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Ionotropic type of γ-aminobutyric acid receptors (GABAARs) produce two forms of
inhibitory signaling: phasic inhibition generated by rapid efflux of neurotransmitter GABA
into the synaptic cleft with subsequent binding to GABAARs, and tonic inhibition
generated by persistent activation of extrasynaptic and/or perisynaptic GABAARs by
GABA continuously present in the extracellular space. It is widely accepted that phasic
and tonic GABAergic inhibition is mediated by receptor groups of distinct subunit
composition and modulated by different cytoplasmic mechanisms. Recently, however,
it has been demonstrated that spontaneously opening GABAARs (s-GABAARs), which
do not need GABA binding to enter an active state, make a significant input into tonic
inhibitory signaling. Due to GABA-independent action mode, s-GABAARs promise new
safer options for therapy of neural disorders (such as epilepsy) devoid of side effects
connected to abnormal fluctuations of GABA concentration in the brain. However,
despite the potentially important role of s-GABAARs in neural signaling, they still remain
out of focus of neuroscience studies, to a large extent due to technical difficulties in
their experimental research. Here, we summarize present data on s-GABAARs functional
properties and experimental approaches that allow isolation of s-GABAARs effects from
those of conventional (GABA-dependent) GABAARs.
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INTRODUCTION

Ionotropic receptors of γ-aminobutyric acid (GABA receptors of type A, GABAARs) are the main
receptor type that generates inhibitory interneuronal signaling in the brain. The classical form of
GABAAR-induced inhibitory signal is phasic inhibition: a short synchronized opening of GABAARs
in a synapse, generated by the binding of GABA released from a presynaptic terminal. However,
there is an alternative form of inhibition: charge transfer through continuously active GABAARs, or
tonic inhibition, detected in peripheral nervous system in the 1970s (Brown, 1979) but documented
for the central nervous system only in the 1990s (Otis et al., 1991; Brickley et al., 1996). The classical
view is that tonic inhibition is generated in response to GABA, which is continuously present in the
extracellular space of neural tissue due to spillover from synapses or release from astroglia and/or
neurogliaform cells (Farrant and Nusser, 2005; Kozlov et al., 2006; Oláh et al., 2009). This implies
the generation of a continuous inhibitory tone mainly by perisynaptic and extrasynaptic GABAARs,
since the vast majority of transporters which perform reverse uptake of GABA are localized in
synapses or in their immediate vicinity (Minelli et al., 1996; Chiu et al., 2002; Conti et al., 2004).
Hence, the magnitude of tonic GABAARs-delivered current is considered to be regulated by the
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availability of extracellular GABA, and by the quantity of
GABAARs at an extrasynaptic surface of a given neuron (Glykys
and Mody, 2007). Later research, however, revealed that a
significant part of tonic inhibition mediated by GABAARs
is independent of GABA binding, i.e., it is delivered by
spontaneously opening GABAARs (s-GABAARs). s-GABAARs
in that study were shown to be insensitive to the competitive
GABA antagonist SR-95531 (SR), but could be suppressed by the
GABAAR open channel blocker picrotoxin (PTX), and, to the
less extent, by competitive GABA antagonist bicuculline (BIC;
McCartney et al., 2007).

In the last few decades, studies of GABAARs-mediated
tonic currents have attracted a considerable interest, and have
described a functional role of this form of inhibition in a
number of brain areas; in particular, its important input into
neural excitability, synaptic plasticity, neurogenesis and network
oscillations (Mody and Pearce, 2004; Farrant and Nusser, 2005;
Glykys and Mody, 2007). Since our understanding of underlying
mechanisms is still far from excellent, the newly discovered
type of tonic conductance delivered via s-GABAARs promises a
conceptual breakthrough in the field. Nevertheless, despite the
phenomenon of GABA-independent gating of GABAARs being
reported in numerous publications (Neelands et al., 1999; Birnir
et al., 2000; Maksay et al., 2003; Miko et al., 2004), until recently
the functional role of s-GABAARs in living neural tissue has
remained beyond the focus of neuroscience research.

In this article, we try to summarize the data available to date
on s-GABAARs function in neural transmission and to discuss
perspective directions for further studies which should clarify the
role of s-GABAARs under normal conditions and in pathology.

FUNCTIONAL PROPERTIES OF s-GABARs

s-GABARs: Problem of the Isolation of
GABA-Independent Effects
One of the main factors which prevent a detailed study of
s-GABAARs functioning is a lack of specific pharmacological

tools: the independence of s-GABAARs gating from GABA
binding makes impossible the use of competitive GABA
antagonists for selective s-GABAARs silencing, whereas allosteric
modulators such as benzodiazepines display a lack of specificity,
tuning both GABA-dependent and GABA-independent effects
(Bianchi and Macdonald, 2001; McCartney et al., 2007;
Gerak, 2009).

Hence, to clarify the input of s-GABAARs into a given effect,
differences in molecular mechanisms of SR- and PTX-induced
GABAARs silencing have been used. SR is a competitive
antagonist and thus negates GABAAR activity induced by
GABA binding (i.e., it acts on conventional GABAARs); in
contrast, PTX binds inside the GABAAR ion channel, and thus
blocks all open channels, independently of the presence of
GABA binding (i.e., it acts on both conventional GABAARs
and s-GABAARs). Therefore, conventional GABAAR activity
can be assessed as the change in the given effect obtained
in the control vs. after application of SR, whereas s-GABAAR
activity can be measured as the change in the effect obtained
after SR application vs. after subsequent application of SR+PTX
(Wlodarczyk et al., 2013)—see Figure 1. SR is a ‘‘silent’’
competitor for the GABA-binding site, i.e., it does not display
inverse agonist properties. Obviously, competitive antagonists
such as BIC, which display inverse agonism, cannot be used
for the quantitative assessment of s-GABAARs effects: BIC
was shown not only to suppress synaptic events as SR does
but also to induce an outward shift of holding current
(Wlodarczyk et al., 2013).

s-GABARs Single-Channel Properties
The obvious step in the biophysical characterization of
different subgroups of ionotropic receptors is a dissection
of single-channel properties, such as electrical conductance,
opening frequency and average open time. Single-channel
recordings have repeatedly demonstrated similar or very close
conductance values for s-GABAARs and conventional GABAARs
(Mathers, 1985; Neelands et al., 1999; Birnir et al., 2000;

FIGURE 1 | Competitive γ-aminobutyric acid (GABA) antagonist SR-95531 suppresses spontaneous GABA-ergic synaptic signaling, but does not affect tonic
conductance; on the contrary, open-channel blocker picrotoxin applied after SR-95531 shuts spontaneously opening GABA-receptors (s-GABAARs), revealing the
amount of inhibitory current passing through s-GABAARs independently of GABA binding.
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O’Neill and Sylantyev, 2018a,b) thus making this parameter
hardly applicable for distinguishing between two receptor
subtypes. Similarly, the dependence of GABAARs opening
frequency on the concentration of GABA, makes this parameter
inapplicable for discrimination of effects of s-GABAARs and
conventional GABAARs in single-channel recordings. In
contrast, the average open time was found to be significantly
lower for s-GABAARs than for conventional GABAARs.
This generates a two-peak distribution of opening time
values under physiological conditions when free GABA is
present in extracellular space (O’Neill and Sylantyev, 2018a).
Earlier observations demonstrated that the two-peak Gaussian
distribution of average open times is a characteristic feature
of GABAARs of at least three different subunit compositions
(Mortensen et al., 2010). It is important to note that the mode
values for shorter durations in that work were found to be
similar, irrespective of the agonist’s type and concentration,
thus representing an agonist-independent input. This suggests
that: (i) s-GABAARs activity is a common element of integral
GABAAR response; and (ii) that s-GABAARs represent a
functionally similar receptor subgroup composed of receptors of
various subunit compositions.

Another method of distinguishing between s-GABAARs and
conventional GABAARs at a level of single-channel effects may
potentially develop from the recent observation about the ability
of benzodiazepine flurazepam to modulate GABA-dependent
and GABA-independent GABAAR gating via different molecular
mechanisms (Jatczak-Śliwa et al., 2018).

s-GABARs Input Into Tonic Conductance
Overall, charge transfer with phasic events mediated by
GABAARs (and induced by GABA binding) compared to that
delivered by tonic conductance through GABAARs, displays a
ratio of more than 9/1 (Cope et al., 2005; O’Neill and Sylantyev,
2018a). Taking into account that GABA-induced tonic current
was found to be negligible under physiological concentrations of
extracellular GABA, whereas under these conditions s-GABAARs
generated a significant amount of tonic current (Wlodarczyk
et al., 2013), s-GABAARs should be considered as a potential
key element in the generation of lasting inhibitory tone and, in
a wider context, in inter-neuronal crosstalk.

Tonic inhibition has been widely accepted to be a strong
modulator of action potential (AP) generation (Hamann et al.,
2002; Bonin et al., 2007), AP firing patterns (Häusser and Clark,
1997) and the coincidence detection time window for synaptic
inputs (Tang et al., 2011). Experiments on s-GABAARs have
readily confirmed their significant input into the regulation of
the following phenomena: the modulation of AP generation
(O’Neill and Sylantyev, 2018b), firing patterns (Botta et al., 2015;
O’Neill and Sylantyev, 2018a), neurons’ rheobase, and the time
window of coincidence detection of excitatory inputs (O’Neill
and Sylantyev, 2018a).

s-GABAARs Input Into Phasic
Conductance
Several classical studies have demonstrated that GABAARs of
specific subunit compositions (e.g., δ-GABAARs) which may be

responsible for a lion’s share of tonic current (Nusser and Mody,
2002; Stell et al., 2003; Mortensen et al., 2010) are localized
exclusively at the extrasynaptic membrane (Nusser et al., 1998;
Wei et al., 2003). However, if s-GABAARs are a functionally
similar group of receptors of different subunit composition (see
‘‘s-GABARs Single-Channel Properties’’ section), their absence
in synapses would be highly doubtful. This, in turn, raises
a question as to how (and whether) s-GABAARs modify
synaptic (phasic) GABA-ergic inhibitory responses (inhibitory
post-synaptic currents, IPSCs). In truth, recent studies have
demonstrated their significant input into IPSC decay kinetics:
s-GABAARs introduced a slow element of decay profile
(O’Neill and Sylantyev, 2018a), probably due to their higher
potency to GABA (Yeung et al., 2003) and/or modified
receptor efficacy.

It was shown earlier that GABAAR-generated IPSC may
contain fast and slow components with different sensitivities to
GABA competitive antagonists, which resembles the functional
profile of s-GABAARs (Kapur et al., 1997). In this research,
the generation of fast and slow components of whole-cell
IPSC was attributed to different cell regions: dendritic and
somatic, respectively. On the other hand, later direct recordings
of s-GABAARs activity confirmed a significant input of this
receptor subtype into both whole-cell IPSCs (which are generated
in synapses), and into IPSCs evoked in nucleated membrane
patches, i.e., generated by GABAARs localized at a neural cell
soma (O’Neill and Sylantyev, 2018a). On top of that, a significant
input of δ-GABAARs into IPSCs was recently demonstrated
(Sun et al., 2018), which confirms once again both the synaptic
and extrasynaptic localization of GABAARs which display high
tonic activity.

Intracellular Regulatory Mechanisms of
s-GABAARs Activity
The particular intracellular mechanisms which are used by
neural cells to modulate the activity of GABAARs are still far
from being completely understood; however, it has long been
established that direct phosphorylation is of major importance
(Brandon et al., 2002). It was shown that GABAARs functions
can be modulated differentially (potentiated or suppressed)
depending on the receptor subunit composition, the type
of neuron, et cetera by cAMP-dependent protein kinase
A (PKA), tyrosine kinase Src and PKC: refer to Brandon
et al. (2002) for review. In particular, GABAAR-mediated
tonic inhibitory currents were shown to be downregulated
by PKC Bright and Smart, 2013, whereas PKA was found
to enhance this type of inhibition (Carlson et al., 2016).
In addition, GABAARs effects were repeatedly shown to
be modulated by G-protein-coupled receptors via G-proteins
of different types (Cai et al., 2002; Wang et al., 2002)
which are, in turn, tightly connected to the regulation of
PKC and PKA activity (Neves et al., 2002). Hence, the
clarification of impact on s-GABAARs function delivered
by intracellular regulatory factors (specifically, by various
kinases and G-proteins), is one of the key steps needed for
understanding and predicting s-GABAARs functional input into
a neural transmission.
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To date, there is little data on this. It has been demonstrated
that in dentate gyrus granule cells of hippocampus PKC
regulates tonic GABA-dependent inhibitory conductance but
has no significant impact on the GABA-independent effects
of s-GABAARs (O’Neill and Sylantyev, 2018b). However, at
a longer time scale it was repeatedly shown that PKC and
Ca2+/calmodulin-dependent protein kinase II increase tonic
inhibition in hippocampus and amygdala due to enhanced
phosphorylation and membrane insertion of β3-containing
GABAARs (Saliba et al., 2012; Modgil et al., 2017) and
α4-containing GABAARs; this PKC action can be potentiated
by neurosteroids such as THDOC (Abramian et al., 2010,
2014; Romo-Parra et al., 2015). In turn, s-GABAARs-mediated
tonic inhibition in dentate gyrus granule cells is controlled by
G-proteins: non-specific block of G-proteins by pertussis toxin
decreases the tonic current via the reduction of the s-GABAARs
opening frequency (O’Neill and Sylantyev, 2018b).

In contrast to PKC, activation of PKA was found to increase
the tonic current through α4β3δ and, to a lesser extent,
α4β3γ2L-GABAARs in absence of GABA due to upregulation
of single-channel opening frequency. Addition of GABA to an
ambient solution, however, gradually decreased the sensitivity
of GABAARs of both subunit compositions to modulation by
PKA; such a modulation became insignificant when GABA
concentration reached micromolar values (Tang et al., 2010).

It is important to note, however, that a significant part
of GABA-independent s-GABAARs activity was found to
be out of the control of any soluble cytoplasmic factors.
GABA-independent openings of GABAARs were recorded from
outside-out patches excised from dentate gyrus granule cells
somata: in this preparation, all cytoplasmic signaling chains
are surely destroyed (O’Neill and Sylantyev, 2018b). However,
anchored kinases that modulate ionotropic receptors (Brandon
et al., 2003; Carnegie and Scott, 2003) may still be responsible
for at least a part of the s-GABAARs activity observed in
outside-out patches.

CONCLUSIONS AND FURTHER
RESEARCH DIRECTIONS

To date, there have been only a few publications highlighting
the functional properties of s-GABAARs in living neurons. This
imposes obvious limitations on conclusions in terms of the
applicability for different brain regions and types of neurons.
Nevertheless, the significant input of s-GABAARs into the
modulation of output signal generation and into the integration
of input signaling in a given neuron, suggests that s-GABAAR
activity is one of the key actors that regulate neural inhibition.

Indeed, the relative importance of GABA-independent
s-GABAARs signaling in a given region of the brain
depends critically on the native concentration of GABA
in the extracellular space. Different groups report in vivo
concentrations varying by more than an order of magnitude:
from less than 100 (Wlodarczyk et al., 2013) or 200 (Glaeser
and Hare, 1975) nM to units of micromoles (Tossman et al.,
1986; Takagi et al., 1993). Moreover, there may be local
inhomogeneities of GABA concentrations due to cell-specific

differences in the distribution and/or activity of GABA
transporters and the elements of the GABA synthesis system.
This was indirectly confirmed by the observation that the
silencing of GAD-65 activity reduces tonic inhibitory currents
in interneurons, but not in the pyramidal neurons of the
hippocampal CA1 area (Song et al., 2011). A recent study on the
hippocampus has demonstrated that at a GABA concentration
of∼100 nM, the amount of GABA-induced tonic current (which
can be suppressed by SR) is close to statistical noise (see example
at Figure 1), and negligible when compared to that through
GABA-independent openings of s-GABAARs (Wlodarczyk
et al., 2013); on the contrary, SR has been shown to reveal a
huge amount of tonic GABA-dependent current in thalamus
(Cope et al., 2005). These data suggest that the relative impact
of s-GABAARs into neural signaling varies widely, depending
on the particular brain region and cell type. To the best of our
knowledge, previous articles that discuss lower EC50 values
(i.e., higher potency) of extrasynaptic GABAARs in vivo do not
consider spontaneous channels and how they influence such
measurements. This fact enforces the importance of the work on
s-GABAARs pharmacology for an understanding of biophysical
phenomena in living neurons.

The important question regarding s-GABAARs is whether
or not these receptors represent a convergent group with
similar functional properties, or if they share common receptor
subunit(s). Numerous studies have attributed the majority (up
to 75%) of GABAAR-delivered tonic inhibition to δ-containing
GABAARs (Stell et al., 2003), which are abundant at extrasynaptic
membranes (Nusser et al., 1998) but have been also found
in synapses where they make a significant input into phasic
inhibition (Sun et al., 2018), and in perisynaptic loci (Wei
et al., 2003). The remaining portion of tonic inhibition is, to
a large extent but not fully, produced by receptors containing
the α5-subunit (Farrant and Nusser, 2005). Furthermore,
the agonist-independent GABAAR openings were observed
under similar conditions for receptors of three different
subunit compositions (Mortensen et al., 2010). In addition, the
observation that mutations in α1 and β2 subunits modulate
spontaneous GABAARs gating (Baptista-Hon et al., 2017)
prevents us from ruling out these subunits as potential alternative
candidates to be involved in the formation of s-GABAARs.
Combined with the facts of the GABA-independent tonic
activity of α4-GABAARs (Tang et al., 2010) and spontaneous
openings of α2β1ε-GABAARs which contribute to the baseline
currents in whole-cell recordings (Wagner et al., 2005), the
abovementioned data on GABA-independent activity suggest
that GABA-independent inhibition is of poly-subtype origin,
with a substantial part inherent in the non-δ- and non-α5-
containing receptors.

In view of numerous subunits and subunit compositions of
GABAAR which demonstrate spontaneous gating, the obvious
question is: are there GABAARs subtype(s) which do not
demonstrate GABA-independent activity? The existence of such
GABAARswas suggested by the study showing that, in contrast to
the α2α1ε receptor, responses of α2β1 and α2β1γ2-GABAARs do
not produce a ‘‘baseline overshoot’’ associated with spontaneous
openings (Wagner et al., 2005).
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Therefore, data collected to date suggest revision of
two traditional views, now common in fundamental
neuroscience: (i) that tonic inhibitory conductance is
generated by ambient GABA (due to proven significance of
s-GABAARs input); and (ii) that tonic and phasic inhibition
are mediated by different GABAARs subtypes (due to growing
evidence that typical extrasynaptic GABAARs can make a
significant contribution into IPSCs via a synaptic and/or
perisynaptic presence).

It has been demonstrated that a scarcity of α1 subunit is
correlated with resistance to anti-epileptic drugs (Bethmann
et al., 2008), whereas increased α1-GABAAR expression in the
hippocampus suppresses the development of temporal lobe
epilepsy (TLE; Raol et al., 2006). Apart from that, it was
shown that phasic GABA-ergic inhibition is lowered in TLE,
whereas tonic GABA-ergic conductance remains intact (Palma
et al., 2007; Pavlov et al., 2011), making tonic GABA-ergic
current a perspective target for TLE treatment. The classical
paradigm, where extracellular GABA triggers tonic GABA-ergic
current, implies that the most effective therapeutic approach
is to increase the concentration of GABA in the cerebrospinal
fluid, and thus augment inhibitory conductance. However,
this approach was repeatedly found to be ineffective (Cohen
et al., 2002; Glykys et al., 2009) or even one that leads to
epileptogenesis (Palma et al., 2006; Cope et al., 2009) due to
various side effects. These side effects impose limitations on
the clinical use of specific antiepileptic drugs that increase
the concentration of GABA in cerebrospinal fluid (Sander
and Hart, 1990; Leppik, 1995). In contrast, the modulation
of s-GABAARs in GABA-independent manner promises an
alternative for TLE treatment through the regulation of tonic
conductance without the need to interfere with extracellular

GABA concentration, thus avoiding the afore mentioned
side effects.

Apart from the potential of α1-GABAARs for TLE treatment,
α5-GABAARs (which also display GABA-independent activity)
were found to be a perspective target for schizophrenia
treatment (Lodge and Grace, 2011). Taking into account
similar concentration of GABA found in vivo in the brains
of schizophrenic patients and of a control group (Tayoshi
et al., 2010), and the well-established fact that changes in
tonic GABA-ergic inhibition are involved in the generation
of schizophrenia symptoms (Damgaard et al., 2011), these
data suggest a potentially important role of drugs targeting
s-GABAARs in the suppression of schizophrenia development,
since action through s-GABAARs in GABA-independent
manner eliminates the need to modify GABA concentration in
cerebrospinal fluid.

Another clinical implication of s-GABAARs rises from the
fact that sedative and analgesic effects of gaboxadol (THIP)
are mediated exclusively by α4-containing GABAARs (Chandra
et al., 2006), that demonstrate GABA-independent activity.
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