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Abstract

The Canadian High Arctic preserves a long and complex tectonic history,
including craton formation, multiple periods of orogenesis, extension and
basin formation, and the development of a passive continental margin. We
investigate the possible preservation of deformational structures through-
out the High Arctic subcontinental lithosphere using measurements of seis-
mic anisotropy from shear wave splitting at 11 seismograph stations across
the region, including a N-S transect along Ellesmere Island. The major-
ity of measurements indicate a fast-polarisation orientation that parallels
tectonic trends and boundaries, suggesting that lithospheric deformation is
the dominant source of seismic anisotropy in the High Arctic; however, a
sub-lithospheric contribution cannot be ruled out. Beneath Resolute in the

central Canadian Arctic, distinct back-azimuthal variations in splitting pa-
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rameters can be explained by two anisotropic layers. The upper layer is
oriented E-W and correlates with tectonic trends and the inferred litho-
spheric deformation history of the region. The lower layer has a ~NNE-
SSW orientation and may arise from present-day convective mantle flow
beneath locally-thinned continental lithosphere. In addition to inferences
of anisotropic structure beneath the Canadian High Arctic, measurements
from the far north of our study region suggest the presence of an anisotropic

zone in the lowermost mantle beneath northwest Alaska.

Keywords: Seismic anisotropy, Shear wave splitting, Canadian High

Arctic, Lithospheric deformation

1. Introduction

The Canadian Arctic is a geologically complex region with a tectonic
history spanning over 2 billion years from the Archean to the Cenozoic. It
forms a significant part of the margin of the as-yet poorly understood Arctic
Ocean, and has been affected by numerous episodes of orogenesis, rifting and
basin formation (e.g. Pease et al., 2014). In this paper we explore the poten-
tial roles of lithospheric deformation and present-day sublithospheric (con-
vective) mantle flow in the tectonic evolution of the Canadian High Arctic.
Such processes typically create fabrics that display different seismic velocities
depending on the direction of wave propagation. We study these anisotropic

structures using observations of shear wave splitting.

1.1. Geological Setting

The oldest rocks in the Canadian High Arctic study area (Figure 1)

are those of the Archean-Proterozoic Laurentian proto-continent, now ex-

2
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posed in the Greenland-Canadian Shield. These crystalline basement rocks
are overlain by Mesoproterozoic clastic sediments in the southern part of
the study area as well as younger Arctic Platform sediments. Later, up
to 8 km of sediments were deposited on the northern Laurentian passive
margin between the Neoproterozoic and Devonian, collectively known as
the Franklinian Basin (Figure 1). The Franklinian Basin comprises the
Franklinian Shelf and deeper-water Hazen Trough successions (e.g. Oakey
and Chalmers, 2012; Piepjohn and von Gosen, 2018; Stephenson et al., 2018,
and references therein).

The Franklinian successions, exposed only on Ellesmere Island in the
study area, have been strongly affected by deformation during the Ellesme-
rian Orogeny, as has the Pearya Terrane, which is generally considered to be
an extraneous continental fragment of non-Laurentian origin, accreted north-
ern Laurentian margin during the orogeny (e.g. Trettin et al., 1991; Piepjohn
and von Gosen, 2018; c.f. Hadlari et al., 2014). Ellesmerian orogenesis termi-
nated by the latest Devonian - earliest Carboniferous and created a 400 km
wide and >3000 km long fold-and-thrust belt along the Arctic margin of
North America. It is mostly covered in the study area by the sediments of
the younger Sverdrup Basin although the Devonian-aged foreland basin of

the Ellesmerian Orogeny is exposed to the southwest of the Sverdrup Basin.

The Sverdrup Basin developed over much of the Canadian Arctic Archipelago

from the Carboniferous to the Paleogene, with a maximum sedimentary
thickness estimated to be ~13 km (Embry and Beauchamp, 2008). Strata
in the eastern part of the Sverdrup Basin, especially on Axel Heiberg and

Ellesmere Islands, as well as some of the older Pearyan and Franklinian strata
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on Ellesmere Island, were compressionally and transpressionally deformed
during the intraplate Eurekan Orogeny in the Paleogene. This deformation
was caused by relative motions between Greenland and the NE Canadian
Arctic during the early opening of the North Atlantic and Eurasian Arctic

oceans (e.g., Piepjohn and von Gosen, 2018).

1.2. Previous geophysical studies

Various seismic methods have been used to study the crustal architecture
of the Canadian High Arctic region, including sedimentary basin thickness
and the thickness of the crystalline crust. Surface wave studies (e.g. Brune
and Dorman, 1963; Wickens and Pec, 1968; Wickens, 1971) provided infor-
mation on path-averaged structures across the region, whereas active-source
refraction-reflection studies provided detailed information along a number of
2D profiles across Baffin Bay, Nares Strait, the Sverdrup Basin and the Arctic
continental margin (e.g. Buchbinder, 1963; Keen et al., 1972; Jackson et al.,
1977; Forsyth et al., 1979; Asudeh et al., 1989; Argyle and Forsyth, 1994,
Forsyth et al., 1994, 1998; Reid and Jackson, 1997; Jackson and Reid, 1994;
Jackson et al., 1998; Funck et al., 2006, 2011). They found crustal thick-
nesses ranging from 22-30 km close to the continental margins to 34—42 km
further inland in the Arctic. Receiver function studies by Darbyshire (2003);
Dahl-Jensen et al. (2003) gave Moho depth estimates from 25-32 km at the
northern tip of Ellesmere Island to 33-37 km elsewhere in the High Arctic.
Schiffer et al. (2016) analysed receiver functions along a north-south profile
on Ellesmere Island, finding a large range of Moho depths from 29-32 km
at the edge of the Sverdrup Basin to 45-48 km beneath parts of the Central

Ellesmere Domain.
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Crustal architecture has also been studied using gravity modelling, no-
tably for the region of Ellesmere Island and the NE Arctic (e.g. Oakey and
Stephenson, 2008; Schiffer and Stephenson, 2018; Stephenson et al., 2018).
Moho depths are generally in close agreement to those constrained by seis-
mic imaging (both refraction and receiver function), and such studies provide
important complementary information to measure crustal structure on a re-
gional scale.

Upper-mantle seismic velocity structure and lithospheric thickness have
been studied through surface-wave and full-waveform analysis at regional,
continental and global scale (e.g. Darbyshire, 2005; Bedle and van der Lee,
2009; Yuan et al., 2011; Schaeffer and Lebedev, 2014; Lebedev et al., 2018).
High shear wave velocities, consistent with cratonic lithosphere, extend be-
neath most of the Canadian High Arctic to at least 200 km depth with the
exception of Baffin Bay, where the lithosphere has been thinned by rifting,
and the central Sverdrup Basin region, where the lithospheric thickness is
closer to ~150 km.

Seismic anisotropy beneath the Canadian High Arctic has been studied
through SKS splitting measurements for the sparse network of Canadian per-
manent seismic stations (Helffrich et al., 1994; Bostock and Cassidy, 1995;
Silver, 1996; Barruol et al., 1997; Evans et al., 2006, e.g.). Further informa-
tion about upper-mantle anisotropy can be gained from global surface wave
tomography (e.g. Becker et al., 2012; Debayle and Ricard, 2013; Yuan and
Beghein, 2013; Schaeffer et al., 2016); however the lateral resolution of the
models is generally low and there is little agreement between them for the

northermost latitudes.
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While aeromagnetic and gravity maps can provide useful information on
tectonic boundaries and large-scale crustal structure, correlation between the
anomaly patterns and those of lithospheric-scale seismic anisotropy is uncer-
tain. However, in the case of stable continental lithosphere, Curie depths
(the maximum depth of remnant rock magnetism, controlled by tempera-
ture) may extend into the upper lithospheric mantle, and correspondence
between seismic anisotropy patterns and potential-field data has been used
to argue for crust-mantle tectonic coupling (e.g. Bokelmann and Wiistefeld,
2009). Bouguer gravity anomalies in central and northern Ellesmere Island
parallel the main tectonic trends with a roughly NE-SW orientation (Oakey
and Stephenson, 2008; Gaina et al., 2014; Petrov et al., 2016). Magnetic
anomaly trends have been mapped in detail across much of the Canadian
Arctic; however the data set is incomplete, notably for the northern Ellesmere

Island region.

1.3. Seismic anisotropy and shear wave splitting

Core-refracted shear waves are often used to measure seismic anisotropy
because the P-to-S conversions at the core-mantle boundary erase all source-
side anisotropy, and the S phase is thus initially radially polarised when it
exits the core on the receiver side (e.g. Savage, 1999). When the shear wave
encounters an anisotropic medium - generally presumed to lie in the upper
mantle - it will split, creating two orthogonally-polarised quasi-shear waves.
The quasi-shear wave orientated along the fast-polarisation orientation ¢ of
anisotropy travels faster in the medium than the other phase, which is orien-
tated perpendicular to the anisotropy, creating a delay time d¢ between the

two phases which is measurable at the receiver. The presence of anisotropy

6
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and the resulting shear wave splitting results in energy on the tangential-
component seismogram, together with an elliptical particle motion arising
from the delay time between the quasi-shear phases.

The two measured parameters, ¢ and 0t, provide valuable information
about past and present geodynamics. The fast-polarisation orientation is
most typically related to lithospheric deformation, which may give rise to
aligned structural and/or mineralogical fabrics, to the direction of sublitho-
spheric convective mantle flow, or to a combination of these sources. Delay
time is controlled by both the thickness of the anisotropic layer and the

strength of its anisotropy.

2. Data acquisition

Our data set consists of 11 broadband seismic stations distributed across
the Canadian High Arctic (Figure 1, Table 1). 5 are permanent or long-term
installations with recording periods between 7 and 29 years, affiliated to
the Global Seismograph Network (GSN) or Canadian National Seismograph
Network (CNSN). In addition, we use data recorded between 2010 and 2012
by 6 temporary stations of the Ellesmere Island Lithospheric Experiment
(ELLITE; Stephenson et al. (2013); Schiffer et al. (2016)). The method used
to measure seismic anisotropy uses core-refracted shear waves (SKS, SKKS
and PKS, hereafter referred to generally as XKS); in order to acquire the
relevant data we initially searched for earthquakes of magnitude >6.0 at
epicentral distances of >88° from the stations (or, in the case of the more
closely-spaced ELLITE stations, from the central point of the network, close
to station IBFE). The data were bandpass filtered between 0.04 and 0.3 Hz to
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enhance the signal-to-noise ratio of the XKS phases, and careful visual quality
control was used to select the highest-quality data for further analysis. Data
quality is defined by a combination of high signal to noise ratio, a stable
waveform free of artefacts, and clear XKS phases that are well separated
in time from each other and from direct S or Sdiff arrivals. Following data
quality control, we checked the seismograms for their specific XKS content,
i.e. the occurrence of PKS, SKSac/df and SKKS phases, as each phase occurs
at a characteristic epicentral distance range. While some seismograms only
had one phase of sufficient quality for splitting measurements, others had

two, e.g. SKS/SKKS or PKS/SKKS, and were separated accordingly.

3. Methodology

3.1. Shear wave splitting measurements

We measured the shear wave splitting parameters using a variation of
the approach of Silver and Chan (1991). This method uses a grid search
over physically-plausible values of ¢ and 0t to find the combination that best
minimises the second eigenvalue of the particle motion matrix in the chosen
analysis window, equivalent to linearising the particle motion. To do this,
the horizontal components are rotated and one component is time-shifted
in the analysis window, until the waveforms match. We use the analysis
method of Teanby et al. (2004) in which measurements are made over a
number of different analysis windows - in our case, 100 - followed by a cluster
analysis which finds the most stable splitting parameters, analyses errors and
estimates the source polarisation using the eigenvalues of the particle-motion

matrix.
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Shear wave splitting measurements can generally be described by two cat-
egories (Figure 2). A ‘split’ shows energy on the tangential component, an
elliptical particle motion, and a well-defined ¢ and ¢ measurement resulting
from the analysis. In contrast, a ‘null’ is characterised by an initial parti-
cle motion that is already linear, and there is no energy on the tangential
component. In the case of a null, the value of ¢ has a 90° ambiguity and
the value of 0t is undefined. Null results can potentially arise from three
possible situations: the passage of the shear wave through an azimuthally-
isotropic medium, the cancelling of multiple layers of anisotropy beneath
the station, or an earthquake backazimuth parallel or perpendicular to the
fast-polarisation orientation of anisotropy.

We checked the results for significant difference between event backaz-
imuth and estimated source polarisation. Backazimuth is the angular direc-
tion between the source and the receiver, while the source polarisation is the
actual direction from which the incoming earthquake energy was observed.
These directions are typically close together, as the shear wave is radially po-
larised when it exits the core. Possible explanations for differences between
source polarisation and backazimuth include polarisation filter artefacts (e.g.
Hammond et al., 2005), complex deep mantle anisotropy (e.g. Restivo and
Helffrich, 2006), a mixing of phases that arrive at nearly the same time, or
sensor misalignment (e.g. Walpole et al., 2014). Anomalies may also come
from small-scale anisotropic structures in the mantle that could bend the
XKS wave and thus change the apparent arrival direction (e.g. Jenkins et al.,
2017). Our data set does not exhibit consistent anomalies at any particu-

lar station, which would indicate sensor misalignment, nor any systematic
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correlations with particular backazimuth ranges, which might allow some
constraint on the causes of the anomalies. We therefore believe it better to
remove measurements exhibiting such anomalies (a small subset) from our
data set. Following Walpole et al. (2014), we removed any measurement with
a backazimuth - source polarisation anomaly greater than 15°.

For the long-term (GSN and CNSN) stations with a large number of
measurements, we stacked the splitting results for each station in order to
make an initial estimation of the dominant fast-polarisation orientation of
anisotropy at each station prior to more detailed analyses. The stacking
procedure is based on the method of Restivo and Helffrich (1999) which is a
modification of that of Wolfe and Silver (1998). The entire misfit distribution
over the ¢-0t grid search for each measurement is summed for the ensemble
of measurements, allowing both splits and nulls to be incorporated into the
stack. The stack is also weighted for signal-to-noise ratio and scaled according

to how well-sampled a given backazimuth range is.

3.2. Modelling for multiple anisotropic layers

We carry out further modelling of our observed data, using a first-order
class archetype to guide the procedure. The three most basic possible mod-
els are a single anisotropic layer, two anisotropic layers, and a single dipping
layer. Each of these predicts a distinctive pattern of backazimuthal vari-
ation in splitting parameters. A single layer will not vary as a function
of backzimuth, a dipping anisotropic layer will vary smoothly with roughly
360° periodicity, and a two-layer model will include sharp jumps and have
a roughly 90° periodicity (Figure 3; Silver and Savage, 1994). While these

models are simplified, it is important to note that sharp jumps in splitting

10
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parameters are not possible for dipping or single layers, and their observation
is therefore diagnostic of a multi-layer anisotropic system.

The chosen model class should be the simplest possible that can explain
the observations. In many data sets, even when results exhibit some system-
atic variations in splitting parameters, the backazimuthal coverage is insuf-
ficient to interpret anything other than a single, horizontal anisotropic layer
with a single pair of splitting parameters representing the effective anisotropy
of the medium beneath the station.

Where splitting parameters suggest a pattern consistent with that pre-
dicted for a two-layered anisotropy regime (e.g. Savage, 1999), we used the
MSAT toolkit of Walker and Wookey (2012) to search for a combination of
two anisotropic layers that could explain the backazimuthal variations.

Modelling proceeded via a grid search of possible anisotropic orientations
from 0° to 180°, advancing by 5°, in an upper and lower layer. Grid search
results were calculated for both ¢ and §t. Layer thickness and fractional
alignment of olivine can affect the magnitude of delay time, but this was not
included because our intention is to minimize degrees of freedom in the model,
and those parameters do not affect the backazimuthal pattern of splitting
parameters, which is more diagnostic. Similar modelling of multiple and
dipping layer models has been performed successfully in this region previously
by Liddell et al. (2017). The search proceeds by creating a synthetic model for
a given combination of parameters and computing an RMS misfit between
these synthetic data and the observations for station RES. The RMS was

calculated using equation 1.

11
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RMS=\/%(1‘%+3:§...$%) (1)

for n observed data points and x difference between each data point and
the modelled curve. Nulls are not included in this calculation because they
have no fixed single ¢ value and 4t is undefined. Thus they cannot be directly
compared to the model response. We performed a parallel analysis whereby
null measurements were converted into equivalent split measurements with ¢
defined as perpendicular to the backazimuth (this aligned closer to the true
observations) and large errors on 6t values such that they did not contribute
to fits. Including nulls in this way made almost no difference to the model
result, so we feel it is better to limit our models and analysis only to splits. We
included an error estimate of £5° for the backazimuth of the observed data
when calculating RMS misfit with the modelled results. After computing an
RMS value for each combination in the grid search, the model parameters
that produce the lowest RMS can be picked out. The absolute value of the
RMS misfit is less important in this case than the existence of a clear global

minimum region in the grid, so the values were normalized to 1.

4. Results

4.1. Shear wave splitting measurements

Figures 4 and 5a show the full set of results for our data set. A limited
number of measurements is available for the ELLITE stations due to their
short recording time, and station PINU, which was noisier than the other

long-term installations, also provided a limited set. The longest-running

12
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stations, ALE and RES, yielded 48 and 92 high-quality measurements re-
spectively, allowing for more detailed analysis not only of the dominant fast-
polarisation orientation but of its backazimuthal variation.

The majority of splits for stations ALE, EUNU, PINU and MBC cluster
relatively closely around a dominant fast-polarisation orientation: NE-SW,
N-S, E-W and ENE-WSW respectively. In contrast, we observe signifi-
cant variation in fast-polarisation orientation at station RES, with a mean
~NW-SE fast-polarisation orientation. In Figure 5b, splits are stacked for
the long-term stations. In the stacked results (Table 2), we observe a con-
sistent fast-polarisation orientation for ALE, EUNU, MBC and PINU with
that inferred from the individual result sets; however the dominant fast-
polarisation orientation for RES is closer to WNW-ESE than the NW-SE
mean inferred visually from the individual results.

Delay times for individual splits average ~0.66 seconds for the ELLITE
stations, with individual values ranging from 0.33 to 0.98 seconds. Mean
values for the long-term stations are consistently higher (0.9-1.1 s), though
with more internal variability due to the larger data sets and better azimuthal
coverage.

From north to south, the ELLITE stations exhibit varying splitting pa-
rameters. WHI has a NNE fast-polarisation orientation for the single mea-
sured split, with a cluster of nulls in the N and E backazimuth quadrants.
MCEF has a single null measurement with a NNW-SSE (or WSW-ENE) orien-
tation. TQF splits vary between NNW-SSE and NE-SW in fast-polarisation
orientation, depending on event backazimuth, suggesting that a more com-

plex structure than a single horizontal anisotropic layer is needed to explain

13
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the measurements; however the sparse data set does not allow us to dis-
criminate between multiple layers versus a single dipping layer. The fast-
polarisation orientations at IBFE are broadly similar to those at EUNU,
with a similarly large delay time. At CNF, two splits are measured, from
western backazimuths, showing a NE-SW fast-polarisation orientation, and
nulls are measured in the NW and SE quadrants. AXF has two clear splits,
with E-W fast-polarisation orientations.

For stations ALE and RES, the number of individual measurements is
high enough to allow a more detailed inspection of backazimuthal variation.
Figure 6 shows the variation of ¢ and 0t as a function of earthquake back-
azimuth. Although the azimuthal coverage is by no means complete, being
restricted to a limited southern cluster plus a wider W to NNE swath, we
observe significant variation in splitting parameters with backazimuth. This
observation suggests that the initial stacked single-layer estimate does not re-
flect the true anisotropic structure beneath these stations, and that at least
two different anisotropic layers are instead contributing to the shear wave
splitting measurements.

The azimuthal distribution of splitting measurements at these two sta-
tions is also visualised by maps (Figure 7) in which each measurement is
plotted at the piercing point of the ray at 200 km depth, using a standard
global reference model (IASP91; Kennett and Engdahl (1991)) to calculate
an approximate ray geometry. The ray trajectories and corresponding pierc-
ing points are determined using the TauP Toolkit of Crotwell et al. (1999).

ALE shows a high degree of consistency between results for earthquakes

at similar azimuth and ray parameter; all southern events give splits of ¢

14



310

315

320

325

330

>1 s with a consistent E-W orientation. Smaller-magnitude splits are found
to the north of the station and nulls dominate in the NE quadrant. In the
WNW and NW, we observe a clear discrepancy between splitting parameters
at larger incidence angles and those at smaller incidence angles. The larger
incidence angles are associated with SKKS arrivals, and exhibit delay times
of ~0.7-1.2 s, whereas the smaller incidence angles, associated with SKS
arrivals, exhibit either null characteristics or splits with small delay times
that are close to null in character.

The results for RES are more complicated, with both azimuth and ray
parameter appearing to play a role. Delay times in the NW quadrant are
consistently >1 s with a NW-SE fast-polarisation orientation. There are
two distinct clusters of nulls in the SSE and WNW quadrants, a subset of
splits in the SSE for the most distant earthquakes (piercing points closest
to the station) and small (dt <1 s) splits to the WSW with more variable

fast-polarisation orientations.

4.2. Multiple anisotropic layers at station RES

The results of the MSAT search for combinations of two anisotropic lay-
ers beneath station RES are shown in Figure 8. Each cell is coloured by the
normalized RMS misfit value. The fast-polarisation orientation grid search
result is, to first order, divided in half; the best fitting models have a gen-
erally SE/NW oriented layer above a NE/SW layer. There is also a clear
region with the lowest RMS values in the upper left portion of the grid.
The delay time grid search result has no clear region of lowest misfit, and
cannot constrain any preferred model. The lowest RMS error found by the

MSAT grid-search algorithm suggests an upper layer with a fast-polarisation

15
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orientation of 105° and lower layer with fast-polarisation orientation of 30°.
However, a better visual fit to the data is achieved by changing the anisotropy
orientations slightly to 90° and 30° for the upper and lower layers, respec-
tively (Figure 9). This model was found by perturbing the minimum-RMS
model to determine its sensitivity to small changes in layer fast-polarisation
orientations. The “visual fit” model still lies within the low-RMS zone in-
dicated by the black outline in Figure 8. This discrepancy of 15° likely lies
both within the errors inherent in the original splitting measurements and in
the simplifying assumptions made in the modelling process. The significant
misfit discrepancy between the grid search minimum and the better visual fit
lies in the highly-variable fast-polarisation orientations for the western back-
azimuths (~250-270°). At this backazimuth there are mathematically two
different “correct” fast-polarisation orientations at the top and bottom of the
sharp jump: ~170° and ~90°. Any observed split will naturally be more or
less influenced by one or the other end of that system due to small pertur-
bations away from the ideal synthetic scenario. We therefore suggest that,
while the grid search minimum model has the lowest RMS misfit, the “visual
fit” model might better reflect reality. This model provides a possible expla-
nation for the large spread in fast-polarisation orientations over such a small
backazimuth window (~250-270°). The two models differ by only 15° in
upper-layer fast-polarisation orientation, and both positively identify a two-
layered system as the best model to explain the data. It is also interesting
to note the close alignment of the diamonds representing null measurements
in the synthetic model near 160° and 270°-300° backazimuth (Figure 9). As

discussed in Section 3.1, null measurements can be due to the backazimuth

16
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of the incoming earthquake aligning either parallel or perpendicular to the
effective anisotropic fast-polarisation orientation of the medium. The wave
may split multiple times, but constitutes a single observation that includes
information about the cumulative effect of all layers of the Earth beneath
the station. It is by observing patterns in the backazimuthal variation of
splitting parameters that we can investigate whether there are multiple lay-
ers of anisotropy. It seems most likely that sources from these backazimuths
happen to arrive perpendicular to the direction they would otherwise report
as the fast-polarisation orientation, simply by chance. A roughly E-W ori-
ented anisotropy in the upper layer and NNE/NE-SSW/SW orientation in
the lower layer appears to provide an adequate explanation for the measure-

ments at station RES.

5. Discussion

Arctic Canada has a long history of orogenesis, rifting and basin for-
mation, but is at present considered a stable continental platform. Seismic
anisotropy across the region is therefore most likely to arise from “fossil” fab-
rics preserved in the lithosphere following large-scale deformation, structural
alignments of tectonic boundaries, shearing at the base of the lithosphere
associated with plate motion, present-day sublithospheric mantle convective
flow, or some combination of these factors. Below we examine the possible
causes of Arctic seismic anisotropy in the context of our splitting measure-

ments.

17
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5.1. Potential sources of seismic anisotropy

e Crustal contributions. Previous studies of seismic anisotropy (e.g. Bar-

ruol and Mainprice, 1993; Silver, 1996) suggest that the maximum con-
tribution of continental crust to the shear wave delay time is ~0.3-0.5 s.
We therefore compare the delay times obtained in this study to ascer-
tain whether an anisotropic crust is sufficient to explain our observa-

tions, or whether a mantle component is necessary.

Lithospheric deformation and tectonic boundaries. It is possible to
attribute lithospheric anisotropy to “fossil” deformation arising from
past strain, which acts to align intrinsically anisotropic minerals such as
olivine. One way to infer such fabric is to compare the fast-polarisation
orientations of shear wave splitting measurements with surface tectonic
boundaries which may indicate zones of lithospheric deformation such
as rifting, shear and orogenesis. Such a comparison makes the assump-
tion that deformation is vertically coherent between the crust and the
lithospheric mantle (e.g. Silver and Chan, 1988, 1991). The hypothesis
has previously been used to explore the link between XKS splitting
observations and structures such as major orogenic belts, e.g. the Ap-
palachian and Trans-Hudson orogens in North America (e.g. Bastow

et al., 2011; Long et al., 2016).

Plate motion and basal shear. Shear wave splitting fast-polarisation
orientations are often compared to “absolute” plate motion (APM),
which is thought to give rise to basal drag from interaction between

the moving plate and the sublithospheric mantle. However, these com-
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parisons should be made with a certain degree of caution, because the
APM directions inferred from the NNR (No Net Rotation, e.g. Argus
et al., 2010) and HS (Pacific hotspot, e.g. Gripp and Gordon, 2002) can
often be significantly different. In addition, the development of basal
drag fabric is thought to be affected by plate velocity (e.g. Debayle and
Ricard, 2013), with slow-moving plates unable to generate a basal drag

fabric strong enough to create significant anisotropy.

Active mantle convective flow. Strain associated with mantle flow is
generally thought to cause the alignment of olivine @ axes in the flow di-
rection, and the resulting crystallographic-preferred orientation (CPO)
will thus give rise to a significant anisotropic fabric (e.g. Zhang and
Karato, 1995; Bystricky et al., 2000; Tommasi et al., 2000; Kaminski
and Ribe, 2002). In general, the olivine CPO will be rotated towards
the infinite strain axis associated with active mantle convective flow in
the asthenosphere and below due to simple shear (e.g. Conrad et al.,

2007).

Lower-mantle anisotropy. The lowermost mantle and D” layer have
been shown to be anisotropic, though this phenomenon is not ubiqui-
tous (e.g. Nowacki et al., 2011, and references therein). Lower mantle
anisotropy may be visible in shear wave splitting as a systematic dis-
crepancy in splitting parameters (¢ and d0t, or splits versus nulls) be-
tween SKS and SKKS arrivals coming from events in the same region.
These arrivals have very similar paths and Fresnel zones in the upper

mantle, but sample the lowermost mantle significantly differently due
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to their ray paths.

A challenge when considering the relative contributions of lithospheric
and sublithospheric anisotropy is the lack of direct depth constraint inher-
ent to XKS measurements. For each individual measurement, the observed
splitting parameters represent the integration of the entire path from core
to receiver. We can, however, indirectly infer relative depth by considering
the effect of lateral heterogeneity in anisotropy on the measurements made
at closely-spaced stations, using the width and overlap of the XKS Fresnel
zones (e.g. Alsina and Snieder, 1995). Sublithospheric mantle flow is ex-
pected to vary laterally on a scale that would lead to very gradual variations
in splitting parameters between closely-spaced stations, whereas the smaller
scale of lateral heterogeneity in lithospheric anisotropy could result in signif-
icant lateral variation of splitting parameters at these stations (e.g. Savage,
1999; Bastow et al., 2007, 2011; Liddell et al., 2017). We can therefore make
a preliminary estimation of the relative depth of anisotropic heterogeneities
beneath Ellesmere Island by considering the similarities and differences be-
tween the splitting parameters measured at ALE, the ELLITE stations, and
EUNU.

5.2. Thickness of anisotropic layers

Based on the ensemble of delay times for the stations in our study region,
we can estimate to first order the corresponding thickness of the anisotropic
layer (assuming, for simplicity, a single layer that gives rise to the effective
anisotropy measured). The maximum delay times or individual events are

of the order 1.5 s. This would suggest a thickness of ~170-350 km, based
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on the relationship L ~ §tV,/dV, (Helffrich, 1995), if we assume an average
anisotropy strength of 2-4% (e.g. Savage, 1999; Ben-Ismail et al., 2001). For
a delay time of 0.5 s, estimated layer thicknesses using the same parameters
lie in the range ~60-115 km. Recent tomography models (Schaeffer and
Lebedev, 2014; Lebedev et al., 2018) suggest that the lithosphere underlying
our study region is of the order ~150-250 km thick, with the exception of
the area below station RES, where shear wave velocity profiles suggest a
thickness of <150 km.

Based on layer thickness considerations alone, an anisotropic contribution
uniquely from the lithosphere or the sublithospheric mantle could be plausible
for the smaller delay times. However, for the majority of stations across the
study area, the larger observed delay times suggest that contributions from

both sources would be required to explain the inferred layer thicknesses.

5.8. Tectonic boundaries in the Canadian High Arctic

The variability of the ELLITE splitting measurements over short spa-
tial scales (Figure 5), together with the backazimuthal variation apparent
at stations ALE and RES (Figure 6), suggest that lithospheric fabric plays
a strong role in the development of seismic anisotropy for the High Arctic
region. For most of the stations analysed, many of the delay times are too
large to be attributed only to the crust. Mean splits at different stations
vary from 0.55 to 1.25 s, with the smallest values suggestive of either weak
anisotropy or a relatively thin anisotropic layer where the crust could be a sig-
nificant contributor. Dominant fast-polarisation orientations at many of the
Ellesmere Island stations, as well as Baffin Island station PINU, parallel the

main tectonic trends visible at the surface. Lithospheric structural trends
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are more difficult to identify at MBC due to the deposits of continental-
shelf sediments on the northern half of Prince Patrick Island. Station WHI
in northern Ellesmere Island lies within the Pearya terrane, and its single
split precludes a reliable comparison with surface tectonics. Station RES, on
southern Cornwallis Island, lies at the intersection of several surface-tectonic
features, including the N—S Boothia trends and E-W striking fold belts. The
Sverdrup Basin lies to the north, and large-scale tectonics associated with
its formation may have produced lithospheric deformation beyond the basin
margins, but this is uncertain. RES exhibits complex splitting parameters
including evidence for layered anisotropy, and will be discussed in more detail

in Section 5.5.

5.4. Plate motion versus mantle flow

In the Canadian High Arctic, direct comparison between fast-polarisation
orientations and “absolute” plate motion (APM) is complicated by the sig-
nificant difference between the plate motion directions in the NNR and HS
reference frames, which can reach over 60°. A subset of stations (Figure 5)
exhibits fast-polarisation orientations approximately parallel to NNR-APM
and others appear subparallel to HS-APM, but there is no region-wide cor-
relation. In addition, the slow APM speed (~17-23 mm/y) of the North
American plate in this region lies well below the threshold of 40 mm/yr pro-
posed by Debayle and Ricard (2013) for the development of basal drag fabric
related to APM, and we therefore discount this phenomenon as a significant
contribution to our observations.

In order to assess the possible contributions from active mantle convec-

tive flow, we compare the ensemble of fast-polarisation orientations across
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our study region with the horizontal components of the mantle flow field
predicted by Forte et al. (2015) from a global seismic-geodynamic tomogra-
phy model (Figure 10). The mantle flow predictions are made for two dif-
ferent radial viscosity profiles: V1 (Mitrovica and Forte, 2004) has a 100 km
thick high-viscosity lithospheric layer whereas for V2 (Forte et al., 2010) the
high-viscosity layer is 200 km thick, similar to that of average cratonic litho-
sphere. We note that, although flow directions vary across the region, the
flow field varies more smoothly than the variations in anisotropy, even for
the large station spacings outside Ellesmere Island. We observe a few possi-
ble local-scale correlations between the mantle convective flow directions and
fast-polarisation orientations (e.g. V1 with the PINU stack and the principal
splits at ALE); however the deviations across much of our study region are
large. Our observations suggest that, even though it may contribute to the
anisotropy measured in the High Arctic, mantle convective flow is unlikely

to be the dominant factor.

5.5. Complex anisotropy

The shear wave splitting measurements at EUNU, MBC and PINU are
consistent with a simple interpretation of a single layer of anisotropy with
a horizontal axis, as fast-polarisation orientations do not vary significantly
with backazimuth (Figure 4). Stations AXF, CNF, IBFE, MCF and WHI
are ambiguous, as the sparse nature of the data set does not allow us to
distinguish between a simple anisotropy versus a more complicated pattern.
In contrast, more complex anisotropy is inferred for stations ALE, RES and
TQF'. In the case of ALE, much of the variation is linked to SKS/SKKS dis-

crepancy, and is described in more detail below. However, we also note that
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this station lies very close to a set of NW-SE trending tectonic boundaries
in northern Ellesmere Island (Figure 5b). It is possible that the XKS waves
may sample different lithospheric blocks according to event backazimuth, and
this may contribute to the variations in splitting parameters. Station TQF
exhibits distinct and significant backazimuthal variation, suggesting that ei-
ther a dipping layer or multiple layers would be necessary to characterise
the anisotropy beneath this station. Due to the limited data set, we cannot
distinguish unambiguously between these two classes. The fast-polarisation
orientation appears to vary smoothly between 180° and 340° backazimuth,
similar to a dipping-layer prediction (Figure 3); however a two-layered model
cannot be ruled out.

Backazimuthal variations in splitting at station RES are modelled as aris-
ing from two layers of anisotropy, with an upper-layer fast-polarisation ori-
entation of 90-105° and a lower layer of ~30°. We compare the upper layer
orientation with tectonic trends, assuming vertically-coherent lithospheric
deformation; however these trends are difficult to decipher since the tec-
tonic boundaries of the crystalline basement are obscured by Devonian—
Cretaceous sedimentary basin sequences. Magnetic anomaly strikes may pro-
vide some information if such anomalies represent tectonic boundaries that
persist through the crust and into the mantle lithosphere. Magnetic anomaly
data are sparse in this region; however some recent maps (Gaina et al., 2011)
show broadly E-W trending anomalies close to RES, cross-cutting the N-S
trending Boothia structures.

While horizontal compressive stress may play a role in upper-crustal

anisotropy, the resulting delay times would be too small to explain our

24



555

560

565

570

observations and models for the upper layer of anisotropy at station RES.
Near-surface anisotropy arising from such stress is of order ~10%, decreasing
rapidly with depth (e.g. Boness and Zoback, 2006, and references therein).
A 5 km thick layer with 10% anisotropy would only contribute 0.15 s to the
delay time, for example, whereas Figure 6 shows that the average delay time
at RES is ~1 s. A more likely candidate remains mineral alignment in the
lower crust and upper mantle, associated with the deformational history of
the region. The High Arctic has a complex tectonic history with multiple
phases of orogeny and extension (e.g. Piepjohn et al., 2016), which could
give rise to a series of structural and mineralogical alignments preserved as
anisotropic fabric in the lithosphere.

Mantle flow models (e.g. Forte et al., 2015) suggest a roughly NE-SW
to ENE-WSW direction for mantle convective flow beneath the region, in
contrast to the NNE/NE-SSW /SW orientation of the lower layer of splitting.
However, such models assume a uniform lithospheric thickness at a global
scale. Local thinning of the lithosphere as suggested by tomographic models
(Schaeffer and Lebedev, 2014; Lebedev et al., 2018) may act to deflect mantle
flow at a local to regional scale, therefore sublithospheric mantle convective
flow remains a possible interpretation of the lower layer. The fast-polarisation
orientation is also consistent with the orientation of azimuthal anisotropy at
depths of ~150-330 km in the tomographic model of Schaeffer et al. (2016),
for which the isotropic component (Schaeffer and Lebedev, 2013) images the
local lithospheric thinning beneath the region surrounding RES.
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5.6. Contributions from lower-mantle anisotropy

At station ALE, there is clear evidence for a systematic discrepancy be-
tween SKS and SKKS splitting characteristics for events arriving from the
backazimuth range ~290-310°. An earlier shear wave splitting study by Niu
and Perez (2004), using a global data set, also noted SKS/SKKS discrepan-
cies at station ALE from a set of 3 measurements made at the same WNW-
NW backazimuth range. The earthquakes from which these measurements
were made are located in the Tonga-Fiji subduction system. We calculated
the piercing points for SKS and SKKS phases ascending through the low-
ermost mantle at a depth of 2800 km, using the TauP Toolkit (Crotwell
et al., 1999), and found that the two sets of piercing points were separated
by ~1400 km laterally, with the SKS piercing points located beneath the
Canada Basin of the Arctic Ocean and the SKKS piercing points located
beneath northern Alaska and northwesternmost Russia (Supplementary Ma-
terial, Figure S3). Alaska has previously been noted as a zone of lowermost-
mantle anisotropy using a variety of techniques including shear wave splitting
and differential travel times for S, Sdiff and ScS phases (Restivo and Helffrich,
2006; Nowacki et al., 2011, and references therein).

6. Conclusions

We have used a combination of data from long-term / permanent and
short-term seismograph installations to study the seismic anisotropy beneath
the Canadian High Arctic. In general, the majority of the shear wave splitting
measurements exhibit fast-polarisation orientations parallel or subparallel

to the major tectonic trends and boundaries visible in surface geology and
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potential-field data. This, in addition to the significant variation in fast-
polarisation orientation between some closely-spaced stations, suggests that
the dominant source of the anisotropy is related to lithospheric structural
alignments, i.c. a “fossil” deformation signature. The lithosphere of the
High Arctic region is sufficiently thick to explain most, if not all, of the XKS
delay times, assuming a plausible anisotropic strength for olivine-dominated
lattice-preferred orientation. However, partial correlation with the modelled
directions of present-day sublithospheric flow indicates that this flow cannot
be ruled out as a secondary source of anisotropy.

Station RES, in the central Canadian Arctic, exhibits significant variation
in splitting parameters as a function of event backazimuth. The pattern of
variation can be explained by a simple model of two horizontal anisotropic
layers. The upper layer has a roughly E-W fast-polarisation orientation (90—
105°) whereas the lower layer is orientated approximately NNE-SSW (~30°).
Although tectonic trends are difficult to decipher in this region, magnetic
anomaly data suggest the presence of E-W trending structures, and models
of geopotential stress at lithospheric depths show a similar orientation. The
lower layer is subparallel to inferred sublithospheric mantle flow and may
represent a region where the lithosphere is sufficiently thin to allow such flow
to make a contribution to the observed splitting measurements.

A systematic discrepancy is observed between SKS and SKKS measure-
ments from the NW quadrant at station ALE (northern Ellesmere Island).
The most likely source of this anomaly, based on analysis of source-to-station
ray paths, is a zone of anisotropy in the lowermost mantle beneath north-

western Alaska and the Chukchi Sea.
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Table 1: Seismograph stations used in this study. GSN: Global Seismic Network, CNSN:
Canadian National Seismograph Network, ELLITE: Ellesmere Island Lithospheric Exper-

iment.

Affiliation Station Latitude Longitude Operation

GSN ALE 82.50 -62.35 02/1990-present
CNSN EUNU  80.05 -86.42 08/2000-present
CNSN MBC  76.32 -119.36 08/1992-06,/1997
CNSN PINU  72.70 -77.98 09/2000-12/2007

CNSN RES 74.69 -94.90 02/1992-present
ELLITE  AXF 78.88 -75.78 06/2010-06/2011
ELLITE  CNF 79.66 -80.78 06/2010-08/2012
ELLITE  IBFE 80.61 -79.58 06/2010-08/2012
ELLITE MCF 82.65 -75.04 06/2010-08/2012
ELLITE TQF 81.41 -76.85 06/2010-08/2012
ELLITE  WHI 83.09 -74.15 06/2010-08/2012
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Table 2: Stacked splits for the 5 long-term GSN/CNSN stations. Previous results from
Helffrich et al. (1994); Bostock and Cassidy (1995); Silver (1996); Barruol et al. (1997);

Evans et al. (2006). ¢: Fast-polarisation orientation; d¢: Delay time.

Station
ALE
EUNU
MBC
PINU
RES

¢ (°)
83£0.75
-4+1.75
63£2.25
-84£1.50
-74£0.75

ot (s)

0.98+0.03
0.68+0.08
0.73+0.10
0.8040.04
0.58=£0.01

No. measurements

48
22
14
7

92

Previous results (¢, dt)

61-82°, 0.91-1.25

43°, 0.85

-60°, 0.95-1.64
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Figure 1: Geological-tectonic map of the Canadian High Arctic, simplified from Oakey and

Stephenson (2008); Harrison et al. (2011); St-Onge et al. (2015), showing seismic stations

used in this study. The dashed grey line marks the approximate location of the continental

shelf edge.
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Figure 2: Examples of shear-wave splitting measurements. Left: a ‘split’, Right: a ‘null’.
(a) Original 3-component seismogram with shear phases marked; the blue lines show the
limits of the analysis window. (b) Radial and tangential components before (R1, T1) and
after (R2, T2) correction for splitting. (¢) Zoom into the analysis window. The first panel
shows the fast and slow waveforms after rotation but before correction for dt, the second
shows the corrected aligned waveforms scaled to each waveform’s maximum amplitude and
the third shows the same waveforms with absolute amplitude. (d) Particle-motion plot
before (left) and after (right) correction. (e) Contour plot showing the optimal combination

of ¢ and dt. () Results of individual measurements from each of the 100 windows analysed.
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Figure 3: Synthetic ¢ responses for three basic classes of anisotropy. A¢ indicates differ-
ence in fast-polarisation orientation between layers. Layer thickness and alignment frac-
tion of olivine a-axis can change delay time, but does not affect the backazimuth patterns.

Modified from Liddell et al. (2017).
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Figure 5: Compilation of shear wave splitting measurements on a map of the High Arctic.

(a) Individual measurements; blue bars denote high-quality splits and black crosses denote

high-quality nulls. (b) Composite of individual measurements at ELLITE stations (blue

bars, crosses) and stacked splits at CNSN/GSN stations (green bars); the number of

measurements per stack is given in parentheses. Inset: earthquakes (blue circles) used

in this study; the yellow star marks the centre of the study arca. APM: absolute plate

motion. NNR: no-net-rotation reference frame (e.g. Argus et al., 2010); HS: Pacific hotspot

reference frame (e.g Gripp and Gordon, 2002).
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Figure 7: Spatial variation of splitting measurements at stations ALE and RES, shown as
bars (splits) and crosses (nulls) at coordinates corresponding to the ray’s piercing point

at 200 km depth beneath the station.
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Table01
Click here to download Table: Table01.pdf

Table 1: Seismograph stations used in this study. GSN: Global Seismic Network, CNSN:
Canadian National Seismograph Network, ELLITE: Ellesmere Island Lithospheric Exper-

iment.

Affiliation Station Latitude Longitude Operation

GSN ALE 82.50 -62.35 02/1990-present
CNSN EUNU  80.05 -86.42 08/2000-present
CNSN MBC  76.32 -119.36 08/1992-06,/1997
CNSN PINU  72.70 -77.98 09/2000-12/2007

CNSN RES 74.69 -94.90 02/1992-present
ELLITE  AXF 78.88 -75.78 06/2010-06/2011
ELLITE  CNF 79.66 -80.78 06/2010-08/2012
ELLITE  IBFE 80.61 -79.58 06/2010-08/2012
ELLITE MCF 82.65 -75.04 06/2010-08/2012
ELLITE TQF 81.41 -76.85 06/2010-08/2012
ELLITE  WHI 83.09 -74.15 06/2010-08/2012
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Table02

Click here to download Table: Table02.pdf

Table 2: Stacked splits for the 5 long-term GSN/CNSN stations. Previous results from
Helffrich et al. (1994); Bostock and Cassidy (1995); Silver (1996); Barruol et al. (1997);

Evans et al. (2006). ¢: Fast-polarisation orientation; d¢: Delay time.

Station
ALE
EUNU
MBC
PINU
RES

¢ (°)
83£0.75
-4+1.75
63£2.25
-84£1.50
-74£0.75

ot (s)

0.98+0.03
0.68+0.08
0.73+0.10
0.8040.04
0.58=£0.01

No. measurements

48
22
14
7

92

Previous results (¢, dt)

61-82°, 0.91-1.25

43°, 0.85

-60°, 0.95-1.64
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Figure 04
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Figure 4: Polar plots showing splits (blue bars) and nulls (red squares) for each of the stations analysed.
The backazimuth of the incident earthquake is plotted clockwise from North (0°) and the radius is
proportional to the incident angle of the incoming XKS wave.



‘(00T ‘uopion pue dduin) 3-9) awely 9oud19jd1j0dsioy dyroed
:SH $(010Z “T& 30 sn31y "3'9) dwelj 90UdI9JOI UONRIOI-IAU-0U NN "uonow e[d ainjosqe (NJV BoIe ApnIs oy} JO d1Udd oY} SHYIBW JBIS MO[[IA 3y}
{Apnys s1y) Ul pasn (S9[oa10 anjq) soyenbyires :39su ‘sasayjuased ur USAIS SI jor)s Jod SJUWINSBIW JO JoquInu Y} ¢(sieq uadisd) suoneis NSH/NSND e
sypds paoeys pue (S9SS0ID ‘sieq an[q) suonels g LI TTH e SiuauwaInseaw [enpiarpur jo 3isodwo)) (q) “spnu LAypenb-y31y 9j0udp $asso1d yoe[q pue syfds
Ayipenb-y31y 910udp Ssieq AN[q SIUIWAINSLIW [BNPIAIPU] (B) 01301y YSIH 2y} Jo dew e uo sjuowainseaw 3umjifds aaem Jeays jo uoneidwo)) :¢ 231

.08~ .06~ .001- 0LL-

L L

-08- .06 001~ oo\—‘—«l

L

,ﬁw\w‘%\% %W%v%m =

&)
e L

SH-NdV —
HNN-NdY —

N -

NS 088 |  m—

og%

(e)

G0 @inbiy



"a3uel ;)] -0 Y3 Ul Passa1dxa are suonejuaLio uonesiiejod
-1seJ [[e ‘Surpold Jo ases 10, "X, Ue Aq owr) Ae[Op 01OZ J8 PIIBJIPUl dIe S[[hu dY) Jo suonisod oy} SJuswaInseaw [[nu
© 10J paugopun st own Ae[o(q "ydes3 uonejuorio uoryesirejod-jsej oy} ul sorenbs se umoys a1e s[[nU ‘sieq J0LIO YIIM S[IIID
se sydei3 yjoq ur umoys are sPdg ‘ST pue TV SUONe)S Je sjustaInseaw uiyids Jo uonenea [eyinuizesoeg :9 9In31ij

(o) Yinwizexoeq juang (o) Yinwizexoeq yuen3

09€ 0€c 00c 0. ObC OLc 08L O0SL 0CL 06 09 OF 0 09¢ o0€c 00¢€ 0ZCc O¥C OLc 08k O0SL 0CL 06 09 o€ 0
,,,,,x 1‘,,,,,,,,,,1,,,,,,,,,,,,,, ,,I*A,,,,,,,,,,,,,,,,,,,,x,,,,wx,,O.O

w ] -Gl

(oss) awn Aejag

) uoneUBO JSe

(

- ‘ -0zl ~
- N

] - 0G1

sy | | v
08l
90 aunbig




‘uone)s oy} yreauaq ydop wy 0z 1e 3urod Surosard s, Ae1 a3 03 Surpuodsaiiod S9JeUIPIOOd J8
(s[inu) sasso1o pue (s311ds) s1eq Se UMOys ‘SHY pue g1V suone)s je sjuowainseaw urprfds jo uonerrea eneds :/ oangr

10 @inBi4



Figure 08

RES - Fast-Polarisation Orientation Misfit
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Figure 8: Normalized RMS misfit surface for ¢ at station RES. Lowest
misfit is achieved for a relatively small subset of possible model
orientations. The black outline indicates where models have the lowest
RMS misfit.
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Figure 09

RES Splitting Parameters
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Figure 9: Best-fitting models for two-layered anisotropy at station RES.
Diamonds indicate null measurements and are placed as if backazimuth
is parallel to equivalent fast-polarisation orientation.
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