stated, do not explic-
itly encompass equivariant quantization but it is clear that they must extend to our
situation.) In brief, he exhibits a map from holomorphic (aka chiral) deformations
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102 CHAPTER 9. EQUIVARIANT BV QUANTIZATION OF THE FORMAL βγ SYSTEM

of a free holomorphic field theory of βγ-type to the modes dg Lie algebra of the as-
sociated dg vertex algebra, and he shows that a deformation satisfies the quantum
master equation if and only if it satisfies the Maurer-Cartan equation in the modes
Lie algebra. Hence, one can take our interaction term I and check if its associated Lie
algebra element

∮
dz I satisfies the Maurer-Cartan equation. This approach is easier

in the sense that computing in the modes Lie algebra is purely algebraic in nature, and
does not involve Feynman diagram computations, precisely because all the Feynman
diagrams are hidden in Li’s proof, where he does that analysis once and for all.

In this paper, we wish to be self-contained and hence explicitly solve the equiv-
ariant quantum master equation and explicitly describe the Feynman diagrammatics.
As a matter of taste, we also wanted to show clearly that the vertex algebra construc-
tions are completely separate from quantum field theoretic constructions—hence, the
division between Parts I and II—and then to exhibit in Part III that these indepen-
dent approaches produce equivalent answers. To use Li’s theorem would intertwine
the QFT construction with the vertex algebra construction, and it might mislead-
ingly suggest we need results from the theory of CDOs to construct our factorization
algebra.

On the other hand, Li’s work gives a systematic explanation for why such iden-
tifications hold between vertex algebra and QFT constructions. It sets the stage for
proving theorems like ours in a very broad range of examples.

Finally, we remark that Li’s theorem essentially reverses the logic of this paper.
He relies on essentially the same logic as Part III but oriented to state a different
result. As we explain in Part III, a free βγ-type field theory yields a factorization
algebra that recovers a dg vertex algebra, which is the one “expected” from physics.
Any holomorphic deformation of the theory must yield a deformation of the dg vertex
algebra, and so there must be a map of dg Lie algebras. We examine what deformation
of the vertex algebra arises from our preferred deformation of the theory, but we
exhibit general results that would let one describe other deformations as well. By
contrast, Li shows that this map is injective at the level of sets of solutions (from
QME to Maurer-Cartan equation) and hence can use the modes Lie algebra to identify
deformations of the BV theory.

9.1. Recollections on equivariant BV quantization

In this section we discuss what it means for a Lie algebra h to act on a quantum
field theory. To be more precise, we review the formalism developed in [17], notably
for the factorization Noether theorems (see Chapters 11 and 12). A key idea is to make
C∗Lie(h) the base ring over which the field theory is defined, rather than the complex
numbers C. Under the dictionary discussed in Section 7, this approach should encode
how the Lie algebra h acts on the theory. We have already seen this idea deployed for
the classical field theory, by interpreting the local functional IW of Lemma 8.4.2 as a
Maurer-Cartan element.
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9.1. RECOLLECTIONS ON EQUIVARIANT BV QUANTIZATION 103

Recall that in the BV formalism, as developed in [14, 17], a quantum BV theory
consists of a space of fields and an effective action functional {S[L]}L∈(0,∞), which is
a family of non-local functionals on the fields that are parametrized by a length scale
L and satisfy

(a) an exact renormalization group (RG) flow equation,

(b) the scale L quantum master equation (QME) at every length scale L, and

(c) as L→ 0, the functional S[L] has an asymptotic expansion that is local.

The first condition ensures that the scale L action functional S[L] determines the
functional at every other scale. The second can be interpreted as saying that we have
a proper path integral measure at scale L (i.e., the QME can be seen as a definition of
the measure). The third condition implies that the effective action is a quantization
of a classical field theory, since a defining property of a classical theory is that its
action functional is local. (A full definition is available in Section 8.2 of [17].)

Remark 9.1.1. — The length scale is associated with a choice of Riemannian metric
on the underlying manifold, but the formalism of [14] keeps track of how the space of
quantum BV theories depends upon such a choice (and other choices that might go
into issues like renormalization). Hence, when the choices should not be essential—
such as with a topological field theory—one can typically show rigorously that different
choices give equivalent answers. The length scale is also connected with the use of heat
kernels in [14], but one can work with more general parametrices (and hence more
general notions of “scale”), as explained in Chapter 8 of [17]. We use a natural length
scale in this section; when it becomes relevant, in the context of factorization algebras,
we switch to general parametrices.

If we start with an h-equivariant classical BV theory E with action func-
tional S—so that h has an L∞ action on the fields that preserves the pairing
and the action functional S—then we can encode the action of h as a Maurer-
Cartan element Ih in C∗Lie(h) ⊗ C∗loc(E ). (For the formal βγ system, we did
this in Lemma 8.4.2.) We then view the sum S + Ih as the equivariant ac-
tion functional: the operator dC∗Lie(h) + {S + Ih,−} is the twisted differential
on C∗Lie(h)⊗C∗loc(E ) with Ih as the twisting cocycle, and this operator is square-zero
because dC∗Lie(h)(S + Ih) + {S + Ih, S + Ih} is a “constant” (i.e., lives in C∗Lie(h) and
hence is annihilated by the BV bracket).

This perspective suggests the following definition of an equivariant quantum BV
theory. The starting data is two-fold: an h-equivariant classical BV theory with equiv-
ariant action functional S+ Ih, and a BV quantization {S[L]} of the non-equivariant
action functional S. Following Costello, it is convenient to write S as Sfree + I, where
the first “free” term is a quadratic functional and the second “interaction” term is
cubic and higher. In this situation, the effective action S[L] = Sfree + I[L], i.e., only
the interaction changes with the length scale.
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104 CHAPTER 9. EQUIVARIANT BV QUANTIZATION OF THE FORMAL βγ SYSTEM

Definition 9.1.2. — An h-equivariant BV quantization is a collection of effective in-
teractions {Ih[L]}L∈(0∞) satisfying

(a) the RG flow equation

W (PLε , I[ε] + Ih[ε]) = I[L] + Ih[L],

for all 0 < ε < L,

(b) the equivariant scale L quantum master equation, which is that

Q(I[L] + Ih[L]) + dC∗Lie(h)I
h[L] +

1

2
{I[L] + Ih[L], I[L] + Ih[L]}L + ~∆L(I[L] + Ih[L])

lives in C∗Lie(h) for every scale L, and

(c) the locality axiom, with the additional condition that as L → 0, we recover the
equivariant classical action functional S + Ih modulo ~.

In other words, we simply follow the constructions of [14, 17] working over the
base ring C∗Lie(h). A careful reading of those texts shows that the freedom to work
over interesting dg commutative algebras is built into the formalism. Note that our
situation is particularly simple since the non-equivariant classical field theory is free
and hence admits a very simple quantization, with I[L] = 0 for all L.

Remark 9.1.3. — Equivariant quantization is essentially a version of the background
field method in QFT. One treats elements of h as background fields and the inter-
action terms Ih[L] encode the variation of the path integral measure with respect to
these background fields. (Solving the QME is our definition of well-posedness of the
measure.)

9.2. The pre-theory

We will follow an approach directly parallel to the non-equivariant construction of
a BV quantization of the curved βγ system in [15]. Our first step is to try to construct
an equivariant effective pre-theory (i.e., effective actions satisfying the locality and
RG flow conditions but not necessarily the QME condition) for the Wn-equivariant
formal βγ system. Essentially, we try to run the RG flow from the classical theory by
naively guessing

Ih[L] = lim
ε→0

W (PLε , I
h)

and then adding counterterms to deal with singularities that prevent this limit from
existing. (One of the main theorems of [14] guarantees that we can construct such
a pre-theory.) In the next subsection, we will examine the failure of this action to
satisfy the equivariant QME.

To construct the pre-quantization explicitly, we need to specify certain data, such
as the heat kernels and propagators with which we will work. As we are working on
the Riemann surface S = C, it is natural to work with the standard Euclidean metric
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Ik = tn∂t

γ γ γ γ
· · ·

β

Figure 1. The vertex with n incoming γ legs and one outgoing β leg

and to take advantage of the compatibility between its Laplacian and the operators
∂ and ∂. The analytic heat kernel we use is

Kt(z, w) =
1

4πt
e−|z−w|/4t · (dz − dw) ∧ (dz − dw).

Thanks to the decomposition gCn = Ω0,∗(C)⊗gn (i.e., the vector bundle is trivialized),
the heat kernel for DgCn factors into an analytic part and an algebraic part

Kt = Kan
t ⊗ (Idg + Idg∨).

The propagator Pε<L likewise factors as P an
ε<L ⊗ (Idg + Idg∨), where

P an
ε<L =

∫ L

t=ε

(∂
∗ ⊗ 1)Kan

t dt.

The analytic part of the propagator is only nontrivial on “mixed inputs,” i.e., where
one side of the edge is labeled by a γ and the other side is a β. (This property is, of
course, a direct consequence of the shifted pairing on fields.) Thus, one can view the
propagator as “directed” from γ to β. Figure 2 shows how we draw the edge labeled
by a propagator.

The vertices of Feynman diagrams are also highly constrained, since every term in
the interaction IW is linear in β. Figure 1 shows the vertex where the target is D̂1

and the formal vector field is tn∂t. As with the propagator, we view γ and β legs as
oriented, and there is only ever one β leg.

There are strong consequences for Feynman diagrams due to this directedness and
the linearity in β: the only nontrivial connected Feynman diagrams that can appear
have zero or one loops. A connected graph of genus zero will be a tree with one leaf
labeled by β and the other leaves labeled by γ or a formal vector field X ∈ Wn.
(and hence will encode a functional that has weight one for the scaling action). Now
consider the simplest kind of one-loop graph: a wheel with k vertices. Since the edges
of the loop are labeled by the propagator—and so the β legs of the vertices are used
up on the loop—the leaves can only take γ or X as input. A general one-loop graph
will be a wheel with trees attached. See Figure 3 for a simple example.

Proposition 9.2.1. — For a connected genus one graph Γ, the limit limε→0WΓ(Pε<L, I
W)

exists.
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γ β
P

Figure 2. The propagator as directed from γ to β

P

P

P

P

γ

γ
γ

γ

γ

γ

γ

γ

Figure 3. A wheel with four vertices

In this proposition we remove the factors of 2 and π in the definition of the heat
kernel for shortness of exposition. These factors will clearly not affect the existence
of the limit.

Proof. — The graph weightWΓ will be a function of Wn and Ω0,∗(C)⊗gn. The graph
weight, like the propagator, factors as

W an
Γ (Pε<L, I

W)W g
Γ ,

where the analytic factor W an
Γ is a functional on the space Ω0,∗

c ⊕Wn[1] and the
algebraic factor W g

Γ is a functional on the space g[1] ⊕Wn[1]. The algebraic factor
does not depend on the regularization; it is independent of ε and L. Thus, to show that
the limit exists it suffices to consider the analytic weight. It also suffices to assume
that Γ is a wheel, since the singularities arise from the wheel and not from any trees
attached to the wheel.

Suppose Γ has k vertices and choose a labeling of the vertices v = (v1, . . . , vk). Let
vertex vi correspond to the functional

(γ, β,X) 7→ aj,m

∫
S

γ∧m1
1 ∧ · · · ∧ γ∧mnn ∧ βj ,

where

X =

n∑
j=1

∑
m=(m1,...,mn)∈Nn

aj,mt
m1
1 · · · tmnn ∂j .

In other words, this functional only cares about the coefficient of tm1
1 · · · tmnn ∂j in

the vector field X and uses it to produce a functional on β and γ of polynomial
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degree m1 + · · ·+mn + 1. The vertex vi thus has valence 1 + νi = m1 + · · ·+mn + 2,
where β and X each contribute one leg and the remaining legs are γ. From hereon we
will ignore the coefficient from X, as it does not affect convergence (only changing an
overall constant) and cease to discuss the leg associated to X. Hence we will view vi
as having valence νi.

When we form the wheel, the β leg of vi is paired with a γ leg of vi+1 by a
propagator. Thus there are N =

∑
i(νi−1) external legs. We now view the functional

as a function of N distinct inputs γ1, . . . , γN of Ω0,∗(C), which makes it easier to
examine convergence.

Fix functions {fi,ji} ∈ Ω0,0
c (C) = C∞c (C), where i = 1, . . . k and ji = 1, . . . , νi − 1.

The analytic weight is

W an
Γ (P an

ε<L, I
W({fi,ij})) =

∫
z∈Ck

(
k∏
i=1

d2zi

)
k∏
i=1

νi−1∏
ji=1

fi,ji(z, z)

P an
ε<L(zj , zj+1)

 .

In the product zN+1 is identified with z1, and d2z denotes dz dz. When k = 1 this
integral vanishes because the propagator vanishes along the diagonal. Hence consider
k ≥ 2. We want to show that the ε → 0 limit of the above integral exists for any
choices of fi,ji .

Before delving into analysis, we make some remarks that simplify notation. First,
we replace the product function

∏k
i=1

∏νi−1
ji=1 fi,ji(z, z) by an arbitrary smooth function

φ on Ck with compact support, as the functional above defines a distribution on Ck.
We thus need to show the integral vanishes for all such φ. Second, we repress from
our notation obvious factors such as d2zi, which can be reinserted by looking at the
domain of integration (which is always a vector space). Finally, we make a linear
change of coordinates: wi := zi+1 − zi for 1 ≤ i < k and wk = zk. Note then that

zk − z1 =

k−1∑
j=1

wj .

Up to a constant factor independent of ε (i.e., the Jacobian of this change of coordi-
nates), the weight is

∫
w∈Ck

φ(w,w)

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk

(
k−1∏
i=1

wi
ti
e−|wi|

2/ti

)k−1∑
j=1

wj
tk

 e−|
∑
j wj |2/tk

 .

The factor in parentheses is an explicit expression for the analytic propagators. We
rewrite this expression as
(24)∫
w∈Ck

φ(w,w)

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk

(
k−1∏
i=1

wi
ti

)k−1∑
j=1

wj
tk

 e−
∑
i |wi|2/ti−|

∑
j wj |2/tk

 .
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Because
∂

∂wi
e−|wi|

2/ti = −wi
ti
e−|wi|

2/ti ,

one can use integration by parts to trade powers of t−1
i wi for derivatives of φ. This is

our next step in proving convergence.
Define the differential operator

σ(t) =
1

t1 + · · ·+ tk

k−1∑
j=1

tj∂wj ,

which is a differential operator on functions on Ck−1 = Cw1 × · · · ×Cwk−1
(i.e., func-

tions of the variables w1, . . . , wk−1) whose coefficients are functions of the variables
(t1, . . . , tk) ∈ [ε, L]k. Define the first-order differential operator

Dm(t) := ∂wm −
1

t1 + · · ·+ tk

k−1∑
j=1

tj∂wj = ∂wm − σ(t),

with 1 ≤ m < k. We now explain the utility of these operators.
Set

E = e−
∑
i |wi|2/ti−|

∑
i wi|2/tk .

Then

σ(t)E = −

 1

t1 + · · ·+ tk

k−1∑
j=1

(
wj +

tj
tk

k−1∑
i=1

wi

)E

= −

 1

t1 + · · ·+ tk

(
1 +

∑k−1
j=1 tj

tk

)k−1∑
j=1

wj

E

= − 1

tk

k−1∑
j=1

wj

E,

and so we find
Dm(t)E = −wm

tm
E

for any m. In consequence, for example,

D1(t)

φ(w,w)

k−1∏
i=2

wi
ti

k−1∑
j=1

wj
tk

 e−
∑
i |wi|2/ti−|

∑
i wi|2/tk


=

(
−φ(w,w)

w1

t1
+ (D1(t)φ)(w,w)

) k−1∏
i=2

wi
ti

k−1∑
j=1

wj
tk

 e−
∑
i |wi|2/ti−|

∑
i wi|2/tk .

Note that the left hand side is a total derivative and hence integrates over w ∈ Ck
to zero. The first summand on the right hand side is our integrand from the integral
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(24), up to a sign and the factor (t1 · · · tk−1)−1. Hence, we find that the integral (24)
equals∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
(D1(t)φ)(w,w)

k−1∏
i=2

wi
ti

k−1∑
j=1

wj
tk

 e−
∑
i |wi|2/ti−|

∑
i wi|2/tk .

Analogous arguments apply, of course, for any Dm, due to the symmetry of the inte-
grand.

Hence, applying the Dm(t) in order and using a variant of the preceding argument,
we find that the integral (24) equals∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
(Dk−1(t) · · ·D1(t)φ)(w,w)

k−1∑
j=1

wj
tk

 e−
∑
i |wi|2/ti−|

∑
i wi|2/tk .

We apply the same argument with σ(t) to show that the integral (24) equals∫
w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
(σ(t)Dk−1(t) · · ·D1(t)φ)(w,w)e−

∑
i |wi|2/ti−|

∑
i wi|2/tk .

This integral depends on ε through both the domain of integration and the dependence
of the operatorsDm(t) and σ(t) on t. We first eliminate the second kind of dependence.

Observe that for any choice of allowed t, we have

|σ(t)f | ≤
k−1∑
j=1

|∂wjf |,

since tj/
∑
i ti < 1 for every j. Hence, we may replace σ(t)Dk−1(t) · · ·D1(t)φ in the

integrand by a compactly supported function ψ(w,w). That is, to show convergence
of integral (24) as ε→ 0, it suffices to show convergence of∫

w∈Ck

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
ψ(w,w)e−

∑
i |wi|2/ti−|

∑
i wi|2/tk

for any compactly supported ψ(w,w). We may suppose that ψ factors as

f(w1, . . . , wk−1)g(wk)

and focus only on integrating over the variables w1, . . . , wk−1.
In this integral, there is no problem with integrating over the w variables, since the

integrand is compactly supported in w. The possible problems arise from the factor
(t1 · · · tk)−1, which is not integrable over the domain [0, L]k. We need to show that
the integral over w contributes positive powers of the ti so that the integral over t has
an ε→ 0 limit.

Note that, due to our arguments above, integration by parts allows us to trade a
power of wj for a 1/tj . Hence if we give a partial Taylor expansion of ψ around the
origin, the integrals against nonconstant terms (which possess powers of wj) are more
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110 CHAPTER 9. EQUIVARIANT BV QUANTIZATION OF THE FORMAL βγ SYSTEM

convergent than the constant term of ψ. In other words, it suffices to show that there
exists the ε→ 0 limit of

(25)
∫

(w1,...,wk−1)∈Ck−1

∫
(t1,...,tk)∈[ε,L]k

1

t1 · · · tk
e−
∑
i |wi|2/ti−|

∑
i wi|2/tk .

Performing a Gaussian integral on the variables w1, . . . , wk−1, we see that expression
(25) is proportional to∫

(t1,...,tk)∈[ε,L]k

(
k∑
i=1

ti

)−1

≤ C ·
k∏
i=1

∫ L

ti=ε

1

t
1/k
i

= C ′
k∏
i=1

(L(k−1)/k − ε(k−1)/k),

with C and C ′ constants. For k ≥ 2 the right hand side is finite as ε→ 0.

Thanks to this proposition we have a well-defined equivariant prequantization.

Definition 9.2.2. — For L > 0, let

IW[L] := lim
ε→0

W (Pε<L, I
W) = lim

ε→0

∑
Γ

~g(Γ)

|Aut(Γ)|WΓ(PLε , I
W).

Here the sum is over all isomorphism classes of stabled connected graphs, but only
graphs of genus ≤ 1 contribute nontrivially. By construction, the collection satis-
fies the RG flow equation and its tree-level L → 0 limit is manifestly IW. Hence
{IW[L]}L∈(0,∞) is a Wn-equivariant prequantization of the Wn-equivariant classical
formal βγ system.

Organizing the sums by genus of the graphs, we write the interaction as a sum
IW[L] = IW,0[L] + ~IW,1[L] where

IW,0[L] =
∑

Γ∈ Trees

1

|Aut(Γ)|WΓ(Pε<L, I
W),

IW,1[L] =
∑

Γ∈ 1−loop

1

|Aut(Γ)|WΓ(Pε<L, I
W).

We now turn to studying the obstruction to satisfying the equivariant quantum master
equation.

9.3. The obstruction

With the pre-theory in hand, we ask whether it satisfies the QME. The main result
of this subsection provides a direct link between the topology of manifolds and the
analysis of Feynman diagrams, where a characteristic class yields a local functional
via the map JW.
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9.3. THE OBSTRUCTION 111

Proposition 9.3.1. — There is an obstruction to a Wn-equivariant quantization of
the formal βγ system that preserves the C× × Aff(C) action by scaling and affine
transformations. It is represented by a non-trivial cocycle of degree one

Θ ∈ (DefW
n )C

××Aff(C)

such that

Θ = aJW(chGF
2 (T̂n))

for some non-zero number a, where JW is the quasi-isomorphism of Proposi-
tion 8.4.6 and chGF

2 (T̂n) is the component of the Gelfand-Fuks Chern character living
in C2

Lie(Wn; Ω̂2
n,cl).

This claim will follow from the series of definitions and lemmas that follows below.
By definition the scale L obstruction cocycle Θ[L] is the failure for the interaction

IW[L] to satisfy the scale L equivariant quantum master equation. Explicitly, one has

~Θ[L] = (dWn +Q)IW[L] + ~∆LI
W[L] + {IW[L], IW[L]}L,

where the right hand side is divisible by ~ since IW,0 satisfies the classical master
equation so that the ~0 component vanishes. Moreover, the right hand side has no
components weighted by ~2 or higher powers, because the BV Laplacian ∆L vanishes
on IW,1[L] as it is only a function of γ and a vector field X. Thus, we have

~Θ[L] = (dWn +Q)IW,1[L] + ~∆LI
W,0[L] + 2{IW,0[L], IW,1[L]}L,

and so Θ[L] only depends on γ and hence is a degree one element of C∗Lie(Wn; C∗Lie(gCn)).

Lemma 9.3.2 (Corollary 16.0.5 of [15]). — The limit Θ := limL→0 Θ[L] exists and is
an element of degree one in C∗Lie(Wn,C

∗
loc(gCn)). Moreover, it is given by

lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
W[ε]),

where the sum is over wheels Γ with two vertices and a distinguished inner edge e.

In the lemma above, the notation WΓ,e(Pε<1,Kε, I
W[ε]) denotes a variation on the

usual weight associated to a graph. As usual, we attach the interaction term IW[ε] to
each vertex. To the distinguished internal edge labeled e, we attach the heat kernelKε,
but we attach the propagator Pε<1 to every other internal edge.

We now turn to the proof of Proposition 9.3.1. Let us be clear on what we need
to accomplish, as the computations are lengthy and explicit. We must construct the
obstruction cocycle Θ by the techniques of perturbative field theory. In the end, we
want to recognize it as the local functional JW(chGF

2 (T̂n)). We can describe that local
functional already, thanks to our description of JW.
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112 CHAPTER 9. EQUIVARIANT BV QUANTIZATION OF THE FORMAL βγ SYSTEM

Lemma 9.3.3. — Let X = ai∂i and Y = bj∂j be formal vector fields in Wn where
the coefficients ai, bj live in Ôn. For simplicity, suppose all the ai are homogeneous of
degree k and the bj are homogeneous of degree l. Then

JW(chGF
2 (T̂n))(X,Y, γ) =

∫
S

〈
(∂ja

i)S(γ), ∂
(
(∂ib

j)S(γ)
)〉
gn
,

with surface S = C and using the notation fS from Section 8.5.1.

In particular, to focus on the analytic component, suppose n = 1 so γ ∈ Ω0,∗(C)

as the target is one-dimensional. Moreover, we can restrict to a(t) = tk and b(t) = tl.
Then

JW(chGF
2 (T̂n))(tk∂t, t

l∂t, γ) =

∫
C
kγ∧k−1 ∧ ∂z(lγ∧l−1)dz(26)

= kl(l − 1)

∫
C
γ∧k+l−2 ∧ ∂z(γ)dz.(27)

This expression will appear as the analytic component of our Feynman diagrams.

Proof. — We first observe that

JW
ω (X,Y, γ) = Jω(X,Y )(γ)

since the map J is Wn-equivariant. Moreover, since JddRθ = J̃θ, we deduce that

JW
ddRθ

(X,Y, γ) = Jθ([X,Y ])(γ).

Hence it is convenient to recognize that

chGF
2 (T̂n) = ddR(α),

where α ∈ C∗Lie(Wn, Ω̂
1
n) satisfies

α(X,Y ) = α(ai∂i, b
j∂j) = −(∂ja

i)ddR(∂ib
j).

Note that if the ai are homogeneous of degree k and the bj are homogeneous of degree l,
then α(X,Y ) is a one-form whose coefficients are homogeneous of degree k + l − 3.

Lemma 8.5.3 then implies

J̃α(X,Y )(γ1, . . . , γk−1, γ
′
1, . . . , γ

′
l−1)

=

∫
S

〈
(∂ja

i)S(γ1, . . . , γk−1), ∂
(
(∂ib

j)S(γ′1, . . . , γ
′
l−1)

)〉
gn
,

where S = C for us. (Here we are describing the local functional as a tensor with
k + l − 2 inputs to be maximally explicit.)

Now we turn to producing a simple, explicit expression for the obstruction. The
limit in Lemma 9.3.2 can be moved inside the summation, i.e., the weight for each
2-vertex wheel Γ with edge e has an ε→ 0 limit. We denote this summand by

ΘΓ,e = lim
ε→0

WΓ,e(P
1
ε ,Kε, I

W[ε]).
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9.3. THE OBSTRUCTION 113

By the nature of the graph, this functional is of the form

ΘΓ,e : W⊗2
n ⊗ Sym(Ω0,∗

c ⊗ gn[1])→ C.

Given two formal vector fields X,Y , let ΘΓ,e(X,Y ) denote the associated local func-
tional in C∗loc(gSn).

Due to linear dependence on the vector fields, it suffices to assume that X,Y are of
the form X = ai∂i and Y = bj∂j where the coefficients ai, bi ∈ Ôn are homogeneous of
degrees k and l, respectively. In this case, there is only one graph Γ whose functional
ΘΓ,e(X,Y ) is nonzero: this graph has a vertex of valency k+1 and a vertex of valency
l + 1, namely

IW
X

γ

...
γ

IW
Y

γ

...
γ

Pε<1

Kε

For this graph, the functional ΘΓ,e(X,Y ) is homogeneous of degree k + l − 2:

ΘΓ,e(X,Y ) : Symk+l−2(Ω0,∗
c (C)⊗ gn[1])→ C.

By describing this functional explicitly, we will complete the proof of Proposition 9.3.1,
as it will agree on the nose with JW(chGF

2 (T̂n)).

Proposition 9.3.4. — Let X = ai∂i be homogeneous of degree k and Y = bj∂j homo-
geneous of degree l. Let Γ be the two-vertex wheel with vertices of valencies k+ 1 and
l + 1 and mark one internal edge as distinguished. Then, we have an identification
ΘΓ,e(X,Y ) = aJW(chGF

2 (T̂n))(X,Y ) for some nonzero number a.

ΘΓ,e(X,Y )(γ) =

∫
C

〈
(∂ja

i)S(γ), ∂
(
(∂ib

j)S(γ)
)〉
gn
.

Proof. — We simplify further by setting

X = tk1
1 · · · tknn ∂i and Y = tl11 · · · tlnn ∂j

with k =
∑
km and l =

∑
lm. Ignoring the analytic factors momentarily, we observe

that in computing the weight of the graph Γ, we contract β legs with γ legs. In our
case, the X-vertex contributes a βi leg, which then contracts with the ki different
γ legs from the Y -vertex. Likewise, the Y -vertex contributes a βj leg, which then
contracts with the kj different γ legs from the X-vertex. These contractions explain
the terms (∂ja

i)S(γ) and (∂ib
j)S(γ) in the integrand.

We now turn to comparing the analytic factors. It suffices here to consider the
situation n = 1, since we have already taken care of the dependence on the target
coordinates. To clarify the notation, we use f1, . . . , fk−1 to label the inputs to the
remaining legs of theX-vertex. We use g1, . . . , gl−1 to label the inputs to the remaining
legs of the Y -vertex.

The following diagram encodes the weight that we must compute:
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f1 dz

f2
...

fk−1

g1

...

gl−1

Pε<1

Kε

We wish to take the ε→ 0 limit of the associated integral. Thus, we have

ΘΓ,e(X,Y )(f1dz, f2, . . . , gl−1)

= lim
ε→0

∫
C2

(
k−1∏
i=1

fi(z1)

)l−1∏
j=1

gi(z2)

dz1 ∧Kan
ε (z1, z2) ∧ P an

ε<1(z1, z2)

= lim
ε→0

∫
C2

(
k−1∏
i=1

fi(z1)

)l−1∏
j=1

gi(z2)

∫ L

t=ε

1

(4π)2εt
e−|z1−z2|

2/4ε ∂

∂z1
e−|z1−z2|

2/4t dt.

Now, ∂z1e−|z1−z2|
2/4t = − 1

4t (z1 − z2)e−|z1−z2|
2/t. We make the change of coordinates

w1 = z2 − z1 and w2 = z2. The integral over w1, w2 can be written as
(28)

−
∫
w1,w2∈C

(
k−1∏
i=1

fi

)
d2w1d2w2

l−1∏
j=1

gi

w1
1

4(4π)2εt2
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
.

Using the same trick as in the proof that the theory involves no counterterms, we
introduce the differential operator

D(t) =

(
1− t

t+ ε

)
∂

∂w1
=

ε

t+ ε

∂

∂w1
.

Then

D1(t)

k−1∏
i=1

fi

k∏
j=1

gi
1

εt
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
=

−w1

t

k−1∏
i=1

fi

l−1∏
j=1

giw1 +D1(t)

k−1∏
i=1

fi

l−1∏
j=1

gi

 1

4εt
exp

(
−(t−1 + ε−1)|w1|2

)
.

The left hand side is a total derivative, hence the integal in (28) can be written as

−
∫
w1,w2

∂

∂w1

(∏
fi
∏

gi

) 1

4(4π)2t(ε+ t)
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
.

In the ε → 0 limit only the the first term in the Wick expansion for integrating w1

will be nonzero. This term is
1

(4π)2

∫
w2

d2w2
∂

∂w1

(∏
fi
∏

gi

)
(w1 = 0)

ε

(t+ ε)2
.
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Note that the condition w1 = 0 implies that z1 = z2 in our original parametrization.
Thus

∂

∂w1

(∏
fi
∏

gi

)
(w1 = 0) =

(
∂

∂z

∏
fi(z)

)∏
gj(z),

where z = z1 = z2. Finally, we compute the ε→ 0 limit of the t-integral

1

(4π)2
lim
ε→0

∫ 1

ε

ε

(t+ ε)2
dt =

1

2
.

Integrating by parts (to get rid of the (−) sign) we see that the total weight is

1

2(4π)2

∫
z∈C

(∏
fi

) ∂

∂z

(∏
gj

)
d2z,

as desired. Setting fi = gj we see that this coincides with the analytic part
of JW(ch2(T̂n))(X,Y, fi = gj) written above in (27).

Remark 9.3.5. — Note that when restricted to linear vector fields gln ↪→ Wn, the
entire obstruction Θ vanishes. This vanishing means that there is no obstruction to
quantizing equivariantly for the Lie algebra gln. This result is just the Lie algebra-
level version of an earlier observation: the action of the group GLn lifts ~-linearly to
an action on the quantization.

9.4. The extended theory

We have just seen that there is an obstruction to the existence of a Wn-equiv-
ariant quantization of the formal βγ-system. As is common in physics, we use that
obstruction to extend the Lie algebra and obtain an equivariant quantization for the
extended Lie algebra. Indeed, we have already seen that the second Gelfand-Fuks-
Chern character defines the extension

0 // Ω̂2
n,cl

// W̃n
p
// Wn

// 0

in Section 2. We will now construct a classical theory that is equivariant for W̃n and
show that it admits a natural equivariant BV quantization.

9.4.1. — The action of Wn on the classical formal βγ system is given by a map of L∞
algebras IW : Wn  C∗loc(DgCn)[−1]. By composing with the projection p : W̃n →Wn,
we get an L∞ map

ĨW := p∗IW : W̃n  C∗loc(DgCn)[−1].

Equivalently, p∗IW determines a Maurer-Cartan element in the dg Lie algebra
C∗Lie(W̃n; C∗loc(DgCn)) and hence a W̃n-equivariant classical field theory.

As in the non-extended case, there is a W̃n-equivariant obstruction-deformation
complex D̃ef

W

n , which is the graded vector space Ŝym(W̃∨n [−1])⊗C]loc(DgSn) equipped
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with the differential d
W̃n

+ ∂ + {ĨW ,−}, where d
W̃n

denotes the differential
on C∗Lie(W̃n). Note that we can write

D̃ef
W

n
∼= C∗Lie(W̃n)⊗C∗Lie(Wn) DefW

n .

Proposition 8.4.6, which concerns the unextended deformation complex, then implies
that the C× ×Aff(C)-invariant piece of the extended deformation complex satisfies(

D̃ef
W

n

)C××Aff(C)

' C∗Lie(W̃n; p∗Ω̂2
n,cl[1]).

Here, p∗Ω̂2
n,cl is the W̃n-module given by pulling back the natural Wn-module struc-

ture on closed two-forms along p.

9.4.2. The extended pre-theory. — Our goal is to describe quantizations for this
extended W̃n-equivariant field theory. Let {IW[L]} be the prequantization for the
Wn-equivariant classical field theory, as above. For each L > 0, we define the func-
tional

ĨW [L] := p∗IW[L] ∈ C]Lie(W̃n)⊗ C]Lie(DgCn)J~K.

Lemma 9.4.1. — The collection {ĨW [L]} defines a pre-quantization for the W̃n-equiv-
ariant classical field theory. Moreover, the obstruction to satisfying the W̃n-equivariant
QME at scale L is Θ̃[L] = p∗Θ[L]. In particular Θ̃ := limL→0 Θ̃[L] exists and is equal
to p∗Θ.

Proof. — This follows from the fact that for any graph Γ we haveWΓ(Pε<L, p
∗IW) =

p∗WΓ(Pε<L, I
W).

Just as in the non-extended case there is the possibility that the pre-quantization
does not define an equivariant quantization. The above lemma identifies this obstruc-
tion cocycle which we will go on to show is cohomologically trivial.

The quasi-isomorphism JW : C∗Lie(Wn; Ω̂2
n,cl[1])→ (DefW

n )C
××Aff(C) from Proposi-

tion 8.4.6 extends to a quasi-isomorphism

(29) JW̃ : C∗Lie(W̃n; Ω̂2
n,cl[1])

'−→ (D̃ef
W

n )C
××Aff(C)

by tensoring C∗Lie(W̃n) over the ring C∗Lie(Wn). The lemma implies that the obstruc-
tion Θ̃ is identified with the cocycle p∗(chGF

2 (T̂n)) under the map JW̃.

9.4.3. Quantum correction. — Let h be a Lie algebra and V a module for h. Moreover,
suppose α ∈ C2

Lie(h;V ) is a 2-cocycle. Then, we can form the extension

0→ V → h̃ p−→ h→ 0.

The bracket between x, y ∈ h is defined by [x, y]
h̃

:= [x, y]h + α(x, y) where [−,−]h is
the bracket in the original Lie algebra. The bracket between x ∈ h and v ∈ V is
[x, v]

h̃
= x · v. We can pull back the cocycle p∗α ∈ C∗Lie(h̃;V ). In this situation,
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9.4. THE EXTENDED THEORY 117

this pullback cocycle is automatically trivial. An explicit trivializing element is
idV : V → V viewed as an element of the Chevalley-Eilenberg complex C∗Lie(h̃;V ).

In our situation this says that the cocycle p∗(chGF
2 (T̂n)) is trivializable and hence

so is the obstruction {Θ̃[L]}. To define a quantum theory we need this trivialization
at the level of functionals on fields. Indeed, according to the above lemma, which uses
standard facts about Feynman diagrams, it suffices to trivialize the local functional Θ̃

encoding the obstruction.

Lemma 9.4.2 (Lemma 3.33 of [37]). — If Iqc and O1 ∈ Defn satisfy

QIqc + {I, Iqc} = O1,

then, for each L, the functional

Iqc[L] = lim
ε→0

∑
Γ∈Trees
v∈V (Γ)

WΓ,v(Pε<L, I, I
qc)

satisfies

(30) QIqc[L] + {I(0)[L], Iqc[L]}L = O1[L].

Proof. — For the non-equivariant case, see the referenced lemma in [37]. The equiv-
ariant case is an immediate consequence.

As a corollary of this general fact we see that if Iqc ∈ D̃ef
W

n trivializes the obstruc-
tion cocycle Θ̃, then the effective family I[L] + ~Iqc[L] satisfies the W̃n-equivariant
quantum master equation. In fact, we have an obvious choice for the local func-
tional Iqc. The map J : Ω̂2

n,cl → Defn determines an element in C1
Lie(Ω̂2

n,cl; Defn) ⊂
C1

Lie(W̃n; Defn) and hence an element the equivariant deformation complex D̃ef
W

n .
We will use Iqc = J .

Proposition 9.4.3. — The local functional J trivializes Θ̃ in the equivariant deforma-
tion complex. That is,

(31) (∂ + d
W̃n

)J + {ĨW, J} = Θ̃.

Proof. — The functional J is the image of idΩ2 under the map JW̃ from Equa-
tion (29). By construction JW̃ determines a map of complexes C∗Lie(W̃n; Ω̂2

n,cl) →
D̃ef

W

n and hence commutes with the differentials on both sides. That is,

JW̃(d
W̃n

ϕ) = ∂JW̃(ϕ) + {ĨW, JW̃(ϕ)}

for all ϕ ∈ C∗Lie(W̃n; Ω̂2
n,cl). In particular, for ϕ = idΩ2 we have

JW̃(p∗chGF
2 (T̂n)) = ∂J + {ĨW, J}.

We have already seen that the image of p∗chGF
2 (T̂n) under JW̃ is the obstruction

cocycle Θ̃, and this is what we wanted to show.
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Finally, we arrive at the main result concerning the extended equivariant BV theory.

Theorem 9.4.4. — The effective family {ĨW[L]+~J [L]}L>0 satisfies both RG flow and
the W̃n-equivariant quantum master equation

(d
W̃

+Q)(ĨW[L]+~J [L])+
1

2
{ĨW[L]+~J [L], ĨW[L]+~J [L]}L+~∆L(ĨW[L]+~J [L]) = 0.

Hence it provides a W̃n-equivariant quantization of the classical theory ĨW based on
a length scale regularization. Moreover, this quantization is unique up to homotopy.

Proof. — The first part follows from Proposition 9.4.3 and Lemma 9.4.2 above.
Uniqueness follows from the fact that H1(W̃n; Ω̂2

n,cl) = 0.

Remark 9.4.5. — Here, as in Lemma 9.4.2, the term Iqc[L] arises naturally by naively
applying RG flow to ĨW + ~Iqc and asking only for the sum of the terms in which
at least one vertex is labeled by Iqc. (The terms involving just ĨW have singularities,
but we’ve already resolved them.) Note that a stable connected graph containing Iqc

as a vertex has nonzero weight only if it is a tree, because Iqc only has inputs from
γ. Moreover, only one copy of Iqc can appear.

9.5. The conformal anomaly

In Section 8.6 we discussed how the classical theory of the formal βγ system is
equivariant for the action of holomorphic vector fields on the source T S . Indeed,
we have described the local functional IT ∈ DefT

n that encodes this action. In this
section we address the problem of the quantizing this symmetry compatibly with the
action of formal vector fields Wn on the target n-disk.

Proposition 9.5.1. — There is an obstruction to a T C ×Wn-equivariant quantization
of the formal βγ system. It is represented by a non-trivial cocycle

2nωGF + ΘW + ΘT ∈ C∗Lie

(
Wn; DefT

n

)
.

Here, ωGF ∈ DefT
n is the local Gelfand-Fuks cocycle representing the generator

of H3
Lie(W1). Moreover,

JW(chGF
2 (T̂n)) = aΘW , KW(cGF

1 (T̂n)) = bΘT ,

for some constants a, b.

Remark 9.5.2. — This proposition says that there are three independent obstructions
to finding a T C×Wn-equivariant quantization of the formal βγ system. The obstruc-
tion ΘW coincides with the Wn-equivariant obstruction computed in the previous
sections and is independent of T C. The obstruction ΘT is new, and we will show
that it reflects the fact that chiral differential operators on a complex manifold X

admit a global conformal structure if and only if c1(TX) = 0. The obstruction ωGF

only depends on the background fields T C and hence is independent of the fields of
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9.5. THE CONFORMAL ANOMALY 119

the βγ system. It reflects that fact that even when c1(TX) = 0, one needs to cen-
trally extend holomorphic vector fields to get a global action. We will see that this
obstruction constitutes the central charge of resulting Virasoro symmetry.

Proof. — The obstruction is computed in a manner similar to the obstruction just
for Wn. Indeed, a version of Lemma 9.3.2 still holds, with the interaction IW replaced
by IW + IT . That is, the obstruction to a T C ×Wn equivariant quantization can be
written as a graph expansion

lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
W[ε] + IT [ε]).

This obstruction is an element of C∗Lie(Wn; DefT
n ) and splits up into a sum of three

linear pieces:

1. a factor that does not depend on Wn, i.e., lives in DefT
n ⊂ C∗Lie(Wn; DefT

n );

2. a factor ΘW that does not depend on T C and is an cocycle in C∗Lie(Wn; Defn);
and

3. a factor ΘT that is linear in both TS and Wn and is a cocycle in C1
Lie(Wn; DefT

n ).

We now describe these terms explicitly.

The first term. — The term in DefT
n has the form

lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
T [ε]).

The calculation of this obstruction was performed in Section 7 of [51] and was shown
to be equal to the local functional 2nωGF ∈ DefT

n where we have defined ωGF in
Section 8.6.

The second term. — The term independent of T C has a graph expansion of the form

ΘW = lim
ε→0

∑
Γ∈2-vertex wheels

e∈Edge(Γ)

WΓ,e(Pε<1,Kε, I
W[ε]).

This term is precisely the local functional Θ ∈ C∗Lie(Wn; Defn) representing the ob-
struction to a Wn-equivariant quantization. Thus JW(chGF

2 (T̂n)) = ΘW, as desired.

The third term. — We aim to show that there is an identification KW(cGF
1 (T̂n)) = bΘT .

Since we only consider the graph expansion over two-vertex wheels, the cocycle rep-
resenting the third piece of the obstruction ΘT is given by the weight of the ε → 0

limit of the following diagram
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120 CHAPTER 9. EQUIVARIANT BV QUANTIZATION OF THE FORMAL βγ SYSTEM

IT

ξ

IW γ
...
γ

Pε<1

Kε

where ξ labels a holomorphic vector field in T C and γ ∈ Ω0,∗(C; gn).
For fixed ξ ∈ T C we have the functional Kξ := KW(cGF

1 (T̂n))(ξ,−), which is an
element of the Wn-equivariant deformation complex DefW

n . For simplicity, we consider
the case that ξ = ξ0∂z ∈ Ω0(C;TC). The Gelfand-Fuks-Chern character evaluated on
a vector field X = ai∂i is cGF

1 (T̂n)(ai∂i) = 1
2πi∂ia

i. Thus, we have the explicit formula
for Kξ

Kξ(X, γ) =

∫
S

∂zξ
0
〈
(∂ia

i)S(γ), ∂γ
〉
gn
.

It suffices to show that for each X ∈ Wn the obstruction satisfies ΘT (ξ,X,−) =

bKξ(X), for some nonzero constant b, as elements of Defn.
As we did in the calculation of the obstruction in the previous sections, it suffices

to assume that the formal vector field is homogeneous of the form X = tk1
1 · · · tknn ∂i

where k1 + · · · + kn = k. Then, both ΘT (ξ,X,−) and Kξ(X) are of homogeneous
degree k − 1:

Symk−1(Ω0,∗(C)⊗ gn)→ C.

Ignoring the analytic factors momentarily, we observe that in computing the weight
of the graph Γ, we contract β legs with γ legs. In our case, the X-vertex contributes
a βi leg, which then contracts with the ki different γ legs from the vertex labeled by
the holomorphic vector field ξ. These contractions explain the term (∂ia

i)S(γ).
We now compare the analytic factors. Since the dimension of the target formal disk

was only relavent for the algebraic piece, it suffices to set n = 1. The analytic weight
we must compute is represented by the ε→ 0 limit of the diagram

ξ0∂z

f1dz

f2
...
fk−1

Pε<1

Kε

The weight of this diagram is given by∫
C2

(
ξ0∂z1Pε<1(z1, z2)

)
∧
(
k−1∏
i=1

fi(z2)

)
dz2 ∧Kε(z1, z2).
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9.5. THE CONFORMAL ANOMALY 121

We compute the z1-derivative of the propagator as

∂

∂z1
Pε<1(z1, z2) =

∫ L

t=ε

1

16(4π)t3
(z1 − z2)2e−|z1−z2|

2/4tdt (dz1 − dz2) .

Making the standard change of coordinates w1 = z2 − z1 and w2 = z2 we find that
the weight can be expressed as∫

w1,w2

ξ0w2
1

(
k−1∏
i=1

fi

)
d2w1d2w2

∫ 1

t=ε

1

16(4π)2εt3
exp

(
−1

4
(t−1 + ε−1)|w1|2

)
.

The only term in the Wick expansion of the integral above that contributes is a
nonzero multiple of ∫

z

(
∂2
zξ

0
)

(z)

(
k−1∏
i=1

fi(z)

)
d2z

∫ 1

t=ε

ε3

(ε+ t)3
dt.

A simple evaluation of the t-integral yields a finite limit as ε → 0. Furthermore, we
can integrate the above z-integral by parts to put the analytic part of the obstruction
ΘT (ξ,X, f1dz, f2, . . . , fk−1) in the form that is proportional to∫

z

(
∂zξ

0
)
∂z

(
k−1∏
i=1

fi

)
d2z.

This is precisely the analytic form of the functional Kξ(X), as desired.
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CHAPTER 10

THE PARTITION FUNCTION OF THE EQUIVARIANT THEORY

In this section we analyze the scale ∞ effective interaction on an elliptic curve
coming from the quantization constructed above. It defines a natural element of the
Gelfand-Fuks cohomology C∗Lie(Wn; Ω−∗n ) that deserves to be called the n-dimensional
formal Witten class. We show that under Gelfand-Kazhdan descent, this formal co-
cycle maps to the Witten class of the complex manifold.

Remark 10.0.1. — The arguments here are borrowed from [15], notably Section 17,
where Costello identifies the Witten class of the target X as part of the quantized
action functional of the curved βγ system. We simply observe that his approach
applies equally well with the formal disk as target, so long as one uses Gelfand-Fuks
cohomology. In [15] Costello also provides an interpretation of the Witten class as a
kind of “projective volume form” on the derived mapping space from the universal
elliptic curve to X. We do not discuss that here, but his interpretation applies to our
approach as well.

10.1. The formal Witten class

Let V be a formal vector bundle, i.e., an object of the category VB(Wn,GLn). We
have constructed the Gelfand-Fuks-Chern characters

chGF
k (V) ∈ CkLie(Wn,GLn; Ω̂kn,cl).

Let Ω̂−∗n =
⊕

k Ω̂kn[k] denote the formal de Rham forms arranged in opposite degrees
from usual (i.e., with k-forms beginning in degree −k rather than k). Note that we
do not include the exterior derivative as part of the total differential (for degree
reasons this is not possible, but it is not relevant to our setting either). Each cocycle
chGF
k (V) then provides a cocycle of degree zero in Ω̂−∗n . Thus, any interesting formal

combination of such characters—like the Witten class defined below—naturally sits
in degree zero.

Definition 10.1.1. — Let E be an elliptic curve equipped with a holomorphic volume
form ω ∈ Ω1,0(E). The n-dimensional logarithmic formal Witten class evaluated
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124 CHAPTER 10. THE PARTITION FUNCTION OF THE EQUIVARIANT THEORY

at (E,ω) is the formal sum

log Witn(E,ω) :=
∑
k≥2

(2k − 1)!

(2πi)2k
E2k(E,ω) chGF

2k (T̂n).

The Eisenstein series E2k is given by the formula

E2k(C/Λ,dz) =
∑

λ∈Λ−{0}
λ−2k,

where we witness the elliptic curve given as a quotient of the complex plane by the
lattice Λ. For an arbitrary E, we find a lattice Λ such that dz identifies with ω under
the isomorphism C/Λ ∼= E. If the lattice is spanned by two elements

a+ ib, c+ id ∈ C.

Then the sum can be written as∑
λ6={0}

λ−2k =
∑

(m,n)∈Z2−{(0,0)}
(ma+ imb+ nc+ ind)−2k.

Our main result in this section is that the scale∞ effective interaction of the formal
βγ system, in the presence of the background W̃n fields, is equivalent to the formal
Witten class Witn(E,ω) plus a term proportional to chGF

2 (T̂n). To state the result,
recall the extension p : W̃n → Wn of Lie algebras determined by the formal second
Chern character.

Proposition 10.1.2. — As a function on the harmonic forms H (E), the one-loop part
of the scale ∞ effective quantization ĨW,(1)[∞] is

1

32π4
E2(E,ω) p∗chGF

2 (T̂n) +
∑
k≥2

(2k − 1)!

(4π2)2k
E2k(E,ω) p∗chGF

2k (T̂n),

as a cocycle in C∗Lie(W̃n; Ω̂−∗n ). In particular, the one-loop effective quantization is
cohomologous to p∗ log Witn(E,ω).

Remark 10.1.3. — The series E2(E) is the “modular completion” of the second Eisen-
stein series. In terms of the modular parameter τ , it is defined by

E2(τ, τ) = 1− 24

∞∑
n=1

nqn

1− qn −
3

πIm(τ)
,

where q = e2πiτ . It has the property that it is modular, but not holomorphic.

The term proportional to chGF
2 (T̂n) arises from the term in the effective interaction

on E given by the weight of a wheel with two vertices. There is some delicate analysis
involved in computing the precise contribution of this weight, but we see that when
restricted to the extended Lie algebra W̃n it is cohomologous to zero, by construction
so we may disregard it.
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10.2. The theory on an elliptic curve

The quantization we have constructed above is invariant for the group Aff(C) of
affine symmetries of the complex plane. Thus, for any elliptic curve E = C/Λ, we can
descend the quantization on C along the quotient map C → E = C/Λ. The dg Lie
algebra describing the theory on the elliptic curve E is

DgEn = Ω0,∗(E; gn)⊕ Ω1,∗(E; g∨n [−2]).

There is a simplification we can make in this setting. The choice of a holomorphic
volume form ω determines an isomorphism of dg Lie algebras

Ω0,∗(E; gn ⊕ g∨n [−2]) ∼= DgEn
γ ⊗ (ξ, τ) ↔ (γ ⊗ ξ, (γ ∧ ω)⊗ τ).

This isomorphism is naturally (Wn,GLn)-equivariant.
Note that there is an element ω∨ ∈ Ω0,1(E) such that

∫
ω ∧ ω∨ = 1. At the level

of cohomology, [ω∨] spans H1(E, O), by Serre duality. We are free to choose ω∨ to be
harmonic, meaning it is annihilated by both ∂ and ∂. If E = C/Λ, then there is a
constant

v(E) =

∫
E

dz dz

and ω∨ = v(E)−1dz. In general, let δ denote (iπ)−1ω∨.
Let H (E) ⊂ DgEn denote the sub dg Lie algebra of harmonic forms (that is, those

forms that are in the kernel of ∂ and ∂). We have an isomorphism

H (E) ∼= C[δ]⊗ (gn ⊕ g∨n [−2])

of dg Lie algebras, thanks to our choices above.
In anticipation of this section’s main result, note that

C[δ]⊗ gn[−1] ∼= gn n gn,

the natural extension of gn by the shifted adjoint representation gn[−1]. Hence,

C∗Lie

(
Wn; C∗Lie,red(C[δ]⊗ gn)

) ∼= C∗Lie(Wn; Ω̂−∗n ),

where Ω̂−∗n is the regraded formal de Rham complex. We now explain why the scale
∞ effective action for the equivariant BV theory produces a cocycle in this cochain
complex.

The harmonic subspace H (E) describes the solutions on E to the equations of
motion for the formal βγ system. If we restrict the scale ∞ effective interaction to
this subspace, it provides an ~-dependent cocycle in the Lie algebra cochains:(

ĨW[∞] + ~J [∞]
)
|to1.5H (E) ∈ C∗Lie

(
W̃n; C∗Lie,red(C[δ]⊗ (gn ⊕ g∨n [−2]))

)
[~].

Note that the one-loop term of the effective interaction ĨW,(1)[∞] + ~J [∞] is only a
functional of C[δ]⊗ gn and does not depend on C[δ]⊗ g∨n [−2].

In fact, at scale ∞, things become even simpler.
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126 CHAPTER 10. THE PARTITION FUNCTION OF THE EQUIVARIANT THEORY

Lemma 10.2.1. — The functional J [∞] vanishes on the subspace of harmonic forms:

J [∞]|to∆H (E) = 0.

Thus, the scale∞ effective interaction lies in the image of IW[∞]|H under the pullback
map

p∗ : C∗Lie

(
Wn; C∗Lie,red(C[δ]⊗ gn)

)
→ C∗Lie(W̃n; C∗Lie,red (C[δ]⊗ gn)) ,

where p : W̃n → Wn is the extension of Wn by closed two-forms determined
by chGF

2 (Tn).

Proof. — Recall, for fixed closed two-form ω the local functional Jω is defined to be a
functional on the space Ω0,∗(E; gn). The definition of Jω invovles a single holomorphic
derivative acting on one of the input fields. When we restrict to harmonic forms
C[δ] ⊗ gn ↪→ Ω0,∗(E; gn) the holomorphic derivative acts by zero and hence JωH
vanishes for all ω. Thus J |H is identically zero. Since the scale∞ action J [∞] involves
at least one vertex labeled by J we see that its restriction also vanishes.

In particular, the one-loop scale ∞ interaction comes as an element in

C∗Lie(Wn; C∗Lie,red(C[δ]⊗ gn)) = C∗Lie(Wn; Ω̂−∗n ).

We wish to explicitly compute this element.
First, we make a remark about where the functional IW lives when our spacetime

is an elliptic curve and we restrict to harmonic forms. This restriction can be viewed
as a functional

IW|H(E)
: Wn ⊕ C[δ]⊗ (gn[1]⊕ g∨n [−1])→ C.

Since IW is linear in the g∨n and δgn component, we can view this restriction as an
element in space

C∗Lie

(
Wn; C∗Lie,red(gn)⊗ δg∨ ⊗ gn

)
.

Let
ddR : C∗Lie,red(gn))→ C∗Lie(gn, g

∨) ∼= Ω̂1
n

be the de Rham differential. Then the element

(ddR ⊗ 1)IW ∈ C∗Lie(Wn; C∗Lie,red(gn))⊗ δg∨ ⊗ End(gn) ∼= C∗Lie(Wn; Ω̂1
n ⊗ End(gn))

is precisely the Atiyah class AtGF(T̂n) as shown in Section 8.4.3.
Now we can move on to the main result of this section.

10.3. Proof of Proposition 10.1.2

We recall the general approach for computing the renormalized effective action on
the elliptic curve E. The procedure splits into the following steps:

(1) truncate the propagator Pε<L at both the lower and upper bounds;

(2) compute the Feynman graph weightW (Pε<L, I) =
∑

ΓWΓ(Pε<L, I) as integrals
over the elliptic curve WΓ(Pε<L, I) =

∫
E
wΓ(Pε<L, I);
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(3) take the limit lim ε→0
L→0

WΓ(Pε<L, I).

Our analysis so far has shown that the limit in step (3) exists. However, in the proof
of the proposition we will compute the limit in a direct way by exchanging the limit
with the integration over E:

lim
ε→0
L→0

∫
E

wΓ(Pε<L, I)
?
=

∫
E

lim
ε→0
L→0

wΓ(Pε<L, I).

The issue is that even though the limit in (3) exists, the expression above is not valid
in general. Feynman integrals of this type were studied extensively in the work [38].
A similar analysis as done there, and one we can check by direct calculation, implies
that the limits above can be interchanged when the graph Γ has no wheels with fewer
than 3 vertices. The term proportional to chGF

2 (T̂n) in the proposition corresponds to
the wheel with two vertices, and so the proper regularization scheme outlined above
must be performed.

The weight expression for ĨW,(1) is given by∑
Γ∈Wheels

1

|Aut(Γ)| lim
ε→0
L→0

WΓ(Pε<L, Ĩ
W).

Just as in the effective action on C, the tadpole diagram is identically zero. When the
number of vertices of the wheel is two, a similar calculation as in Lemma 2.2 of [38]
shows that the weight of the graph is 1

32π4E2(E,ω) p∗chGF
2 (T̂n). This is the first term

in the expression of the effective action.
It remains to compute the weights of wheels with number of vertices strictly bigger

than two. By the remarks above, we can interchange the limits to obtain∑
Γ∈Wheels>2

1

|Aut(Γ)| lim
ε→0
L→0

WΓ(Pε<L, Ĩ
W) =

∑
Γ∈Wheels>2

1

|Aut(Γ)|WΓ(P0<∞, Ĩ
W),

where the sum is over Γ ∈ Wheels>2 all wheels with number of vertices bigger than
two.

We are computing the restriction of this to the subspace

Ŝym(Wn[1]∨)⊗ Ŝym
(
((C[δ]⊗ gn[1])

∨
)
)
.

Each vertex of the wheel is labeled by the interaction IW. We now write down the
propagators for which we are contracting.

We identify
Ω0,∗(E) ∼= C∞(E)⊗ C[δ]

µ−1dz ↔ δ,

where µ = iπ
∫
E

dz dz.
The scale ∞ propagator is

P0<∞(z, w) =

∫ ∞
0

(∂
∗ ⊗ 1)Kt(z, w)dt.
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128 CHAPTER 10. THE PARTITION FUNCTION OF THE EQUIVARIANT THEORY

When we descend to the elliptic curve, the heat kernel is

Kt(z, w) =

(
1

4πt
e−|z−w|

2/4t

)
(δ ⊗ 1− 1⊗ δ)⊗ (idgn + idg∨n ),

where (4πt)−1e−|z−w|
2/4t ∈ C∞(E×E) is the scalar heat kernel for the Laplacian on

functions. The adjoint ∂
∗
satisfies

∂
∗
(f(z, z)dz) =

∂f

∂z
and hence we identify

P0<∞(z, w) =

∫ ∞
0

µ−1 ∂

∂z

(
1

4πt
e−|z−w|

2/4t

)
⊗ (idgn + idg∨n ) dt.

In turn, we can think of this formula as the integral kernel for the operator

µ−1 ∂

∂z
(2∂∂

∗
)−1 ⊗ id : C∞(E)⊗ gn → C∞(E)⊗ gn,

where 2∂∂
∗
is the scalar Laplacian acting on functions.

Using the identity ddRI
W = At(T̂n), we see that the sum of weights for diagrams

of exactly k vertices is

1

k
Tr

((
p∗AtGF(T̂n)⊗ µ−1 ∂

∂z
(2∂∂

∗
)−1

)k)
∈ C∗Lie

(
W̃n; C∗Lie(C[δ]⊗ gn)

)
∼= C∗Lie(W̃n; Ω̂−∗n ).

(This calculation recapitulates that of the obstruction.) We know that the algebraic
piece simplifies to Tr(AtGF(T̂n)) = k!(2πi)kchGF

2k (T̂n). For odd k, the analytic factor
vanishes. Finally, a direct computation shows that

Tr

((
µ−1 ∂

∂z
(2∂∂

∗
)−1

)2k
)

=
1

(4π2)2k
E2k

for k > 2. One simply picks a natural Fourier basis for smooth functions on an elliptic
curve E = C/Λ, on which basis the operator ∂

∂z (2∂∂
∗
)−1 is easy to describe. (See, for

instance, Section 17.8 in [15].) This fact completes the proof.
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CHAPTER 11

THE FACTORIZATION ALGEBRAS
OF EQUIVARIANT OBSERVABLES

So far we have constructed classical and quantum BV theories for the formal βγ
system. We now turn to analyzing the observables of these theories, using the machin-
ery of [17], which intertwines the BV formalism with factorization algebras. As we
show in Part 3, the factorization algebras that we construct here provide a refinement
of the vertex algebras Gr ĈDOn and ĈDOn from Part 1.

In brief a factorization algebra is a local-to-global object on a manifold—in that
sense, it is like a sheaf—that encodes how to combine sections living on disjoint
opens—and hence, like an algebra. In [17] it is shown that every field theory in the
BV formalism has an associated factorization algebra of observables. For a classical
field theory, the observables Obscl assign to an open U , the commutative dg algebra
of functions on the space of fields on U . Thus classical observables form a commu-
tative factorization algebra. A BV quantization amounts, in essence, to deform the
differential from {Scl,−} to {Sq,−} + ~∆, where Scl is the classical action func-
tional and Sq is its quantization. The quantum observables are thus a deformation of
the commutative factorization algebra Obscl to a factorization algebra (which has no
commutative structure).

Our work in Section 9 thus provides factorization algebras for the equivariant
and non-equivariant formal βγ system. Before we spell out those objects in detail,
though, we must give the definition of a factorization algebra and discuss the relevant
functional analysis.

Remark 11.0.1. — Although we attempt to describe all the relevant ideas and defi-
nitions here, we rely extensively on results and arguments in [17], which contains a
lengthy treatment of the formalism we deploy. For further details, motivation, and
context, we refer the reader there.

11.1. An overview of factorization algebras

Let X be a topological space and C⊗ a symmetric monoidal category. For us X will
be a Riemann surface, typically C, and C⊗ will be a category of cochain complexes
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130 CHAPTER 11. THE FACTORIZATION ALGEBRAS OF EQUIVARIANT OBSERVABLES

of vector spaces with ⊗ the tensor product. (In Section 11.2 we discuss the type
of vector spaces and tensor product that we use, since issues of functional analysis
appear.) Here we give the general definition and refer to [16, 17] for more detail and
motivation.

Definition 11.1.1. — A prefactorization algebra F on X with values in C⊗ assigns
to each open U in X, an object F (U) in C , and assigns to each finite collection
{U1, . . . , Un} of pairwise disjoint opens in X, where each Ui ⊂ V , a morphism

F U1,...,Un
V : F (U1)⊗ · · · ⊗ F (Un)→ F (V ).

These assignments satisfy

1. the morphisms compose, so that

F U1,...,Un
V ◦

n⊗
i=1

F Ti,1,...,Ti,mi
Ui

= F T1,1,...,Tn,mn
V

for any choice of pairwise disjoints open {Ti1 , . . . , Timi} inside Ui for each i,
and

2. the morphisms are equivariant under rearrangement of labels, so that for any
permutation σ ∈ Sn, the composite

F (Uσ(1))⊗ · · · ⊗ F (Uσ(n))
∼=−→ F (U1)⊗ · · · ⊗ F (Un)

F U1,...,Un
V−−−−−−→ F (V )→ F (V )

equals F Uσ(1))⊗···⊗F (Uσ(n)

V .

This structure encodes a kind of algebra parametrized by the geometry of X. The
data of F explains how to “multiply” elements living on opens Ui into an element
on V .

An associative algebra A provides an example living on X = R. To each open
interval I, one assigns A, and to a union of disjoint intervals tj∈JIj , one assigns the
tensor product

⊗
j∈J A. Each structure map is determined by the multiplication in A.

Another example, central to our work here, is the following. Let E → X be a vector
bundle on a smooth manifold. Let Ec denote the precosheaf of compactly supported
sections of E: to each open U , we assign Ec(U) = Γc(U,E), and there is a natural
extension-by-zero Ec(U)→ Ec(V ) whenever U ⊂ V . This precosheaf satisfies that

Ec(U1 t U2) ∼= Ec(U1)⊕ Ec(U2)

for any disjoint union of opens. Using the appropriate notion of tensor product, dis-
cussed below, one then sees that

Sym(Ec(U1 t U2)) ∼= Sym(Ec(U1)⊕ Ec(U2)) ∼= Sym(Ec(U1))⊗ Sym(Ec(U2)),

which provides a natural map

Sym(Ec(U1))⊗ Sym(Ec(U2))→ Sym(Ec(V ))

for any V ⊃ U1 t U2. In this way, one shows that Sym(Ec) forms a prefactorization
algebra.
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11.2. A COMMENT ON FUNCTIONAL ANALYSIS 131

A factorization algebra is a prefactorization algebra satisfying a local-to-global
condition, just as a sheaf is a presheaf satisfying one. The primary difference in the
conditions is that the notion of cover changes.

Definition 11.1.2. — A Weiss cover {Ui}i∈I of an open V is a collection of opens
Ui ⊂ V such that for any finite set of points {x1, . . . , xn} ⊂ V , there is some
Ui ⊃ {x1, . . . , xn}.

We will restrict our attention now to C that are categories of cochain complexes
of vector spaces. (More generally, the definition below is well-behaved for cochain
complexes on a Grothendieck abelian category. See Appendix C of [16].) Since we
view quasi-isomorphic cochain complexes as equivalent (i.e., we are interested in the
higher category arising from quasi-isomorphism as the notion of weak equivalence),
the local-to-global condition is a cochain refinement of the usual notion.

Definition 11.1.3. — A factorization algebra is a prefactorization algebra F such that
for any open V and any Weiss cover {Ui}i∈I of V , the natural map

Č({Ui}i∈I ,F )→ F (V )

is a quasi-isomorphism. (Here the left hand side denotes the Čech complex of F on
the cover.)

11.2. A comment on functional analysis

We are working throughout with infinite-dimensional vector spaces such as the
space of smooth functions C∞(X) on a smooth manifold. Thus we need to be careful
about issues such as tensor products and duals, since the setting of plain vector spaces
is not appropriate or adequate for our constructions. Appendix B of [16] describes
a category of differentiable vector spaces well-suited to our setting, and it explains
its relationship with other natural choices, such as locally convex topological vector
spaces, bornological vector spaces, or convenient vector spaces. The reader wishing
for a discussion about the subtleties of constructing factorization algebras in such
settings should look in [16].

Here we simply state explicitly what we mean by duals and tensor product for the
vector spaces with which we work. These definitions are natural for both differential
geometry and functional analysis.

Let E → X be a finite-rank vector bundle on a smooth manifold. We use the
following notations:

(1) the smooth sections are E = Γ(X,E),

(2) the compactly supported smooth sections are Ec = Γc(X,E),

(3) the distributional sections are E , and

(4) the compactly supported distributional sections are E c.
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132 CHAPTER 11. THE FACTORIZATION ALGEBRAS OF EQUIVARIANT OBSERVABLES

Let E! = E∨ ⊗ DensX denote the vector bundle given by the tensor product of the
fiberwise linear dual E∨ with the density line DensX . Then we write

(1) the smooth sections as E ! = Γ(X,E!),

(2) the compactly supported smooth sections as E !
c = Γc(X,E

!),

(3) the distributional sections are E
!
, and

(4) the compactly supported distributional sections are E
!

c.

Note that the vector bundle map ev : E∨ ⊗ E → C given by the fiberwise evaluation
pairing induces a vector bundle map 〈−,−〉fib : E! ⊗ E → DensX . This pairing then
extends a natural bilinear pairing

〈−,−〉 : E
!

c × E → C
(λ, f) 7→

∫
X
〈λ, f〉fib.

There are clearly also versions for E
! × Ec or with distributional sections of E and so

on.

Definition 11.2.1. — We write E ∨ for E
!

c and call it the dual of E . We use 〈−,−〉 for
the evaluation pairing ev : E ∨ × E → C. Similarly, we write E ∨c for E

!
, (E )∨ for E !

c ,
and (E c)

∨ for E !.

Given E → X and F → Y finite-rank vector bundles on smooth manifolds, let E�
F → X × Y denote π∗XE ⊗ π∗Y F , i.e., the tensor product of the vector bundles pulled
back along the projection maps πX : X × Y → X and πY : X × Y → Y .

Definition 11.2.2. — We write E ⊗F for the smooth sections of E � F and call it
the tensor product. Similarly, we write Ec ⊗Fc for the compactly supported smooth
sections of E � F , E ⊗F for the distributional sections of E � F , and E c ⊗F c for
the compactly supported distributional sections of E � F .

It makes sense to ask for sections of E�F that are distributional in the X-direction
but smooth in the Y -direction, and we write E ⊗F for this space.

Definition 11.2.3. — For a Z-graded vector bundle E → X, the algebra of functions
on E is

Sym(E ∨) :=
⊕
n≥0

((E
!

c)
⊗n)Sn .

The completed algebra of functions on E is

Ŝym(E ∨) :=
∏
n≥0

((E
!

c)
⊗n)Sn .

In particular, an element f of the nth symmetric power Symn(E ) can be identified
with a compactly supported distributional section of Γ(Xn, (E!)�n) that is invariant
under the natural permutation action of Sn.
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11.3. THE NON-EQUIVARIANT CLASSICAL OBSERVABLES 133

Note that these definitions make it straightforward to express the Chevalley-
Eilenberg cochains of dg Lie algebras like DgSn , whose underlying graded vector
spaces are of the type described here.

11.3. The non-equivariant classical observables

We begin by defining the classical observables on a fixed source.

Definition 11.3.1. — The classical observables Obscl
n (S) for the rank n formal βγ

system on the Riemann surface S is the completed algebra of functions on the space
of fields

Ω0,∗(S)⊕n ⊕ Ω1,∗(S)⊕n = (DgSn)[1]

equipped with the differential given by extending ∂ as a derivation. Hence

Obscl
n (S) = C∗Lie(DgSn),

where the Chevalley-Eilenberg cochains are constructed using the appropriate versions
of dual and tensor product.

Explicitly, the underlying graded algebra is

Ŝym(Ω
1,∗
c (S)⊕n[1]⊕ Ω

0,∗
c (S)⊕n[1]).

The differential can be understood explicitly as follows. For some n-fold tensor product
of linear functionals on the fields

a = α1 ⊗ · · · ⊗ αn,
we have

∂(a) = (∂α1)⊗ · · · ⊗ αn ± α1 ⊗ (∂α1)⊗ · · · ⊗ αn + · · · ± α1 ⊗ · · · ⊗ (∂αn).

This differential is equivariant with respect to the permutation action of the symmetric
group Sn and hence induces a differential on the nth symmetric power.

It is manifest that these observables are natural with respect to holomorphic em-
beddings. That is, given a holomorphic embedding i : S ↪→ S′, there is a natural
extension map

i∗ : Obscl
n (S)→ Obscl

n (S′)

that is naturally induced by the restriction map of fields

i∗ : DgS
′

n → DgSn .

Indeed, we have a factorization algebra on any Riemann surface by Theorem 5.2.1 of
[16]. For the purpose of extracting the vertex algebra, it will suffice to focus on S = C
and not consider all Riemann surfaces at the same time.

Definition 11.3.2. — Let Obscl
n denote the factorization algebra on C of classical ob-

servables for the rank n formal βγ system.
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134 CHAPTER 11. THE FACTORIZATION ALGEBRAS OF EQUIVARIANT OBSERVABLES

We remark that as GLn(C) acts naturally on Cn ∼= gn[1], it also acts naturally
on Obscl

n (S) for any Riemann surface S. This action manifestly respects the differen-
tial ∂, which only depends on the source S and not on the target D̂n.

11.4. The non-equivariant quantum observables

The BV formalism suggests that the quantum observables on S should arise by

(a) tensoring the underlying graded vector space of Obscl
n with C[[~]] and

(b) modifying the differential to ∂ + ~∆, where ∆ is the BV Laplacian.

This suggestion does not work because ∆ is not defined on all of the observables; the
naive formula involves an ill-defined pairing of distributions. There are two ways to
circumvent this difficulty. First, one can work with a smaller class of observables—such
as those arising from smooth functionals, not distributional ones—and this approach
is developed in detail for the free βγ system in Chapter 5, Section 3 of [16]. (We discuss
this approach in Section 11.7, where we also show the two approaches agree.) Second,
one can mollify ∆ instead. This approach is developed in a very broad context in
Chapter 9 of [17], and we have encountered it already in the scale L BV Laplacians ∆L.
These two approaches provide quasi-isomorphic factorization algebras, as we show in
Proposition 11.7.2. The second approach is what we will explain here, as it is the one
that extends to the equivariant setting.

Before delving into the machinery necessary to define a factorization algebra of
quantum observables, let us note that we have a working description of the global
observables on C.

Definition 11.4.1. — The global scale L quantum observables for the rank n formal
βγ system has underlying graded vector space

Ŝym(Ω
1,∗
c (C)⊕n[1]⊕ Ω

0,∗
c (C)⊕n[1])[[~]]

with differential ∂ + ~∆L. We denote it Obsq
n[L](C).

The quantum observables are isomorphic for any choice of length scale. In fact, the
RG flow provides an explicit isomorphism WL

ε : Obsq
n[ε](C)→ Obsq

n[L](C) as follows:
given an observable f at scale ε, let WL

ε (f) denote the observable such that

W (PLε , δf) = δWL
ε (f),

whereW (PLε ,−) is the RG flow operation defined earlier on action functionals, δ2 = 0,
and |δ| = −|f |. (In other words, this map arises by taking the “derivative of RG flow”
W (PLε ,−).)

The basic approach used here works in general, except that we will need to work
with a more flexible notion of “length scale”: we need to allow arbitrary parametrices
for ∂. (Indeed, when interactions are included, the RG flow mapWL

ε does not preserve
support conditions on observables, because the heat kernel has support everywhere.)
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After reviewing this machinery, we use it to define the factorization algebra of quantum
observables.

11.4.1. Recap of parametrices and BV Laplacians. — We give here the specialization
to our situation of the general definition from Chapter 8, Section 2.4 of [17]. Recall
that we are working on C with its standard, Euclidean metric. Let ∂

∗
denote the

Hodge dual operator to ∂ with respect to this metric. It is our choice of “gauge-fix,”
in the terminology of [14]. Let 4 = [∂, ∂

∗
] denote the Hodge Laplacian on Dolbeault

forms.
We remark on our convention for integral kernels. Given a continuous linear en-

domorphism P of Ω0,∗(C), we use KP to denote the integral kernel for P : it is the
section of Ω0,∗(C)⊗̂πΩ

1,∗
c (C) such that

(Pα)(z) =

∫
w∈C
〈KP (z, w), α(w)〉w,

where the BV pairing is along the w-direction. (We remark that Schwarz’s kernel
theorem tells us where the integral kernel lives depending upon the domain and range
of the continuous linear operator. Here Ω

1,∗
c (C) appears because the domain is the

continuous linear dual space Ω0,∗(C).)

Definition 11.4.2. — A parametrix for ∂ on Ω0,∗(C) is a distributional section Φ

of Ω1,∗(C× C) such that
1. Φ has cohomological degree one,
2. Φ is symmetric with respect to the S2 action,
3. Φ has proper support with respect to the two projection maps from C2 to C, and
4. (4 ⊗ id)Φ −Kid is a smooth section of Ω1,∗(C × C), where Kid is the integral

kernel for the identity operator with respect to the BV pairing.
Let Param denote the set of parametrices.

There is a natural partial ordering on Param by support: Ψ ≤ Φ if supp(Ψ) ⊂
supp(Φ).

We remark that the integral kernel Ψ =
∫ L

0
Kan
t , using the analytic heat kernel

from Section 9.2, satisfies all these conditions except proper support. It is, in fact,
supported everywhere on C2. (It is thus an “almost-parametrix”.) One can easily
obtain a parametrix from Ψ as follows: pick a smooth function f on C2 that is 1 in
a neighborhood of the diagonal and vanishes sufficiently far from the diagonal, and
consider fΨ. This construction will allow us to translate between results written in
terms of heat kernels (i.e., length scale) and those written in terms of parametrices.

Remark 11.4.3. — Above we only define parametrices for ∂. Each Φ ∈ Param au-
tomatically determine a parametrix for the rank n formal βγ system by taking
Φ ⊗ (idgn + idg∨n ). Given this relationship, we will not overload the notation and
use Φ, with the implicit understanding that the algebraic factor is included in the
rank n case.
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136 CHAPTER 11. THE FACTORIZATION ALGEBRAS OF EQUIVARIANT OBSERVABLES

We now define versions of the propagator and BV Laplacian for each parametrix
Φ, analogous to PLε and ∆L from earlier. Note that for the rank n formal βγ system,

Definition 11.4.4. — Given a parametrix Φ, the Φ-propagator is the integral kernel

PΦ =
1

2
(∂
∗ ⊗ id + id⊗ ∂∗)Φ.

Let κΦ denote the integral kernel Kid − (∂ ⊗ id + id⊗ ∂)PΦ.

The crucial point here is that the kernel κΦ is smooth. Moreover, it is the analog
of the analytic heat kernel Kt from earlier.

We are now in a position to define a mollified BV Laplacian.

Definition 11.4.5. — The Φ-BV Laplacian ∆Φ is the operator ∂κΦ
. That is, it is the

endomorphism of (Obscl
n (C))]—the underlying graded algebra of observables—given

by contracting with κΦ.

For clarity’s sake, let us describe this operator explicitly. Given a in the nth sym-
metric power of the observables, pick a lift ã to the nth tensor power. Then

(∂κΦ
a)(x) = ã(κφ ⊗ x⊗ · · · ⊗ x),

where we insert n− 2 copies of x on the right hand side.
These definitions allow one to define effective field theories, but with length scale

replaced by a choice of parametrix. For a full treatment, see Section 8.2.9 of [17]. The
essential changes are that

— RG flow from Φ to Ψ is given by W (PΦ − PΨ,−), using the same Feynman
diagram expansion, and

— the same local functional should be recovered in the limit as the support of the
parametrices goes to the small diagonal.

We can obtain such an effective field theory from the length scale version by RG flow
to any parametrix from a fixed almost-parametrix for some length scale.

11.4.2. Observables. — We can now mimic the scale L definition of global observables.

Definition 11.4.6. — For a parametrix Φ, the global Φ-quantum observables for the
rank n formal βγ system has underlying graded vector space

Ŝym(Ω
1,∗
c (C)⊕n[1]⊕ Ω

0,∗
c (C)⊕n[1])[[~]]

with differential ∂ + ~∆Φ. We denote it Obsq
n[Φ](C).

Again, Lemma 9.3.1.2 of [17] shows that the quantum observables are isomorphic
for any choice of parametrix. The isomorphism is explicitly given by the “derivative
of the RG flow”: for f ∈ Obsq

n[Φ](C), set

WΨ
Φ (f) =

∂

∂δ
(W (PΨ − PΦ, δf))
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in Obsq
n[Ψ](C). Because our parametrices have proper support, though, they only

expand the support of an observable f by a controlled amount (essentially determined
by how the size of the parametrix’s support).

Definition 11.4.7. — Let Obsq
n(C) denote the cochain complex of quantum observables

up to isomorphism. That is, an observable f ∈ Obsq
n(C) is a family of elements

{f [Φ]}Φ∈Param for every parametrix Φ such that the f [Ψ] = WΨ
Φ (f [Φ]) for any pair of

parametrices Ψ and Φ.

Definition 11.4.8. — Let f be an observable in Obsq
n(C) and denote its Taylor expan-

sion by
f =

∑
j,k≥0

~jfj,k,

with fj,k in the kth symmetric power. We say that f has support in U ⊂ C if for
every (j, k), there is some compact subset C ⊂ Uk and some parametrix Φ such
that supp(fj,k[Ψ]) ⊂ C for all Ψ ≤ Φ.

By Lemma 9.4.0.2 of [17], the graded vector space Obsq
n(U) of observables with

support in U is preserved by the differential ∂+~∆ and hence provides a sub-complex
of Obsq

n(C). The remainder of Chapter 9 of [17] shows that these naturally form a
factorization algebra.

Definition 11.4.9. — Let Obsq
n denote the factorization algebra on C of quantum ob-

servables for the rank n formal βγ system.

We remark again that GLn(C) acts naturally on Cn ∼= gn[1] and on its linear dual
so as to preserve the evaluation pairing. Hence GLn(C) also acts naturally on Obsq

n(U)

for any open U ⊂ C. This action respects the differential ∂+~∆Φ, since ∂ only depends
on the source U and not on the target D̂n and ∆Φ depends on the target only through
the evaluation pairing.

11.5. The Wn-equivariant classical observables

We discussed in Section 3 8.3 that diffeomorphisms on the target of the curved
βγ system naturally act on the fields by post-composition. In Section 3.3 we gave
an efficient description of this action for the formal βγ system via an L∞-action
of Wn on DgUn for any open U ⊂ C. This action then determines an L∞-action of Wn

on Obscl
n (U) = C∗Lie(DgUn ) and hence a cochain complex C∗Lie(Wn,Obscl

n ). In other
words, by the yoga of Koszul duality, this action can be encoded as a modification of
the differential on the tensor product C∗Lie(Wn) ⊗ Obscl

n . By Lemma 8.4.2 we know
that {IW,−} provides this twisting of the differential. Since IW is a local functional,
this modified differential is still local in the source manifold C and thus respects the
structure maps of the factorization algebra. The following definition gathers together
these observations.
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138 CHAPTER 11. THE FACTORIZATION ALGEBRAS OF EQUIVARIANT OBSERVABLES

Definition 11.5.1. — The factorization algebra of Wn-equivariant classical observables
on C is

eqObscl
n = C∗Lie(Wn,Obscl

n ).

The underlying graded vector space is

Ŝym(Wn
∨[−1])⊗ Ŝym((Ω

1,∗
c )⊕n[1]⊕ (Ω

0,∗
c )⊕n[1])

with differential dC∗Lie(Wn) + ∂ + {IW,−}.

Note that in IW, the dependence on the vector field X ∈ Wn is linear. Hence
Obscl

n has a strict Lie algebra action of Wn, not a complicated L∞-action. In light of
the remarks following Definition 11.4.9, we see the following, which we record as a
lemma for use when applying Gelfand-Kazhdan descent in Section .

Lemma 11.5.2. — The classical observables Obscl
n are a representation of the Harish-

Chandra pair (Wn,GLn). In particular GLn acts by (strict) automorphisms of the
factorization algebra, and Wn acts by (strict) derivations of the factorization algebra.
Via restriction along p : (W̃n,GLn)→ (Wn,GLn) the classical observables Obscl

n are
also a representation for the pair (W̃n,GLn).

11.6. The W̃n-equivariant quantum observables

The construction of the W̃n-equivariant quantum observables is straightforward,
given the work we did in Section 9. The logic is analogous to the case of classical
observables: we encode the L∞-action of W̃n on observables in the differential.

Definition 11.6.1. — The factorization algebra of W̃n-equivariant quantum observ-
ables on C is

eqObsq
n = C∗Lie(W̃n,Obscl

n )[[~]].

The underlying graded vector space is

Ŝym(W̃∨n [−1])⊗ Ŝym((Ω
1,∗
c )⊕n[1]⊕ (Ω

0,∗
c )⊕n[1])[[~]]

with differential

d
C∗Lie(W̃n)

+ ∂ + {IW,0,−}+ ~∆ + ~{IW,1 + J,−},
to give an explicit description.

For clarity’s sake let us point out that this means that for each parametrix Φ, we
have global observables

Ŝym(W̃∨n [−1])⊗ Ŝym(Ω
1,∗
c (C)⊕n[1]⊕ Ω

0,∗
c (C)⊕n[1])

with differential

d
C∗Lie(W̃n)

+ ∂ + {IW,0[Φ],−}Φ + ~∆Φ + ~{IW,1[Φ] + J [Φ],−}Φ.
These observables are isomorphic for all choices of parametrix, so that our notation in
the definition should be unambiguous. Moreover, we find that the notion of support for
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an observable is well-behaved and so we can talk about the observables with support
in a fixed open U , thus obtaining a factorization algebra.

Remark 11.6.2. — Working over the base ring C∗Lie(W̃n) amounts to a version of the
background field method, where we view the quantum action functional (encoded in
the differential) as depending on a choice of vector field and closed 2-form, i.e., an
element of W̃n. In a sense we see that after quantizing, we obtain extended symmetries
of the theory which we have already seen coincide with those of the physical curved
βγ system.

By contrast to the classical case, the quantum observables Obsq
n do not have a strict

Lie action of W̃n. The ~-term IW,1 is not linear in Wn and has contributions of every
even power. Thus we cannot apply strict Gelfand-Kazhdan descent for (W̃n,GLn). We
have already observed that when restricted to linear vector fields gln ↪→ W̃n that the
anomaly vanishes. Thus, the quantum observables Obsq

n admit a strict action by gln.

11.7. An aside on the two versions of non-equivariant observables

As mentioned earlier, there is another approach to constructing the non-equivariant
factorization algebra of observables for the formal βγ system, which is developed in
[16]. We sketch it briefly here and prove that it is quasi-isomorphic to the observables
described above.

Thus, the key idea is to work with observables built out of smooth or smeared
distributions. By contrast, the observables already introduced live in a completed
symmetric algebra of distributions (more precisely, the distributions dual to Dolbeault
forms), and the need for parametrices is due to inability to apply the BV Laplacian
to such distributions, since distributions do not always pair.

Here is a concrete example of replacing distributions with smeared versions. Con-
sider the delta-function

δ0 : γ 7→ γ(0).

Now pick a compactly-supported smooth function f : (0, 1)→ R such that
∫
R f(t) dt = 1.

Then a smeared version is

δ̃0 : γ 7→ 1

2πi

∫ 1

r=0

∫
|z|=r

γ(z)

z
dz f(r) dr,

which agrees with δ0 if γ is holomorphic, by Cauchy’s theorem. In particular, in the
cochain complex Ω

1,∗
c (C)[1], these distributions δ0 and δ̃0 are cohomologous 0-cocycles.

Definition 11.7.1. — The smeared quantum observables for the rank n formal βγ
system with support in the open U ⊂ C has underlying graded vector space

Ŝym(Ω1,∗
c (U)⊕n[1]⊕ Ω0,∗

c (U)⊕n[1])[[~]]

with differential ∂ + ~∆. We denote it Obsq,fr
n (U).
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As the observables are built out of smooth sections, the “naive” BV Laplacian
∆ = ∂Kid is well-defined. We view this operator as the BV Laplacian “at scale zero,”
since Kid is the distributional limit of the KL. Moreover, since ∆ is fully local, these
smeared observables automatically form a factorization algebra, with no need to dis-
cuss support issues.

This construction raises the question of how the smeared observables compare to
the observables from Definition 11.4.9. They are, in fact, quasi-isomorphic factoriza-
tion algebras, but the quasi-isomorphism is built in two steps. First, on smeared
observables, the RG flow operator makes sense from “scale zero” to an arbitrary
parametrix Φ:

WΦ
0 : Obsq,fr

n (C)→ Obsq,fr
n [Φ](C),

where the target Φ-observables consists of the same graded vector space of smeared
observables but with differential ∂ + ~∆Φ. This map is an isomorphism of cochain
complexes with inverse W 0

Φ. (It does affect support of observables, but we say an
observable f ∈ Obsq,fr

n [Φ](C) is supported in an open set U if W 0
Φ(f) is supported

in U .) Second, consider the inclusion

i[Φ] : Obsq,fr
n [Φ](C) ↪→ Obsq

n[Φ](C),

arising from the inclusion of smooth sections into distribution sectionals. This map
is a quasi-isomorphism: the spectral sequence arising from the ~-filtration is an iso-
morphism on the first page. The composite i ◦WΦ

0 thus defines a quasi-isomorphism
of cochain complexes, and it intertwines support conditions, thus extending to a map
i : Obsq,fr

n → Obsq
n. Hence we have proved the following.

Proposition 11.7.2. — The map i : Obsq,fr
n → Obsq

n is a quasi-isomorphism of factor-
ization algebras.
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CHAPTER 12

SEMI-STRICT GELFAND-KAZHDAN DESCENT

In Section 8, we have seen that there is a dg Lie algebra DgSn encoding the βγ
system with target the formal disk D̂n, and we have seen that this dg Lie algebra has
a natural action of GLn and has a natural L∞-action of Wn. We might hope that the
curved βγ system with target a complex n-manifold X could be obtained by applying
Gelfand-Kazhdan descent to this dg Lie algebra. This hope is not misplaced, as we’ll
see, but it requires generalizing the formalism of Harish-Chandra descent to allow
for L∞-actions of the Lie algebra.

In this section we develop this formalism along the lines of our treatment of descent
in Part I, but we develop the minimum necessary to realize our primary goal and hence
leave untreated many interesting questions (such as allowing Harish-Chandra pairs
in which the Lie algebra is replaced by an L∞ algebra). Nonetheless, our techniques
should apply to a broad collection of situations, notably to constructing the pertur-
bative part of a nonlinear σ-model using BV quantization. Indeed, much of what we
do is a re-articulation of the methods of Kontsevich, Cattaneo-Felder, and many oth-
ers, that is compatible with the machinery of [16, 17]. We finish by explaining how
our methods recover Costello’s approach to the curved βγ system in [15]. (His use
of L∞-spaces, however, allows for more exotic targets than just complex manifolds,
though.)

Remark 12.0.1. — As our particular examples are explicit, we are able to get away
with a modest and quite limited generalization of Gelfand-Kazhdan descent for derived
objects. There should be a full-fledged derived version. (Parts of [7] can be seen as a
giant step in that direction.)

12.1. Semi-strict modules

We continue to work with Harish-Chandra pairs (g,K), as in Part 1, so g is a Lie
algebra and K is a Lie group along with an action ρ of K on g and an inclusion of Lie
algebras i : Lie(K) ↪→ g so that the Lie algebra action determined by i agrees with
the differential of the group action ρ.
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142 CHAPTER 12. SEMI-STRICT GELFAND-KAZHDAN DESCENT

Definition 12.1.1. — A semi-strict Harish-Chandra module for the pair (g,K) is a dg
vector space (V,dV ) equipped with

(i) a strict group action ρKV of K, meaning a group map

ρKV d : K → GL(V d)

for each degree d such that the product map
∏
d ρ

K
V d : K → ∏

d GL(V d) com-
mutes with the differential dV ;

(ii) an L∞-action of g on V , i.e., a map of L∞-algebras ρgV : g  End(V ), such
that the composite

CLie
∗ (ρgV ) ◦ CLie

∗ (i) : CLie
∗ (Lie(K))→ CLie

∗ (End(V ))

equals the map

CLie
∗ (DρKV ) : CLie

∗ (Lie(K))→ CLie
∗ (End(V )).

Here DρKV : Lie(K) → End(V ) is the differential of the strict K-action and
i : Lie(K)→ g is part of the data of the Harish-Chandra pair (g,K).

We call this semi-strict because we allow an L∞-action of g, but our other condi-
tions are quite strict. This definition, while ad hoc, is nonetheless well-suited to our
situation.

Definition 12.1.2. — A map of semi-strict Harish-Chandra modules

f : (V, ρKV , ρ
g
V )→ (W,ρKW , ρ

g
W )

consists of

(i) a cochain map fK : V →W that (strictly) intertwines the K-actions and

(ii) a map of CLie
∗ (g)-comodules

fg : CLie
∗ (g, V )→ CLie

∗ (g,W ),

such that the composites

CLie
∗ (DρKW ) ◦ CLie

∗ (fK) : CLie
∗ (Lie(K), V )→ CLie

∗ (g,W )

and

fg ◦ CLie
∗ (DρKV ) : CLie

∗ (Lie(K), V )→ CLie
∗ (g,W )

are identical.
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12.2. SEMI-STRICT DESCENT 143

12.2. Semi-strict descent

Fix a (g,K)-bundle P with flat connection, so that there is a Maurer-Cartan ele-
ment ω in the dg Lie algebra Ω∗(P )⊗ g. Equivalently, there is a map of commutative
dg algebras

ω∗ : C∗Lie(g)→ Ω∗(P )

determined by extending to an algebra map, the map ω∗ : g∨[−1] → Ω∗(P ) on
generators encoded by ω.

Let V be a semi-strict module for the pair (g,K). Hence there is a map of commu-
tative dg algebras

ρg∗V : C∗Lie(End(V ))→ C∗Lie(g),

which is the linear dual of the coalgebra map ρgV : g  End(V ). By composing, we
obtain a map of commutative dg algebras

ρg∗V ◦ ω∗ : C∗Lie(End(V ))→ Ω∗(P ),

which then corresponds to a Maurer-Cartan element

ωV ∈ Ω∗(P )⊗ End(V ).

The operator
∇P,V := ddR + ωV

then defines a flat “super-connection” on the trivial bundle P ×V → P over P . (Here
“super” simply means that some terms of ωV may contain higher forms, and not just
one-forms.)

The following results straightforwardly from the definitions.

Lemma 12.2.1. — The operator ∇P,V has the following properties:

(1) It preserves the sub-algebra of basic forms.

(2) If f ∈ O(X) ∼= O(P )K and α ∈ (Ωk(P )⊗ V )bas
∼= Ωk(X;VX), then

∇P,V (f · α) = (ddRf)⊗ α+ f ⊗∇V α.

(3) It is square-zero.

Using this lemma, we define the cochain complex

(32) desc((P → X,ω), V ) :=
(
(Ω∗(P )⊗ V )bas,∇P,V

)
.

It is a dg module over the commutative dg algebra Ω∗(X).

Definition 12.2.2. — The semi-strict descent functor

desc : Locop
(g,K) ×Modfin

(g,K) → ModΩ∗(X)

is given by the construction just described.
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144 CHAPTER 12. SEMI-STRICT GELFAND-KAZHDAN DESCENT

Note that if V is strict HC-module, then (32) is just the de Rham complex of the
flat vector bundle desc((P → X,ω), V ) = (VX ,∇P,V ) from Definition 1.3.4.

Semi-strict Gelfand-Kazhdan descent is simply semi-strict Harish-Chandra descent
applied to the pairs (Wn,GLn) or (W̃n,GLn) along Xcoor or X̃coor

α , respectively.
Everything is parallel to what we did in Part 1. In particular, it is lax monoidal, via
the argument from Lemma 2.4.2.

We now note an important relationship between strict and semi-strict descent,
which follows from a standard fact about L∞-representations: given an ordinary Lie
algebra g (i.e., concentrated in degree zero) and an L∞ representation V of g, the
cohomology H∗(V ) is a strict representation of g. Hence we observe the following.

Lemma 12.2.3. — If (V, ρKV , ρ
g
V ) is a semi-strict module for the pair (g,K), then

H∗(V ) naturally becomes a strict module for (g,K) with ρKH∗(V ) the induced action
of K on H∗(V ) (since it respects the differential on V ) and ρgH∗(V ) the induced strict
action of g on H∗(V ).

12.3. Descent of the equivariant observables

We record the following immediate consequences of our work in Section 11.

Proposition 12.3.1. — For each open U ⊂ C,
1. the classical observables Obscl

n (U) is a strict module over (Wn,GLn), and
2. the quantum observables Obsq

n(U) is a semi-strict module over (W̃n,GLn).
The structure maps of Obscl

n are strictly equivariant map for (Wn,GLn), i.e., maps
of strict (Wn,GLn)-modules. The structure maps of Obsq

n are maps of semi-strict
(W̃n,GLn)-modules.

These assertions follow by reinterpreting, via Koszul duality, our descriptions of
the equivariant observables as dg modules over C∗Lie(Wn) (in the classical case) or
C∗Lie(W̃n) (in the quantum case).

We can thus apply semi-strict Gelfand-Kazhdan descent and obtain the following
result. Note that we are working in the category of dg modules over the commu-
tative dg algebra Ω∗(X) in the category of differentiable vector spaces discussed in
Section 11.2.

Corollary 12.3.2. — The strict Gelfand-Kazhdan descent of Obscl
n on an n-dimensional

complex manifold X is a commutative factorization algebra in dg modules over Ω∗(X).
It depends on a choice of Gelfand-Kazhdan structure (FrX,σ), but every choice pro-
duces a naturally isomorphic factorization algebra.

If the n-dimensional complex manifold X has vanishing ch2(TX) ∈ H2(X,Ω2,hol
cl ),

then each extended Gelfand-Kazhdan structure (X,α, σ, σΩ2) where α is a choice of
trivialization of ch2(TX) and σ, σΩ2 are the auxiliary sections needed to define de-
scent (whose choices do not change the descent object up to homotopy) the semi-strict
Gelfand-Kazhdan descent of Obsq

n is a factorization algebra in dg modules over Ω∗(X).
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12.4. COMPARISON WITH COSTELLO’S WORK 145

Definition 12.3.3. — For X a complex n-manifold, let Obscl
X denote the commutative

factorization algebra on C produced by strict Gelfand-Kazhdan descent of Obscl
n .

For X a complex n-manifold and α ∈ Ω2
cl(X) a trivialization of ch2(TX), let Obsq

X,α

denote the factorization algebra on C produced by semi-strict Gelfand-Kazhdan descent
of Obsq

n.

By Lemma 12.2.3 we know that for each open U ⊂ C,

1. the cohomological classical observables H∗Obscl
n (U) is a strict module

over (Wn,GLn), and

2. the cohomological quantum observables H∗Obsq
n(U) is a strict module

over (W̃n,GLn).

Moreover, the structure maps of H∗Obscl
n are strictly equivariant map for (Wn,GLn),

i.e., maps of strict (Wn,GLn)-modules. Likewise, the structure maps of H∗Obsq
n are

maps of strict (W̃n,GLn)-modules. Thus we can also apply strict Gelfand-Kazhdan
descent to the cohomology of observables.

Corollary 12.3.4. — The strict Gelfand-Kazhdan descent of H∗Obscl
n on an n-dimen-

sional complex manifold X is a commutative factorization algebra. It depends on a
choice of Gelfand-Kazhdan structure (FrX,σ), but every choice produces a naturally
isomorphic factorization algebra.

If the n-dimensional complex manifold X has vanishing ch2(TX) ∈ H2(X,Ω2,hol
cl ),

then for each choice of trivialization α of ch2(TX) and each extended Gelfand-Kazhdan
structure the strict Gelfand-Kazhdan descent of H∗Obsq

n is a factorization algebra.

In Section 13 below, we provide a description of these factorization algebras that
is humanly understandable, but first we will swiftly relate our work to Costello’s
approach in [15].

12.4. Comparison with Costello’s work

In [15] Costello provided a BV quantization of the curved βγ system with target
a complex manifold X, and it was clear that the associated factorization algebra
ought to be chiral differential operators, based on the work in [55, 46]. Our work grew
out of attempts to verify that expectation. Here we explain how Gelfand-Kazhdan
descent recovers the L∞ spaces that Costello uses and why descent of our equivariant
quantization recovers the relevant cases of Costello’s quantizations. These results are
independent of the rest of the text, and hence the disinterested reader should skip
this section.

Our construction starts by encoding the formal n-disk as an L∞ algebra gn and the
formal βγ system as DgSn . Costello’s approach is to write down a global analogue: for
each complex manifold X, he constructs a curved L∞ algebra gX in dg modules over
the de Rham complex Ω∗(X). His version of the classical curved βγ system is encoded

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

M
ay

7,
20

20
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in DgSX , whose Maurer-Cartan equation recover the equations of motion. (More pre-
cisely, this Maurer-Cartan equations describes formal deformations of constant maps
to holomorphic maps.) The factorization algebra of classical observables assigns to
an open set U ⊂ C, the cochain complex C∗Lie(DgUX). The quantum observables are a
deformation thereof.

Let us explain his construction of gX . Consider the∞-jet bundle Jhol
X for holomor-

phic functions, which has a canonical flat connection. The sheaf of horizontal sections
for this flat connection is exactly the sheaf OX of holomorphic functions on X. In fact,
the de Rham complex of Jhol

X is quasi-isomorphic to OX , where the quasi-isomorphism
sends a holomorphic function to its∞-jet. By definition, gX is the curved L∞ algebra
encoded under Koszul duality by the commutative dg algebra

C∗Lie(gX) = Ω∗(X, Ŝym(T 1,0∗
X )) ∼= Ω∗(X, Jhol

X ).

(Everything here is in modules over Ω∗(X).) The differential on the left hand side is
pulled back along an isomorphism of pro-vector bundles σ : Ŝym(T 1,0∗

X )
∼=−→ Jhol

X . This
isomorphism σ is constructed by fixing a connection on the tangent bundle TX and
using its associated exponential map at each point x to identify the formal neighbor-
hood of x in X with the formal neighborhood of the origin in TxX. In this way, the
∞-jet of a function at x is identified with a formal power series in T ∗xX, which is the
desired isomorphism σ.

But this procedure is precisely how Gelfand-Kazhdan descent works! Once we fix a
formal exponential on the frame bundle of X—typically via a choice of connection—
we have an isomorphism σ. Moreover, the descent of C∗Lie(gn) using this data is
exactly Ω∗(X, Ŝym(T 1,0∗

X )) equipped with the pullback of the Grothendieck connection
along σ. In other words, Gelfand-Kazhdan descent recovers Costello’s curved L∞
algebra, once one applies the Koszul duality.

A parallel argument applies to DgSX . After fixing the isomorphism σ, Gelfand-
Kazhdan descent of DgSn produces C∗Lie(DgSX) on the nose. Hence, under Koszul du-
ality, we recover Costello’s classical BV theory as encoded in the curved L∞ alge-
bra DgSX .

A careful reading of [15] will show that his Feynman diagrammatic work is the
global version of ours: our analysis of the obstructions to quantization and construc-
tions of quantizations given a trivialized obstruction is directly parallel and descends
to his.

Our discussion can be summarized as follows.

Proposition 12.4.1. — Under Gelfand-Kazhdan descent on a complex manifold X, the
formal βγ system recovers the classical BV theory associated to X in [15]. Moreover,
the obstruction-deformation complex descends to that in [15], so that the obstruction
to BV quantization recovers the obstruction identified in [15]. Finally, given a trivi-
alization of this obstruction, descent recovers the quantized action functional in [15].
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The primary corollary of this is that the factorization algebra associated to
Costello’s quantization of the curved βγ system with target X is isomorphic to the
factorization algebra Obsq

X,α we have constructed via semi-strict Gelfand-Kazhdan
descent of the formal βγ system with target D̂n.

Moreover, we recover the Witten class as originally obtained by Costello. That is,
we have already identified the equivariant scale ∞ interaction ĨW[∞] on an elliptic
curve E with the Witten genus

p∗ log Witn(E,ω) ∈ C∗Lie(W̃n,GLn; Ω̂−∗n ).

Consider the characteristic map defined by extended Gelfand-Kazhdan descent deter-
mined by a trivialization α of the second Chern character of X. It is given by

c̃hα : H∗Lie(W̃n,GLn; Ω̂−∗n )→ H∗(X; Ω−∗X ).

The image of p∗Witn(E,ω) under this map is the logarithmic Witten genus of the
complex manifold X

log Wit(X,E, ω) =
∑
k≥2

(2k − 1)!

(2πi)2k
E2k(E,ω)ch2k(TX),

described using a holomorphic volume element on the elliptic curve E.
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CHAPTER 13

A CONCRETE DESCRIPTION OF THE OBSERVABLES

In this section we examine the factorization algebras Obscl
X and Obsq

X,α produced
by descent of the equivariant observables for the formal βγ system. Our goal is to
extract information from them that is easy to interpret, particularly from the phys-
ical point of view. For instance, we will give an explicit description of observables
with support at a point in the source C—and hence also for observables supported
at finitely many points—which is a bridge to Part III, where we show that the coho-
mological factorization algebras H∗Obscl

X and H∗Obsq
X,α recover the vertex algebras

GrCDOX and CDOX,α, respectively. In short, we show that these point observables
admit explicit expressions in terms of natural geometric objects on the target mani-
fold, notably tensor bundles.

Throughout we use the tensor product and symmetric powers described in Sec-
tion 11.2.

13.1. Polynomials, power series, and the (Wn,GLn)-decomposition of observables

We will provide a characterization of the formal tensor fields that constitute the
observables for the formal βγ system. We will use this characterization in the next
section for the non-formal observables.

Before talking about the full algebras of observables, it is useful to understand the
space of linear observables, which are simply the dual space to the fields. It will help
to bear in mind some simple facts about smooth functions.

For any disk Dr(0) ⊂ C centered at the origin, there is a natural linear map

j : C∞(Dr(0))→ C[[z, z]]

sending a function f to its Taylor series j(f) at the origin. (We use the coordinates z
and z since we will eventually focus on holomorphic functions.) Borel’s lemma tells
us this map is surjective. There is also an inclusion

C[z, z] ↪→ C∞(Dr(0))

obtained by viewing a polynomial as a function on the disk, and the composite with
j is the inclusion of polynomials into power series.
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The ∂ operator makes sense on both polynomials and power series. Let Ω0,∗
poly denote

the cochain complex

C[z, z]
∂−→ C[z, z]dz

and let Ω0,∗
pow denote the version with power series. We have the following relationship.

Lemma 13.1.1. — There is a commuting diagram

C[z] O(Dr(0)) C[[z]]

Ω0,∗
poly Ω0,∗(Dr(0)) Ω0,∗

pow

' ' '
j

where the vertical maps are the inclusion of the cohomology, which is concentrated in
degree zero.

Note that at the level of fields—rather, in terms of the dg Lie algebras encoding
the formal βγ system—this result tells us that we have

gn[z]⊕ (g∨n [z]dz)[−2] gn ⊗ O(Dr(0))⊕ (g∨n ⊗ Ω1,hol(Dr(0)))[−2] gn[[z]]⊕ (g∨n [[z]]dz)[−2]

Dgpoly
n DgDr(0)

n Dgpow
n

' ' '
j

where, for example, Dgpoly
n means the dg Lie algebra

where, for example, Dgpoly
n means the dg Lie algebra

Ω0,∗
poly ⊗ gn ⊕ Ω1,∗

poly ⊗ g∨n [−2].

This relationship is convenient for analyzing observables.

Lemma 13.1.2. — The classical observables Obscl
n (Dr(0)) sit inside the commuting

diagram

C∗Lie(Dgpow
n ) Obscl

n (Dr(0)) C∗Lie(Dgpoly
n )

C∗Lie(gn[[z]]⊕ (g∨n [[z]]dz)[−2]) H∗Obscl
n (Dr(0)) C∗Lie(gn[z]⊕ (g∨n [z]dz)[−2])

by applying the functor C∗Lie.

These maps naturally intertwine the Harish-Chandra action of (Wn,GLn), so that
we obtain an analogous commuting diagram after Gelfand-Kazhdan descent. One must
verify that the vertical maps are quasi-isomorphisms, which we do below in Proposi-
tion 13.2.5. But first let us analyze in more detail which (Wn,GLn)-representations
appear in the observables.

ASTÉRISQUE 419



Ép
re

uv
e S

M
F

M
ay

7,
20

20

13.1. POLYNOMIALS, POWER SERIES, AND THE (Wn,GLn)-DECOMPOSITION 151

Consider the case of C∗Lie(gn[[z]]⊕ (g∨n [[z]]dz)[−2]), since it sits inside all the other
examples. Recall that C∗Lie(gn) ∼= Ôn = C[[t1, . . . , tn]]. The Lie algebra gn[[z]] ⊕
(g∨n [[z]]dz)[−2] can be viewed as an extension of gn ' gn · z0 by the representation

M = gn[[z]]z ⊕ (g∨n [[z]]dz)[−2],

and hence

C∗Lie(gn[[z]]⊕ (g∨n [[z]]dz)[−2]) ∼= C∗Lie(gn, Ŝym(M∨[−1])).

We now show that this vector space (as it all sits in degree zero) is a direct product
of tensor fields.

Some notation will simplify the discussion. The appropriate linear dual of C[[z]] is
the direct sum

⊕
k≥0 C ζk, where ζk is the dual element to zk. Let ζkdz∨ denote the

dual to zkdz. Then

M∨[−1] =
⊕
0<k

(g∨n ⊗ ζk)[−1]⊕
⊕
0≤l

(gn ⊗ ζldz∨)[1].

More succinctly, we have

M∨[−1] ∼=
⊕
0<k

g∨[−1]⊕
⊕
0≤l
gn[1].

Let ⊗̂ denotes the completed tensor product, so that Ŝym(V ⊕W ) ' Ŝym(V ) ⊗̂ Ŝym(W )
for any pair of vector spaces.

Then

Ŝym(M∨[−1]) ∼=
⊗̂
0<k

Ŝym(g∨n [−1]) ⊗̂
⊗̂
0≤l

Ŝym(gn[1])

= colim
K,L→∞

⊗̂
0<k<K

Ŝym(g∨n [−1]) ⊗̂
⊗̂

0≤l<L
Ŝym(gn[1]),

where the (k, l)th tensor term is associated to ζk and ζldz∨. (Recall that in the infinite
tensor product of unital algebras, a term a1 ⊗ a2 ⊗ · · · has aj = 1 for all but finitely
many j.) In summary we have the following.

Lemma 13.1.3. — As a (Wn,GLn)-modules, the commutative algebra C∗Lie(gn[[z]] ⊕
(g∨n [[z]]dz)[−2]) decomposes as the infinite tensor product of formal tensor fields,⊗̂

0<k

Ŝym(T̂ ∗n ) ⊗̂
⊗̂
0≤l

Ŝym(T̂n),

where T̂n denotes the formal vector fields viewed as an adjoint representation of Wn

and T̂ ∗n denotes the formal one-forms viewed as the coadjoint representation.

Since Gelfand-Kazhdan descent is monoidal, we obtain a useful corollary.
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152 CHAPTER 13. A CONCRETE DESCRIPTION OF THE OBSERVABLES

Corollary 13.1.4. — For X a complex n-manifold, the Gelfand-Kazhdan descent
of C∗Lie(gn[[z]]⊕ (g∨n [[z]]dz)[−2]) is isomorphic to the OX-module⊗̂

0<k

ŜymOX (T ∗X ) ⊗̂
⊗̂
0≤l

ŜymOX (TX),

where TX denotes the sheaf of holomorphic vector fields and T ∗X denotes the sheaf of
holomorphic one-forms.

Analogous results can be formulated for the polynomial situation and also
for C∗Lie(Dgpow

n ) and C∗Lie(Dgpoly
n ), which now involve powers of z and dz∨ as well.

By the same reasoning as we just use, we find the following. (Observe that due to
having monomials of the form zkzk

′
, the indexing now is doubled.)

Lemma 13.1.5. — For the Lie algebra gn[[z, z]]⊕g∨n [[z, z]][−2], the commutative algebra
C∗Lie(gn[[z, z]]⊕ g∨n [[z, z]][−2]) decomposes as a (Wn,GLn)-module into⊗̂

(k,k′)∈N2{(0,0)}
Ŝym(T̂ ∗n ) ⊗̂

⊗̂
(l,l′)∈N2

Ŝym(T̂n),

where (k, k′) indexes zkzk
′
and likewise for (l, l′).

A little more work provides us with this result.

Lemma 13.1.6. — The underlying graded vector space of commutative algebra
C∗Lie(Dgpow

n ) decomposes as a (Wn,GLn)-module into⊗̂
(k,k′)∈N2{(0,0)}

Ŝym(T̂ ∗n ) ⊗̂
⊗̂

(l,l′)∈N2

Ŝym(T̂n) ⊗̂
⊗̂

(m,m′)∈N2

Ŝym(T̂ ∗n [1]) ⊗̂
⊗̂

(n,n′)∈N2

Ŝym(T̂n[1]),

where (k, k′) indexes zkzk
′
and likewise for the other double indices.

Proof. — The decomposition of the underlying graded (Wn,GLn)-module of
C∗Lie(Dgpow

n ) is also straightforward, given our work above, but it involves some
bookkeeping. The underlying graded vector space of Dgpow

n is

degree: 1 2

vector space: gn[[z, z]]⊕ g∨n [[z, z]][−2] (gn[[z, z]]⊕ g∨n [[z, z]][−2])⊗ dz

Thus, C∗Lie(Dgpow
n ) is concentrated in nonpositive degrees, and the preceding lemma

gives us the degree zero component, which we denote A . The new contribution B
comes from the degree two component of Dgpow

n . It generates an algebra by linear
dual of this component placed in degree −1:

B := Ŝym (((gn[[z, z]]⊕ g∨n [[z, z]][−2])⊗ dz)∨[1]) .

We have
C∗Lie(Dgpow

n )] ∼= A ⊗B
as graded algebras. We thus need to have a succinct way to describe the algebra B.
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13.2. THE CLASSICAL OBSERVABLES SUPPORTED AT A POINT 153

Let ζm,ndz∨ denote the dual element to zmzndz. Then

B = Ŝym

 ⊕
(k,k′)∈N2

g∨n ζm,ndz∨ ⊕
⊕

(l,l′)∈N2

gn[2] ζm,ndz∨


=

⊗̂
(k,k′)∈N2

Ŝym(T̂ ∗n [1]) ⊗̂
⊗̂

(l,l′)∈N2

Ŝym(T̂n[1]).

Hence we obtain the claim.

13.2. The classical observables supported at a point

The observables C∗Lie(Dgpow
n ) have a natural field-theoretic interpretation: they are

the observables supported at the origin in the source manifold C. As we will explain
below, these observables map to the observables Obscl

n (U) supported on any open
U ⊂ C containing the origin, and so they provide a rich source of easily-understood
measurements.

Recall that the distributions (i.e., continuous linear functionals on smooth func-
tions) supported at the origin in C consist of finite linear combinations of the the
delta function δ0 supported at the origin and its partial derivatives. In other words,
it consists of linear functionals that read off the Taylor coefficients of a smooth func-
tion. We introduce the notation ζm,n for the distribution ∂mz ∂nz δ0. Hence, the smooth
distributions with support at the origin are the vector space

D0 :=
⊕

(m,n)∈N2

C ζm,n = (C[[z, z]])∨.

By our work above, we see that the linear dual of the power series Dolbeault com-
plex Ω0,∗

pow is the cochain complex

D0 dz∨
∂
∨

−−→ D0

ζm,n dz∨ 7→ ζm,n+1,

which is concentrated in degrees 0 and -1. We denote it by (Ω0,∗)∨0 . An analogous
complex (Ω1,∗)∨0 encodes the distributional dual of the Dolbeault complex of 1-forms
with support at the origin.

Remark 13.2.1. — A nice feature of working with a holomorphic field theory, like the
βγ system, is that using the linear observables supported at the origin, one can fully
identify any solution to the equations of motion. This fact is the linear dual to the
fact that O(C) ↪→ C[[z]], i.e., every holomorphic function is determined by its power
series expansion.

The linear observables—supported at the origin—of the rank n formal βγ system
are then

(Ω0,∗)∨0 ⊗ g∨n [−1]⊕ (Ω1,∗)∨0 ⊗ gn[1].
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154 CHAPTER 13. A CONCRETE DESCRIPTION OF THE OBSERVABLES

For us, the algebra of classical observables is the completed symmetric algebra on
these linear observables. Let (Obscl

n )0 denote the cochain complex of observables with
support at the origin on the rank n formal βγ system. Explicitly, we have

(Obscl
n )0 = Ŝym((Ω0,∗)∨0 ⊗ g∨n [−1]⊕ (Ω1,∗)∨0 ⊗ gn[1])

with the differential by extending as a derivation the differential on the linear gener-
ators.

We record an immediate consequence of the fact the distributions with compact
support extend from smaller to larger open sets.

Lemma 13.2.2. — For any open set U ⊂ C containing the origin, there is a cochain
map

(Obscl
n )0 ↪→ Obscl

n (U)

extending the inclusion of the distributions supported at the origin to the distributions
with support in U .

This map is manifestly equivariant with respect to the (Wn,GLn) action and hence
descends.

Corollary 13.2.3. — For any open set U ⊂ C containing the origin, there is a map of
dg Ω∗(X)-modules

(Obscl
X)0 ↪→ Obscl

X(U)

extending the inclusion of the distributions supported at the origin to the distributions
with support in U .

Remark 13.2.4. — Formulating a version of this statement for the quantum observ-
ables would be more delicate, as one must work with parametrices and RG flow. As
we are working with a free theory here, however, one can instead use the “smoothed
observables”. See below for a discussion of quantum observables.

Note that the underlying graded vector space of (Obscl
X)0 is

ŜymΩ](X)(Ω
](X, (Ω0,∗)∨0 ⊗ T ∗X)⊕ Ω](X, (Ω1,∗)∨0 ⊗ TX)),

as we are working over the base algebra Ω∗(X). Equivalently, one can express it as
the de Rham complex of a (gigantic!) dg vector bundle

Ω](X, Ŝym((Ω0,∗)∨0 ⊗ T ∗X ⊕ (Ω1,∗)∨0 ⊗ TX)).

The differential involves both ∂ for the source manifold C and a connection ∇ along
the target X.

We now turn to determining the cohomology of (Obscl
X)0, which encodes the mea-

surements one can make at the origin of C of the fields γ and β with target X.

Proposition 13.2.5. — There is a natural isomorphism

H∗(Obscl
X)0
∼= H∗

X,⊗̂
0<k

ŜymOX (T ∗X ) ⊗̂
⊗̂
0≤l

ŜymOX (TX)

 ,
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13.2. THE CLASSICAL OBSERVABLES SUPPORTED AT A POINT 155

identifying the cohomological observables supported at the origin with C∗Lie(gn[[z]] ⊕
(g∨n [[z]]dz)[−2]).

Proof. — Before embarking on a spectral sequence, we note that the arguments for
Lemma 13.1.6 tell us that we obtain an infinite (completed) tensor product of ten-
sor bundles from Gelfand-Kazhdan descent, via the identification of (Obscl

X)0 with
C∗Lie(Dgpow

n ), so that we view Dgpow
n as the “fields” (more accurately, jets of fields at

the origin).
The differential on (Obscl

n )0 has the form ∇+ ∂, where ∂ denotes the extension of
the differential on (Ω0,∗)∨0 and (Ω1,∗)∨0 and ∇ denotes the connection along X arising
from Gelfand-Kazhdan descent. As ∇ is a connection, it increases the de Rham form
degree in the X-direction, whereas ∂ preserves this de Rham form degree in the
X-direction, since it only cares about the C-direction. Consider then the filtration
on (Obscl

n )0 induced by the filtration Ω≥∗(X) on Ω∗(X). The first page of the spectral
sequence is the cohomology with respect to ∂:

Ω](X, Ŝym(H∗(Ω0,∗)∨0 ⊗ T ∗X ⊕H∗(Ω1,∗)∨0 ⊗ TX)).

These groups H∗(Ω0,∗)∨0 and H∗(Ω1,∗)∨0 are concentrated in cohomological degree 0
and are spanned by the linear functionals {ζn,0}, which give the holomorphic Taylor
coefficients. They do not vary along X, so

H∗(Ω0,∗)∨0 ⊗ T ∗X ∼=
⊕
n∈N

T ∗X and H∗(Ω1,∗)∨0 ⊗ TX ∼=
⊕
n∈N

TX .

The induced differential on the first page of the spectral sequence is the induced
connection ∇̃ on the bundle

Ŝym(H∗(Ω0,∗)∨0 ⊗ T ∗X ⊕H∗(Ω1,∗)∨0 ⊗ TX),

so we need to unravel what this bundle means from the perspective of Gelfand-
Kazhdan descent. By Corollary 13.1.4 we know it is identified with the ∞-jet bundle⊗̂

0<k

Ŝym(T 1,0∗
X ) ⊗̂

⊗̂
0≤l

Ŝym(T 1,0
X ).

(More precisely, it is the jet bundle encoding holomorphic sections.) The induced
connection is the many-fold tensor product of the Grothendieck connection under
this identification. This induced connection ∇̃ is the differential on the first page of
the spectral sequence, which collapses on the second page. Thus, we see that the
second page is

H∗

X,⊗̂
0<k

ŜymOX (T ∗X ) ⊗̂
⊗̂
0≤l

ŜymOX (TX)

 ,

the cohomology of the O-module from Lemma 13.1.4.
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13.3. The decomposition by conformal dimension: the rotation action on the source

The rotation action of U(1) on C—or any disk Dr(0)—induces a rotation action
on the fields of the curved βγ system and on the observables Obscl

X(Dr(0)). It is easy
to identify the subspaces of given conformal dimension in light of our work above. In
particular, we know that polynomials decompose according to conformal dimension
as

C[z, z] =
⊕
w∈Z

C[z, z]w where C[z, z]w =
⊕

m−n=w

C zmzn,

and so power series decompose as

C[z, z] =
∏
w∈Z

C[z, z]w.

Polynomials are dense in smooth functions, so we see that C∞(C) has the same
subspaces, albeit it is some completion of the direct sum of these subspaces. These
dimensional decompositions directly apply to the “fields” Dgpoly

n and Dgpow
n .

As observables are symmetric algebras on the linear observables, the dimensional
decomposition of the fields allows us to identify the observables’ dimensional decompo-
sition. A thorough description is straightforward but involves substantial notation, so
we will state the result only for the cohomological observables H∗(Obscl

X)0 supported
at the origin, as this result is the only one we explicitly need.

Lemma 13.3.1. — The conformal dimension N component of H∗(Obscl
X)0 is⊕

a,b∈NN such that∑
0<k akk+

∑
0≤l bll=N

⊗
0<k

Symak
OX (T ∗X )⊗

⊗
0≤l

Symbl
OX (T ∗X ).

Proof. — For example, the conformal dimension of an element of the symmetric power
Syma

OX (TX) associated to the monomial zk is ak. Hence the direct sum consists of con-
formal dimension N components, by summing all the relevant conformal dimensions.
In the other direction, note that an element of the infinite tensor product composing
H∗(Obscl

X)0 must be the identity for all but finitely many of the indices k and l. A
term in this element must have a polynomial contribution from any given index, due
to the bound of N on the total conformal dimension.

13.4. The quantum observables

The quantum observables exhibit the same behavior as the classical observables
with respect to the rotation action and the (W̃n,GLn) action. The arguments must
be modified, however, to deal with the BV Laplacian, for example. Instead of working
with the observables supported at the origin, it is more convenient to work with the
global observables Obsq

n(C) or Obsq
X(C).

Let us begin by discussing Obsq
n(C). There are two versions, depending on whether

one works with parametrices or the smoothed observables. We restrict our attention
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to parametrices associated with the heat kernel, as these are manifestly invariant for
the U(1) and (W̃n,GLn) actions:

Obsq
n(C)[L] = (Ŝym(Ω

1,∗
c (C)⊗ g∨n [−1]⊕ Ω

0,∗
c (C)⊗ gn[1])[[~]], ∂ + ~∆L).

The smoothed observables are

Obsq,fr
n (C) = (Ŝym(Ω1,∗

c (C)⊗ g∨n [−1]⊕ Ω0,∗
c (C)⊗ gn[1])[[~]], ∂ + ~∆),

so that we take the symmetric algebra on the smooth distributions, such as Ω1,∗
c (C) ⊂

Ω
1,∗
c (C), inside all distributions. The naive BV Laplacian is well-defined on the

smoothed observables. (See [16] for a discussion.) Ignoring the differentials momen-
tarily, one sees that the same decompositions from above apply; one can still use the
monomials zmzn to organize one’s thinking.

The new term in the differential is a BV Laplacian, either ∆L or ∆. Recall that
these are built out of the evaluation pairing between gn and g∨n and the wedge-and-
integrate pairing between Ω0,∗

c (C) and Ω1,∗
c (C). (At scale L the pairing on Dolbeault

forms is modified by a mollifying function that is U(1)-invariant.) Both pairings are
equivariant for the actions by U(1) and (W̃n,GLn), and we have constructed equiv-
ariant quantizations, so that BV Laplacians manifestly intertwine with these actions.
In particular, the dimensional decompositions are preserved by the differential.

Moreover, when one wants to focus on cohomology, one can exploit the ~-filtration

Obsq
n ⊃ ~Obsq

n ⊃ ~2Obsq
n ⊃ · · ·

to good effect. For instance, there is a spectral sequence associated to this filtration,
and it collapses on the first page, since the cohomology with respect to ∂ is concen-
trated in degree zero. Hence, as vector spaces,

H∗Obsq
n(C) ∼= H∗Obscl

n (C)[[~]].

By our discussion above, we see that we thus already know the decompositions
of H∗Obsq

n(C) with respect to the U(1) or (W̃n,GLn) actions.

Proposition 13.4.1. — The conformal dimension N component of H∗(Obsq
n(C)) is

C[[~]]⊗
⊕

a,b∈NN such that∑
0<k akk+

∑
0≤l bll=N

⊗
0<k

Symak(T̂ ∗n )⊗
⊗
0≤l

Symbl(T̂n).

We obtain an immediate corollary by Gelfand-Kazhdan descent.

Corollary 13.4.2. — The conformal dimension N component of H∗(Obsq
X(C)) is

C[[~]]⊗
⊕

a,b∈NN such that∑
0<k akk+

∑
0≤l bll=N

⊗
0<k

Symak
OX (T ∗X )⊗

⊗
0≤l

Symbl
OX (TX).
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CHAPTER 14

CONFORMAL STRUCTURE ON OBSERVABLES

We have already discussed how a trivialization α of the second component of the
Chern character of the complex manifold X determines a sheaf of factorization al-
gebras Obsq

X,α, via semi-strict Gelfand-Kazhdan descent of the W̃n-equivariant fac-
torization algebra Obsq

n. Equivalently, in Section 12.4, we showed that this is the
factorization algebra of quantum observables of the curved βγ system with target X
associated to the trivialization α.

In Section 8.6 we showed how the Lie algebra of holomorphic vector fields on the
source acts on the classical formal βγ system. Indeed, we constructed a Maurer-Cartan
element IT ∈ C∗loc(T S)⊗C∗loc(DgSn) implementing this symmetry. By Koszul duality,
this element thus defines a map of Lie algebras

IT : T S = Ω0,∗(S;T 1,0
S )→ C∗loc(DgSn)[−1],

where the the BV bracket {−,−} provides the Lie bracket on local functionals. A
local functional can be interpreted as an observable, at least when S is compact, and
so our goal is to refine this map to a map of factorization algebras.

First, we need to replace T S by a local-to-global object. Holomorphic vector fields
on S admit a natural enhancement to a sheaf of dg Lie algebras: to an open set U ⊂ S,
we assign T U := Ω0,∗(U, T 1,0U). But a sheaf is contravariant in opens on S, whereas
Obscl

S is covariant in opens on S. There is an easy fix: take holomorphic vector fields
with compact support. Let T S

c denote this precosheaf of dg Lie algebras, which is
also a cosheaf of dg vector spaces. By Chapter 11 of [17], the map on global sections
refines to a map of precosheaves

Ψcl
n : T S

c → Obscl
n [−1]

of dg Lie algebras on S. Since T S
c is a trivial Wn-module, we see that applying

Gelfand-Kazhdan descent yields a map of sheaves on X

Ψcl
X : T S

c
→ Obscl

X [−1]

of precosheaves of dg Lie algebras on S, where Obscl
X is the classical observables of

the curved βγ system with target X. The underline means that it is a constant sheaf
in the X-direction.
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160 CHAPTER 14. CONFORMAL STRUCTURE ON OBSERVABLES

This map Ψcl
X extends to a map of factorization algebras

(33) Ψcl
X : Sym∗(T S

c [1])→ Obscl
X [−1],

since Sym(g[1]) is the enveloping P0 algebra of a Lie algebra g and Obscl has a natural
P0 algebra structure. (We note that the symmetric algebra of a cosheaf has a natural
factorization algebra structure.) This map should be viewed as a factorization algebra
refinement of the Noether theorem in classical physics: a symmetry determines an
operator (i.e., a current) in the observables of the classical theory. We now wish to
study the quantum counterpart to this map of factorization algebras.

The quantum version of the symmetry of holomorphic vector fields is a factoriza-
tion algebra depending on a central charge c that we call the Virasoro factorization
algebra with charge c and denote Vir c. On C, this holomorphic factorization algebra is
related to the Virasoro vertex algebra in a natural way, as shown in [51]. We already
know that the factorization algebra of quantum observables Obsq

n carries an action of
the extended Lie algebra W̃n and hence determines a sheaf Obsq

X,α on any complex
manifold X with trivial second Chern character.

The natural question is, then, how to construct the quantum version of the map
(33). This question can also be understood as a problem of equivariant quantiza-
tion, by the Koszul-type duality between solutions of the equivariant quantum mas-
ter equation and maps of BD algebras. We have already computed the obstruction to
quantizing the symmetry of holomorphic vector fields on S = C in a way compatible
with the action of formal vector fields on the target Wn. Hence, the main result is
the following.

Proposition 14.0.1. — Let α be a trivialization of ch2(TX), and let Obsq
X,α be the

resulting factorization algebra on C of observables for the curved βγ system with tar-
get X. If c1(TX) = 0, then there is a map of sheaves on X of holomorphic factorization
algebras on C

(34) Ψq
X : Vir c=2n → Obsq

X,α

that, modulo ~, agrees with the classical map of factorization algebras Ψcl in Equa-
tion (33).

This claim will follow from obstruction calculations we have already done when
combined with the following quantum version of the Noether theorem for factorization
algebras.

Theorem 14.0.2 ([17], Theorem 12.1.0.2). — Let a local Lie algebra E defined on a
manifold S describe a classical BV theory and suppose E has an action of a local
Lie algebra L . Fix a L -dependent quantization {IL [L]}L>0 as described in Section 9.1
such that the obstruction to solving the equivariant QME vanishes modulo functionals
depending solely on E . There is then an ~-dependent cocycle η ∈ C∗loc(L )[[~]] of degree
one, and a map of factorization algebras

Ψq : CLie,η
∗ (Lc)→ Obsq,
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CHAPTER 14. CONFORMAL STRUCTURE ON OBSERVABLES 161

where CLie,η
∗ (Lc) is the factorization algebra of η-twisted Chevalley-Eilenberg chains

of Lc.

Explicitly, this cocycle η determines a central extension

0→ C[−1]→ L̃c(U)→ Lc(U)→ 0,

for each open set U ⊂ S. By definition, we set

CLie,η
∗ (Lc)(U) = CLie

∗ (L̃c(U)),

which is a factorization algebra as shown in [17]. We now proceed to prove Proposi-
tion 14.0.1.

Proof. — We consider the Gelfand-Kazhdan descent of the classical formal βγ system.
As discussed in Section 12.4, the L∞ algebra DgSn becomes the curved L∞ algebra
DgSX defined over Ω∗X . The dg Lie algebra of holomorphic vector fields T S is classically
a trivial Wn-module, thus the action of T S on the formal βγ system descends to an
action on the curved βγ system described by DgSX . As usual, we work on S = C.

The obstruction calculation of Proposition 9.5 for the Wn×T C equivariant quan-
tization implies that the DgCX -dependent obstruction vanishes provided we choose a
trivialization α for ch2(TX) and a trivialization β for c1(TX). Given such a quantiza-
tion, we see that the cocycle as in Theorem 14.0.2 is precisely given by η = 2nωGF.
That is, the part of the obstruction that is independent of the fields DgCX .

The resulting factorization algebra for the curved βγ system with choice of triv-
ialization α is given by Obsq

X,α. Finally, the Virasoro factorization algebra of cen-

tral charge 2n is precisely the factorization algebra Vir c=2n := CLie,2nωGF

∗ (T C
c ). The

proposition follows.
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CHAPTER 15

OVERVIEW

In this part, we finally relate the two stories we have told: we show that the Batalin-
Vilkovisky quantization of the curved βγ system from Part II produces the chiral
differential operators constructed in Part I. The key technical tool is a functor Vert

that extracts a vertex algebra from a factorization algebra on C satisfying a set of
natural conditions. This tool was introduced in [16], where it was already shown
that the formal βγ system recovers the correct vertex algebra and an isomorphism
was given from Vert(Obsq

n) to ĈDOn. But it is more subtle to identify that the
BV quantization recovers the correct equivariant vertex algebra. To show this, we
develop some general arguments that relate factorization algebra derivations with
vertex algebra derivations. From these arguments we swiftly verify that Vert(Obsq

n) is
naturally isomorphic to ĈDOn as a (W̃n,GLn)-equivariant vertex algebra.

Thanks to the machinery of Gelfand-Kazhdan descent, we then deduce our main
result.

Theorem 15.0.1. — Let X be a complex n-manifold together with a trivialization
α of ch2(TX) ∈ H2(X; Ω2,hol

cl ). Then the factorization algebra Obsq
X,α obtained by

Gelfand-Kazhdan descent determines a sheaf of vertex algebras Vert(Obsq
X,α) on X.

Moreover, there is an isomorphism of sheaves of vertex algebras on X

Φ : CDOX,α

∼=−→ Vert(Obsq
X,α)

that is natural in the choice of trivialization α.

Another goal of this paper is to show how physical arguments about the curved
βγ system are transformed into vertex algebra arguments. Thus, as a short coda, we
review the treatments by Witten [55] and Nekrasov [46], and we indicate how their
approaches are related to our methods.
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CHAPTER 16

FROM FACTORIZATION TO VERTEX ALGEBRAS

Our central challenge now is to relate the vertex algebra produced in Part I with the
factorization algebra produced in Part II. Although factorization algebras are more
flexible and general than vertex algebras—appearing in every dimension, for instance,
and not just on Riemann surfaces—there are recognition criteria that guarantee when
a factorization algebra on C recovers a vertex algebra. In essence, the vector space
of the vertex algebra is determined by the value of the factorization algebra on a
disk, and the vertex operators are determined by the structure map for two disjoint
disks sitting inside a larger disk (i.e., by a flattened pair of pants). Chapter 5 of
[16] is devoted to a careful treatment of this relationship and constructs a functor
Vert from a certain category of “holomorphic” factorization algebras on C to the
category of vertex algebras. This chapter also includes a detailed examination of the
free βγ system and its associated vertex algebra. Here we will overview the main
theorem relating factorization and vertex algebras, which requires us to introduce
some terminology and machinery we need for our main goal.

Two kinds of technical issues appear in formulating the theorem:

— describing how the structure maps can “vary holomorphically” and

— pinning down various functional analytic aspects.

The first involves ideas essential to the goal of this paper, so we dwell a bit on it. The
second is resolved essentially automatically, given our context and the results from
[16], but we discuss it briefly.

16.1. Translation and derivations

We need to be able to talk about the structure maps in families in order to say
that they vary holomorphically. Our earlier definition of factorization algebras, how-
ever, works with the collection of opens in C as a set, with no topological—much
less complex-analytic—structure. It is straightforward to introduce variations of the
definitions with such structure and that manifestly contain the examples we’ve con-
structed here.
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168 CHAPTER 16. FROM FACTORIZATION TO VERTEX ALGEBRAS

Definition 16.1.1. — For U ⊂ C and z ∈ C, let

τzU = {w ∈ C : w − z ∈ U}
denote the translation of U by z. Then a factorization algebra F on C is (discretely)
translation-invariant if we have an isomorphism τz : F (U) ∼= F (τzU) for every
open U and every z ∈ C satisfying

(i) for any z, z′, τz ◦ τz′ = τz+z′ and

(ii) for any disjoint open subsets U1, . . . , Uk in V , the diagram

F (U1)⊗ · · · ⊗ F (Uk)
τz //

��

F (τzU1)⊗ · · · ⊗ F (τzUk)

��

F (V )
τx // F (τzV )

commutes. (Here the vertical arrows are the structure maps of the factorization
algebra.)

Note that the sheaf of holomorphic functions O on C satisfies the sheaf-theoretic
version of this definition, as does the Dolbeault complex. In consequence, the factor-
ization algebras Obscl

n and Obsq
n are translation-invariant.

We now turn to talking about families. Let cl(U) denote the closure of an open set
U ⊂ C. Given U1, . . . , Un disjoint opens in V , let

Conf(U1, . . . , Un |V ) = {(z1, . . . , zn) ∈ Cn :

∀i 6= j, cl(τziUi) ∩ cl(τzjUj) = ∅ and ∀i, cl(τziUi) ⊂ V }.
In other words, this open subset of Cn parametrizes all the translations of the Ui
that keep them in V and keep their closures disjoint. (It will suffice to focus on
collections Ui whose closures are disjoint.) This space Conf(U1, . . . , Un |V ) inherits
the structure of a complex manifold from Cn.

Now let F be a discretely translation-invariant factorization algebra. We can use
the isomorphisms to replace any appearance of F (τzU) with F (U). Hence for each
point (z1, . . . , zn) ∈ Conf(U1, . . . , Un |V ), we have a structure map

m(z1,...,zn) : F (U1)⊗ · · · ⊗ F (Un)→ F (V )

by the composite

F (U1)⊗ · · · ⊗ F (Un)→ F (τz1U1)⊗ · · · ⊗ F (τznUn)→ F (V ),

where the first map is the tensor product of translation maps τzi and the second map
is the structure map of F .

To talk about these structure maps varying smoothly over Conf(U1, . . . , Un |V ), we
need the factorization algebra to take values in vector spaces (or cochain complexes
thereof) in which one can talk about smooth families. We will work in the context
described in Section 11.2, where the topology (or bornology) provides a precise notion
of smooth families of linear maps.
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16.2. ROTATION AND DECOMPOSITION 169

Definition 16.1.2. — A translation-invariant factorization algebra F on C is smoothly
translation-invariant if:

(i) For any collection of opens U1, . . . , Un in V whose closures are pairwise disjoint,
the maps mz1,...,zn depend smoothly on (z1, . . . , zk) ∈ Conf(U1, . . . , Un |V ).

(ii) The factorization algebra F is equipped with an action by derivations of the
abelian Lie algebra R2 of translations. For v ∈ R2 and open U ⊂ C, we will
denote the corresponding derivation by d/dv : F (U)→ F (U). This Lie algebra
action is viewed as an infinitesimal version of the global translation invariance.

(iii) This infinitesimal action is compatible with the global translation invariance in
the following sense. For v ∈ R2, let vi ∈ (R2)n denote the vector (0, . . . , v, . . . , 0),
with v placed in the i-slot and 0 in the other n− 1 slots. If αi ∈ F (Ui), then we
require that

d

dvi
mz1,...,zn(α1, . . . , αn) = mz1,...,zn

(
α1, . . . ,

d

dv
αi, . . . , αn

)
.

The translation Lie algebra is real. As F is defined over C, we can extend the action
to the complexified translation Lie algebra R2⊗R C. We will denote by ∂z and ∂z the
derivations on F associated to the obvious vector fields on C. To be holomorphic, we
want the vector field ∂z to act homotopically trivially on F .

Definition 16.1.3. — A translation-invariant prefactorization algebra F on C is holo-
morphically translation-invariant if it is equipped with a derivation η : F → F of
cohomological degree −1 such that

dη = ∂z, [η, η] = 0, and [η, ∂z] = 0.

Here d refers to the differential on the dg Lie algebra Der(F ).

16.2. Rotation and decomposition

In practice, we are interested in F where the action by translation extends to an
action of orientation-preserving Euclidean transformations of C.

Definition 16.2.1. — A holomorphically translation-invariant prefactorization alge-
bra F on C with a compatible U(1) action is a smoothly U(1) n R2-invariant pref-
actorization algebra F together with an extension of the action of the complex Lie
algebra

LieC(U(1) nR2) = C {∂θ, ∂z, ∂z} ,
where ∂θ is a basis of LieC(U(1)), to an action of the dg Lie algebra

C {∂θ, ∂z, ∂z} ⊕ C{η},
where η is of cohomological degree −1 and the differential is dη = ∂z. In this dg Lie
algebra, all commutators involving η vanish except for [∂θ, η] = −η.
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170 CHAPTER 16. FROM FACTORIZATION TO VERTEX ALGEBRAS

The theorem on vertex algebras requires a technical hypothesis regarding the
U(1)-action on the factorization algebra F : we need this action to be tame, in the
following sense.

For any compact Lie group G, the space D(G) of distributions on G is an algebra
under convolution. The convolution product ∗ is smooth in the sense that it varies
nicely in families, as per our approach to functional analysis, so that the algebra
structure is smooth in families. There is a natural map δ : G → D(G) sending an
element g to the δ-function at g. It is a smooth map and a homomorphism of monoids.

Definition 16.2.2. — A tame action of G on a vector space V of the type discussed in
Section 11.2 (e.g., convenient) is a smooth action of the algebra D(G) on V . (Note
that this means G acts on V via composition G→D(G)× sending g to δg.) For V a
cochain complex of such vector spaces, a tame action commutes with the differential
on E.

The case G = U(1) is the only one relevant for us here. For each integer k, the
function ρk : eiθ 7→ eikθ encodes an irreducible representation of U(1). It determines
a distribution ρk dθ on U(1) that we will abusively call ρk as well. In D(U(1)), the
element ρk is an idempotent.

Definition 16.2.3. — Let V be equipped with a tame action of U(1), which we will
denote by ∗. Let Vk denote the weight k eigenspace for the U(1)-action on V . The
map ρk ∗ − : V → V defines a projection from V onto Vk.

16.3. The theorem about Vert

We now turn to the main theorem from Chapter 5 of [16], which provides a func-
tor from a certain category of factorization algebras on C to the category of vertex
algebras.

Definition 16.3.1. — Let F be a tamely U(1)-equivariant holomorphically translation-
invariant factorization algebra on C. Let Fk(Dr(0)) denote the subcomplex of weight
k eigenspaces in F (Dr(0)), the value of F on a radius r disk around the origin. Then
F is amenably holomorphic if it satisfies the following conditions:

1. For every pair of radii r < r′, the structure map

Fk(D(0, r))→ Fk(D(0, r′))

is a quasi-isomorphism.

2. For k � 0, the vector space H∗(Fk(D(0, r)) is zero.

3. For each k and r, we require that H∗(Fk(D(0, r)) is isomorphic to a countable
sequential colimit of finite-dimensional graded vector spaces.
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16.3. THE THEOREM ABOUT Vert 171

Observe that for an amenably holomorphic factorization algebra F , the vector
space H∗(Fk(D(0, r)) is independent of r by assumption. Let

VF =
⊕
k∈Z

H∗(Fk(D(0, r))

be the direct sum of the weight spaces, and let

V F =
∏
k∈Z

H∗(Fk(D(0, r))

be the direct product of the weight spaces. Note that for any disk Dr(0), there is
a map VF → H∗F (Dr(0)) by the inclusion of the weight spaces. Likewise, there is
map H∗F (Dr(0))→ V F . The structure maps of F thus determine a family of maps
mz : VF ⊗ VF → V F given by the composition

VF ⊗ VF → H∗F (Dr(0))⊗H∗F (Dr(z))→ H∗F (DR(0))→ V F ,

where the middle map is the structure map of H∗F with radii r and R such that
2r < |z| and |z|+r < R. By construction, these maps mz vary holomorphically in the
parameter z ∈ C− {0}.

Let FAam denote the category of amenably holomorphic factorization algebras
on C, where morphisms are maps of prefactorization algebras intertwining the actions
of C by translation and U(1) by rotation. Let VA denote the category of vertex
algebras.

Theorem 16.3.2 (Theorem 5.3.3, [16]). — There is a functor Vert : FAam → VA. For F
amenably holomorphic, the underlying vector space of the vertex algebra is VF , and
the vertex operator YVert(F ) is determined by the maps mz arising from the structure
maps of F .

Remark 16.3.3. — As remarked in [16] immediately following the theorem, this con-
struction makes sense on a factorization algebra F that is the inverse limit limk Fk
of amenably holomorphic factorization algebras, so that Vert(F ) is the inverse limit
limk Vert(Fk) of the associated vertex algebras. This variant is needed by use to re-
cover the completed CDOs ĈDOn from the βγ observables where the target is the
formal n-disk.

Immediate consequences of this theorem include the following.

Lemma 16.3.4. — Let X ∈ Der(F ) be a derivation of F as an amenably holomor-
phic factorization algebra. In particular, we require that X commutes with translation,
[X, ∂z] = 0, [X, ∂z] = 0, and [X, ∂θ] = 0. Then X induces a vertex algebra deriva-
tion VX on Vert(F ).

We call such derivations amenably holomorphic.
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172 CHAPTER 16. FROM FACTORIZATION TO VERTEX ALGEBRAS

Proof. — Let Dr denote the disk of radius r centered at the origin. Let Fk(Dr)

denote the weight k subspace of F (Dr) with respect to the rotation action of S1. By
hypothesis, X preserves the weight spaces: ∂θ acts on Fk(Dr) by multiplication by k,
and since X commutes with ∂θ, it preserves each weight space. Hence X induces a
linear map VX on VF =

⊕
kH
∗(Fk(Dr)).

As X is a derivation, it intertwines with the structure maps of F . In particular,
for any two small disjoint disks D1 and D2 included into a larger disk Dbig, we see
that

XDbig
(mD1,D2

Dbig
(v1, v2)) = mD1,D2

Dbig
(XD1

v1, v2)±mD1,D2

Dbig
(v1, XD2

v2).

Since the action of X equivariant with respect to affine transformations of C, we see
that this derivation property holds for the one-parameter family of “multiplication”
operations

mz,0 : VF ⊗ VF → V F [[z, z−1]].

Hence the action of VX on VF is a derivation of the vertex operator map Y , which is
given by the Laurent expansion of mz,0.

By a similar but easier argument, we find the following.

Lemma 16.3.5. — Let φ : F → F be an automorphism of an amenably holomorphical
factorization algebra F . Then φ induces an automorphism of vertex algebras Vφ :

VF
∼=−→ VF .

Note that in both these situations we require that the derivation or automorphism
commutes on the nose with all the equivariant structure on F . Such a strict situation
is adequate for our purposes here. (The homotopical versions of these statements
should hold but will not be pursued.)

We now wish to apply these lemmas to the case where the factorization algebra has
an action of a pair (g,K). The data of a semi-strict (g,K)-structure on F involves
a group homomorphism ρK : K → Aut(F ) together with an L∞-homomorphism
ρg : g→ Der(F ) that satisfy the compatibilities in Definition 12.1.1.

Corollary 16.3.6. — Let F be an amenably holomorphic factorization algebra together
with the structure of a semi-strict (g,K)-module. where g acts by derivations and
K acts by automorphisms of the amenably holomorphic factorization algebra. Then
the Z≥0-graded vertex algebra Vert(F ) has a strict action of the pair (g,K).
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CHAPTER 17

OBSERVABLES FOR THE FORMAL βγ SYSTEM

As an example of the relationship encoded in Vert, the free βγ system is examined
in depth in Chapter 5 of [16]. It is shown there that the factorization algebra Obsfr,q

n

of quantum observables for the free βγ system is amenably holomorphic, and it is also
shown that the associated vertex algebra is precisely the usual βγ vertex algebra.

Theorem 17.0.1 (Theorem 5.3.3.2, [16]). — The factorization algebra Obsq,fr
n is

amenably holomorphic. Moreover, there is an isomorphism of Z≥0-graded vertex
algebras

Φfr
n : CDOn

∼=−→ Vert(Obsq,fr
n )|~=2πi

after specializing ~ = 2πi. The map is GLn-equivariant.

As noted in Remark 16.3.3, these results immediately imply the analogous results
about the completed case, where the free βγ system is replaced by having the target
be the formal n-disk. Hence, in combination with Proposition 11.7.2, we obtain the
following result.

Corollary 17.0.2. — The factorization algebra Obsq
n is amenably holomorphic.

Moreover, there is a GLn-equivariant isomorphism of Z≥0-graded vertex algebras
Φn : ĈDOn

∼=−→ Vert(Obsq
n)|~=2πi

.

Remark 17.0.3. — The reader might (correctly) object that Obsq
n lives in modules

over C[[~]], and so one cannot specialize ~ to a nonzero value. We note, however,
that the differential on Obsq

n has the form D0 + ~D1, so that only a single power
of ~ appears. Hence the construction of the quantum observables is well-defined in
modules over C[~], where one can specialize ~ to a nonzero value, and we are using
that version of Obsq

n here.

Section 18 tackles the much more subtle challenge of showing the isomorphism
Φn is W̃n-equivariant, and hence that we get an isomorphism of (W̃n,GLn)-equivari-
ant vertex algebras. This property is crucial for applying Gelfand-Kazhdan descent
and hence recognizing that the BV quantization truly does recover chiral differential
operators.
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174 CHAPTER 17. OBSERVABLES FOR THE FORMAL βγ SYSTEM

In the remainder of this section, we review some aspects of the βγ system’s factor-
ization and vertex algebras that are useful for our central goal.

Remark 17.0.4. — An extensive and expository treatment of these aspects appears in
Chapter 6 of [24].

17.1. Some useful identifications

It will be useful to understand explicitly how to identify a representative in the
factorization algebra for an element in the vertex algebra. To be more precise, the
construction Vert ensures that given v ∈ ĈDOn, there is some cohomology class [Ov]

in H∗Obsq
n(Dr(0). We would like to have a cochain representative Ov in the disk

observables Obsq
n(Dr(0)) as well. Similarly, given a Fourier mode v(n), we would like

to know a cochain representative Ov(n)
in the annular observables Obsq

n(Ar<R(0)).
Although the functor Vert ensures these wishes can be fulfilled, the formulas may be
quite complicated.

We now examine this issue, starting with the classical observables, where the situ-
ation is simpler, before turning to the quantum observables. To minimize the number
of indices, we restrict to n = 1; hence, we have elements bn and cm with no upper
index. The extension to arbitrary n is straightforward: just reinsert the superscripts,
e.g., use cjm and not just cm.

For the classical observables and Gr ĈDOn, Cauchy’s formula provides explicit
integral expressions for the most important linear observables (i.e., distributions on
the fields γ and β). For example, set

Oc−m(γ, β) =
m!

2πi

∫
|z|=1

γ(z)

zm+1
dz.

This linear observable simply reads off the coefficient of zm in the power series expan-
sion of a holomorphic γ. The support of this distribution is the unit circle, so that we
can view Ocn as a cocycle in Obscl

1 (Ar<R(0)) for any annulus with r < 1 < R. But
it also provides a cocycle in Obscl

1 (DR(0)), and this cocycle is a representative of the
element cn in Gr ĈDO1. Similarly, a cochain representative of bn is

Ob−l(γ, β) =
(l − 1)!

2πi

∫
|z|=1

β(z)

zl
,

which reads off the coefficient of zl+1 in the power series expansion of a holomorphic
one-form β.

It is thus easy to provide explicit representatives for monomials like bi1 · · · bilcj1 · · · cjm .
One simply takes the obvious product—in the symmetric algebra of distributions—of
the representatives just given.

It is also straightforward to produce smeared versions of these observables, if one
wants (and we will want it shortly). Fix a bump function f(r) on some interval (a, b),
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17.1. SOME USEFUL IDENTIFICATIONS 175

with 0 < a, such that
∫ b
a
f(r) dr = 1. Then

O′c−m(γ, β) =
m!

2πi

∫ b

a

∫
|z|=r

γ(z)

zm+1
dz f(r)dr

is a smeared representative of cm.
Note that if one is working with an annulus rather than disk, then negative powers

of n are allowed in the denominator. In this setting the cocycles Ocm and Obl read off
Laurent coefficients. As observables on an annulus, they correspond to Fourier modes
from the point of view of vertex algebras. To be explicit, the zeroth Fourier mode
(cm)(0) is represented by Ocm viewed as an observable on an annulus. Let us explain
why.

The vertex operator on Gr CDO admits a concrete interpretation in terms of “ob-
serving” coefficients of expansions. The element Y (cm;w) should be viewed as an
observable on the annulus: given γ a holomorphic function on the annulus and w a
point on that annulus, Y (cm;w) measures the coefficient of (z − w)m in the power
series expansion of γ around w. If we know the Laurent expansion of γ around 0, then
we can provide an expression for this coefficient.

For instance, if we know a Laurent expansion

γ(w) =
∑
m∈Z

c−mw
m,

then

Y (c0;w)(γ) =
∑
m

wmc−m(γ).

In the first line, we view the cm as numbers, providing the Laurent coefficients of γ,
but in the second line, we view the cm as operators, providing the Laurent coefficients
of γ. In consequence, we see that the mth Fourier mode (c0)(−m) has

Oc−m(γ, β) =
m!

2πi

∫
|z|=1

γ(z)

zm+1
dz

as an explicit representative.
From the factorization algebra point of view, the vertex operator amounts to saying

that the observable

Oc0,w(γ, β) =
1

2πi

∫
|z−w|=ε

γ(z)

z − wdz,

which measures the value of γ at w, is cohomologous to the observable∑
m∈Z

wmOc−m(γ, β)

in Obscl(Ar<R(0)) with for r < |w| < R and ε sufficiently small.
We now turn to providing a tool for understanding how the quantum observables

and ĈDOn relate.
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176 CHAPTER 17. OBSERVABLES FOR THE FORMAL βγ SYSTEM

17.2. Quantizing observables

For the free βγ system on C, there is a natural cochain isomorphism

qU : Obscl,fr(U)[~]
∼=−→ Obsq,fr(U)

between the classical and quantum observables on any fixed open U . (Recall that
the superscript fr means the smooth or smeared observables. See Section 11.7.) This
isomorphism “promotes” a classical observable to a quantum observable. It does not
preserve, however, the structure maps of the factorization algebras, and so we view
the quantum observables as deforming the structure maps of Obscl,fr in an interesting,
~-dependent way: for U,U ′ disjoint opens in V , the “quantized” structure map sends
observables F ∈ Obscl,fr(U) and F ′ ∈ Obscl,fr(U ′) to

F ? F ′ = q−1
V (qU (F ) · qU ′(F ′)) ∈ Obscl,fr(V )[~],

where · denotes the factorization product in Obsq,fr. We use ? to emphasize that we
are “deformation-quantizing” the factorization product on the classical observables.

This description allows one to understand concretely how BV quantization affects
the factorization algebra, since the classical observables Obscl,fr(U) are very explicit
and simply amount to algebraic functions on the space of holomorphic functions O(U)

and holomorphic one-forms Ω1
hol(U). Details of this construction can be found in

Section 6, Chapter 4 and Section 3, Chapter 5 of [16].
To construct the map q, we use the fact that on C, the operator ∂ possesses a

natural choice of propagator (or Green’s function), namely

P (z, w) =
1

2πi

dz + dw

z − w .

This distributional one-form on C2 satisfies (∂ ⊗ 1)P = δ∆, where δ∆ is the delta-
current supported along the diagonal and providing the integral kernel for the identity.
One can view this one-form as a distributional section of the fields γ and β: for
example, for fixed w, the one-form dz/(z − w) is a β field in the z-variable as it is a
(1, 0)-form, and dually for the other term in P .

This element P also defines a second-order differential operator ∂P on the commu-
tative algebra Obscl,fr(U). Let us recall the general algebraic context. For any sym-
metric algebra Sym(V ∗), an element v ∈ V defines a vector field ∂v via contraction:
given f ∈ Symn+1(V ∗), we set

∂vf(x1 ⊗ · · · ⊗ xn) = f(v ⊗ x1 ⊗ · · · ⊗ xn),

by viewing f as an Sn-invariant element of (V ∗)⊗n. Similarly, given p ∈ V ⊗2, we
define a second-order differential operator ∂p by contraction. Recall that the classical
observables Obscl,fr(U) are a symmetric algebra, and let ∂P be the operator obtained
by contraction.
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17.3. AN EXAMPLE 177

Definition 17.2.1. — Define the promotion map

q : Obscl,fr(U)[~] → Obsq,fr(U)

F 7→ exp(~∂P )F.

In other words, one applies a version of Wick contraction to any classical observ-
able F , repeatedly contracting away two inputs with the propagator.

Remark 17.2.2. — In terms of the RG flow used in Part II, this map q encodes flowing
to length scale L =∞. Because our theory is free and we restrict to smeared observ-
ables, this operation is well-defined. Effectively, it describes the relations between
observables after integrating out the nonzero modes.

17.3. An example

Consider the classical observable on the annulus A = {1/2 < |z| < 3/2} given by

F (γ, β) =
1

2πi

∫
|z|=1

γ ∧ β,

for γ ∈ C∞(A) and β ∈ Ω1,0(A). (We say F vanishes if γ is a (0, 1)-form or if β is
a (1, 1)-form.) Its cohomology class [F ] in H0Obscl,fr(A) encodes a function on O(A)

and Ω1
hol(A), where for

γ =
∑
n∈Z

c−nz
n and β =

∑
n∈Z

b−nz
n dz,

we have
[F ](γ, β) =

∑
−m−n=−1

cmbn

by Cauchy’s integral formula. As F is not a smeared classical observable, we cannot
immediately apply q but first must replace it by a cohomologous smeared observ-
able F̃ . (If one tries to evaluate ∂PF , one finds it is ill-defined.)

Here is one approach to smearing among many. Note that the functional

H(γ, β) =
1

(2πi)2

∫
|z|=r

∫
|w|=R

γ(z)dz ∧ β(w)

z − w ,

with R > r, is cohomologous to F . (Simply plug in holomorphic γ and β and use
Cauchy’s theorems.) This functional H, while distributional, is easier to “smear”
by letting r and R vary. Fix a compactly supported bump function f(r,R) on
B = (1/2, 1)× (1, 3/2) such that

∫
B
f(r,R) dr dR = 1. Define

F̃ (γ, β) =
1

(2πi)2

∫
B

∫
|z|=r

∫
|w|=R

γ(z)dz ∧ β(w)

z − w f(r,R) dr dR.

Then q(F̃ ) = F̃ , since

∂P F̃ = F̃ (P (z, w)) =
1

(2πi)2

∫
B

∫
|z|=r

∫
|w|=R

dz ∧ dw

(z − w)2
f(r,R) dr dR = 0.
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178 CHAPTER 17. OBSERVABLES FOR THE FORMAL βγ SYSTEM

In fact, the smearing was not necessary here: the contraction ∂PH is already well-
defined.

Remark 17.3.1. — This approach works well for classical observables with simple
descriptions, like our F above. The initial formula might involve integrating some
polynomial in γ and β around a circle, but one can replace it, up to cohomology, by
an integral over a collection of disjoint circles, where each copy of γ and β has its own
circle. Our H is constructed in such a fashion. Once the supports of these circles are
disjoint, one can apply q directly, without smearing.
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CHAPTER 18

LOCAL SYMMETRIES ACTING ON OBSERVABLES

Our goal here is to articulate how local symmetries of a field theory like the βγ
system produce derivations of the associated vertex algebras. The core construction
makes sense for any BV theory but we will focus on a version applicable here. (These
manipulations are certainly well-known in the physics literature; our work just artic-
ulates them in the language of factorization algebras.)

18.1. General arguments

Every local functional L in a field theory provides both a derivation of the observ-
ables and an observable itself. We want to understand how these two manifestations
of L relate.

The derivations arise as “Hamiltonian vector fields”. Consider the map of dg Lie
algebras

Ham : Oloc[−1] → Der(Obscl
T )

L 7→ {L,−}.

(See Section 3, Chapter 5 of [14] for a discussion of this construction.) In other words,
a local functional can be viewed as a symmetry of the classical field theory. Note that
this map naturally extends to a map of graded Lie algebras into Der(ObsqT ), but it
does not intertwine the differentials, which is an example of why classical symmetries
might not quantize.

We would like to view some of these symmetries as “inner,” i.e., realized as the
factorization product with an observable, just as an inner derivation of an associative
algebra means it is given by bracketing with an element of the algebra. To compare
derivations to factorization products, however, we need to be able to turn local func-
tionals into observables. A minor issue is that local functionals need not have compact
support and hence do not provide observables on fields with non-compact support.
This problem is easy to fix.
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180 CHAPTER 18. LOCAL SYMMETRIES ACTING ON OBSERVABLES

Let L be a local functional, and let L denote the Lagrangian density such that
L =

∫
L . By this we mean that if γ and β are fields with compact support, then

L(γ, β) =

∫
C

L (γ, β).

Let K ⊂ C be a compact subset whose boundary ∂K is a smooth submanifold. Set
LK =

∫
K

L , so that one simply integrates over K rather than all of C. As K is
compact, we see that LK is a well-defined observable on all fields, not just those with
compact support.

In short, for U an open set containing the compact submanifold K, we have a
cochain map

(−)K : Oloc → Obscl
n (U)

L 7→ LK .

This map extends to quantum observables but no longer respects the differentials.
A direct computation then gives a relationship between the factorization product

and the derivation.

Lemma 18.1.1. — Let F be a cocycle in Obsq
n(U) and K ⊂ U a compact submanifold.

Then
dq(LKF ) = dq(LK)F + {LK , F},

where the notation LKF , for instance, denotes the product in the completed symmetric
algebra underlying Obsq

n. Hence, if dq(LK) has support in U \K, then at the level of
cohomology

[{LK , F}] = −[dq(LK) · F ],

where · denotes the factorization product for the structure map Obsq
T (V \ U) ⊗

Obsq
T (U)→ Obsq

T (V ).

Remark 18.1.2. — This relationship between “local symmetries” (i.e., given by local
functionals aka local currents) and the operator product of observables is reminiscent
of Ward identities. We will see below an explicit instantiation of this relationship,
but note here one simple consequence of the lemma: An observable that is killed
by {LK ,−} classically—and hence is fixed by that symmetry—may not be killed at
the quantum level.

We now restrict our attention to local functionals of a special form, which admit a
particularly useful application of this lemma. (The arguments we develop here apply
with minor changes to any free BV theory on C whose action is given by ∂.)

Given a finite set of constant-coefficient holomorphic differential operators

D1, . . . , Dm ∈ C[∂/∂z],

consider the local functional

L(γ, β) =

∫
C
D1(γ) ∧ · · · ∧Dm(γ) ∧ β.
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18.1. GENERAL ARGUMENTS 181

Note that one must take some care to properly interpret such a functional, as with
IW or J defined in Section 8.4. This functional vanishes except when working over
base dg algebras not concentrated in degree zero.

Definition 18.1.3. — A local functional L is constant-coefficient holomorphic, β-linear
if it is a sum of local functionals of the form above.

A nice property of such a local functional L is that the derivation {L,−} is
manifestly amenably holomorphic because the integrand is translation-invariant and
rotation-equivariant. Hence we see the following.

Lemma 18.1.4. — The factorization algebra derivation {L,−} induces a derivation VL
on the vertex algebra ĈDOn.

We now wish to find an alternative description of that derivation. Recall that the
differential on Obscl

n is denoted ∂, as it is the extension of ∂ on the linear observables
to a derivation on the symmetric algebra.

Lemma 18.1.5. — For a local functional

L(γ, β) =

∫
C
D1(γ) ∧ · · · ∧Dm(γ) ∧ β,

with D1, . . . , Dm ∈ C[∂/∂z], there is an equality

(∂LK)(γ, β) =

∫
∂K

D1(γ) ∧ · · · ∧Dm(γ) ∧ β,

for any compact submanifold K of C.

Proof. — This claim follows from Stokes’ lemma. Compute

(∂LK)(γ, β) =

∫
K

∂ (D1(γ) ∧ · · · ∧Dm(γ) ∧ β.)

=

∫
K

(d− ∂) (D1(γ) ∧ · · · ∧Dm(γ) ∧ β)

=

∫
K

d (D1(γ) ∧ · · · ∧Dm(γ) ∧ β)

=

∫
∂K

D1(γ) ∧ · · · ∧Dm(γ) ∧ β.

The reason ∂ annihilates the integrand is that β contributes a dz term already.

Consider as well a closely related situation.

Definition 18.1.6. — A local functional L is constant-coefficient holomorphic, β-free
if it is a sum of local functionals of the form∫

C
D1(γ) ∧ · · · ∧Dm(γ) ∧ dz,

where the Dj are constant-coefficient holomorphic differential operators.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

M
ay

7,
20

20

182 CHAPTER 18. LOCAL SYMMETRIES ACTING ON OBSERVABLES

Lemma 18.1.7. — For a constant-coefficient holomorphic, β-free local functional
L =

∫
L , there is an equality

∂LK =

∫
∂K

L ,

for any compact submanifold K of C.

We now want to promote this relationship of classical observables to one between
quantum observables. We do this in two steps. First, recall that the smeared classical
observables are quasi-isomorphic to the (distributional) classical observables, by the
Atiyah-Bott lemma. (See Appendix D of [16] as well as Section 2, Chapter 4.) Hence
we replace LK by a smeared observable L̃K that is cohomologous, and likewise for any
classical observable. Notationally, we will leave this replacement implicit and write
simply LK . Second, every (smeared) classical observable F can be promoted to a
quantum observable q(F ) by the cochain isomorphism q, as discussed in Section 17.2.

As we want to identify elements of the vertex algebra from observables, we restrict
our attention to the following situation. Fix radii 0 < s < S < r < R and consider
the inclusion

AS<r(0) tDs(0) ↪→ DR(0)

of an annulus and a small disk into a big disk. All are centered at the origin. We will
consider the factorization product

(35) Obsq
n(AS<r(0))⊗Obsq

n(Ds(0))→ Obsq
n(DR(0)).

At the level of vertex algebras, this map corresponds to the action of “fields” (which
live on annulus and thus depend on z and z−1) on “states” (which live on a disk and
hence in the state space).

Definition 18.1.8. — Let L be a constant-coefficient local functional that is β-linear
or β-free. Its disk observable Ldisk is L{|z|≤r}. For the circle S1

r of radius r, its circle
observable Lcirc is ∂Ldisk.

The circle observable Lcirc is an element of Obsq
n(A) where A is any annulus con-

taining the circle of radius r. Note that a circle observable should be identifiable with
a Fourier mode of some field for the vertex algebra.

Lemma 18.1.9. — Let L be a constant-coefficient local functional that is β-linear or
β-free. For any cocycle F ∈ Obsq

n(Ds(0)), we have

~ [{q(L), F}] = [q(Lcirc) · F ]

at the level of cohomology, where · denotes the factorization product in (35), and
where Lcirc is the circle observable supported on some circle contained in the annulus
AS<r(0).
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18.1. GENERAL ARGUMENTS 183

Proof. — We compute

dq(q(Ldisk)F ) = dq(q(Ldisk))F ± q(Ldisk)dqF + ~{q(Ldisk), F}
= q(Lcirc)F + ~{q(Ldisk), F},

since q intertwines the classical differential ∂ and quantum differential dq and since
the support of F is contained in the disk |z| < r, on which L and Ldisk are indistin-
guishable.

At the level of cohomology, we thus obtain

[q(Lcirc) · F ] = ~ [{q(L), F}]
as claimed.

Example 18.1.10. — Consider the local functional

L(γ, β) =
1

2πi

∫
γ ∧ β.

Note that
Lcirc(γ, β) =

1

2πi

∫
|z|=1

γ ∧ β,

is precisely the functional F from Section 17.3. We showed there that Lcirc is coho-
mologous to the functional

H(γ, β) =
1

(2πi)2

∫
|z|=r

∫
|w|=R

γ(z)dz ∧ β(w)

z − w ,

with R > r. This functional H is manifestly the zeroth Fourier mode of c0b−1, by the
discussion in Section 17.1.

The zeroth Fourier mode of c0b−1 acts like a number operator or Euler vector field,
in the sense that

(c0b−1)(0)f = pf

when f is a homogeneous polynomial of degree p in the variables cm, bl, with m ≤ 0

and l < 0.
On the other hand, note that q(L) = L + C, where C is a constant, since L is

quadratic and hence only admits at most one nontrivial contraction with the prop-
agator P . Hence, the derivation {q(L),−} agrees with the derivation {L,−}. Direct
computation of this derivation shows that it also counts the number of incoming γ
and β legs into any observable; it is the number operator. At the level of the vertex
algebra, it thus recovers the zeroth Fourier mode of c0b−1, as claimed by the lemma.

Let us build on this example to get a general statement. As a matter of notation,
if AS<r(0) ↪→ DR(0) denotes the inclusion of the annulus inside of the disk, denote
the resulting structure map of the factorization algebra by ι : Obsq

n(AS<r(0)) →
Obsq

n(DR(0)). In the language of vertex algebras, this map sends a field A to the
state A|0〉.

For an arbitrary constant-coefficient local functional, we then have the following
relation between the vertex algebra and in the factorization algebra.
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184 CHAPTER 18. LOCAL SYMMETRIES ACTING ON OBSERVABLES

Lemma 18.1.11. — Let L be a local functional that is β-linear or β-free, and let · be
the factorization product (35). For each disk observable O ∈ Obsq

n(Ds(0))(k),

[q(Lcirc) ·O] = ~[ι(q(Lcirc))](0)[O].

That is, L determines a vertex algebra derivation that is inner.

Proof. — For notational convenience, we assume n = 1. Moreover, it suffices to as-
sume that c is a linear observable, since the operations are derivations and one can
thus apply the Leibniz rule.

Let L be a functional of the form
∫
γ∧p ∧ β. It follows that the circular observable

is given by

Lcirc =

∫
|z|=1

γ∧p ∧ β.

In the vertex algebra ĈDO1, the element (c0)pb−1 corresponds to the cohomology
class of Lcirc.

Recall that a linear observable on the disk is a linear combination of observables
of the form

Oc−mγ, β) =
m!

2πi

∫
|z|=

γ(z)

zm+1
dz,

Ob−l(γ, β) =
(l − 1)!

2πi

∫
|z|=

β(z)

zl
,

where m ≥ 0, l > 0. We will compute the cohomology class of Lcirc · Oc−m
in Obsq(DR(0)) and demonstrate the claim explicitly in this case. We leave the case
of Ob−l for the reader, as it follows a parallel treatment.

Note that q(Lcirc) = Lcirc because both Oc−m and Ob−l involve a factor of dz. Also,
q(Oc−m) = Oc−m . Moreover, we have

∂P
(
Lcirc ·Oc−m

)
(γ, β) =

m!

2πi

∫
|z|=

γ(z)∧p

zm+1
.

Thus (Lcirc ·Oc−m)(γ) = ~ m!
2πi

∫
|z|=

γ(z)∧p

zm+1 . On the other hand, the zeroth Fourier mode
of cp0b−1 applied to c−m is computed as

(cp0b−1)(0)(c−m) = (cp0b−1)(0)(T
mc0) = Tm((cp0b−1)(0)c0) = Tm(cp0),

which is precisely the cohomology class of the observable above.
The proof for local functionals that are β-free is completely analogous.

18.2. The action of W̃n

The preceding discussion was abstract but there are two local functionals that play
an important role for us: the local functionals IW and J produced by equivariant BV
quantization. As discussed in Section 9.4 in Part II, the local functionals encode how
W̃n acts on the rank n formal βγ system. Specifically, we showed that this equivariant
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18.2. THE ACTION OF W̃n 185

quantization equipped the the factorization algebra Obsq
n with the structure of a semi-

strict (W̃n,GLn)-module. Moreover, we showed that this semi-strict action induces a
strict action of (W̃n,GLn) on the cohomology H∗Obsq

n.
Our goal now is to use the tools we just introduced to describe the strict action

of W̃n on ĈDOn determined by these local functionals. Recall that there exists a Lie
algebra map ρ : W̃n → DerVA(ĈDOn), by Theorem 3.4.1 from Section 3.4. Explicitly,
viewing a pair (X,ω) ∈Wn × Ω̂2

n,cl as an element of W̃n as in Section 3.4, we have

ρ(f(t)∂j , 0) = (f(c)bj−1)(0)

and

ρ(0,d(f(t)dtj)) =
(
f(c)T (cj0)

)
(0)
.

(On a formal disk, every closed 2-form is exact, so it suffices to give the formula in
terms of a 1-form f(t)dtj .) These vertex algebra derivations are manifestly inner, i.e.,
come from elements of the state space of ĈDOn.

Lemma 18.2.1. — For X ∈ Wn, the local functional IW
X determines a derivation

{q(IW
X ),−} of the factorization algebra Obsq

n whose associated vertex algebra deriva-
tion is ρ(X, 0).

Proof. — Every formal vector field is a linear combination of vector fields with mono-
mial coefficients, so we simply consider X = tm1

1 · · · tmnn ∂j . The associated local func-
tional is

IW
X (γ, β) =

∫
C
γm1

1 ∧ · · · ∧ γmnn ∧ βj ,

which is constant-coefficient holomorphic and β-linear. By Lemma 18.1.9, we know
that we can understand the derivation {q(IW

X ),−} through the factorization product
with (IW

X )circ, which should correspond to the Fourier mode of some element of ĈDOn.
By Lemma 18.1.11 we find that for X = tm1

1 · · · tmnn ∂j , the factorization product
by (IW

X )circ corresponds, at the level of the vertex algebra, to the zeroth Fourier mode
of (c10)m1 · · · (cn0 )mnbj−1, as desired. Thus, we recover precisely the formula for ρ.

Likewise, we have the following.

Lemma 18.2.2. — For ω ∈ Ω̂2
n,cl, the local functional Jω corresponds to the vertex

algebra derivation ρ(0, ω).

Proof. — Every closed 2-form ω on the formal disk is the exterior derivative dθ of a
1-form θ. Moreover, every 1-form is a linear combination of 1-forms with monomial
coefficients, so we simply consider θ = tm1

1 · · · tmnn dtj . The associated local functional
is

Jdθ(γ, β) =

∫
C
γm1

1 ∧ · · · ∧ γmnn ∧ ∂zγj dz,
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186 CHAPTER 18. LOCAL SYMMETRIES ACTING ON OBSERVABLES

which is constant-coefficient holomorphic and β-free. The derivation {q(Jdθ),−} cor-
responds to the factorization product with the circle observable

(Jdθ)circ(γ, β) =

∫
|z|=1

γm1
1 ∧ · · · ∧ γmnn ∧ ∂zγj dz.

Moreover, this circle observable corresponds to the zeroth Fourier mode of
(c10)m1 · · · (cn0 )mnT (cj0), by Lemma 18.1.11, as desired.
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CHAPTER 19

THE MAIN RESULT

In light of our arguments in the preceding sections, we obtain the following.

Theorem 19.0.1. — The isomorphism of Z≥0-graded vertex algebras

Φ : ĈDOn

∼=−→ Vert(Obsq
n)

is equivariant with respect to the actions of (W̃n,GLn). Moreover, it is compatible
with the Ôn-module structure.

Proof. — We proved the equivariance assertion in the preceding sections. Thus it
remains to discuss the Ôn-module structure. This aspect, however, is the focus of
Section 13, where we describe how observables on a disk decompose according to
conformal dimension and then identify each subspace of fixed conformal dimension
with some type of formal tensor fields. At the level of cohomology—which provides
the decomposition for Vert(Obsq

n)—these match with ĈDOn.

An immediate corollary, via Gelfand-Kazhdan descent and its variants, is our main
result.

Corollary 19.0.2. — Let X be a complex n-manifold together with a trivialization α

of ch2(TX) ∈ H2(X; Ω2,hol
cl ). Then the factorization algebra Obsq

X,α obtained by
Gelfand-Kazhdan descent determines a sheaf of vertex algebras Vert(Obsq

X,α) on X.
Moreover, there is an isomorphism of sheaves of vertex algebras on X

Φ : CDOX,α

∼=−→ Vert(Obsq
X,α)

that is natural in the choice of trivialization α.

The naturality in the choice of trivialization can be phrased in a compelling way.
Recall from Section 8.4 that there is an obstruction-deformation complex for the
curved βγ system on X, which is a sheaf of dg vector spaces encoding important
information about this BV theory. For instance, a degree one cocycle encodes a first-
order deformation of the classical action that satisfies the classical master equation and
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188 CHAPTER 19. THE MAIN RESULT

thus defines a well-posed classical BV theory. This complex is obtained by Gelfand-
Kazhdan descent, and it involves only local functionals that are invariant for the
action of C× ×Aff(C) by scaling (of the β field) and affine transformations.

In particular, the obstruction to quantization is a degree two cocycle in this cochain
complex, which is identified with ch2(TX) by Lemma 9.3.1. Corollary 8.4.7 tells us
that this sheaf of dg vector spaces is quasi-isomorphic to the sheaf Ω2,hol

cl on X. Hence
we deduce the following.

Corollary 19.0.3. — The map Φ provides an isomorphism of gerbes from the gerbe
of BV quantizations of the curved βγ system (constructed via descent and invariant
under C× ×Aff(C)) to the gerbe of CDOs.

19.1. Remark on conformal structure

With the identification of chiral differential operators with the observables of the
βγ system, our analysis in Part II immediately implies an observation about the
conformal symmetry of this sheaf of vertex algebras.

In Section 14 we showed that after fixing a trivialization α of ch2(TX), there is a
map of sheaves on X

Ψq : Vir c=2n → Obsq
X,α

of factorization algebras on C, provided that c1(TX) = 0. (In fact, we have such a map
for every trivialization of c1(TX)).

The factorization algebra Vir c is amenably holomorphic, and it is shown in [51]
that its associated vertex algebra Vert(Vir c) is isomorphic to the Virasoro vertex
algebra Virc of central charge c. By the functoriality of the functor Vert, we obtain the
following immediate corollary of the above analysis, which implies the aforementioned
Proposition 5.3.5 from Part I.

Corollary 19.1.1. — Let α be trivialization of ch2(TX) and let CDOX,α be the associ-
ated sheaf of CDOs. Then for each trivialization β of c1(TX), the map of holomorphic
factorization algebras Ψq

β : Vir c=2n → Obsq
X,α determines a map of sheaves of vertex

algebras Vert(Ψq
β) : Virc=2n → CDOX,α.

ASTÉRISQUE 419



Ép
re

uv
e S

M
F

M
ay

7,
20

20

CHAPTER 20

DISCUSSION OF SOME PHYSICS LITERATURE

Our goal in this section is to relate our work to the perspectives offered by Witten
and Nekrasov on the curved βγ system. Both [55] and [46] undertake a similar analysis,
but we will focus on Witten’s. The format of our comparison is to remind the reader
about general aspects of σ-models, to explain how Witten identifies the anomalies
to quantization and how his method relates to ours, and to indicate how Witten
determines the patching rules for the chiral algebras and how this approach relates
to ours.

20.1. General comments about nonlinear σ-models

We begin by sketching a general perspective that informs the problem.

Remark 20.1.1. — This perspective assumes that the path integral exists and exhibits
behavior analogous to finite-dimensional integrals. In a sense, we run the argument
sketched here backwards to construct the putative path integral measure.

Let Σ denote a source manifold and X a target manifold. A nonlinear σ-model has,
as its space of fields, the infinite-dimensional manifold Maps(Σ, X). The equations of
motion for the theory cut out a submanifold Sol of this mapping space as the space
of solutions, and typically a component of this space of solutions is given by a copy
of X viewed as the constant maps from Σ to X. We will call this the perturbative
sector.

In trying to compute the path integral, one expects that for ~ very small, the
putative measure should be concentrated very close to Sol inside Maps(Σ, X). One
might then try to approximate the path integral by simply integrating over a small
tubular neighborhood around Sol. The perturbative contribution would then be the
integral over a small tubular neighborhood around X inside Maps(Σ, X). To orga-
nize the computation of this perturbative contribution, one can identify a tubular
neighborhood with the normal bundle to X inside Maps(Σ, X). Hence, one obtains
an infinite-dimensional vector bundle over X whose fiber over x ∈ X is

NxMaps(Σ, X) ∼= TxMaps(Σ, X)/TxX ∼= Maps(Σ, TxX)/TxX.
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190 CHAPTER 20. DISCUSSION OF SOME PHYSICS LITERATURE

One then computes the integral over the tubular neighborhood in two stages: first,
fiberwise integration over the normal bundle, and then integration over X. This fiber-
wise integral can be approached with Feynman diagrammatics, with the base X play-
ing the role of a “background field”. In this sense, the perturbative sector is local on
the target X

A better approximation to the full path integral would involve the other compo-
nents of Sol. They provide the “instanton corrections” to the perturbative compu-
tation. As a nonconstant solution is not concentrated at a single point in X—by
definition—these corrections are not local on X and require different techniques.

20.2. Anomalies and obstructions

Fix some method for perturbative computations. At each point x ofX, we apply our
method to integrate over the normal bundle Nx. This integral ought to take values
in a one-dimensional vector space, and hence the full fiberwise integral provides a
section in a line bundle over X. A priori we do not know which line bundle it is, since
the perturbative constructions are done locally on X and then patched together.

As Witten notes in Section 2.3 of [55], the Chern class of this line bundle is a
discrete invariant and hence should not depend on continuous parameters, such as the
coupling constants of the fiberwise perturbative field theories. Thus we can compute
it by fiberwise quantizing the family of free theories over X, scaling the interactions
to zero. In other words, one simply keeps the Hessian of the action functional at
each point x ∈ X ⊂ Maps(Σ, X). The free theory at each x corresponds to some
elliptic complex on Σ. Now, it is standard to identify the one-dimensional vector
space at x ∈ X with the determinant line of the cohomology of this elliptic complex.
(This identification can be recovered as a consequence of BV quantization, as shown
in [26].) Hence, one can use a families index theorem to compute the Chern class of
the determinant line bundle.

In the case of the βγ system, this amounts to considering the trivial fiber bundle
π : Σ×X → X and letting the elliptic complex at a point x ∈ X be Ω0,∗(Σ)⊗ TxX.
In other words, we are considering F = OΣ ⊗ TX as a sheaf on Σ × X. We wish to
understand the pushforward π∗F on X or, more accurately, the determinant line of
its derived pushforward.

We assume now that Σ is closed. The first Chern class of the determinant line agrees
with the first Chern class of the derived pushforward. The Grothendieck-Riemann-
Roch theorem then implies that the Chern character of the derived pushforward is
given by

π∗(ch(F )Td(Tπ)) = π∗((1 + c1(F ) +
1

2
(c1(F )2 − 2c2(F )) + · · · )(1 +

1

2
c1(TΣ)))

= π∗((1 + π∗c1(TX) + π∗ch2(TX) + · · · )(1 +
1

2
c1(TΣ)))
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and the first Chern class is the component of cohomological degree 2, namely

(1− g)c1(TX) + ch2(TX),

where g denotes the genus of Σ. In short, one finds that the determinant line is trivial
if and only if both ch2(TX) = 0 and either c1(TX) = 0 or Σ is genus one.

These results correspond to ours, although our approach is, on its face, rather
different. We choose to work with the formal n-disk as target and then apply Gelfand-
Kazhdan descent to obtain (the perturbative sector of) the theory with any complex
n-manifold X as target. Our obstruction cocycle (or anomaly) thus lives in Gelfand-
Fuks cohomology and maps to de Rham cohomology of some X by descent. As we
have seen in 9, the obstruction to BV quantization descends to ch2(TX) when the
source is C and we require equivariance with respect to

— translation and dilation on the source (which ensures we can descend to genus
one curves) and

— holomorphic diffeomorphisms of the formal n-disk as target.

It is a consequence of the calculations of Section 9.5 combined with Gelfand-Kazhdan
descent that requiring equivariance under all holomorphic diffeomorphisms of a source
disk requires c1(TX) = 0. Such equivariance ensures one can descend to higher genus
curves by considering them as quotients of the disk by Fuchsian groups.

Remark 20.2.1. — On the other hand, Witten’s global argument using Grothendieck-
Riemann-Roch applies in the BV context as well, because BV quantization of the free
βγ system on a Riemann surface Σ but twisted by TX recovers the same determinant
line, up to some cohomological shift. A benefit of our approach here is that we actually
construct the BV quantization for the full βγ system rather than merely identifying
the obstruction cohomologically.

As a further point of comparison, note that the obstruction-deformation complex
we compute in Section 8.4.4 recovers precisely the same information that Witten and
Nekrasov find. For instance, they find that first-order deformations of the theory are
given byH1(X,Ω2

cl). (See Section 2.2 of [55] or Section 2.6.3 of [46], although Nekrasov
keeps track of deformations of complex structure of the target too.) Similarly, one can
see that the local symmetries of the theory are H0(X,Ω2

cl), as Nekrasov notes in
Section 2.6.6. In other words, the BV formalism provides a systematic mechanism for
answering the questions that Witten and Nekrasov address.

20.3. Chiral algebras and observables

In Section 3 on [55], Witten explains how one can recover the sheaf of chiral differ-
ential operators by physical arguments. His approach might be summarized as follows:

1. since the perturbative theory is local on the target X, we fix a good cover {Ui}
of X and try to patch the quantizations;
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2. a coordinatization φi : Ui ↪→ Cn allows one to view the field theory as a restric-
tion of the βγ system with target Cn to the open φi(Ui);

3. one then constructs the chiral algebra of operators for the open φi(Ui) as target
by restricting the chiral algebra for the free βγ system of rank n;

4. one tries to patch the chiral algebras on overlaps Ui ∩ Uj .
The first two steps are built into this perturbative approach to general σ-models. The
third step depends on two things: first, knowing the chiral algebra of the free βγ system
(which is a standard computation in physics and which we formalized in Part I), and
second, knowing the chiral algebra can be localized to smaller opens. (We remark that
chiral algebra here is synonymous with vertex algebra in the mathematics literature,
although physicists often (though not here) presume that a chiral algebra is invariant
under holomorphic changes of coordinates and hence what a mathematician might
call a vertex operator algebra.) This second result is a computation done in [45, 21],
and it requires one to show that the OPE for the free βγ system can be localized from
polynomials in the coordinates on the target Cn to holomorphic functions in those
coordinates.

The final step is a bit involved, and Witten explains it in Section 3.4 of [55]. He
wants to patch the chiral algebras for small opens in Cn, so he needs to identify the
automorphism group of the chiral algebra. In practice, he instead computes the Lie
algebra of this automorphism group or, more accurately, the infinitesimal automor-
phisms arising from the chiral algebra itself. Witten wants to find those elements of
the chiral algebra whose zeroth Fourier mode acts on the chiral algebra as a deriva-
tion that preserves conformal dimension. In his terminology, such an element is a
“dimension one current” and its zeroth Fourier mode is called its “charge,” which is
the integral of the current along a loop around the origin in the source manifold.
Witten uses g to denote the Lie algebra given by integrals of dimension one currents
modulo total derivatives.

Witten provides two natural types of symmetries. A holomorphic vector field
V = V i∂i on the target determines the current JV = −V iβi, viewed as an element
of the chiral algebra. Similarly, a holomorphic 1-form B = Bidz

i determines a cur-
rent JB = Bi∂γ

i. The charge of a 1-form B vanishes if and only if it is exact (i.e.,
B = ∂H), so that the collection of such charges is isomorphic to closed 2-forms (as
a vector space). The charges of distinct vector field are, by contrast, distinct. Let v
denote the Lie algebra formed by the charges for vector fields V and let c denote the
Lie algebra formed by the charges for one-forms B. Together they span g, according
to Witten.

A direct computation with the charges (or using OPE with these currents) shows
that there is an exact sequence of Lie algebras

0→ c→ g→ v→ 0,

and this Lie algebra corresponds to the extension W̃n that we construct.

ASTÉRISQUE 419



Ép
re

uv
e S

M
F

M
ay

7,
20

20
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In our setting, a current can be defined as a local functional I such that {I,−} is a
cocycle in derivations of the observables. As discussed in Section 18, such a functional I
determines an element Idisk in the observables on the disk and hence an element of
the vertex algebra. The associated charge is the element Icirc, which is an observable
on the annulus and hence corresponds to the zeroth Fourier mode of the element in
the vertex algebra.

Witten chooses to find the infinitesimal symmetries of the βγ system by doing
explicit computations in the chiral algebra after obtaining it from the free theory. By
contrast, we use the BV formalism to determine how to lift the classical symmetries
to quantum symmetries (at the cost of a Lie algebra extension) and then extract the
chiral algebra statements. In a sense, we do path integral manipulations to recover
chiral algebra, and Witten follows the reverse logic. The results naturally agree.

Remark 20.3.1. — Recent work [39] of Si Li provides another useful perspective on
this relationship. He considers free holomorphic BV theories on the complex line, and
he produces an identification between the obstruction-deformation complex of the
BV theory and the mode Lie algebra of its vertex algebra. His result, extended to
our equivariant context, then recovers Witten’s computation. See Remark 9.0.2 for
an extended discussion of this point.

After determining the appropriate symmetries of the chiral algebra, Witten tries to
lift the patching of coordinates on the good cover to patching of the chiral algebras.
The coordinate patching can be seen as living in the Lie algebra v (or rather its
assciated group), so the challenge is to lift to g, which involves choices. Any choice
determines a Čech 2-cocycle with values in Ω2

cl, and if the cocycle vanishes, the choices
determine a patching of the chiral algebras. The work of [21] showed that this cocycle
is indeed ch2(TX). Our method provides another perspective.
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CHAPTER 21

THE βγ SYSTEM AS AN INFINITE-VOLUME LIMIT

21.1. Introduction

This appendix gives an explanation for why one might be interested in the curved
βγ system, that is, how one might discover this action functional by studying a limit
of a more familiar class of classical field theories. The idea is to modify the usual
two-dimensional sigma model with Hermitian target in two steps:

(1) we scale the metric on the target manifold until it becomes “infinitely big” (this
drastically simplifies the problem, as we’ll show), and

(2) we show that this infinite-volume theory “splits” into a holomorphic and anti-
holomorphic theory (physicists use “chiral and antichiral splitting”).

The chiral part is the curved βγ system.
The core aspects of this construction can be seen by having a complex vector

space (or formal disk) as the target manifold. After introducing the ingredients of
our theory, we rework the usual action functional into a form better suited to our
purposes. This first-order formulation of the theory makes the infinite-volume limit
easy to understand and motivate. Finally, we exploit a special property of the theory—
arising from the interplay between the differential geometry of the source 2-manifold
and the target Hermitian manifold—to obtain the splitting.

Remark 21.1.1. — This approach is well-known to physicists. Essentially the same
construction is given in [56, 41, 46], and a closely related argument for the half-twisted
σ-model is given in [32]. Perhaps the main contribution here is the explicit discussion
of how to understand various manipulations within the BV formalism. The version
presented here unpacks and elaborates upon on a lecture by Kevin Costello at the
Northwestern CDO workshop in summer 2011.

21.2. The ingredients

The input data of our classical field theory is the following.
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198 CHAPTER 21. THE βγ SYSTEM AS AN INFINITE-VOLUME LIMIT

— Let S be an oriented real 2-manifold with a metric g. (We will indicate as we
go along why everything only depends on the conformal class of g.) We denote
the associated volume form by dvolg and the dual inner product on Ω1

S by g∨.

— Let V be an even-dimensional real vector space, equipped with a complex struc-
ture by J (so we can view V as complex, when needed). It is equipped with a
hermitian inner product h, also written (−,−)V . (Recall this means that h is a
an ordinary inner product on the real vector space V and that J is an isometry.)

— Let V ∨ denote the dual real vector space. We denote its dual complex structure
by J∨. There is a canonical evaluation pairing ev : V ⊗ V ∨ → R, and we have

ev(Jv, λ) = λ(Jv) = ev(v, J∨λ)

by definition.

— Let ΩkS(V ) denote the V -valued k-forms, i.e., ΩkS ⊗R V .

Consider the Hodge star operator ∗ on Ω1
S arising from g. A computation in local

coordinates shows that ∫
S

h⊗ g∨(α, β)dvolg =

∫
S

h(∗α ∧ β),

where the right hand side means “apply h to the V -component but simply wedge the
1-form components”.

21.3. The first-order formulation of the sigma model

Let f : S → V be a smooth map. The usual action functional for the sigma model
is

SSO(f) =

∫
S

h⊗ g∨(df, df)dvolg.

The subscript SO stands for “second-order”.
There is an equivalent description of the same classical field theory where the fields

are f ∈ Maps(S,V) and A ∈ Ω1
S(V ∨) and the action functional is

SFO(f,A) =

∫
S

ev(df ∧A)− 1

2

∫
S

h∨(∗A ∧A).

The subscript FO stands for “first-order”. This first-order action functional motivates
the action functional we finally work with.

Lemma 21.3.1. — The equations of motion for SFO are

df = ∗h∨A and dA = 0,

and so solutions are given by all f such that d(∗df) = 0. This space of solutions is
exactly the same as solutions to the equation of motion

4gf = (∗d∗)df = 0

for SSO.
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Proof. — We obtain the equations of motion for SSO first. We have

SSO(f) =

∫
S

h(∗df ∧ df) = −
∫
S

h((d ∗ df) ∧ f) = −
∫
S

h(4gf, f)dvolg,

where we use integration by parts in the second step and the fact that ∗ preserves
inner products in the last step. The usual variational procedure then recovers the
equation of motion.

Now we treat SFO. We obtain the equation dA = 0 by considering a variation
f → f+δf . On the other hand, a variation A→ A+δA has the following consequences
for the second term,

1

2

∫
S

h∨(∗δA ∧A) +
1

2

∫
S

h∨(∗A ∧ δA) =

∫
S

h∨(∗A ∧ δA),

and so we need df − h∨ ∗A = 0.
Now observe that

df = ∗h∨A⇔ ∗df = −h∨A,
so we need

d(∗df) = 0,

to satisfy the equations of motion for SSO.

21.4. An involution on the space of fields

We now explore a special property of the fields, arising from the fact that the source
is 2-dimensional and the target is Hermitian. Because ∗2 = −1, it provides a natural
complex structure on Ω1

S . Thus, we obtain two involutions:

— on Ω1
S(V ), there is σ := ∗ ⊗ J , and

— on Ω1
S(V ∨), there is σ∨ := ∗ ⊗ J∨.

By using this polarization of the fields, we will obtain eventually the desired chiral
decomposition.

Lemma 21.4.1. — The operator σ gives an eigenspace decomposition

Ω1
S(V ) = Ω1

S(V )+ ⊕ Ω1
S(V )−,

where Ω1
S(V )± denotes the ±1-eigenspace of σ, and likewise for Ω1

S(V ∨).

Proof. — Let Π± denote the endomorphism 1
2 (1± σ) on Ω1

S(V ). Then

Π2
+ =

1

4
(1 + 2σ + σ2) = Π+,

so Π+ is a projection operator (and likewise for Π−). As 1 = Π+ + Π−, we obtain the
decomposition.

Definition 21.4.2. — We define d± : Ω0
S(V )→ Ω1

S(V )± as Π± ◦ d.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

M
ay

7,
20

20

200 CHAPTER 21. THE βγ SYSTEM AS AN INFINITE-VOLUME LIMIT

Consider the natural evaluation pairing

evS : Ω1
S(V )⊗ Ω1

S(V ∨) → R
v ⊗ λ 7→

∫
S

ev(v ∧ λ).

Observe that

evS(σv, σ∨λ) =

∫
S

ev(∗Jv ∧ ∗J∨λ)

=

∫
S

ev(Jv, J∨λ)

=

∫
S

ev(J2v, λ)

= −evS(v, λ),

where in the second line we used the fact that ∗α ∧ ∗β = α ∧ β for any α, β in Ω1
S .

Thus we obtain the following.

Lemma 21.4.3. — With respect to the pairing evS, Ω1
S(V )+ is orthogonal to Ω1

S(V ∨)+,
and Ω1

S(V )− is orthogonal to Ω1
S(V ∨)−.

21.5. Replacing the first-order action functional

We introduce a new theory whose fields are f ∈ C∞S (V ) and B ∈ Ω1
S(V ∨)−. The

action functional is

S+(f,B) =

∫
S

ev(d+f ∧B)− 1

2

∫
S

h∨(∗B ∧B).

It might seem like this action only sees half the information of SSO or SFO, but it
is actually equivalent. We begin with the heuristic argument before delving into a
careful proof in the BV formalism.

21.6. The heuristic argument

There is an illuminating “completing the square” maneuver. Consider the following
automorphism on the space of fields:

f 7→ f and B 7→ B + h(d+f).

(For v ∈ V , hv denotes the element h(v,−) ∈ V ∨.) When we apply S+ after this
transformation, our integrand is a sum of six terms:

ev(d+f ∧B) + ev(d+f ∧ h(d+f))− 1

2
h∨(∗B ∧B)

− 1

2
(h∨(∗h(d+f) ∧B) + h∨(∗B ∧ h(d+f)))− 1

2
h∨(∗h(d+f) ∧ h(d+f)).

We can simplify this sum.
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First, note that the fourth and fifth terms (which are grouped together already)
are equivalent to

−1

2
(ev(∗d+f ∧B) + ev(∗B ∧ d+f)) ,

and thus together cancel the first term.
Second, note that the second term is equivalent to h(d+f∧d+f). This term vanishes

because for any one-form α, α ∧ α = 0.
The last term is the most interesting: the last term recovers the usual sigma model

action.

Lemma 21.6.1. — The last term

−1

2
h∨(∗h(d+f) ∧ h(d+f))

is equivalent to −h(∗df ∧ df)/4.

Proof. — Recall d+ = Π+d = (1/2)(1 + σ)d. Thus

4h(∗d+f ∧ d+f) = h(∗(1 + σ)df ∧ (1 + σ)df)

= h(∗df ∧ df) + h(∗σdf ∧ df) + h(∗df ∧ σdf) + h(∗σdf ∧ σdf)

= h(∗df ∧ df)− ih(df ∧ df) + ih(∗df ∧ ∗df) + h(df ∧ ∗df)

= 2h(∗df ∧ df).

The initial term arises just by canceling out the excess copies of h and h∨.

All that remains to understand is the third term − 1
2h
∨(∗B ∧B). From a heuristic

perspective, it’s irrelevant: for the classical theory, the only critical point is B = 0,
and for the quantum theory, it contributes nothing of interest (just an extra space of
fields equipped with a Gaussian measure centered at zero).

To summarize, we have made an “upper-triangular” change of coordinates on the
space of fields. At the classical level, we recover the same equations of motion. At the
quantum level, the nonexistent Lebesgue measure is preserved and the weight e−S+

factors into e−SSO times a Gaussian.

21.7. The BV argument

In fact, it is fairly straightforward to rephrase this heuristic argument into a rig-
orous statement in the BV formalism. Our model throughout is the case of pure
Yang-Mills theory (for which see Chapter 6, Section 3 of [14] or [8]).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

M
ay

7,
20

20

202 CHAPTER 21. THE βγ SYSTEM AS AN INFINITE-VOLUME LIMIT

21.7.1. The ingredients. — Our fields are f ∈ C∞S (V ) and B ∈ Ω1
S(V ∨)−, so we

introduce “antifields” f∨ ∈ Ω2
S(V ∨) and B∨ ∈ Ω1

S(V )+. As usual, the fields have
cohomological degree 0 and the antifields have cohomological degree 1, as below.

0 1

C∞S (V ) Ω2
S(V ∨)

⊕ ⊕
Ω1
S(V ∨)− Ω1

S(V )+

(fields) (antifields)

We equip this graded vector space E with the following symplectic pairing of coho-
mological degree −1:

〈f, f∨〉 =

∫
S

ev(f, f∨),

〈f, f∨〉 = −〈f∨, f〉,

〈B,B∨〉 = −
∫
S

ev(B∨ ∧B),

〈B,B∨〉 = −〈B∨, B〉,

with all other pairings automatically zero (e.g., 〈f,B〉 = 0). This is simply the shifted
antisymmetrization of evS .

We thus obtain a free BV theory (in the sense of Costello) as the following elliptic
complex,

C∞S (V )
d+→ Ω1

S(V )+

Ω1
S(V ∨)−

d→ Ω2
S(V ∨),

where we simply extracted the quadratic part of S+.
In particular, let Φ = (f, f∨, B,B∨) denote an element of E . Then the free BV

theory has action functional

Sfree(Φ) = −1

2
〈Φ, QΦ〉

= −1

2
〈(f, f∨, B,B∨), (0, dB, 0, d+f)〉

= −1

2
(〈f, dB〉+ 〈B, d+f〉)

= −1

2

(∫
S

ev(f, dB)−
∫
S

ev(d+f ∧B)

)
=

∫
S

ev(d+f ∧B).

Thus we recover the free part of S+.
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In full, we have

S+(Φ) = −1

2
〈Φ, QΦ〉+

1

2
〈B, h∨(∗B)〉.

21.7.2. Equivalence at the classical level. — In the classical BV formalism, two dif-
ferent action functionals S and S′ give equivalent classical theories if they are coho-
mologous in the cochain complex (Oloc(E ), {S,−}). (Here we assume S satisfies the
classical master equation {S, S} = 0.) Using more geometric language, we say that S
and S′ live in the same orbit of the gauge group of symplectomorphisms acting on
the space of fields E (and hence on the space of action functionals Oloc(E )).

Remark 21.7.1. — To relate these two assertions, note that the cochain complex, once
shifted, is a dg Lie algebra that describes the formal neighborhood of S in the moduli
space of classical field theories on E . Thus, if they are cohomologous, we can construct
a Hamiltonian flow moving from S to S′.

In fact, this setting lets us dress up the heuristic picture, as follows. We replace
the change of coordinates by modifying S+ by a boundary in (Oloc, {S+,−}).

Lemma 21.7.2. — Let H denote the local functional of cohomological degree −1 where

H(Φ) = 〈∗h(d+f), B∨〉.

Then

{S+, H} = SSO − Sfree,

so S+ is cohomologous to

SSO −
1

2
〈B, h∨(∗B)〉

in (Oloc, {S+,−}).

Proof. — Observe

{Sfree, H} = ±〈∗h(d+f), d+f〉 = ±SSO.

In the first equality, we use that the shifted Poisson bracket {−,−} is dual to 〈−,−〉.
In the second equality, we use Lemma 21.6.1.

A parallel computation shows that {I,H}, where I denotes the “interaction term”
of S+, recovers ±Sfree.

The action functional SSO± I thus defines a classical BV theory equivalent to S+.
Note, however, that this action functional completely decouples f and B. The term
SSO only depends on f , and the term I only depends on B. Moreover, the critical
point of I is {B = 0}, so the equations of motion pick out the same solutions as SSO

on its own.
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21.7.3. Equivalence at the quantum level. — In our setting of a linear target with
linear metric, we have shown that the classical BV theory specified by S+ is equivalent
to a free BV theory, given by the elliptic complex

C∞S (V )
4gdvolg−→ Ω2(V )

Ω1
S(V ∨)−

Id−→ Ω1
S(V ∨)−,

once one writes down a suitable pairing 〈−,−〉. (We chose to change the pairing so that
the elliptic complex is simple. Alternatively, we could have retained the same pairing
but written a complicated-looking elliptic complex.) As the second line is acyclic, we
see it is irrelevant to both the classical and quantum theories. In particular, as the
theory is free, we can quantize immediately and show that the quantum observables
are homotopy-equivalent to the quantum observables constructed just from the first
line.

This argument is another way of saying “we can integrate out the B fields and they
do not affect any observables” (cf. the discussion of Yang-Mills theory in Chapter 6
of [14]).

Remark 21.7.3. — This argument is the only piece that does not port immediately
to the case of a curved target. In that case, we need to verify we can construct a
quantization. Nonetheless, it is plausible that we could quantize while maintaining
the complete decoupling of the f and B fields, in which case we could work with just
the subcomplex depending on the f fields.

21.8. The infinite volume limit

As S+ is equivalent to SSO, we hereafter focus on S+. Our goal is to study a
degenerate limit of S+ where the situation drastically simplifies.

The idea is quite simple: if we scale the metric h∨ to th∨, then as t goes to zero,
we scale away the dependence on h∨ in S+. The limit theory is then independent of
the hermitian inner product on V . Note that on V , the limit t → 0 is equivalent to
scaling h to h/t, so that the volume of any cube grows toward infinity.

Definition 21.8.1. — The infinite volume limit is the action functional

SIV L(f,B) =

∫
S

ev(d+f ∧B),

with f ∈ C∞S (V ) and B ∈ Ω1
S(V )−.

The equations of motion are d+f = 0 and dB = 0.
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21.9. The chiral splitting

The operator d+ interacts nicely with the complexifications of our spaces of fields,
and thus we will be able to massage our theory into another, appealing form.

Consider the decompositions

Ω1
S ⊗R C = Ω1,0

S ⊕ Ω0,1
S

and
V ⊗R C = V 1,0 ⊕ V 0,1.

We have the respective projection operators

p1,0
S =

1

2
(1− i∗),

p0,1
S =

1

2
(1 + i∗),

p1,0
V =

1

2
(1− iJ),

p1,0
V =

1

2
(1 + iJ).

By an explicit computation, we see

p0,1
S ⊗ p1,0

V =
1

4
(1 + i ∗ −iJ + ∗J)

and

p1,0
S ⊗ p0,1

V =
1

4
(1− i ∗+iJ + ∗J),

so

p0,1
S ⊗ p1,0

V + p1,0
S ⊗ p0,1

V =
1

2
(1 + ∗J) = Π+,

where we’ve extended scalars on Π+ so that it works on the complexified Ω1
S(V )C.

The following result is an immediate consequence.

Lemma 21.9.1. — On Ω∗S(V )C, we have

d+ = ∂V 1,0 + ∂V 0,1 .

Proof. — Note that

Ω1
S(V )C ∼= (Ω1

S)C ⊗C V
C

∼= Ω1,0(V 1,0)⊕ Ω1,0(V 0,1)⊕ Ω0,1(V 1,0)⊕ Ω0,1(V 0,1).

We thus need simply to unravel the relevant projections.
Recall that ∂ means “project the image of d onto the −i-eigenspace of (Ω1)C”.

Hence, as an example, ∂V 1,0 : Ω0
S(V 1,0)→ Ω0,1

S (V 1,0) is precisely the operator

(p0,1
S ◦ d)⊗ 1V 1,0 .

Plugging in all the relevant operators, we obtain the desired result.
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We write the elliptic complex of fields, once the fields are complexified, using the
decomposition of d+ given above. This specifies a free BV theory:

Ω0,0
S (V 1,0)

∂V 1,0−→ Ω0,1
S (V 1,0)

⊕ ⊕
Ω0,0
S (V 0,1)

∂V 0,1−→ Ω1,0
S (V 0,1)

⊕ ⊕
Ω1,0
S (V ∨ 0,1)

∂V∨ 0,1−→ Ω1,1
S (V ∨ 0,1)

⊕ ⊕
Ω0,1
S (V ∨ 1,0)

∂V∨ 1,0−→ Ω1,1
S (V ∨ 1,0).

We can separate this into a direct sum of two theories, one holomorphic (the pieces
involving ∂) and one antiholomorphic (the pieces involving ∂). Equivalently, we view
this as working with one complex structure and its conjugate.

Lemma 21.9.2. — On the complexified fields,

SIV L(f, wf,B,wB) =

∫
S

ev(∂f ∧B) +

∫
S

ev(∂wf ∧ wB).

When restricted to the real points, it recovers the infinite volume limit action.
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The curved βγ system is a nonlinear σ-model with a Riemann surface
as the source and a complex manifold X as the target. Its classical
solutions pick out the holomorphic maps from the Riemann surface
into X. Physical arguments identify its algebra of operators with a
vertex algebra known as the chiral differential operators (CDO) of X.
We verify these claims mathematically by constructing and quantizing
rigorously this system using machinery developed by Kevin Costello
and the second author, which combine renormalization, the Batalin-
Vilkovisky formalism, and factorization algebras. Furthermore, we find
that the factorization algebra of quantum observables of the curved
βγ system encodes the sheaf of chiral differential operators. In this
sense our approach provides deformation quantization for vertex alge-
bras. As in many approaches to deformation quantization, a key role is
played by Gelfand-Kazhdan formal geometry. We begin by construct-
ing a quantization of the βγ system with an n-dimensional formal
disk as the target. There is an obstruction to quantizing equivariantly
with respect to the action of formal vector fields Wn on the target
disk, and it is naturally identified with the first Pontryagin class in
Gelfand-Fuks cohomology. Any trivialization of the obstruction cocy-
cle thus yields an equivariant quantization with respect to an extension
of Wn by Ω̂2

cl, the closed 2-forms on the disk. By machinery mentioned
above, we then naturally obtain a factorization algebra of quantum
observables, which has an associated vertex algebra easily identified
with the formal βγ vertex algebra. Next, we introduce a version of
Gelfand-Kazhdan formal geometry suitable for factorization algebras,
and we verify that for a complex manifold X with trivialized first Pon-
tryagin class, the associated factorization algebra recovers the vertex
algebra of CDOs of X.
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