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Abstract 

This paper presents a comprehensive analytical eigenvalue stability study of 

subsynchronous torsional interactions between the 1GW Eleclink MMC HVDC and the 

1.12GW Gravelines turbine-generator in north France. It shows that when the generator and 

HVDC have similar power rating and the generator has low frequency torsional mode, the 

level of adverse interactions can be of significance. The worst case-scenario is when the 

generator and HVDC deliver rated power from the French to the English grid and the 

French grid is weak, and in extreme  the HVDC could even destabilize the dominant 6.3 Hz 

mode. The results also show a noticeable effect of PLL, namely, increasing the gains can 

improve the stability margins. Participation factors are also analyzed for the 6.3 Hz mode 

indicating that the main cause of the torsional interactions is the HVDC power control loop. 

The scenario of the HVDC importing power from the English grid shows that the HVDC 

could deteriorate damping of the 6.3 Hz mode but only for high AC voltage controller 

gains. Reducing PLL gains in this case improves the damping which also suggests adopting 

different PLL gains on the rectifier and the inverter. The main findings are verified on the 

detailed EMTP model. 
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1. Introduction 

Subsynchronous resonance (SSR) is a well-known and well documented phenomenon 

[1][2][3]. It represents a condition where the electrical network exchanges significant 

energy with the mechanical shaft of a turbine-generator. It occurs when the generator with 

poorly damped torsional mode of the mechanical shaft is connected to the electrical system 

which has a negative damping contribution at the frequency of the torsional mode. This 

interaction can cause growing rotor speed oscillations and lead to permanent damage of the 

generator shaft and may cause severe stability problems  on the power grid. This is the 

reason why the SSR has been the topic of an extensive research, over the course of many 

years. The risk of SSR was first detected in generators connected to series compensated AC 

transmission systems, namely the failure of a turbine-generator shaft at the Mohave plant in 

southern California in 1970 [4]. Since then, a number of studies have led to the in-depth 

understanding of the mechanism behind the phenomenon [5][6] as well as the development 

of the benchmark models for the SSR studies [7][8].  

The risk of SSR has also been detected in generators connected to high voltage direct 

current (HVDC) systems. The first case was demonstrated at the Square Butte project in 

North Dakota in 1977 [9]. The concerned HVDC is based on the traditional line 

commutated converter (LCC) technology and the subsequent analytical work revealed that 

the root cause of the issue was the control of the HVDC power transfer [9]. Since this type 
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of SSR represents interaction between the control of an HVDC and the mechanical shaft of 

turbine-generators, it is also commonly referred to as the subsynchronous torsional 

interactions (SSTI). There have been multiple cases reported on SSTI between LCC HDVC 

and generators worldwide [9][10] and this topic is well known and well researched 

[9][11][12]. However, there is limited practical experience and published work on SSTI 

with voltage source converter (VSC) based HVDC systems and it is expected that these 

systems also introduce the risk of SSTI since they typically control active power transfer. 

This topic is gaining much interest since the VSC are superseding the LCC technology in 

recent years. Among VSC technologies, the modular multilevel converter (MMC) is 

particularly gaining interest as shown by the rapidly increasing number of planned MMC 

HVDC systems worldwide [13] which raises concerns about the stability issues caused by 

SSTI.  

Most of the studies on SSTI between VSC-based HVDC and generators investigate two-

level VSC topology [14][15][16] [17] which has less complicated internal dynamics 

compared to MMC. The study in [17] is probably the most relevant one for the two-level 

VSC because it adequately represents the subsynchronous dynamics of the generator and 

accounts for the complete control structure of the typical VSC HVDC. The results of this 

study indicate that a VSC-based HVDC can deteriorate torsional damping of a generator, 

however, the impact is small and the risk of SSTI is minor in most of the practical systems. 

The most comprehensive and accurate study of SSTI between MMC HVDC and a turbine-

generator is conducted in [18] and it derives a similar conclusion. However, the study 

investigates the impact of a 100 MW MMC on a 600 MW generator with the frequency of 

the first (lowest) torsional mode equal to 15.6 Hz. Based on the experience with the LCC 
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HVDC, it is expected that the risk of SSTI would be much higher in case of MMC and 

generator having similar power rating and the generator having lower frequency torsional 

modes. Also, this study analyzes only one power flow direction (exporting power from the 

generator side) and does not analyze the impact of the PLL gains. Furthermore, the study is 

based on the time-domain simulations of detailed EMT models which means that it cannot 

investigate the root cause of the torsional interactions. The study in [19] shows that the 

cause of the adverse subsynchronous oscillations for MMC HVDC in general is the 

closeness of an open loop control mode to one of the subsynchronous grid modes. 

However, an in-depth study with respect to the torsional phenomenon is still missing.  

This paper analyzes SSTI in a realistic test system representing north French HVDC 

topology operated by RTE, French TSO. The system includes in-development cross-

channel 1GW MMC HVDC link Eleclink and Gravelines nuclear 1.12 GW generator. The 

Gravelines generator lowest torsional mode of concern has a frequency of 6.3 Hz which has 

been investigated for SSTI stability concerns with the existing IFA2000 LCC HVDC [10]. 

The aim is to analyze SSTI by the analytical means using  eigenvalue stability assessment 

which has been successfully employed in the past for various HVDC stability studies 

[11][12][20]. The intension is to conduct a comprehensive study: 

• of various AC parameters and operating points, 

• HVDC controller gains, including PLL,   

• commonly used control modes on HVDC such as AC voltage, reactive power and AC 

voltage droop control,   

• both power flow control directions of the HVDC,  
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• participation factors in case of unstable torsional modes.  

The main findings will be validated by the means of time-domain simulations on the non-

linear EMTP model. It will be demonstrated that contrary to conclusions in [17] and [18], 

MMC HVDC may potentially significantly deteriorate SSTI interactions. Furthermore, as 

the accurate MMC state space model will be employed [22], this will show a different 

impact of the MMC compared to the two level VSC in [17]. 

2. State space modelling and HVDC test system   

This section presents the HVDC test system, corresponding state space model and 

introduces the linearized dynamic model. 

2.1  HVDC test system 

The test system is depicted in Fig 1. It is composed of a point-to-point MMC HVDC link 

Eleclink (total length of the link is 70 km) connecting French and English AC grid. The 

MMC station in France is connected to Gravelines nuclear plant generator via 30 km 

overhead transmission line.   

 

Fig 1. Schematic of the HVDC test system 

2.2  Complete state space model 

The small signal state space model of the complete test system is assembled by 
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connecting four state space subsystems: generator, HVDC and two AC grids, as depicted in 

Fig 1. This makes the model flexible and facilitates changing topology, e.g. expanding to a 

dual-infeed HVDC system. The complete model is of the 186th order and it is implemented 

in MATLAB. The model is verified by comparing small signal responses against the 

detailed EMTP model for various inputs and conditions. The model structure is presented 

in Fig 2 along with the corresponding states. The individual elements of the schematic are 

explained in the following sections.  

AC grid France: 

2 states (DQ current)

Generator model: 42 states

4 mass (turbine) mechanical shaft: 8 states

(turbine angles and speeds)
Rotor and stator electrical 2.2 model: 5 states

(Sub transient, transient and stator DQ flux)

AC4A exciter: 3 states
PSS2A power system stabilizer: 16 states

IEEEG1 steam turbine governor: 8 states

Transformer (AC side): 2 states
30 km tie line: 2 states (DQ current)

AC grid England: 

2 states (DQ current)

HVDC model: 138 states

Wideband 

frequency 

dependent 

70km 

cable 

model: 

50 states

French MMC English MMC

Transformer and 

 AC side: 4 states

Converter control: 

30 states
Converter model: 

10 states

 Converter states: DQ0, DQ and DQ2 max. arm voltage, 

 DQ0 and DQ2 differential current, MDQ2  modulation indices

Transformer and 

 AC side: 4 states

Converter control: 

30 states
Converter model: 

10 states

 

Fig 2. Schematic of the small-signal, analytical, DQ state space model. 

The state space model incorporates power flow solution of the French and the English 

grid, and the steady-state solution of the two MMCs. This is used to initialize all the gains 

of the linearized models. This means that the state space model can be used in stand-alone, 

without performing power flow and time-domain simulations in EMTP. This facilitates 

performing AC parameter studies which implies changes of the operating point and the 

power flow. 

In the power flow analysis, the AC grid is represented as a slack bus (behind an 

impedance) while MMC can be either a PQ or PVac source depending on the control mode. 

The generator terminal is a PQ source which enables changing reactive power. Since the 
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generator actually controls the terminal AC voltage, the voltage is calculated in the power 

flow solution to provide the set reactive power.  

2.3  State space model of HVDC  

2.3.1 HVDC parameters 

There is limited data on the Eleclink HVDC in public domain and therefore some 

parameters are adopted from the standard EMTP model of the MMC HVDC [21]. All the 

parameters are provided in Table 3 in Appendix, excluding the controller parameters (this 

will be defined later). The controller has multiple nested loops and final tuning is achieved 

considering overall stability, performance, robustness and considering experience from 

industry with previous projects [21].  

2.3.2 Linearized dynamic MMC model 

The state space model of the MMC HVDC follows the MMC modelling methods 

verified in [22]. This basic MMC model (with no control) is of the 10th order and in three 

coordinate frames: DC frame, fundamental frequency frame and double fundamental 

frequency frame. The model is derived by linearizing the average value model and this 

neglects the higher frequency switching dynamic. However, it adequately represents the 

circulating current dynamic and the suppression control (CCSC) which makes the model 

accurate for the stability assessment of the SSTI as well as the control interactions in a 

wider frequency domain. This model is much more accurate than the simple two level VSC 

used in [17], considering that most modern HVDC use MMC technology.  

2.3.3 State space model of the DC cable 

The state space model of the subsea cable is assembled by performing direct vector 

fitting method on the wideband cable model [23]. This model is of the 50th order, and 



 

8 

 

accuracy is verified against the EMTP model in the frequency range up to 1 kHz. It is 

known that simple DC cable models can not accurately represent interactions with MMC 

HVDC [24].  

2.3.4 HVDC control 

The models of the two MMC are connected using the DC cable model to form the 

HVDC link and the model is completed by developing the control structure. A standard 

MMC HVDC control is used as depicted in Fig 3. The reactive power controller uses AC 

voltage droop feedback which is commonly used in HVDC. Table 1 list the considered 

operating modes. Control mode 1 (including voltage droop from Control mode 5) and 

Control mode 2 represent normal operation. Control mode 3 and 4 are used on a few 

HVDC worldwide and are considered for completeness. 

Control mode Rectifier control Inverter control 
Control mode 1 Active power  Reactive power DC voltage Reactive power 

Control mode 2 Active power AC voltage DC voltage AC voltage 

Control mode 3 DC voltage Reactive power Active power Reactive power 

Control mode 4 DC voltage AC voltage Active power AC voltage 

Control mode 5 Active power AC voltage droop DC voltage AC voltage droop 

Table 1. Control modes of the HVDC 

 
Fig 3. Schematic of the HVDC control 
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The PLL is of DQZ type and the model details are given in [28]. Prior to the analysis, a 

range of feasible controller parameters, including PLL, is defined. This is determined by 

observing small signal step performance for various inputs and various strengths of the AC 

grid. The AC grid strength is represented using short circuit ratio (SCR), which is short 

circuit capacity divided with the HVDC power rating, and X/R. The range of controller 

gains is determined (with a ± 50% tolerance) to ensure settling time around 0.01s for DQ 

currents and 0.1s for outer loops, with overshoot below 20% for the SCR in the 2-10 range 

on both sides of the HVDC. Only the AC voltage controller integral gain is defined in a 

wider range to allow maintaining desired settling time for the entire SCR range - stronger 

AC grids require higher gains. The established range of controller gains is provided in 

Table 4 in Appendix. The provided basic values are adopted for the initial SSTI assessment. 

The defined controller range also provides similar performance for large signal 

disturbances such as the three phase short circuit in the 2-10 SCR range. 

2.4   State space generator model   

2.4.1 Linearized dynamic generator model 

The model is based on the linearized dynamic generator model in [11], and is presented 

in [12]. The shaft is represented with a multi-mass model as required for the SSTI studies.  

Some Gravelines generator parameters are given in [25], while shaft modes are reported 

in [10]. The Gravelines shaft parameters are not available in public domain, so, a parameter 

identification procedure is employed with the aim of adequately representing 

subsynchronous dynamics, i.e. the shaft torsional modes [12]. The mechanical shaft is 

represented using four connected masses which accounts for the three torsional modes of 
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concern [10]. The selected electrical parameters are provided in Table 5 (in Appendix) 

which also shows the obtained mechanical parameters.  

2.4.2 Generator control 

According to the IEEE standard for the excitation system models [26], the stationary 

exciter type AC4A is adopted. Also, the PSS2A power system stabilizer is included which 

has active power and rotor speed as the inputs. According to the IEEE recommended 

practice on governor systems [27], the IEEEG1 steam turbine governor is adopted. The 

parameters of the controllers are adopted from the same standards.   

2.4.3 Torsional modes 

The study in [12] verified the state space generator model by replicating the results of the 

experimental study on SSTI between Gravelines generator and IFA2000 LCC HVDC [10]. 

The model correctly identified frequency and damping of the three generator torsional 

modes: the 6.3 Hz mode (which is the most critical), the 12 Hz mode and the 16 Hz mode 

(which cannot be excited by the electric grid and is not consider for the SSTI analysis).  

2.5 Operating conditions and AC parameter range 

The impact of the following AC parameters is analyzed: HVDC loading, generator 

active/reactive power, SCR and X/R ratio of the French and English AC grid and distance 

between the HVDC and the generator. The impact of the MMC reactive power is 

investigated for Control mode 1 and 3 while the impact of the AC voltage at the point of 

common coupling (PCC) is investigated for Control mode 2 and 4. It is to be noted that the 

operating conditions are always chosen so that the PCC voltage is within the 380 - 420 kV 

range (within ± 5% of the rated value). The SCR of the French grid is expected to decrease 
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as low as 3 in some operating conditions [10], however, lower values are also feasible with 

MMC HVDC [28] . The range of AC parameters considered for the SSTI assessment is 

provided in Table 6 in Appendix. 

3. Eigenvalue stability assessment   

The SSTI are analyzed by changing key AC parameters, operating points and controller 

gains and observing damping of Gravelines 6.3 Hz and 12 Hz torsional modes (imaginary 

part of the eigenvalues representing torsional modes changes very little and is not depicted). 

Torsional damping is then compared to the case of isolated Gravelines generator (when the 

HVDC is disconnected) to determine the impact of the HVDC. 

3.1   HVDC exporting power from France to England 

3.1.1 Impact of HVDC loading and French SCR 

The eigenvalue studies show that increasing generator or HVDC loading or reducing 

French SCR deteriorates torsional damping. This means that the worst-case scenario for 

SSTI is when generator and HVDC are at rated active power. Fig 4 shows obtained 

damping of the 6.3 Hz and 12 Hz torsional modes for the change of the French SCR. The 

generator and HVDC are delivering rated power. Generator power factor is 0.95 - 

overexcited. For the HVDC in Control mode 1 and 3, MMC power factor is kept at unity, 

and for the HVDC in Control mode 2 and 4, PCC voltage is kept at the rated value. The 

X/R ratio is 10 on both sides of the HVDC and SCR of the English AC grid is 5. By 

comparing the obtained damping to the case of the isolated generator, it can be seen that the 

HVDC always deteriorates damping of both the 6.3 Hz and 12 Hz modes. For very low 

French SCR, the HVDC can even destabilize the 6.3 Hz mode – SCR below 1.5 for Control 
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mode 2.  Even for the realistically low French SCR equal to 3 [10], the adverse impact of 

the HVDC is notable: damping is reduced by 0.08 for the 6.3 Hz mode and by 0.07 for the 

12 Hz mode. This applies to the Control mode 2 which has the most detrimental impact. 

Reactive power control has slightly less negative impact compared to AC voltage control. 

Also, AC voltage droop control is not much different from the reactive power control 

(difference is less than 0.01). They also show similar impact in the analysis of the rest of 

the AC parameters.  

 

Fig 4. Torsional damping for the change of the French SCR. HVDC and generator are delivering rated power.  

The impact of the HVDC loading on the damping of the 6.3 Hz and 12 Hz modes is shown 

in Fig. 5. This is obtained for the French SCR equal to 3 which represents the lowest expected 

value in the North French system according to [10] . All other operating conditions remain 

the same. As can be seen, increasing HVDC active power deteriorates torsional damping. 

The impact of the generator active power is not exhibited because the results agree with the 

well-known torsional characteristics of generators [1][12]. 

Control mode 1
Control mode 2
Control mode 3
Control mode 4

Isolated generator

Control mode 5
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Fig. 5. Torsional damping for the change of the HVDC loading. French SCR is set to 3. 

Further studies also show that the impact of the English grid is negligible, and therefore  

decreasing the English grid strength will not change the results obtained for different French 

grid strength. Also, the impact of the French X/R ratio and the distance between the HVDC 

and the generator is minor – damping changes less than 0.01 within the defined parameter 

range – so this is not exhibited. These figures also show that 12Hz mode has much better 

damping and it has not been possible to excite 12Hz instability in our studies. 

3.1.2   Impact of generator reactive power  

The results of the stability analysis show that the generator reactive power may have a 

notable impact on the torsional damping and this is exhibited in Fig. 6. The operating 

conditions are kept the same as in the previous section. Only the generator active power is 

set to 950 MW to enable changing reactive power in the full range from Table 6. As can be 

seen from the figure, increasing exported reactive power (positive values) deteriorates 

torsional damping for AC voltage control on MMC (it can change up to 0.03). However, 

the damping does not change much for reactive power control on MMC. This indicates that 

the damping is in fact sensitive to the MMC reactive power which changes as a results of 

the change of generator reactive power. This is explored next. 

Control mode 1

Control mode 3

Control mode 2

Control mode 4

6.3 Hz mode 12 Hz mode
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6.3 Hz mode 12 Hz mode

Control mode 1

Control mode 3

Control mode 2

Control mode 4

 
Fig. 6. Torsional damping for the change of the generator reactive power 

3.1.3 Impact of MMC reactive power and AC voltage 

This section investigates the impact of the French MMC reactive power for Control 

mode 1 and 3, and the impact of the PCC voltage for Control mode 2 and 4. The operating 

conditions are kept the same as in the previous sections. The generator is delivering rated 

power with constant reactive power - 0.95 power factor. For MMC in reactive power 

control, the HVCD loading is set to 900 MW to enable reactive power change in the full 

range from Table 6. Fig. 7 shows the obtained results. It is seen that high negative 

(imported) reactive power deteriorates damping notably. The figure also shows that 

reducing PCC voltage deteriorates damping. The reason for this is that reducing PCC 

voltage is achieved by increasing imported MMC reactive power. This confirms the 

assumption from the previous section that the torsional damping is sensitive to the MMC 

reactive power. Furthermore, the damping is more sensitive as the French AC grid strength 

is decreasing and the HVDC loading is increasing. Although lower HVDC loading enables 

higher values of imported reactive power which may further decrease torsional damping. 
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Control mode 1

Control mode 3

Control mode 2

Control mode 4

6.3 Hz mode 6.3 Hz mode

12 Hz mode 12 Hz mode

 
Fig. 7. Torsional damping for the change of the French MMC reactive power (left column) and French PCC 

voltage (right column). 

3.1.4 Impact of HVDC control 

This section investigates the impact of the HVDC controller gains including PLL. The 

operating condition remain the same as in the previous sections (generator and HVDC are 

delivering rated power; French SCR is set to 3). The obtained results show that changing 

DQ current controller and active power controller gains, within the defined range in 

Appendix, does not impact torsional damping significantly. The change is less than 0.01 in 

all cases and so this is not exhibited. It is to be noted that increasing DQ current controller 

integral gain improves damping while increasing active power controller integral gain 

deteriorates damping. In case of reactive power controller, increasing integral gain 

improves damping and this is displayed in Fig. 8. The figure also shows the impact of the 

AC voltage controller integral gain which is more significant. One of the reason for this is 

that a wider range of this gain is considered.  
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The study also shows that the 6.3 Hz mode is sensitive to the change of the AC voltage 

droop gain. Increasing the gain within the defined limits can improve damping up to 0.01.  

 
Fig. 8. Torsional damping for the change of the reactive power controller integral gain (left) and the AC 

voltage controller integral gain (right column).  

Fig. 9 shows obtained torsional damping for the change of the French SCR and for two 

different PLL settings - upper and lower limits from Table 4 in Appendix. The displayed 

results are obtained for Control mode 2, however, the results are similar for the other 

control modes. As can be seen from the figure, increasing PLL gains improves damping. 

Damping is more improved as the grid strength is reducing and also, damping is more 

improved for the 6.3 Hz mode. This shows that choosing PLL gains has a significant effect 

on SSTI particularly for weak grid connections when the risk of adverse interactions is 

high.  This finding also agrees well with the stability of the isolated VSC HVDC systems 

(the generator is disconnected) [30][31]. Namely, the literature indicates practically no 

Control mode 1

Control mode 3

Control mode 2

Control mode 4

6.3 Hz mode 6.3 Hz mode

12 Hz mode 12  Hz mode
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stability issues when adopting higher PLL gains for weak AC grid connections on the 

rectifier side. The case of the weak AC grid on the inverter side is analyzed later on.  

 
Fig. 9. Torsional damping for the change of the French SCR and for two PLL gain settings. 

3.1.5 Participation factors 

It is shown that the HVDC can destabilize the 6.3 Hz torsional mode and this section 

investigates participation factors for the unstable mode. Participations factors are a measure 

of the relative participation of the state variables in the eigenvalues – torsional mode in this 

case – and are used here to indicate the cause of SSTI. They are normalized here by 

dividing with the value for the maximum participation for the eigenvalue. The participation 

factor of the k-th state in the eigenvalue is calculated as the sensitivity of that eigenvalue to 

the diagonal element akk of the state space matrix [1]. Table 2 shows obtained dominant 

participation factors. As can be seen, the angles of the generator shaft masses have the 

highest participation which is expected. French MMC control has the next highest 

participation, namely the active power controller, the AC voltage controller and PLL. 

Similar results are obtained for the HVDC in reactive power control mode in which case, 

reactive power controller has high participation instead of the AC voltage controller and 

reactive power instead of the PCC voltage measurement. In case the active power controller 

KP PLL = 120, KI PLL = 600

KP PLL = 40, KI PLL = 200

Control mode 2

6.3 Hz mode 12 Hz mode
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is on the inverter, for Control mode 3 and 4, it still has dominant participation and all this 

indicates that the main cause of SSTI is the control of the HVDC power transfer. The table 

also reveals that the MMC feedback states have a noticeable participation which means that 

they could be used as feedback for the development of the supplementary SSTI damping 

controller on HVDC.  

Generator French MMC French AC grid 

Model states P.F. [%] Model states P.F. [%] Model states P.F. [%] 

Generator speed 62.77 PLL output 0.8015 Q-axis current 0.11 

Generator angle 62.77 AC voltage control output  0.4523 D-axis current 0.0817 

LP turbine B speed 23.72 Active power control output 0.4209   

LP turbine B angle 23.72 PLL integrator  0.1   

LP turbine A speed 100 Q-axis voltage  0.0993   

LP turbine A angle 100 D-axis voltage  0.0987   

HP turbine speed 17.87 Q-axis current  0.023   

HP turbine angle 17.87 PCC voltage 0.0145   

  Active power 0.0135   

  D-axis current  0.0018   

Table 2. Participation factors for the unstable 6.3 Hz torsional mode 

3.2   HVDC importing power from England to France  

3.2.1 Impact of operating conditions 

This section investigates the risk of the SSTI in case of the HVDC importing power from 

England to France, which has not been considered in reported studies. The results show that 

the HVDC contributes positively to the torsional damping (or very small negative 

contribution) for a wide range of operating conditions, for all the control modes from Table 

1 and for the basic HVDC controller setting. 

3.2.2  Impact of HVDC control  

Analysis of the HVDC controller gains shows that the HVDC can reduce damping of 

only the 6.3 Hz mode and only for high AC voltage controller integral gain – the higher the 

gain the more detrimental the impact. Adopting higher values may be required to maintain 
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fast AC voltage step response for strong AC grids. For example, if SCR is 10, basic gain 

value (60) gives settling time of a few seconds, while 5 times increased gain (value of 300) 

gives settling time below 0.2 s. Considering gain of 300, the damping is displayed in Fig. 

10 – left graph.  

 
Fig. 10. Damping of the 6.3 Hz mode for the change of the French SCR and different PLL gains. AC voltage 

controller integral gain is increased to 300. 

As can be seen, HVDC reduces damping compared to the case of isolated generator and it 

can even destabilize the mode for the SCR below 3 and for Control mode 2. Control mode 

4 shows slightly less detrimental impact. The figure also shows the impact of PLL gains 

(right graph) and it can be seen that reducing PLL gains improves the damping. It is seen 

that low inverter PLL gains can even stabilize the 6.3 Hz mode for all the grid strengths. 

This finding agrees well with the literature on stability issues of isolated VSC based HVDC 

systems (generator is disconnected) [29][30][31] which indicates that reducing PLL gains 

may improve stability margins when the inverter is connected to a weak AC grid. 

Furthermore, this is opposite to the results obtained for the HVDC exporting power from 

France in which case increasing PLL gains reduces the risk of SSTI. This means that 

adopting different PLL gains on rectifier and inverter could be beneficial for mitigating the 

risk of SSTI and also improving overall stability margins. Impact of simultaneously 

Control mode 2

Control mode 4

Isolated gen. KP = 80, KI = 400

KP = 120, KI = 600

KP = 40, KI = 200

PLL gains

Control mode 2

6.3 Hz mode 6.3 Hz mode
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increased PLL gains on the rectifier and reduced PLL gains on the inverter shows similar 

benefits on SSTI as shown in Fig. 9 and Fig. 10. The effectiveness of such setting depends 

on the mechanical torsional damping, the AC grid strengths and the control settings.  

4. Time domain verification 

All the conclusions from the eigenvalue analysis are confirmed by performing 

simulations on the detailed EMTP model for small signal inputs and this sections shows 

some of the simulation plots. The modelling of the MMC HVDC in EMTP was formulated 

by the CIGRE Working Group B4.57 [21] for the purpose of analyzing behavior of HVDC 

grids and their interactions with the AC systems. Fig 11 shows the EMTP generator-rotor 

speed response for the active power step on HVDC and for two different PLL settings. 

French SCR is set to 1.5 which is a very weak AC grid but expected is some cases [28]. 

The HVDC is exporting rated power from France to England and the generator is also at 

rated power. Also the HVDC is in Control mode 2. As can be seen from the figure, for low 

PLL gains the response shows growing oscillations at the frequency of the 6.3 Hz mode 

while for higher PLL gains the oscillations are poorly damped. This confirms that the 

HVDC can destabilize the 6.3 Hz mode and that the impact of PLL is of significance.  

 

Fig 11. EMTP response of the generator-rotor speed for active power step on HVDC at 2 s. HVDC is 

exporting rated power from France to England and French SCR is 1.5.  

 6.34 Hz
KP PLL = 40, KI PLL = 200
KP PLL = 120, KI PLL = 600
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Fig 12 shows the EMTP responses when the HVDC is importing 0.25 p.u. power from 

England. The AC voltage controller gain is increased to 150. As can be seen, the figure 

confirms that the HVDC can destabilize the 6.3 Hz mode when the power is imported to the 

generator side and the AC voltage controller gain is high. It also shows the opposite effect 

of the PLL gains compared to the case of the HVDC power exported from France.  

Further EMTP studies for large signal disturbances also show that PLL has similar 

impact on stability.  

 

Fig 12. EMTP response of the generator-rotor speed for active power step on HVDC at 2 s. HVDC is 

importing 0.25 p.u. power from England to France and French SCR is 1.5. AC voltage KI is set to 150. 

5. Conclusions 

The paper investigated the stability of the Eleclink 1GW MMC HVDC coupled with the 

1.12GW Gravelines generator in subsynchronous domain. The main conclusions are: 

• MMC HVDC may notably deteriorate damping of low frequency torsional modes when 

the rectifier is connected close to the turbine-generator. Instability is possible for very 

low SCR. This is contrary to the results of some studies on the MMC HVDC systems 

and the two level VSC based systems. 

• The worst case-scenario is when the generator and HVDC deliver their rated power for 

low French SCR.   

 6.34 Hz

KP PLL = 40, KI PLL = 200
KP PLL = 120, KI PLL = 600
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• Participation factors indicate that the control of the HVDC power transfer in the 

direction from the generator side is the main cause of the SSTI. 

• PLL has a high impact on SSTI. Increasing PLL gains improves torsional damping for 

weak grid connections and this could be a practical method for SSTI mitigation.  

• In case the HVDC is importing power from the English grid, it can deteriorate the 

damping of the 6.3Hz mode but only for high values of the AC voltage controller gains.  

• When importing power from England, reducing PLL gains improves torsional damping. 

• Adopting different PLL gains on the rectifier/inverter could be beneficial for the SSTI 

mitigation depending on the other operating conditions.  

• The ongoing study considers the combined effect of IFA 2000 and Eleclink HVDC in 

generator vicinity.  

Appendix. HVDC and generator parameters  

Converter parameters Underground DC cable parameters 
Power rating (MW) 1000 Number of poles per cable 2 

DC voltage (kV) ± 320 Vertical distance from ground level (m) 1.33 

Transf. prim. voltage (kV) 400 Horizontal distance between poles (m) 0.5 

Transf. sec. voltage (kV) 350 Conductor outside radius (mm) 32 

Transf. reactance (pu) 0.18 Sheath inside radius (mm) 56.9 

Transf. resistance (pu) 0.001 Sheath outside radius (mm) 58.2 

Arm inductance (pu) 0.12 Outer insulation radius (mm) 63.9 

Capacitor energy in submodule (kJ/MVA) 40 Conductor resistivity per length unit (10-8 Ω/m) 1.72 

Number of submodules per arm 400 Sheath resistivity per length unit (10-8 Ω/m) 2.83  

  Relative permeability 1 

  Insulator relative permittivity 2.5 

  Insulator loss factor 0.0004 

Table 3. Eleclink MMC HVDC parameters 

Active power controller DC voltage controller 

Proportional gain 0 Proportional gain 9.6 

Integral gain 15 – 45 (basic value is 30) Integral gain 294 

Feedback filter cut-off freq.  280 Hz Feedback filter cut-off freq. 141 Hz 

Reactive power controller AC voltage controller 

Proportional gain 0 Proportional gain 0 

Integral gain 15 – 45 (basic value is 30) Integral gain 30 – 300 (basic value is 60) 

Feedback filter cut-off freq. 280 Hz Feedback filter cut-off freq. 280 Hz 

AC voltage droop controller Circulating current suppression controller  

Droop slope (p.u. reactive 

power/p.u. AC voltage) 
-9 – -3 (basic value is -6) 

Proportional gain 0.8 

Integral gain 20 

Feedback filter cut-off freq. 2000 Hz 
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DQ current controller  PLL 

Proportional gain 1 Proportional gain (rad/s/p.u.) 40 – 120 (basic value is 80) 

Integral gain 50 – 150 (basic value is 100) Integral gain (rad/s2/p.u.) 5 times the proportional gain 

Voltage feedforward filter cut-off frequency 11 Hz 

Terminal voltage and current feedback filter cut-off frequency 2000 Hz 

Table 4. Range of HVDC controller gains  

Electrical parameters (p.u.) Mechanical parameters 

Lad Laq Ll Lfd L1d Turbines/generator HP  LP A LP B GEN 

2.3 2.3 0.27 0.1502 0.0381 Inertia H [MWs/MVA]  0.168 1.39 1.5 0.981 

L1q Rfd R1d R1q  Spring constant [pu torque/rad] 9.48 10.94 19.09 

0.0543 9.64e-4 0.0098 0.0089  
Mech. damping [pu torque/pu 

speed] 
0.2 0.4 2 0.4 

Table 5. Gravelines generator electrical and mechanical parameters 

AC parameter Parameter range 
AC grid SCR  0.5 – 10  (basic value is 5)  

AC grid X/R  5 – 20   (basic value is 10) 

Distance between HVDC and generator 0 – 50 km  (basic value is 30) 

Generator active power  0 – 1120 MW 

Generator reactive power  -100 MVar (import) – 500 MVAr (export) for 950 MW active power 

HVDC active power -1000MW – 1000 MW 

HVDC reactive power -300 MVAr (import) – 100 MVAr (export) for 900 MW active power 

PCC voltage  380 kV – 420 kV RMS line-to-line 

Table 6. Range of AC parameters and operating conditions 
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