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Abstract

Circadian rhythms play a critical role in the physiological processes involved in energy
metabolism and energy balance (EB). A large array of metabolic processes, includ-
ing the expression of many energy-regulating endocrine hormones, display temporal
rhythms that are driven by both the circadian clock and food intake. Mealtime has
been shown to be a compelling zeitgeber in peripheral tissue rhythms. Inconsistent
signalling to the periphery, because of mismatched input from the central clock vs
time of eating, results in circadian disruption in which central and/or peripheral
rhythms are asynchronously time shifted or their amplitudes reduced. A growing
body of evidence supports the negative health effects of circadian disruption, with
strong evidence in murine models that mealtime-induced circadian disruption results
in various metabolic consequences, including energy imbalance and weight gain.
Increased weight gain has been reported to occur even without differences in energy
intake, indicating an effect of circadian disruption on energy expenditure. However,
the translation of these findings to humans is not well established because the ability
to undertake rigorously controlled dietary studies that explore the chronic effects
on energy regulation is challenging. Establishing the neuroendocrine changes in re-
sponse to both acute and chronic variations in mealtime, along with observations
in populations with routinely abnormal mealtimes, may provide greater insight into
underlying mechanisms that influence long-term weight management under different
meal patterns. Human studies should explore mechanisms through relevant biomark-
ers; for example, cortisol, leptin, ghrelin and other energy-regulating neuroendocrine
factors. Mistiming between aggregate hormonal signals, or between hormones with
their receptors, may cause reduced signalling intensity and hormonal resistance.
Understanding how mealtimes may impact on the coordination of endocrine factors
is essential for untangling the complex regulation of EB. Here a review is provided on
current evidence of the impacts of mealtime on energy metabolism and the underly-

ing neuroendocrine mechanisms, with a specific focus on human research.
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1 | INTRODUCTION

The influence of circadian rhythms on energy balance (EB) has be-
come a topic of increasing interest with a new-found pursuit to iden-
tify whether meal timing or energy distribution across the day can
impact on weight management and metabolic health. Life on earth
is characterised by continuous rhythms arising from evolutionary
adaptations to earth's natural 24-hour light/dark cycle. As humans,
we have evolved an active light phase primarily designed for energy
replenishment, reproduction and activity, and an inactive dark phase
in which to sleep, recover and regenerate. To achieve these daily cy-
cles, input is required to inform the body of the time of day, and
outputs are required to relay this information between central and
peripheral tissues.'?

New research in murine and human models highlights the impor-
tance of circadian rhythms with respect to regulating energy metab-
olism, and the metabolic health consequences that may occur from
disruption of these rhythms. How time of eating results in changes
in clock genes and then impacts on metabolic health is currently
not well defined. Specifically, the effect of meal timing on energy
expenditure (EE) and EB remains controversial. Figure 1 illustrates
the complex regulation of EB, with temporal input from the central
clock (in the brain), activity and feeding, as required to synchronise
the temporal excretion of neuroendocrine hormones, which in turn
regulate energy intake (El) and EE. Here, we review current evidence
regarding the influence of circadian rhythm disruption, and specifi-
cally differences in mealtime, on EE with a focus on underlying endo-
crine mechanisms involved in energy regulation. Because the term
circadian disruption is not clearly defined, we address the effects of
potent desynchronisation protocols as circadian disruptors, as well
as the more subtle effects of altering mealtime, where the extent of
circadian disruption may be less obvious. The first part of the review
addresses the effects of circadian disruption on whole body EE. The
second part addresses the underlying endocrine changes that may

contribute to chronic alterations in energy regulation.

2 | CIRCADIAN RHYTHMS AND THEIR
ROLE IN METABOLISM

The suprachiasmatic nucleus (SCN) is located in the hypothalamus
within the brain and is the primary regulator of circadian rhythms.
The SCN receives photic input from the retina, relaying temporal
information to the brain and peripheral tissues. The SCN maintains
a self-sustaining 24-hour rhythm with output to peripheral tissues
sent via neural (autonomic), hormonal (hypothalamo-pituitary) and
behavioural signals to create internal synchrony between central
and peripheral clocks of the body (Figure 1). Regulation of the mam-
malian system, including human rhythms, is driven by two primary
feedforward/feedback loops in which transcription factors CLOCK
and BMALI1 activate several clock genes (cryptochrome [CRY 1 and
CRY2] and period [PER1, PER2, PER3]) and nuclear receptors (ROR«a
and REV-ERBa). These in turn inhibit or further activate CLOCK/

BMAL1 expression and therefore the timing of clock-controlled
gene expression required for temporal regulation of local tissue
(Figure 2).3* These clock genes have been identified in almost all
human organs and tissues and individually regulate the timing of
physiological processes within different compartments of the body.
Specifically, many of the functions involved in energy metabolism
and regulation of EB are under strong circadian control and have
been reviewed in detail previously.>® In addition to photic inputs,
other factors, such as food (both quality, quantity and timing) and
physical activity, can act as entrainment cues (zeitgebers). Although
the timing of activity can induce phase-shifts in the master clock,”®
feeding time primarily influences peripheral clock timing with little
to no effect on the SCN.”* Therefore, in an interactive loop, circa-
dian rhythms can drive El and regulate energy metabolism, yet en-
ergy intake and activity can also influence the timing of clock genes
and their local tissue activity (Figure 1).

Regular circadian rhythms help to maintain normal body func-
tions and enable anticipation of events required for survival,
including regulation of the timing of sleep, activity, digestive
processes and metabolism (both storage and breakdown of fuel
sources).”? Both central and peripheral rhythms are evident in
many key metabolic processes, including regulation of EB, from
the most basic cellular level though to whole body energy metab-
olism. For example, circadian rhythms can influence genes and
gene products involved in rate-limiting steps of cellular metabo-
lism. A good example is the supply of NAD +, which exhibits a
daily rhythm as a result of circadian oscillations in nicotinamide
phosphoribosyltransferase (NAMPT), which controls a rate-lim-
iting step in the salvage of NAD+.'23 Various endocrine signals
involved in the regulation of energy metabolism display circadian
oscillations® and circadian variations in overall whole body EE and
macronutrient balance have been observed as a result of oscilla-
tions in preferential nutrient uptake and the use of macronutrients
at specific times of the day.>¢ Circadian variation in resting meta-
bolic rate (RMR) has been observed in a number of human studies,
with RMR or CO, production peaking around 5.00 to 6.00 pm, and
with a trough at approximately 5.00 am.2*% The thermic effect of
food (TEF) has also been reported to be greater in the morning
compared to the evening.'*™* The reasons for this are not clearly
understood, although it was suggested to be the result of many of
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factors, including insulin resistance in the evening,
nutrient uptake in the evening resulting in lower energy intensive
processes such as hepatic and muscle glycogen synthesis, which
both display diurnal variation and peak during the active phase,?®
25 as well as lower rates of futile substrate cycling and/or reduced
rates of protein turnover.'® Following the consumption of identical
meals, glucose, insulin and free fatty acid levels are reportedly el-
evated in the evening compared to the morning, indicating a lower
uptake and storage of nutrients.’ This may in part explain the
lower evening TEF measured in some studies. Furthermore, circa-
dian clock gene regulation in peripheral tissues is likely to be re-
sponsible for reducing nutrient absorption in the evening, allowing

for more readily available fuel to prepare for the onset of fasting.
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FIGURE 1 Circadian influences in the regulation of energy balance. Neuroendocrine hormones responsible for regulation of energy
balance are excreted from multiple peripheral organs at specific times of the day in response to temporal input from neural, hormonal
(predominantly melatonin) and behavioural signals from the suprachiasmatic nucleus (SCN). Hormonal signals relay messages within

the periphery and to the energy regulatory centres in the arcuate nucleus (ARC) in the hypothalamus where temporal expression of
receptors allows for effective signalling. Within the ARC, activation of the neuropeptide Y (NPY)/agouti-related protein (AgRP) and pro-
opiomelanocortin (POMC)/cocaine- and amphetamine-related transcript (CART) neurones express their respective neuropeptides to
increase or decrease appetite and reduce or increase energy metabolism and energy expenditure respectively. Mealtime and activity can
also influence the timing and amplitude of peripheral clock genes and hence timing of hormone secretion. Differential input from energy
intake (El)/energy expenditure (EE) and the SCN may result in circadian desynchrony with either misaligned or attenuated circadian rhythms.
Chronic misalignment may result in energy imbalance through dysregulation of peripheral energy metabolism and dysregulated signalling to
the brain in relation to EE and El

Nutrient oxidation also appears to be under circadian control, with 3 | MEALTIME AS A ZEITGEBER
higher carbohydrate oxidation in the morning and greater fat oxi-
dation in the evening.!® These findings are evidence of the robust Meal timing is a potent zeitgeber in peripheral clocks. This is based not

circadian regulation involved in processes of energy metabolism. only on the time of eating, but also nutritional cues. Macronutrients
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FIGURE 2 Regulation of circadian rhythms by molecular clock components. Two transcription/translation feedback loops work together
to generate 24-hour rhythmic gene expression in the mammalian system. Primary transcription factors CLOCK and BMAL1 bind to specific
E-box sites to activate the expression of protein genes CRY1 and PER. In a primary negative-feedback loop, CRY and PER proteins inhibit
their own transcription by inhibiting CLOCK and BMAL1 activity. In a secondary feedback loop, nuclear receptors RORx and REV-ERBa«, are
activated by BMAL1 and CLOCK and, in turn, RORa activates and REV-ERBa suppresses BMAL1 transcription. BMAL1, brain and muscle
ARNT-like 1; CCG, clock controlled genes; CLOCK, circadian locomotor output cycles kaput; CRY, cryptochrome; PER, period; ROR, retinoic

acid receptor-related orphan receptor

and energy sensing enzymes (including PARP-1, SIRT1, AMPK and
mTOR),%%?7 all may serve as signals for entraining peripheral clocks
to meal timing. Additionally, secretion of food driven hormones from
the gut (eg, peptide YY [PYY], oxyntomodulin, cholecystokinin [CCK],
gastric leptin and ghrelin),?° peripheral tissues (eg, insulin, gluca-
gon), 313

sulphide, certain vitamins and tryptophan, short chain fatty acids

as well as derivatives of gut microbiota, including hydrogen

and bile acids,?* all act as signals for entraining peripheral clocks. The
ability of mealtime to influence peripheral clock gene expression is
evident through the provision of food during the inactive phase in
rodent models. Restriction of food to the light phase results in vari-
ous tissue specific changes in clock gene expression, with a complete
inversion of clock gene expression in the liver, partial shifts in brown
adipose tissue and arrhythmic expression in skeletal muscle.”%>
Although the SCN senses food intake, it remains primarily regulated
by the light dark cycle. The period required to resynchronise clock
genes in peripheral tissues in response to food-induced phase re-
setting is different between tissues, with faster phase resetting in
the liver compared to the heart, kidneys and pancreas, resulting not

only in misalignment from the master clock, but also misalignment

between peripheral clocks.” Similarly, in humans, delaying all meals
by 5 hours resulted in a significant delay in the timing of PER2 ex-
pression in white adipose tissue; however, there was no significant
change in the phase of PER3 or BMAL1 with no change in central
clock timing, as assessed by melatonin and cortisol rhythms.3¢ This
misalignment of rhythms between and within tissues, is suspected
to be the cause of the many health implications associated with late
night or irregular meal timing.

Delayed meal timing can impose negative effects on health; alter-
natively, optimal meal timing may improve clock synchrony. It has been
observed that the provision of a high-fat diet (HFD) independently of
other circadian disrupting factors, can negatively modify the expres-
sion of circadian clock genes. Time-restricted feeding (TRF) in mice
models, with feeding of a HFD only within an 8-hour window during
the active phase in combination with a 16-hour fast, can overcome the
large reduction in clock gene expression amplitude in the liver (reduced
amplitude in PER2, BMAL1, Rev-erb, Cry1) and amplitude in genes reg-
ulating glucose and fatty acid metabolism, as observed during an ad lib.
HFD.% The translation of such findings to humans is currently limited

and likely to be a feature of future research.



RUDDICK-COLLINS ET AL.

4 | PART 1: CIRCADIAN DISRUPTION AND
ENERGY EXPENDITURE

4.1 | Effects of circadian disruption on whole body
EB and EE

Rodent knockout models provide irrefutable evidence that clock
genes influence metabolic physiology and impact on pathways
involved in EB. Knockout models result in a large range of health
impairments including obesity phenotypes, hyperinsulinaemia, hy-
perlipidaemia and diabetic phenotypes.®® However, the more sub-
tle effects of circadian misalignment as opposed to gene knockout
models are still being investigated and the effects of larger vs smaller
misalignments (eg, shift work vs small changes in meal timing) and
chronic vs acute impacts, are as yet incompletely understood. In hu-
mans, shift work is associated with an increased risk of obesity,39
with an increasing number of night shifts per month*®*! and the du-
ration of shift work,*>*® both positively correlated with greater body
mass index (BMI). This higher BMI has also been reported despite
similar Els, indicating that other factors such as circadian misalign-
ment or lack of sleep, may affect the regulation of EE. In both human
and rodent studies, simulated shift work or forced desynchrony pro-
tocols have resulted in significantly decreased amplitude, as well as
decreased numbers of rhythmic transcripts.““'47 The effect that this
has on energy metabolism is not entirely clear.

Laboratory-based desynchronisation protocols, including the
use of altered light/dark cycles to create long or short days, acute
phase shifts or a simulated night shift, allow the investigation of the
effects of circadian desynchronisation and we are now beginning
to understand the underlying mechanisms regulating EB. In rodent
studies, restricting food intake to the rest- phase, light at night or
forced wheel running in the habitual rest-phase causes rest-phase
wakefulness along with feeding and activity out of phase with the
master clock. A cumulative number of rodent studies have shown
increased body weight, despite similar calorie intake, when rodents
are forced into desynchronising behaviours (daytime wakefulness
and eating or bright light at night).*®! Even dim light at night has
been shown to phase shift core body temperature and result in

significant decreases in EE and increases in weight gain in mice.>?

However studies reporting no changes®>™¢

t57,58

or decreases in body
weigh are often overlooked and, indeed, there are large vari-
ations in energy intake, expenditure and balance between studies
in response to desynchronisation protocols and specific outcomes
may be species specific. Despite this, most studies do show a level
of metabolic disturbance including reduced EE and impaired glucose
tolerance.>3%457

In human studies, the effects of circadian desynchrony on EE
and EB are also unclear. Imposing desynchrony through long or
short days had no effect on total daily EE.””®° Gonnissen et al®°
reported a small significant decrease in sleeping metabolic rate
after 3 days of phase advance, although this was not reflected in
total daily EE and there were no measurable differences in RMR,

activity EE or TEF. Buxton et al®* observed significant decreases

ot erocncocinor IR A

in RMR in a combined sleep restriction plus desynchrony protocol
(3 weeks 28-hour days + 5.6-hour sleep/24 hours); however, this
may be a result of the restriction of sleep, rather than desynchrony.
Certainly, sleep restriction may alter behavioural and physiological
mechanisms regulating EB irrespective of circadian misalignment.
Leproult et al®? found significant increases in El in sleep-restricted
individuals under both aligned and misaligned conditions. However,
it is important to note that situational cues can easily drive over-
consumption in humans. Provision of large ad lib. meals, as was

the case in the study by Leproult et al,®?

increased food variety,
and simply providing meals in the laboratory compared to eat-
ing at home can stimulate increased EL.%® Furthermore, Leproult

1°2 did not measure EE and therefore the distinction between

et a
misalignment and reduced sleep quality/quantity on energy me-
tabolism requires further investigation. In studies of simulated
night shift work, reported changes in EE are mixed. McHill et al®*
reported a significant reduction in total daily EE on the second and
third days of night shift work and significant reductions in TEF on
the first day of shift work, which began to resolve by the third day,
suggesting entrainment to the new schedule. By contrast, Morris
et al'” observed no differences in RMR or TEF with misalignment;
however, when broken down by gender, females actually showed a
significant increase in fasting and postprandial EE during misalign-
ment which was not seen in males.®> However, in these studies,
RMR was only measured at the beginning and end of the day with
relatively short and incomplete measures of TEF. Wefers et al®®
have also reported significant increases in sleeping metabolic rate
during misalignment, although it is not clear whether this was the
result of a change in sleep quality and, in addition, total daily EE
was not measured. Assessment of RMR in long-term shift workers
indicates that the effects of undergoing large and chronic shifts in
time do not alter measured RMR compared to non-shift workers

or prediction equations®”%8

and therefore lower RMRs are unlikely
to be a causative factor for weight gain in this population. Poorer
metabolic health in these individuals may be attributed to other
factors, such as changes in appetite, food choice, activity and other
behavioural differences. For example, shift workers may have more
challenges with respect to coordinating regular mealtimes, balanc-
ing sleep, activity and meals around work, and social and family
commitments, and may also have higher stress jobs increasing emo-
tional stress and anxiety. Individual variation in coping mechanisms
(stress eating, snacking, caffeine, activity avoidance vs activity
as an outlet), and the ability to plan and access healthy meals on
shift, may differentially influence those at risk of weight gain.””°
However, regardless of maintaining EB, metabolic health implica-
tions may occur in response to abnormal meal timing and circadian

misalignment.

4.2 | Meal timing on EB and EE

Epidemiological studies have contributed to a cumulative body of re-

search showing that disturbances in meal timing including breakfast
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skipping, late night eating, and shift work are linked to higher BMls

7176 |t is now assumed these

and elevated risk of metabolic disorders.
metabolic disturbances are a result of the effects of meal timing on
circadian rhythms. Consistent with this, studies in animal models
have highlighted the importance of meal timing in the regulation of
EB. Restricted feeding to the dark phase (active phase) in mice has
been shown to suppress the normal weight gain that occurs in mice
consuming a high-fat ad lib. diet.3”*®”7 Furthermore, day feeding
even on chow diet results in weight gain and metabolic impairment,
including decreased glucose tolerance and insulin resistance.>*7880
Many of these studies show differences in weight gain despite simi-
lar calorie intake, indicating that mealtime must alter EB through al-
tered EE. Although the effects of these extreme shifts in the time of
feeding found in rodent studies may be extrapolatable to shift work-
ers, there is a need to understand the more subtle effects of shifting
meals, such as from earlier to later in the day.81

Mealtime studies in rodent models have begun to address these
more subtle effects of time of eating and redistribution of energy
intake, across the normal wake-phase, on body weight and EB. One
study reported that skipping dinner resulted in significantly lower
body weight compared to skipping the first meal of the day or hav-
ing three meals per day.®? Significantly greater weight gain has been
observed in mice that were subjected to a 4-6-hour delay in the
onset of wake-phase feeding compared to mice allowed to eat ad
ib.8%84 Yoshida et al®* confirmed that this weight gain came from
greater energy intake compared to mice allowed to eat ad lib. (ad
lib. mice consumed 65% of their calories in the first 6 hours of their
wake-phase). In a second protocol comparing delayed vs ad libitum
feeding, the mice were subjected to energy restriction and matched
energy intake. Despite identical intakes, the ad lib. feeding mice lost
a greater amount of body weight compared to those in the delayed
feeding group. This indicates that later meal timing can contribute to
weight gain through reducing EE when energy intake is controlled,
as well as through increasing energy intake where food is provided
ad lib. Thus, studies in murine models tend to support the idea that
eating earlier in the active phase can improve body weight regulation
through both energy intake and EE.

In humans, breakfast skipping under EB conditions has regu-
larly been shown to have no effect on RMR or total daily EE com-
pared to consumption of breakfast.8>®” Although EE is lower in
the biological morning, this is compensated for by higher EE later
in the day and evening, indicating a redistribution of EE across the
day. Indeed, respiratory chamber studies of total daily EE suggest
that the lower evening TEF seen with breakfast skipping may be
more apparent than real because TEF is actually lower but longer,
continuing well into the night and thereby causing an apparently
higher sleeping metabolic rate.8”88 The effects of mealtime appear
to be more evident in weight loss studies in which energy distri-
bution is manipulated so that the majority of energy intake is con-
sumed in the morning or consumption of lunch is earlier in the day,
resulting in significantly greater weight loss.8?* However, even

this is not always consistent. Versteeg et al’? found no differences

in weight loss between individuals consuming 50% of calories at
breakfast (15% at dinner) vs 50% at dinner. However, with the ex-

1°2 who found no differences

ception of the study by Versteeg et a
in REE with different energy distributions across the day, none of
these studies have confirmed whether differential EE could explain
their results, rather than the study findings being a result of misre-
ported energy intake.

Although TRF in rodents during the active phase has shown
promise by improving markers of glucose metabolism and meta-
bolic health in the absence of weight loss, comparable well-con-
trolled studies to investigate TRF in humans are lacking. So far, most
human TRF studies have not controlled or accurately measured en-
ergy intake or TEE. Thus, the reports to date suggesting that TRF

80,93-97 of

results in a modest reduction in body weight in humans
1%-3% over a period of 2-16 weeks, as linked to improvement in
bio-markers of glucose homeostasis, need further investigation
and validation. It is not clear whether the apparent improvements
in metabolic health are a result of decreased energy intake (nega-
tive EB), improved circadian alignment or an increased duration of

overnight fasting. Sutton et al’®

reported that, following 5 weeks
of early TRF (early eating, 18-hour fast), males showed greater im-
provements in glucose/insulin metabolism during a morning oral
glucose tolerance test, in contrast to the controlled feeding sched-
ule (12 hours of eating and 12 hours of fasting). Interestingly, these
improvements were reported in the absence of weight loss, with
subjects being weight stable. Furthermore, work by Hutchison

|99

et al”” indicated no effect of TRF on total daily EE or activity. By

contrast, Ravussin et allo0

reported elevated post-prandial TEF with
early TRF, although this may have been the result of overlapping
postprandial EE after meals during the morning feeding period.
Additionally, the lower EE during the morning in the control (non
TRF) group was made up for by a higher EE overnight and there
was no overall difference in total daily EE between feeding regimes.

Most recently, Wilkinson et al”’

reported significant improvements
in metabolic health, including weight loss, reduced blood glucose,
lipids and blood pressure, when individuals adopted a TRF sched-
ule that reduced food intake from 15 hours down to 11 hours per
day. These effects were likely the result of a reduced energy intake
and elongated overnight fast, with no changes in physical activity
and no measures of resting or daily EE. However, similar to animal

studies,®”101

metabolic flexibility, which is the capacity to switch
between carbohydrate and fat oxidation, is amplified in TRF in hu-
mans with greater lipid oxidation during the prolonged overnight
fast.1°° Further to this, Kelly et al'®? found that shifting an eating
window to later in the day (from 8.00 am to 5.45 pm to 12.30 pm
to 22.00 pm) resulted in a higher RER, from higher CHO oxidation
into the evening and delayed transition into lipid oxidation. This oc-
curred despite the same duration of fasting and no differences in
EE. This lack of overnight lipid oxidation may overtime promote lipid
storage and adiposity. Further studies with controlled energy intake
may be necessary to specifically determine the effects of TRF on
human EE and EB.
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5 | PART 2: CIRCADIAN DISRUPTION AND
ENDOCRINE FACTORS

5.1 | The effects of circadian disruption on energy-
regulating endocrine factors

Endocrine factors play an essential role in communication between
organs (eg between the central nervous system and peripheral tis-
sues) and provide a fundamental communication pathway involved
in clock synchrony, as well as in the regulation of EB. Many of the en-
docrine factors involved in the regulation of energy metabolism and
EB also display diurnal oscillations. However, many are also highly re-
sponsive to food intake and other behavioural factors including ac-
tivity and sleep (Table 1). Clock genes and nutritional signals regulate
not only the synthesis and secretion of endocrine factors, but also
the abundance/availability and or sensitivity of receptors, as well as
the activity of post receptor signalling.® Regulation of EE requires
complex coordination of multiple hormones acting together in syn-
ergistic and additive relationships, as well as synchronised regulation
of receptor expression and sensitivity. This necessitates temporal
synchrony between all tissues involved in neuroendocrine regula-
tion of metabolism and EB and coordinated temporal input from the
central clock and food derived factors. The potential for misaligned
temporal hormones to influence energy regulation is shown in the

study by Roelfsema and Pijl,**®

in which a wider gap between an
individual's cortisol and prolactin acrophase was associated with
a higher BMI. Although only comprising an association study, this
agrees with research in various species in which the timing of the
acrophase of cortisol and prolactin vary across the seasons with an
increasing gap during spring/summer linked to fat gain and a shorter
gap in autumn/winter linked to fat loss.'®* Furthermore, manipula-
tion of the timing of the prolactin acrophase in hamsters and rats can
result in weight gain or loss without changes in energy intake.1%>1%¢
Understanding the circadian nature of energy-regulating endocrine
hormones, as well as how they respond to and influence circadian
disruption, may provide a means to understand the impacts of de-
synchrony on metabolic health and EB. Table 1 illustrates the roles
and rhythmicity of several key hormones involved in EB regulation.
Below we discuss the impacts of circadian disruption on endocrine
regulation of EB.

Forced desynchrony protocols are a potent circadian disruptor
that we can draw on to assess the effects of circadian disruption
on endocrine hormones. Currently, the effect of circadian disruption
on the expression of endocrine signals is inconsistent. One exam-
ple is cortisol. In some cases, the cortisol pattern has tracked the
changes in timing of the new behavioural cycle without any negative
changes in the amplitude, profile or overall mean concentration.>%¢!
However, one study found flattened rhythms with phase advanced
protocols and suppression of mean concentrations with phase delay
protocols.®’ Other hormones have also been reported on with varied

results. Gonnissen et al®°

reported significantly higher mean insu-
lin concentrations during a phase advance protocol (21-hour days)

compared to control 24-hour days, although no differences in daily

o i erocncocinor I A

mean leptin, glucagon-like peptide (GLP)-1, ghrelin and glucose con-
centrations. However, with a phase delay protocol (27-hour days),
there were significantly higher glucose and lower GLP-1 levels and a
tendency for reduced leptin concentration, although no differences

in mean ghrelin or insulin concentration. Scheer et al®’

also reported
a 17% lower leptin across the entire behavioural cycle with the im-
plementation of 28-hour days with significant increases in insulin
(22% increase) and glucose (6% higher), which was predominantly
from exaggerated postprandial responses as opposed to changes in
fasting glucose. Receptor sensitivity may also be negatively affected
by circadian disruption; however, the evidence currently stems from
rodent models. Arcuate nucleus (ARC) leptin sensitivity displays a
24-hour rhythm,*** with chronic jet lag in mouse models shown to
impair leptin signalling, through dampening signal transducer and
activator of transcription 3-pro-opiomelanocortin signalling in the
ARC, resulting in leptin resistance from desensitisation of LEPR-B-
expressing ARC neurones.** These changes in leptin signalling were
also coupled with reduced and arrhythmic EE. Similarly, chronic jet
lag has been found to alter insulin signalling pathways at various
levels within the ARC. The actual implications of this are currently
inconclusive, with chronic jet lag found to negatively impact on insu-
lin sensitivity at the insulin receptor substrate level, yet to increase
sensitivity at the phospho Akt level.1¢® Therefore, coupling of central
and peripheral clocks regulating leptin and insulin are necessary for
functional homeostatic feedback loops. Further research is neces-
sary to comprehensively establish the circadian disruption-induced
neuroendocrine changes that may contribute to changes in acute

and chronic EB.

5.2 | The effects of mealtime on endocrine factors

Compared to forced desynchrony protocols, it is less clear to
what extent meal timing causes circadian disruption and negative
changes in the circadian regulation of EB. Night eating syndrome
(NES) provides a model for understanding possible implications of
meal timing. NES is defined as consuming > 25% of daily energy in-
take after the evening meal and/or > 2 nocturnal ingestions (waking
up at night to eat) per week.'®® Individuals with NES often display
increased cortisol levels and decreased or delayed melatonin lev-
els, often with no delay in the time of sleep relative to those with
regular food consumption. In these individuals, both leptin and
ghrelin may be lower, not different or phase shifted, and insulin
and glucose are often increased with generally a degree of phase
shift and loss of synchrony between glucose and insulin.**’” In a
study by Goel et al,*® NES patients displayed a significant delay in
the phase of melatonin (1 hour 6 minutes delay) with a smaller yet
non-significant decrease in amplitude (15.3% lower). Even ignoring
melatonin disruptions, a large cohort study found eating a greater
percentage of calories closer to the personal relative melatonin
onset, irrespective of clock time, was associated with increased
body weight.'®? Goel'®® also reported individuals with NES had a

significant decrease in cortisol amplitude (25.6% lower), although
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there was no significant delay in the phase (42 minute delay). This
was accompanied by significant differences in the profiles of ghre-
lin (49.6% lower amplitude, 5 hour 18 minutes phase advance), lep-
tin (1-hour phase delay), and insulin (57.7% lower amplitude, 2 hour
48 minutes phase delay). In rodent models, simply suppressing the
amplitude of glucocorticoids, without significantly changing their
mean concentrations, results in substantially greater weight gain
compared to controls. This occurred despite no differences in en-
ergy intake.}”® Hence, flattening of the cortisol rhythm may affect
EB through alterations in EE and may account for the higher BMI
in those with NES. Interestingly, in the study by Wehrens et al,3¢
a 5-hour delay in meal timing (33% of energy intake within the
half-hour before bed), resulted in no alterations in the phase or
amplitude of plasma cortisol. It is possible that changes in cortisol
rhythm may take longer than the 6 days of delayed meals, as was
undertaken in the study by Wehrens et al,%¢ or other factors, such
as disrupted sleep or awakening to eat, may account for cortisol
amplitude suppression in NES.

Ramadan is characterised by daylight fasting and night-time
feasting and provides another regular and convenient model of
assessing the effects of irregular meal timing. The majority of cal-
ories are consumed shortly after sunset, with snacks often con-
sumed throughout the night and all food intake ceased at dawn.
By the end of Ramadan, a number of studies have shown a ten-
dency for postponed endogenous circadian rhythms by as much as
2-3 hours*’*'72 reduced amplitude and 24-hour mean melatonin’®
and significant flattening of cortisol rhythms.*”* By contrast to the
anticipated negative ramifications, Ramadan often results in small
improvements in many markers of cardiometabolic health as a
result of the typically observed transient weight loss likely from
prolonged fasting.'’>1¢ However, increased morning and eve-
ning insulin levels have been noted.’* Few studies have looked
at the effects of Ramadan on energy-regulating neuroendocrine
hormones. In one study, there were no changes in the acrophase
or amplitude of leptin and ghrelin; however ghrelin was modestly
higher at 11.00 am and leptin significantly lower at 10.00 pm. Y77
Despite a trend to lower daytime EE likely as a result of lower ac-
tivity, the small number of studies which have assessed EE have
observed no evidence of metabolic adaptation, with no change in
RMR or 24-hour EE.Y7178

Breakfast skipping, tends to push meal intake later into the day
and has been proposed to have a negative impact on EB mecha-
nisms. The Bath Breakfast Study compared 6 weeks of breakfast
eating to skipping and observed no differences in fasting mea-
sures of glucose, insulin, T3 and T4, leptin, ghrelin, PYY, GLP-1
or adiponectin. This was the case for both lean and obese indi-
viduals. Test day postprandial measures of leptin, ghrelin, PYY,
insulin and glucose, as assessed for 3 hours post breakfast and
lunch, were also indifferent between breakfast conditions.?’”?
GLP-1 and adiponectin were the only hormones to show a ten-
dency for a difference. Plasma GLP-1 increased in the breakfast
group and decreased in the fasting group, whereas adiponectin

showed no change in the breakfast group compared to increasing

in the fasting group. Farshchi et al'®o reported that skipping break-
fast resulted in significant increases in postprandial insulin area
under the curve (AUC), although this did not have any effect on
postprandial EE. Delaying the timing of lunch may even be suffi-
cient to alter endocrine regulation, with Bandin et al*®! finding a
suppression of morning cortisol after 2 weeks of late lunch eat-
ing (16.30 pm) vs early lunch eating (1.00 pm). However, this is in
contrast to the lack of any differences in 24-hour cortisol values
and profiles in the study by Nas et al®® comparing habitual three
meals, breakfast skipping and dinner skipping. Despite the larger
weight loss in the earlier lunch eaters in the study by Garaulet

et al,®’

there were no notable differences in leptin, ghrelin or in-
sulin. However, all of these measures were undertaken fasting and
there may have been differences across the day or in the post-
prandial state (ie, the circadian rhythm in these markers was not
captured). Changing the energy distribution across the day so that
majority of calories are consumed in the morning vs the evening
may also affect EB through neuroendocrine changes. Jakubowicz

et al’®

noted significantly higher insulin levels and ghrelin levels
in individuals consuming 45% of their calories in the evening.
Versteeg et al’? reported that 50% of calories consumed at break-
fast vs dinner during weight loss resulted in differential effects
on fasting cortisol and glucagon, with an increase in fasting cor-
tisol in the breakfast group compared to a decrease in the dinner
group and a significant decrease in glucagon only in the breakfast
group.”?> However, they found no differences in fasting ghrelin,
leptin, glucose or insulin between the groups.*®? Interestingly,
they also looked specifically at neuronal circuits that regulate
energy homeostasis and found significant increases in dopamine
transporter in the striatum and serotonin transporter in the thala-
mus with early feeding and decreases with late feeding. They hy-
pothesise that morning predominant calorie intake may impact on
EB through positively reinforcing brain reward circuitries involved
in the hedonic aspects related to food.'®? These findings could
theoretically reduce overconsumption, improve dietary compli-
ance and improve satiety. If true, these findings could display a
more measurable impact on body weight regulation under ad lib.
feeding conditions, where they could improve EB through mecha-
nisms regulating El more so than EE. Further research is required
to understand how endocrine differences resulting from breakfast
skipping and energy distribution may contribute to differential EB.

Time-restricted feeding has become a novel approach to po-
tentially improve EB. Although, in humans, the negative EB and
weight loss currently appear to be related to reduced energy in-
take, alterations in endocrine regulation may result in long-term
changes in mechanisms controlling both energy intake and EE.
Often, no differences are noted in fasting measures of ghrelin,
leptin, adiponectin glucagon and insulin?®?%183%; however, mixed
results have been reported for PYY and GLP-1. One study demon-
strated a reduced fasting GLP-1 with early TRF and no change in
PYY,”? whereas another found a decreased morning PYY yet no
change in GLP-1 in the morning.”® Hutchison et al’? also reported

a lower postprandial glucose incremental AUC and trend to a
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lower insulin incremental AUC with early vs late TRF. Moro et al*®
found that, after 8 weeks of restricting intake to between 1.00 pm
to 9.00 pM compared to 8.00 am to 9.00 pMm, there was a signifi-
cant reduction in inflammatory markers and increased adiponec-
tin. Adiponectin has anti-inflammatory functions, interacts with
AMPK and stimulates peroxisome proliferator-activated recep-
tor gamma coactivator 1la) protein expression and mitochondrial
biogenesis. It can also act in the brain to increase EE and hence
may have contributed to differential weight loss in the TRF group.

However, Sutton et al,”®

reported that early TRF for 5 weeks had
no effect on inflammatory markers high-sensitivity C-reactive
protein and interleukin-6, as well as no changes in cortisol. They
also note a significant increase in 8-isoprostane (a marker of oxi-
dative stress) in the control group which was not detected in the
early TRF group. Therefore, early TRF may have been preventative
against the effects of the diet provided. TRF may improve energy
metabolism through decreased inflammation and subsequently
improved insulin, leptin and other endocrine sensitivity. Further
research aiming to understand differences in meal timing is neces-
sary, including more longitudinal measures and accurate 24-hour
assessments of El, expenditure and neuroendocrine regulatory

factors.

6 | FURTHER CONSIDERATIONS AND
SPECULATIONS

The effects of mealtime on circadian rhythms and metabolic
health are highly complex and current research has only scratched
the surface of this new topic. Many studies are complicated by
the fact that any negative effects of eating at the wrong time of
day may be at least partially compensated for by extended pe-
riods of daily fasting, which is the case in many animal studies,
as well as in the examples of Ramadan, breakfast skipping and
TRF. Further to this, the majority of human TRF trials have only
compared TRF (generally using an early window) to regular eat-
ing durations, with only one study specifically comparing early
vs late TRF.”? In rodent studies, early compared to late TRF may

185 and

improve circadian alignment,®® reduce insulin resistance
reduce weight gain.8¥'®5 However, the only human study to date
found no differences in weight change as a result of the feed-
ing window. There were also only small improvements in fasting
glucose in early TRF compared to baseline and no differences in
fasting glucose between early and late TRF. Therefore, the time
window for which TRF may have its greatest impacts has not cur-
rently been verified in humans. In addition to the current findings,
the role of macronutrient intake at different times of the day and
an individual’'s genetic predisposition to the negative effects of
late-night feeding need to be considered. For example, one study
reported that, when a high carbohydrate meal (75% carbohydrate,
1600 kcal) was served at breakfast (8.30 am) for three consecutive
days, it resulted in a 1-hour phase advance in core body tempera-

ture. By contrast, the same meal served at night (9.00 pm) had no

effect on body temperature, although it did shorten or attenuate
the melatonin rhythm. 8¢ It is not clear whether this was the result
of the carbohydrate content or energy content of the meal and
whether similar macronutrients would have similar effects. The
time in which dietary fat is consumed has also been suggested
to influence cardiometabolic health. In rodents, a HFD consumed
at the end of the active phase resulted in significant weight gain,
increased adiposity, hyperinsulinaemia and hyperleptinemia, rela-
tive to a HFD consumed at the start of the active phase.'®” The
order of carbohydrate and fat intake throughout a day may also
impact on endocrine signals. In humans, starting the day with a
high carbohydrate diet and finishing with a HFD led to higher daily
leptin levels compared to starting the day with high fat and finish-
ing with high carbohydrate. However, these results need to be
advocated.188

Many sleep and circadian behaviours have been established to
be trait like and reproducible within individuals, including responses

189

to sleep deprivation, hormonal responses to awakening,”®” awaken-

ings in response to environmental stimuli,190

weight gain, increased
El, late-night eating and fat intake in response to insufficient sleep,'?*
and phase shifting responses to caffeine or light.}”?> Research has ob-
served that specific genotypes predispose individuals to developing
more negative responses to circadian disruptive behaviours. Carriers
of specific genetic variants in the circadian gene CLOCK (rs3749474,
rs1801260, rs4580704), as well as carriers of a common variant in
Melatonin Receptor 1B gene, are more likely to be obese, have greater
difficulties in regulating body weight, display worse dietary weight loss
treatment outcomes and show greater impairments in glucose regu-
lation with late meals.*”®%” This emphasises the need to consider in-
dividual responses to meal timing and circadian desynchrony and to
focus on methods that will identify those most at risk of negative health
consequences. This advocates a precision nutrition approach that cur-
rent studies and healthcare models do not yet address. Furthermore,
the effects of chronodisruption from late feeding may be a second-
ary effect of poor quantity and quality of sleep. Sleep loss can induce
hypercortisolemia, elevated C-reactive protein, increased secretion of

pro-inflammatory cytokines,!?8-20°

and reduced circulating levels or
leptin and increase ghrelin.?°%2%2 |n addition, the central and periph-
eral administration of certain neuropeptides (including insulin, CCK,
ghrelin and leptin) can impact on the timing and quality of sleep.203204
Thus, food at night may increase circulating appetite-related hormones
in the evening, subsequently impacting on sleep. This, in turn, could
result in increased inflammation and circulating neuroendocrine hor-

mones, which drive appetite and reduce EE.

7 | CONCLUSIONS

The evidence regarding the capacity of meal timing to cause circa-
dian disruption, altered EB, and subsequent weight gain and meta-
bolic disorders in human studies is inconclusive. Current findings
suggest that differential mealtime can alter the excretion of many

energy-regulating endocrine hormones through altering their
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temporal phase and amplitude or by suppression of entire rhythms.
Theoretically, this could contribute to desynchrony between syn-
ergistic hormones and their receptors, leading to reduced signal-
ling and apparent hormone resistance. Presently, however, there is
minimal evidence that these alterations in endocrine signalling are
directly linked to any alteration in EE in human studies. Small re-
ductions in TEF that have been reported with later meals appear to
be balanced out by the redistribution of EE and no differences in
total daily EE. There is no clear evidence of any effect of mealtime
induced circadian disruption on EE in humans. However, the techni-
cal assessment of EE in humans is challenging and a lack of sensitive
measures, changes in habits under laboratory and research settings,
and individual human phenotypes contribute to the challenges in
measuring such small effects. Despite this, some studies have re-
ported greater weight loss with earlier eating and TRF protocols.
Further well controlled research is necessary that aims to under-
stand whether meal timing (and the extent of mealtime differences)
causes changes in mechanisms regulating El and/or EE and whether
there is further interplay between mealtime, macronutrient intake
and specific populations.
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