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Extensive research demonstrates unequivocally that nutrition plays a fundamental role in
maintaining health and preventing disease. In parallel nutrition research provides evidence
that the risks and benefits of diet and lifestyle choices do not affect people equally, as people
are inherently variable in their responses to nutrition and associated interventions to main-
tain health and prevent disease. To simplify the inherent complexity of human subjects and
their nutrition, with the aim of managing expectations for dietary guidance required to
ensure healthy populations and individuals, nutrition researchers often seek to group indivi-
duals based on commonly used criteria. This strategy relies on demonstrating meaningful
conclusions based on comparison of group mean responses of assigned groups. Such studies
are often confounded by the heterogeneous nutrition response. Commonly used criteria
applied in grouping study populations and individuals to identify mechanisms and determi-
nants of responses to nutrition often contribute to the problem of interpreting the results of
group comparisons. Challenges of interpreting the group mean using diverse populations
will be discussed with respect to studies in human subjects, in vivo and in vitromodel systems.
Future advances in nutrition research to tackle inter-individual variation require a coordinated
approach from funders, learned societies, nutrition scientists, publishers and reviewers of the
scientific literature. This will be essential to develop and implement improved study design,
data recording, analysis and reporting to facilitate more insightful interpretation of the
group mean with respect to population diversity and the heterogeneous nutrition response.

Inter-individual variation: Personalised nutrition: Population diversity: Race/ethnicity:
Sex as a biological variable

Extensive research has demonstrated unequivocally that
nutrition plays a fundamental role in maintaining health
and preventing disease(1). In parallel, nutrition research
provides evidence that risks and benefits of diet and life-
style choices do not affect people equally, as people are
inherently variable in their responses to nutrition and
associated interventions to improve or maintain
health(2–10). Difficulties in generating unequivocal evi-
dence is costly in terms of wasted research effort, causes
confusion(11) and biased reporting(12–15). Hence, nutrition
research faces significant challenges in determining
responses to diet and lifestyle interventions to improve
and maintain metabolic health and prevent diet- and
lifestyle-related diseases. In efforts to address these

challenges, nutrition science has striven to simplify the
inherent complexity of human diets and lifestyle factors,
with the aim of managing expectations for dietary guid-
ance required to ensure healthy populations. This has
necessitated development of approaches in nutrition
research that seek to group individuals based on various
criteria to determine mean responses to diet and nutrition
interventions to improve health and prevent diet- and
lifestyle-related diseases by comparing the mean
responses of assigned groups. Different measures of cen-
tre may be applied to response data from these studies,
including mean, median and mode. However, such stud-
ies are often confounded by the heterogeneous nutrition
response(2–4,8,9,16,17). This presents difficulties in attempts
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to assign a representative ‘typical’ group response and
summarise data with a single number. Increased preva-
lence of diet- and lifestyle-related non-communicable
diseases (NCD) adds to the pressure on nutritional
scientists to address the heterogeneous nutrition
response(17–20).

Recent decades have witnessed the emergence of novel
technologies and research fields that may permit the
development of new approaches to tackle the heteroge-
neous nutrition response(16,21–27). This has largely been
prompted by the recognition of interindividual variation
in disease risk and responses to interventions and the
advances in tools and technological platforms, generally
alluded to as omics technologies(28–30). Adoption of
omics technologies has spawned the emerging fields of
personalised/precision nutrition and molecular epidemi-
ology(31,32). The search for solutions to the burden of
NCD is driving the need for integration and application
of omics technologies to characterise heterogeneous
nutrition responses. This will require greater consider-
ation of aspects of study design, data recording, analysis
and reporting to facilitate more insightful interpretation
of traditional approaches to interpreting the group
mean and address human diversity. This has implications
for all aspects of nutrition science.

This review paper will explore some of the commonly
used criteria applied in grouping study populations and
individuals that are then used to conduct comparisons,
with the intention of identifying the mechanisms and
determinants of responses to nutrition. Consideration
of the challenges of interpreting the group mean in
diverse populations will be reviewed with respect to
both human studies and in vivo and in vitro model sys-
tems. The potential for improved study design, data
recording, analysis and reporting to facilitate more
insightful interpretation of the group mean will be
explored with respect to population diversity in general
and specifically, with a focus on diversity associated
with race, ethnicity, sex and gender.

Population diversity and compiling groups

Compiling groups in nutrition research, in attempts to
decrease the inherent complexity and diversity of
human populations and their nutrition, present a dichot-
omy. Analysis is inevitably directed to comparing group
means to interpret nutrition responses to generate mean-
ingful conclusions from nutrition research. However, this
often contributes to recording non-significant differences
from group comparisons, despite clear evidence of
responders and non-responders within study groups(2,3).
Alternatively, depending on the recruitment and compos-
ition of the group, contradicting and contrasting results
can be recorded for similar nutritional interventions(4,8).
This contributes to considerable wasted research effort,
biased or skewed reporting(12–15) and much confusion
among the public and within the scientific community(11).

The awareness of links between diet and disease risk
and the potential to identify effective nutritional inter-
ventions to prevent disease and maintain health, initiated

attempts to group individuals based on various criteria.
For example, common and extensively used criteria
include chronological age, ‘healthy’ individuals, over-
weight/obese, race/ethnicity and male/female. There are
many other factors which impact on population diversity
and influence heterogeneous nutrition responses and war-
rant consideration. However, this limited list serves to
illustrate the potential for failure to recruit homogenous
groups to facilitate the generation of meaningful conclu-
sions based on analysis and reporting of the group
means. These common and extensively applied criteria
for compiling groups for nutritional research highlight
various pitfalls, which are further considered below.

Chronological age is often a poor indicator of bio-
logical age(26,33,34), which can have a profound impact
on nutritional responses. ‘Healthy’ individuals are
recruited without underlying health issues or pertinent
history being assessed in detail. BMI is often used as a
surrogate to recruit and assign groups with respect to
normal, overweight or obese, despite BMI being an
imprecise measure of obesity(35). Individuals with obesity
or diabetes present a large proportion of popula-
tions(36,37). However, study of groups recruited on obes-
ity or diabetic status do not provide homogenous
groups. There is a broad range of differing metabolic
health and biological responses that contribute to diver-
sity in individuals with obesity(38) and diabetes(39).

Population diversity can change over time due to
changes in behaviour leading to altered disease preva-
lence, pathophysiology and introduction of prescribed
medications. Many individuals using prescribed medica-
tions will subsequently be excluded from nutrition
research, despite such medications being used by substan-
tial proportions of human populations. Many commonly
used medications can alter nutritional requirements and
responses. For example, hormonal contraceptives are
widely used by females throughout the world(40).
Biological sex, a known lipidomic factor, is enhanced
by hormonal contraceptives(41). Lipidomics has emerged
as a target for biomarker discovery and assessment of
nutritional responses(42,43). However, nutrition research
often excludes women and if recruited to nutrition stud-
ies women taking hormonal contraceptives are often
excluded. The use of statins to lower plasma lipids has
increased rapidly since their introduction in the
1990s(44). However, research on dietary guidelines for
dietary fats are lacking in this group, since statin use is
often an exclusion factor in compiling groups in which
lipids will be used to assess nutritional responses. The fol-
lowing sections will further explore specific challenges of
addressing population diversity and compiling groups
based on race, ethnicity, sex and gender.

Race, ethnicity and genetic diversity

Genetics plays a role in inter-individual variation,
prompting studies to compile groups by assigning race
and ethnicity to explain observed differences in NCD
linked to common genetic ancestry(45,46). However, the
scientific basis for determining ethnicity is often vague
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and the evidence for race is weak(47,48). Methodological
concerns with standard approaches to measuring race
and ethnicity determined that they often failed to
adequately differentiate either. This supported advocates
of more inclusive response options(49) and was a starting
point for improved race and ethnicity recording and data
analysis. However, reports that race and ethnicity
responses may change over time and context indicated
that the solution to improving race and ethnicity
was not a simple one(50). Liebler et al.(50) reported
that about 9·8 million (6·1 %) individuals reassigned
their race between US Census Bureau data collected
2000 to 2010 from 162 million responses linked at the
individual level. This confounds downstream analyses
and interpretation of results from groups assigned to
different racial or ethnic groups. This also has
implications for the compilation of research evidence pre-
sented on race/ethnicity in reviews, including systematic
reviews.

Evidence of detrimental impacts on health care and
research in different racial and ethnic groups, due to
incomplete race and ethnicity data, prompted action
from various quarters. The Department of Health in
the UK produced practical guides to ethnic monitoring,
which provided examples of good practice(51). NHS
Scotland introduced an ethnic monitoring tool(52).
However, concerns remained with regard to inaccurate,
incomplete and unvalidated data collection relating to
race and ethnicity(45). This prompts the question: How
good is race and ethnicity coding applied in nutrition
research? This is an important consideration for study
design. Without reliable race and ethnicity data, investi-
gation and reporting of diet- and lifestyle-related diseases
are compromised in these groups(45,53).

In addressing this issue, genetic diversity must be care-
fully considered. Following sequencing of the human
genome researchers have intensively studied genetic
diversity and identified genetic admixtures in the
human population that are spread throughout the
globe(54). Data from genome-wide association studies is
now being interrogated to generate fine-scale genetic dif-
ferentiation in populations throughout the world(55–59).

This has revealed detailed genetic analysis of popula-
tions in Britain, dispelling the perception of a general
Celtic or Anglo-Saxon population(57). While studies of
genetic structure of individuals in Western France pro-
vide evidence of rare and geographically localised geno-
types with links to Irish populations and other
European populations, including the Netherlands,
Britain and Sardinia(56). Similar studies in Japanese
populations identified nine genetic clusters and genetic
ancestry shared with Korean and Han Chinese, and gen-
etic components from Central, East, Southeast and
South Asia(59). There are indications that admixtures in
populations lead to transfer and retention of genetic var-
iants with specific functions relating to health and
fitness(58).

The genetic variation in populations has the potential
to confound studies attempting to identify risks of diet-
and lifestyle-related diseases and likewise dietary inter-
ventions to maintain health and prevent disease.

Accessing data on allelic variants from the genome-wide
association studies has the potential to generate novel
insights into genetic markers of disease risks that may
be used to stratify study populations to develop improved
dietary interventions to maintain and prevent diet-related
diseases. However, this will entail careful analyses and
development of robust approaches to select ancestry
informative markers and avoid introducing spurious
associations(55,60). In Scotland researchers set up the
Generation Scotland: Scottish Family Health Study to
compile detailed genotyping and linked phenotypes.
Kerr et al.(60) established validated procedures for accur-
ate data collection and associated quality genetic data
with low error rates. This study also raised concerns
about pedigree (ancestral phenotypes conferred by
specific genes) inconsistencies, which are a hidden con-
founder in studies which do not record genetic informa-
tion in parallel with phenotyping data(60,61).

Population diversity, perceived or genetic, is a signifi-
cant factor in designing experimental studies and inter-
preting results. Advances in gene sequencing and
improvements in accuracy and analyses bring us closer
to identifying DNA variants that determine disease risk
and our responses to nutrition. There have been reports
of various DNA loci (genetic markers) associated with
many of the markers routinely measured to assess
responses to nutrition and prevention or improvement
in disease outcomes(10,25,62–64). The task is challenging,
with researchers identifying large numbers of DNA var-
iants associated with markers routinely measured in
nutrition research. Over 250 loci have been identified
linked to BMI and further analysis identified protein-
coding variants linked to neuronal pathways and eight
novel gene targets implicated in human obesity(65).
Blood lipids are common targets to assess disease risk
and the impact of dietary interventions. However,
ninety-five genetic loci have been reported to influence
blood lipid levels in individuals of European ancestry(63).
Further metabolomic profiling of lipoproteins, lipids and
metabolite variables elucidated underlying biological
processes associated and specific lipid:gene effects(64).
Inflammation is also a focus of nutrition research and
the marker C-reactive protein is routinely measured.
Studies have highlighted genetic variants associated
with elevated C-reactive protein when intake of TAG
and cholesterol are increased(6). The same genetic var-
iants were associated with anti-inflammatory responses
to high n-6:-3 ratios(6). It was also identified that carbo-
hydrate influenced C-reactive protein associated with
DNA variants via effects linked to HbA1C and fasting
glucose levels(6). Knowledge of genetic ancestry and
trans-ethnic analyses of genome-wide association studies
has revealed novel loci associated with commonly used
markers in nutrition research including, glycated haemo-
globin (HbA1c)(10), fasting glucose and insulin(66).

SNP genotyping of DNA variants has the potential to
inform approaches to formulating nutritional advice on
intake of nutrients. SNP that determine absorption and
metabolism of nutrients indicate that this could inform
dietary requirements for sub-populations and indivi-
duals(67). SNP-genotyping studies in a New Zealand
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population self-reported as having European ancestry
identified SNP variants within this population that
were associated with Se status(67). This supports genetic
testing of populations in parallel with race and ethnicity
coding and supports previous evidence that Se require-
ments in human subjects varies with genotype(68).
Despite the profound implications of genetic variation
in human subjects there is still a scarcity of nutritional
studies identifying, testing and reporting common
DNA variants. The Human Variome Project(69) was
set up to compile information on genetic variation and
facilitate future application in genetic healthcare. It
may be that a similar global initiative is required to
compile the necessary data from nutrition research and
collaboratively develop resources and information to
facilitate a global evidence base.

Sex as a biological variable and distinguishing from
gender

A variable that is easier to control and incorporate in
nutrition research is sex. It is over a century since
Nettie Stevens’s(70) seminal paper identifying the signifi-
cance of the XX and XY chromosomes. The presence
of an XX or XY chromosome influences disease risk
and many of the markers that are measured in response
to nutrition(71–74). Despite this knowledge, sex as a bio-
logical variable (SABV) has not retained the prominence
in nutrition studies that it deserves(75–79). Studies of diet-
and lifestyle-related diseases and dietary considerations
to prevent them often do not reflect this most obvious
variable, or it is considered as a confounding factor
rather than a factor worthy of empirical and systematic
research(5,79). Biological research, including nutrition
studies, are predominantly conducted in males, with
results erroneously extrapolated to females(5,80–82). If
mixed cohorts are studied, there is often a failure to
report SABV(5,80–82).

Addressing SABV in nutrition research is thus import-
ant and requires consideration in approaches to study
design, analyses and reporting. To tackle these
approaches appropriately, it is necessary to firstly clearly
distinguish sex and gender, which are often used errone-
ously in the scientific literature(78,83–85). Sex differences
are associated with biological factors attributed by the
presence of XX or XY chromosomes(71,86–88). In con-
trast, gender is associated with various behaviour, life-
style and cultural experiences as opposed to biological
factors(89). Thus, both biology and behavioural differ-
ences may impact the risk of diet- and lifestyle-related
diseases and responses to dietary interventions and the
crucial differences require sex and gender specific
approaches(90–92). Alternatively, integrated frameworks
are required to study interactions between sex, gender,
genetics, health and nutrition(76,79). Genetic variants
and health outcomes are connected to social and cultural
variation factors and a multisystems approach is neces-
sary to decipher the interaction of sex and gender in
physiological and behavioural responses(76,79,82,92).

The lack of studies conducted on empirical and sys-
tematic sex differences has promulgated male dominated
research that has limited applicability to address physi-
ology and pathophysiology in biological systems regulat-
ing food intake, bioavailability and utilisation in human
populations(5,93). This prompted the National Institutes
of Health to form the Office for Research on Women’s
Health in 1990 to promote research to appropriately
address SABV. The European Institute of Women’s
Health was set up a few years later in 1996 with the
aim of promoting gender equity in the European Union
(EU) funded research on female and male biological dif-
ferences and gender roles linked to health. The European
Institute of Women’s Health also sought to lobby at EU
and regional levels and interact with other organisations,
such as the WHO. This led to a study reporting the need
to clearly define sex and gender and strategies to ensure
inclusion of sex and gender in research programmes for
life sciences(94,95).

The National Institutes of Health announced in 2014,
that it would ensure investigators accounted for SABV in
National Institutes of Health-funded research. This deci-
sion was widely supported, with many publications fore-
casting greater rigour and advances in biological
research(96–98). Further publications offered insights on
methodological approaches that might be considered to
ensure integration of SABV in study design and statis-
tical analyses(99).

However, despite attempts to change policy, changes
in experimental design and analyses have been slow to
address this in human subjects, as well as in animal
and cultured cell model systems used in nutrition
research. The use of male animal models still predomi-
nates(100). The justification often offered is that data
from female animals are more variable than that gathered
from male animals, despite studies demonstrating that
this is not the case(101–103). Cultured cell lines are used
extensively in nutrition research to study biochemistry,
cell signalling and gene or protein regulation in response
to nutritional and dietary components. However, the sex
of the cells used and differences in cells harbouring XX or
XY chromosomes are largely ignored and seldom
reported(13,104). In vitro studies often fail to report the
XX/XY status of the cell lines used despite evidence
that the sex of cells used can impact on the biology of
that cell and observed responses(14,105,106). This is particu-
larly concerning with specific cell lines dominating areas
of nutrition research e.g. CACO2 and HEPG2(107,108),
both of which carry XY chromosomes. Stem cells are
increasingly being used in research(105). However the cul-
ture conditions used favour derivation of female stem
cells, leading to much of this research being conducted
on cells carrying XX chromosomes(109).

Technological innovations and emerging research fields
to address the challenges of inter-individual variation

The application of omic technology platforms has the
potential to provide detailed and robust data, which
combined with bioinformatics, has the potential to
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characterise individual variation and identify associated
biomarkers and nutrition intervention targets(65). The
incorporation of omic technologies, such as genomics,
proteomics, metabolomics and epigenetics in nutrition
research is elucidating genetic variants, gene, protein
and metabolic biomarkers and signatures that may
decipher interindividual variation in responses to nutri-
tion and permit identification of determinants of nutri-
tional responses(2,3,28–30). This has created opportunities
for the evolution of new research fields, such as per-
sonalised and precision nutrition (nutrition tailored to
individual attributes), molecular epidemiology and nutri-
tional bioinformatics(31,32).

However, despite the rapid advances in technologies
and their application to studying and characterising the
diversity within populations, utilisation of the informa-
tion gleaned has not proven to be straightforward. The
large and complex data collected and the myriad possible
interactions between 30 000 human genes(110) and the
encoded human proteome consisting of many proteo-
forms(111), is a challenge for integrated statistics and bio-
informatics to analyse and interpret. Meeting this
challenge necessitates development of new multidisciplin-
ary teams and acquisition of new skills, expertise and
knowledge to drive multi-omic data integration and sys-
tems approaches. Integrative multi-omics approaches
have potential to advance utilisation of omic data to
detect causal genes and DNA variants linked to diet-
and lifestyle-related diseases, together with the associated
regulatory networks and signalling pathways(24,112).
Advancements are being made in this area to integrate
multi-omic data to permit data mining(23,113,114). This
opens the potential to link to electronic health records
to identify diet- and lifestyle-related disease mar-
kers(27,114). Disease specific databases of multi-omic stud-
ies conducted across different species are being
constructed and linked to clinical information(113,115,116).
Biobanks are being developed to link genetic data of
intensively phenotyped individuals with electronic health
records(27,117,118). Diet- and lifestyle-related disease
multi-omic databases have potential to provide detailed
information on biological processes, molecular determi-
nants and potential mechanisms linking diet to disease
risk. Such approaches may also be useful in permitting
extrapolation of data from studies in animal models to
human subjects by permitting assessment of inter species
differences(115). It is now feasible to systematically cap-
ture store, manage, analyse and disseminate data and
knowledge of nutrient–gene interactions to study specific
nutrients and links to human health(10,67,119). The
Micronutrient Genomic Project evaluates micronutrient
and health studies, combining genetic/genomic, tran-
scriptomic, proteomic, metabolomic, nutrition, biochem-
istry and epidemiology to construct pathways and
biological networks(119). Genomics is revealing import-
ant relationships of SNP and other DNA variants in
the human genome that have implications for nutrition
and tackling inter-individual variation(67). For example,
the daily requirement for Se, an essential dietary nutrient,
is significantly influenced by the genetic variants in
the genes encoding selenoproteins(67). Gene signatures

have potential to stratify study populations and aid
interpretation of inter-individual variation in study
groups(2,3). Ultimately, such developments will make it
feasible to incorporate diverse individuals and popula-
tions that currently do not meet inclusion criteria for
recruitment currently used to compile study cohorts for
nutrition research.

Science policy and reporting strategies to address the
challenges of inter-individual variation

Organisations funding nutrition research, learned soci-
eties, nutrition researchers and the scientific and aca-
demic literature all have the potential to impact on the
challenges of the heterogeneous nutrition response. The
NIH and EU polices to incorporate sex and gender per-
spectives have initiated concepts within science funding,
study design and analyses and reporting(80,84,94,96,120,121).
However, progress has been slow and improved tracking
of the incorporation of these biological and behavioural
variables needs to be more closely monitored with further
incentives warranted. Research funders’ stipulation that
research scientists account for sex and gender aspects in
their research proposals is partly reliant on reviewers,
who are often not alert to sex and gender variables.
Similarly, attempts to improve race and ethnicity coding
are dependent on researchers acknowledging and report-
ing the limitations of race and ethnicity coding. This
also applies to peer review of scientific literature.
Prominent scientific journals have introduced Editorial
policies for reporting SABV(81). The International
Committee of Medical Journal Editors compiled their
Recommendations for the Conduct, Reporting, Editing,
and Publication of Scholarly Work in Medical
Journals, with updates produced in December 2018(122).
Likewise, Sex and Gender Equity in Research guidelines
were developed by The European Association of Science
Editors for reporting sex and gender in all types of sci-
ence publications(123,124). Animal Research: Reporting
of In Vivo Experiments guidelines published by the
National Centre of the Replacement, Refinement and
Reduction of Animals in Research aim to improve
the standard of reporting, including SABV(125). While
the issue of female/male equality in research has been
gaining prominence there is still a lack of awareness
of the issues surrounding sex/gender perspectives in
research and a lack of consistency in reporting research
from a sex/gender perspective(76). The Gendered
Innovations project(126) is tackling this issue on
various fronts. Sex and gender interactions in nutrition
research are being investigated to address application of
the ubiquitous diet assessment tool, the FFQ(127) and
NCD and gender(128,129) are being studied. Gender
scoring is being developed to address eating-related
pathologies(130).

Future advances in nutrition research are dependent
on a coordinated approach to address the challenges of
the heterogeneous nutrition response. Indeed, the emer-
ging fields of molecular epidemiology, personalised/pre-
cision nutrition depend on identifying determinants of
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inter-individual variation. Although the fields of molecu-
lar epidemiology, personalised/precision nutrition are
relatively young, emerging evidence for scientific
validity of nutrigenetic knowledge is gathering focus
with frameworks for application in tailoring dietary
recommendations to better address stratified sub-groups
and individuals(131). Improved technologies generating
robust genetic information and increased understanding
of the genetic basis of complex NCD is paving the way to
incorporate genetic risk scores in studying NCD(22,82,132).
The challenge of addressing perceived race and ethnicity
and associated risk of NCDmay also be advanced through
identification of genetic determinants(10).

Nutrition researchers have a fundamental role in
addressing the heterogeneous response. Together with
incentives from research funders and scientific publishers,
scientists have the possibility to address the challenges of
inter-individual variation by accounting for variables,
such as sex in study design and analyses. Furthermore,
as reviewers of research proposals they can support
unbiased reporting. Simple measures, ensuring that P
values are not misused(12). Variation and the extent
between sexes and variation within study groups should
be reported using appropriate statistical methods, an
essential requirement to interpret reported group
means. The compilation and application of guidelines
for sex and genetic scoring, with improved coding of
race/ethnicity and gender, should be encouraged at
early stages of developing careers in nutrition science.
This should include appreciation of novel statistical
approaches to address the challenges of omics data and
wider application in interpreting data gathered from het-
erogeneous nutrition responses(133).

Conclusions

This review is by no means a comprehensive treatise on
the heterogeneous nutrition response. The necessity to
summarise this broad topic uncovers the iceberg tip of
the challenges facing nutrition scientists in addressing
the heterogeneous nutrition response. However, continu-
ing to avoid these challenges is not an option if nutrition
science is to progress. Tackling the heterogeneous nutri-
tion response is necessary to improve dietary guidelines
and reference values that are appropriate for both popu-
lations and individuals, to prevent diet-related diseases
and provide improved dietary advice for healthy ageing.
Action is called on for several fronts to incorporate diver-
sity as an important biological variable. Diversity blind-
ness must be erased from nutrition research to avoid
hindering identification of the mechanisms and determi-
nants of responses to nutrition. This is necessary to pro-
gress nutrition science, to formulate sound dietary advice
for both populations and individuals and provide novel
targets and approaches to tackle the rising swell of
NCD and unhealthy ageing. A coordinated approach
from funders, learned societies, nutrition scientists, pub-
lishers and reviewers of the scientific literature is neces-
sary to improve race/ethnicity/genetic/sex and gender
coding. This is a prerequisite to incorporating population

diversity in all aspects of nutrition. This includes study
design of basic, pre-clinical and clinical research and pro-
moting improved reporting and reviewing of nutrition
research.
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