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1. Introduction and state-of-the-art of the problem 

The problems devoted to dynamic loading of engineering materials with crack-

like defects are traditionally of interest in academia and industry, as these 

defects could be the main reason of structures’ collapse. Solving any crack 

problems, the crack faces contact interaction must be taken into account, as it 

changes the distribution of the stresses and the displacements in the vicinity of 

the crack not only quantitatively but also qualitatively. However there are 

difficulties in solving the contact problems because singular and hypersingular 

integrals appear and should be regularised and computed.  

In paper [1] two approaches to solve the contact problem for harmonic 

longitudinal loading were compared. For the plane problem solution the iterative 

algorithm and boundary element method in time and frequency domains were 

used. Numerical results were obtained for crack opening, contact forces and 

dynamic stress intensity factors. Contact crack problems for oblique incidence 

of harmonic waves were considered in [2, 3]. The results for the linear crack [2] 

and the penny-shaped crack [3] were obtained for various values of the angle of 

wave incidence, the wave frequency and the friction coefficient. Efficient and 

accurate technique for solving the three-dimensional contact problems for 

cracked solids was presented in [4], where the problems of normal incidence of 

tension-compression and shear waves on a penny-shaped crack were solved. 

Elliptical crack without initial opening was considered in [5], where the contact 

interaction of the crack faces was taken into account for the crack under 

normally incident tension-compression wave.  
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Complex loading of a rectilinear crack in homogeneous material under 

three different contact conditions was studied in [6] by Ostrik, who considered 

smooth, sliding slip and adhesion between the crack faces. Interfacial crack 

under shear loading with dynamic anti-plane traction was also considered by 

Matbuly [7], who used the variables’ separation technique in order to derive the 

singular system of integral equations.  

At the same time, special attention must be paid to the response of 

cracked materials to non-harmonic loading, particularly impact loading. The 

impact load generates the elastic waves in the structure causing the local 

stresses to increase beyond their corresponding values under static loads of the 

same magnitude [8]. The transient dynamic two-dimensional crack analysis for 

anisotropic materials is given in [9]. The paper presents the comparison of two 

hypersingular time-domain boundary element methods.  

Finite elastic cracked members under impact loading were also 

considered in [10, 11]. In the study the computation of the critical intersection 

angle for straight and curved cracks as well as investigation of the influence of 

free surface on the distribution of stress intensity factor along the crack-front 

were presented. The solution was obtained by implementing 3D time-domain 

formulation of boundary element method. 

The approach presented in [11] could be extended to study free surface 

effects for running crack in finite elastic solids. Itou [12] presented the research 

on 3D impact response of the cylindrical crack under longitudinal stress waves. 

For the solution of the incident shear stress wave problem the method 

employed in [12] could be used. 
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Rectangular and penny shaped cracks under impact loading were 

considered in [13–15]. For the cracks in infinite elastic solid the dependence of 

the dynamic stress intensity factors on the type and direction of incident waves 

was investigated.  

Furthermore, with the increasing use of composite materials in 

engineering applications understanding the fracture mechanism in different 

types of composites becomes more and more important. A number of 

researchers paid special attention to the crack problems in layered composites 

and bimaterials. The elastic wave scattering by a doubly periodic array of planar 

delaminations of arbitrary shape presented in [16]. The authors used the 

approach, which is the extension of the boundary integral equation method, to 

solve the problem. As an example of the method, solutions for two types of 

cracks, rectangular and elliptic, were obtained.  

Penny-shaped interface crack under unit pressure was considered in 

[17], where the study employs crack opening and sliding as primary unknowns, 

that allows the determination of crack opening and sliding displacement as well 

as complex stress intensity factors. Harmonic loading of penny-shaped crack in 

multi-layered composite was studied by Yu and Cooper [18]. They used a point 

force method to obtain results for the crack under harmonic loading. 

Additionally torsion harmonic loading of penny-shaped crack in layered 

composite was studied by Mykhaskiv and Stankevych [19] using boundary 

integral equation method. In the paper the effects of wave number, material 

properties, and the crack interfaces distance on the dynamic stress intensity 

factor were investigated. The problem of penny-shaped crack and its interaction 
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with a thin interlayer joining two elastic half-spaces when subjected to a time-

harmonic tensile loading was solved by the improved boundary integral 

equation method in [20]. 

Contact problems for interlayer cracks were considered in [21, 22]. The 

problems of linear crack [21] and penny-shaped crack [22] between two 

dissimilar elastic isotropic half-spaces under harmonic loading were solved. The 

multi-parametric algorithm was presented and the system of boundary integral 

equations for displacements and tractions was derived to study the effect of 

frequency of the loading on the stress intensity factors. 

The problems of impact loading of cracked materials were considered by 

number of authors. Elastic cracked material under transient loading was 

considered in [23]. Boundary integral equations in the frequency domain were 

used to solve the problem, presenting the components of the solution by the 

Fourier exponential series. Two-dimensional problem of interface crack in 

layered anisotropic solids was solved in [24]. In the paper the time-domain 

boundary element method in conjunction with a multi-domain technique was 

developed for to solve the problem. The effects of the crack configuration, the 

material anisotropy, the layer combination and the dynamic loading on the 

dynamic stress intensity factors and the scattered elastic wave fields were 

investigated.  

The interfacial cracks in orthotropic materials were studied in [25]. In the 

paper the stress intensity factor history around the crack-tips was obtained for 

the normal and shear impact loading. The study of interface crack under anti-

plane shear impact load was made by Li and Tai in [26].  
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Bimaterials with interface crack under impact loading were studied in [27] 

numerically and experimentally. The analysis of the energy release rate, stress 

intensity factors, crack-opening-displacements dependence on the time and the 

phase angle was given.  

The problem for a penny-shaped interface crack was solved in [28], 

where the torsional impact response was investigated. Torsional impact load of 

a penny-shaped crack situated between two elastic media was also considered 

in [29]. In the studies the problem was reduced to the solution of the pair of dual 

integral equations using Laplace and Hankel transforms. The expression for the 

stress intensity factor at the tip of the crack was obtained. 

The current study is devoted to the application of the method and 

techniques developed for the contact crack problems in the frequency domain 

[1–5, 21, 22, 30] for the case of transient loading. The method was initially 

adopted for homogeneous materials under normal impact loading [23] and 

further extended here for interface cracks in bimaterials. The major advantage 

of the method proposed is that there is no need for direct and inverse Laplace 

transforms to solve the problem. The method also may be used to account for 

the crack faces contact interaction and its effects on stresses in the vicinity of 

the crack.  

 

2. Problem formulation  

Bi-material with finite length crack at the interface is considered. The bi-material 

consists of two homogeneous isotropic half-spaces )1(  and )2(  with dissimilar 

properties.  
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The stress-strain state is defined by Lamé equations for both domains (in 

the absence of body forces) 

),,0[T                                               

,),,(),(),(divgrad)( )()(2)()()()()()(




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xxuxuxu 

      (1) 

where ),()( tm
xu  is the displacement vector,   is the Laplace operator, )(m and 

)(m  are the Lamé elastic constants, )(m  is the specific material density.   

At the bonding interface the following conditions of continuity for 

displacements and stresses must be satisfied: 

T,,      ),,(),(),,(),( )2()1()2()1(   ttttt xxpxpxuxu                     (2) 

where  

)2()1(  , cr)2(cr)1(cr  ,                                            (3) 

and the traction vectors on the crack surface are 

T.,      ),,(),(),,(),( )()2()2()1()1(  ttttt crm
xxgxpxgxp                    (4) 

In the case of elastic solid occupying the whole space, the Sommerfeld 

radiation-type condition, which provides a finite elastic energy of an infinite 

body, is also imposed at infinity on the vector of displacements: 

,/),( rct xu                                                    (5) 

where c is a constant and r  is the distance from the origin.    

We assume that the initial displacements of the points of the body are 

absent. The components of displacement field in both half-spaces can be 

represented in terms of boundary displacements and tractions by using the 

Somigliana dynamic identity [30]: 
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where )1( and )2(  are regular surfaces, x is the point of observation, y  is the 
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Here 
ij  is the Kronecker delta, r  is the distance between the observation point 

and the load point, and the functions )(m  and )(m  in the time-domain can be 

represented as the combinations of the Heaviside function and the Dirac delta 

functions, which for the 2D case considered have the following form: 
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with the modified Bessel function )(nK  (the second kind and order n) [31]; and 

the longitudinal and the transversal waves velocities )(
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To obtain the integral kernel ),,()( tW m
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to ),,()( tU m
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When we apply differential operator (10) to the Somigliana identity, then 

for both half-spaces the components of the traction vector can be obtained in 

terms of boundary displacements and traction: 

,)),,(),(),,(),((),(
)(

)()()()()(  ddtFutKptp
T

m

ij

m

i

m

ij

m

i

m

j
m

yyxyyxyx  


             (12) 

2,1    ,    ,)(  jTtm
x  

The operator (10) with respect to x  is used to obtain integral kernels 
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With the assumption of smoothness of the boundary displacements and 

traction vectors, the boundary integral equations for the limiting case )(mx  

can have the form: 
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where .    ,)( Ttm x  

On the surfaces crm),(  and *)(m  the boundary integral equations have 

the following form: 
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where .2,1m  

To simplify the system (15)–(18) we can introduce the following new 

variables 
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and take into account that on the interface we integrate over the surface *  with 

the outer normal vector *)1(*)2(* 
 nnn  As the result we can get a system of 

boundary integral equations which is simpler than the system (15)–(18), as it 

does not contain integral kernels ),()( tK m
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Consequently, there are no hypersingular integrals to be regularised and 

calculated: 
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It shall be also added that the method can be applied to solve 2D and 

3D problems for cracks of arbitrary geometry (e.g., cracks and delaminations 

between layers of composite pipes). Then the major issue is the derivation of 

fundamental solutions ),()( tU m

ij yx,  and ),()( tW m

ij yx, , or ),()( tK m

ij yx,  and 

),()( tF m

ij yx, , because the differential operator (10) contains components of 

the normal vector to the crack’s surface and combinations of partial directional 

derivatives with respect to different directions. For the case of plane (3D) or 

linear/straight (2D) crack the derivations are greatly simplified. Thus, in the 

current study authors decided to focus on a single linear interface crack only. 

Please note that even for the case of impact loading the components of 

the stress-strain state could be expanded into the Fourier series [23, 30, 32, 

33]: 
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Taking aforementioned into account we can rewrite the system of 

equations (21)–(24) into the following one:  
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with the Fourier complex-valued coefficients of the known tractions at the crack 

surface )()(, xmk

ig , unknown tractions )(,* xk

ip  and displacements at the interface 

and the crack surface )(,* xk

iu  and )()(, xmk

iu . 
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Using a piecewise-constant approximation of the known and unknown 

functions we can obtain from the system of boundary integral equations (27)–

(30) the system of linear algebraic equations (please, see paper [34] for details). 

It may be added that the detailed investigation of the solution’s 

convergence with respect to the number and size of the boundary elements and 

the number of time intervals has been presented in [2] and [21] for linear crack 

in homogeneous and layered materials, so here we followed the 

recommendations suggested in [21]. Although the bonding interface extends to 

infinity, the outer discretization can be truncated at certain distance (in this 

paper – 4 half-lengths of the crack) to the crack tip, because the elements that 

are far from the crack have very little effect on the solution near the tip (please, 

see [34]).  

Note that the non-integrable singularities in the integral kernels of 

boundary integral equations (27)–(30) which rank exceeds the dimension of the 

integration region makes the appropriate integrals singular. Consequently, they 

must be treated in the sense of the Hadamard finite parts (please see [2, 30]).  

The special attention must also be paid to the number of Fourier 

coefficients used to approximate the solution and initial. Thus, according to [23] 

for the impact (or sharp pulse) loading the number of Fourier coefficients shall 

be at least 30 coefficients to adequately approximate the Heaviside pulse. 

Some details of the analysis of the convergence of the solution with respect to 

the number of Fourier coefficients are presented in the current study. 

Thus to use the methodology and results which the authors obtained 

previously in the frequency domain [21, 34–36], the external transient dynamic 



 14 

load has been approximated by the Fourier exponential series. Hence, the 

Heaviside impact pulse was approximated by the trapezoidal stress pulse   
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d

*

*

d

d

***

*

tttHtttH
t

tt

tttHttH+ttHtH
t

t

=tσ  ,                  (31) 

where c2t
*=0.1 and c2td=12 [23], and the latter one was approximated by the 

Fourier series for different numbers of the Fourier coefficients. 

 

3. Numerical results 

We will consider the following numerical example: 2a length linear crack under 

the unit intensity impact pulse of normal incidence. The half-spaces materials’ 

properties:  

Material Young’s 
modulus 

Poisson ratio Density 

Steel 200 GPa 0.25 7800 kg/m3 

Aluminium 70 GPa 0.35 2700 kg/m3 

Epoxy 4.6 GPa 0.36 1380 kg/m3 

Portland concrete 40 GPa 0.20 2230 kg/m3 

Lead 14 GPa 0.42 1134 kg/m3 

 

To validate the method the crack on steel-steel interface was considered 

and the results were compared with the solution obtained for the homogeneous 

problem in [23] and the model solution obtained for the Heaviside stress pulse 
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by Gross and Zhang [13]. The dynamic stress intensity factor (opening mode 

only, as the shear mode is absent for the normal pulse loading in homogeneous 

material) normalized by the corresponding static value (obtained for the static 

tension of the unit magnitude) is given in Figure 1, where the model numerical 

solution is also presented.  

The dynamic stress intensity factors were computed in the vicinity of the 

crack tip using the following expressions [37, 38]: 

𝐾𝐼
𝑚𝑎𝑥 = max𝑡 lim𝑟→0 𝑝𝑛

∗(𝑅 + 𝑟, 𝑡)√2𝜋𝑟,                                       (32) 

𝐾𝐼𝐼
𝑚𝑎𝑥 = max𝑡 lim𝑟→0 𝑝𝜏

∗(𝑅 + 𝑟, 𝑡)√2𝜋𝑟.                                       (33) 

Where 𝑝𝑛
∗(𝑅 + 𝑟, 𝑡), 𝑝𝜏

∗(𝑅 + 𝑟, 𝑡) are normal and tangential components of the 

traction vector at the bonding interface, r is the distance from the crack tip. 

 

 

Fig. 1. Normalized stress intensity factor (normal opening mode) in time for 

homogeneous material 
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As one can see the results are in a very good agreement. Consequently, 

the proposed method can be used for the case of transient impact loading (as 

was expected based on the results presented in [23]). 

The convergence of the method for different numbers of the Fourier 

coefficients used to approximate the loading pulse and the stresses and 

displacements of the crack faces was analyzed, and the distribution of the 

normalized dynamic stress intensity factors (normal opening and transverse 

shear modes) in time is given in Figures 2 and 3 for Steel-Aluminium interface. 

One can clearly see the numerical convergence of the method (for both modes) 

with the increase in the number of coefficients used. Thus, in the following 

computations for different combinations of the materials of the half-spaces we 

decided to use 50 Fourier coefficients (solid lines in Figures 2 and 3). 

Finally, normalized dynamic stress intensity factors (normal opening and 

transverse shear modes) in time for different bimaterials (Steel-Aluminium, 

Steel-Epoxy, Steel-Concrete and Steel-Lead) are given in Figures 4 and 5.  

It shall be noted that the response time and the magnitude of the stress 

intensity factors clearly depend on the materials’ properties significantly shifting 

in time for the materials with lower values of the Young’s modulus (as Lead and 

Epoxy in the examples provided).  
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Fig. 2. Normalized stress intensity factors (normal opening mode) in time for 

different Fourier coefficients’ numbers 

 

 

Fig. 3. Normalized stress intensity factors (shear mode) in time for different 

Fourier coefficients’ numbers 
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Fig. 4. Normalized stress intensity factors (normal opening mode) in time for 

different materials combinations 

 

 

Fig. 5. Normalized stress intensity factor (shear mode) in time for different 

materials combinations 
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4. Conclusions 

In the paper the boundary integral equations method in the frequency domain 

was successfully used to solve the problem for an interface linear crack under 

normal Heaviside pulse loading. The convergence of results was analysed and 

the results were validated through the comparison with the results for 

homogeneous case. 

It shall be also noted that for oblique pulse loading or any loading 

including the shear component (e.g. normal shear pulse) the opposite crack 

faces inevitably would be in contact and, as it was mentioned in the first section 

of this paper, the crack closure and friction will significantly change the solution 

of the problem. Therefore, the taking these effects into account shall be the next 

stage of the research (either for cracked homogenous or composite materials). 

The first results for the linear crack in homogeneous material under normal 

impact loading have been recently presented in [39] with particular attention to 

the effects of friction between contacting faces of the crack.  
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