
Soil organic carbon and nitrogen pools are increased by mixed grass 1 

and legume cover crops in vineyard agroecosystems: detecting short-2 

term management effects using infrared spectroscopy  3 

 4 

Ball, K.1,4,5*, Baldock, J.2, Penfold, C.3, Power, S.A.1, Woodin, S.4, Smith, P.4 and Pendall, E.1  5 

1Hawkesbury Institute for the Environment, Western Sydney University, Richmond, 2751 NSW 6 

2CSIRO Agriculture and Food, Locked Bag 2 Glen Osmond, SA 5064, Australia. 7 

3School of Agriculture, Food and Wine, University of Adelaide 8 

4Institute of Biological & Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK 9 

5Department of Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA  10 

*Corresponding author – kirstenball@email.arizona.edu; ph +1 520 955 0447 11 

 12 

Abstract 13 

The incorporation of cover crops in orchards and vineyards can increase soil organic carbon 14 

(OC) and improve nitrogen (N) availability. This study compared how three herbaceous 15 

under-vine cover crop assemblages affected OC and N pools in four edaphically distinct 16 

vineyard agroecosystems. Using physical fractionation and soil spectral analysis we: 1) 17 

compared effects of grass and legume mono- and poly-cultures on total, coarse (≥50 µm) 18 

and fine (<50 µm) pools of OC and total N (TN), as well as extractable N (ExN), and 2) 19 

assessed predictions of OC and TN pools by infrared spectroscopy (IRS) and partial least 20 

squares regression analyses (PLSR). Compared with the control treatment, total, coarse and 21 

fine fraction OC were greater in the presence of grasses and legumes; ExN was increased 22 

38% by legumes, and 78% in legume-grass mixture. With initial calibration, we used one soil 23 

spectral analysis to successfully derive models predicting contents of OC in the whole soil, 24 

and the allocation of OC to coarse and fine fractions. In addition to demonstrating the 25 

efficacy of incorporating grass and legume cover crops into vineyard cropping systems to 26 

improve OC and the storage and availability of N across diverse soil types, this study 27 

confirms the ability of IRS/PLSR to predict changes in OC concentrations related to 28 
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differential ground cover management. IRS/PLSR is an important and practical approach for 29 

the rapid quantification of short-term management impacts on SOM pools, contributing 30 

significantly towards improved understanding of soil C and N dynamics in vineyard 31 

agroecosystems.  32 

 33 

1. Introduction 34 

Vineyards are intensively managed agroecosystems and are particularly depleted in soil 35 

organic carbon (OC) and vulnerable to soil nitrogen (N) loss (García-Díaz et al. 2017). 36 

Typically, deep intensive tillage during vine establishment destroys aggregate structures and 37 

increases liberation of OC (Álvaro-Fuentes et al. 2008; Luo et al. 2010), while under-vine 38 

removal of natural vegetation using herbicide reduces soil organic matter (SOM) 39 

accumulation and protection (Eldon & Gershenson 2015; Whitelaw-Weckert et al. 2007). The 40 

direct effects of management practices on SOM retention render soils under perennial fruit 41 

crops especially vulnerable to degradation (Cheddadi et al. 2001; Lal 2004) and heightened 42 

contribution to global greenhouse gas emissions (Aguilera et al. 2015). Further, very few 43 

studies have accounted for the probability of future accelerated degradation of critical soil 44 

quality parameters predicted to occur in vineyards (Baldock et al. 2012; Treeby 2018). As 45 

important viticultural regions begin to transition towards lower input, organic vineyard 46 

management practices to improve soil health (Penfold et al. 2015; Wheeler & Crisp 2011), 47 

empirical research quantifying the impacts of differential management on critical soil 48 

parameters is of vital importance to the development of an environmentally sustainable 49 

wine growing industry.   50 

 51 

Incorporating residue retention practices in perennial fruit cropping systems can increase 52 

the accumulation of SOM, which improves OC sequestration and soil nutrient availability (Lal 53 

& Bruce 1999; Montanaro et al. 2010; Roldán et al. 2003). Further, SOM provides a substrate 54 

for the crucial soil biota which mediate soil C sequestration and mineralise organic N to 55 

plant-accessible inorganic N (Allison et al. 2010; Cookson et al. 2007; Keiblinger et al. 2010). 56 

Growing plants also influence SOM accumulation through their active root systems which 57 

contribute significantly to OC and N and improve aggregate stability (Kätterer et al. 2011; 58 



Ovalle et al. 2010a; Rasse et al. 2005). A reduction of soil tillage is also recommended to 59 

protect SOM in aggregates from microbial decomposition, although it has been suggested 60 

that the agricultural benefits of no-till may be smaller than previously thought (Luo et al. 61 

2010; Powlson et al. 2014). If no-till benefits are indeed low, then increasing plant inputs to 62 

agricultural systems is of particular importance for maintaining or enhancing stocks of SOM.  63 

 64 

Introducing herbaceous communities between or under vine rows in vineyards - termed 65 

cover cropping - has been shown to increase SOM inputs and, depending on the crop-type, 66 

to improve nutrient availability in viticultural systems (Gómez et al. 2011; Peregrina et al. 67 

2010; Steenwerth & Belina 2008b). However, the inclusion of ground cover on the normally 68 

bare soil under vines is a contentious management technique. This is largely owing to the 69 

high requirement for N in fruit development (Gabriella et al. 2019), combined with the 70 

concern that some cover crops, especially grasses, may compete with vines for nutrients, 71 

negatively affecting yield and fruit quality (Celette et al. 2009; Muscas et al. 2017). Legume 72 

cover crops can reduce the need for N fertiliser applications by returning biologically fixed N 73 

to the soil potentially facilitating the growth of agricultural crops and other cover crop 74 

species such as grasses (Baumgartner et al. 2008; Mitchell et al. 2017; Peoples et al. 2009). In 75 

vineyard cropping systems, legumes have been demonstrated to provide the equivalent of 76 

40 kg N ha-1 to grapevines (Ovalle et al. 2010b) and, in other cropping systems, to facilitate 77 

grass root growth and N uptake in legume-grass polycultures (Ramirez-Garcia et al. 2014). 78 

This is particularly important for SOM accumulation as grasses have a fine, dense root 79 

structure that contributes significantly to soil OC (Fisher et al. 1994; Ramirez-Garcia et al. 80 

2014); in cover crop species specifically, as much as 44% of plant biomass C has been 81 

attributed to roots (Guzmán et al. 2014). In other vineyard ground cover cropping trials, 82 

grass and legumes have increased soil OC and water-soluble carbon, improved N availability 83 

and increased microbial biomass (Karl et al. 2016; Steenwerth & Belina 2008a; Steenwerth & 84 

Belina 2008b). Importantly, whether a cover crop makes a significant contribution to SOM 85 

accumulation and nutrient retention is largely dependent on the plant functional type 86 

(Pendall et al. 2011; Peoples et al. 2009; Shennan 1992). 87 

 88 



Several studies have successfully examined and modelled OC dynamics in agricultural 89 

systems under differential management, using carbon pool data obtained from the physical 90 

separation of OC into its component fractions (Blair et al. 1995; Jagadamma & Lal 2010; 91 

Skjemstad et al. 2004; Zimmermann et al. 2007). The coarse (particulate) organic matter 92 

fraction consists of recently decomposed plant inputs, is considered to have a turnover time 93 

of years to decades, and is most likely to respond quickly to changes in land management 94 

(Cambardella & Elliott 1992). Fine fraction (mineral associated) OC and N pools are generally 95 

considered to be less susceptible to alteration by differences in ground cover management, 96 

are more strongly influenced by the percentages of silt and clay in the bulk soil and can be 97 

vulnerable to destruction of aggregates by mechanical disturbance (Feng et al. 2016; 98 

McNally et al. 2017). Changes to bulk OC following different management practices can be 99 

small and incremental compared to the large background OC stock, so several studies, 100 

including this one, have focussed on examining changes to SOM fractions that serve as early 101 

indicators of long-term changes to bulk SOM (Cambardella & Elliott 1992; Cozzolino & 102 

Morón 2006; Ojeda et al. 2018).  103 

 104 

However simple, measuring SOM in fractions by physical separation is time consuming and 105 

for this reason may be prohibitive for routine analyses of agricultural soils (Poeplau et al. 106 

2013). Therefore, quantification of changes in SOM stocks can be challenging at the farm 107 

scale, and so techniques to measure these changes using simple and rapid spectral analyses 108 

are becoming increasingly popular (Baldock et al. 2018; Barthès et al. 2008; Bellon-Maurel & 109 

McBratney 2011; Malley et al. 2000). Infrared spectroscopy (IRS) combined with 110 

chemometric analyses to quantify soil chemical and physical properties is a continually 111 

developing but robust technique for the analysis of soil parameters, and with sufficient 112 

calibration has the potential to replace at least some traditional techniques of soil analysis 113 

(Bellon-Maurel et al. 2010; Cozzolino & Morón 2006). The potential of coupled IRS and 114 

partial least-squares regression analysis (IRS/PLSR) to predict OC content in bulk soil and 115 

particle fractions has proven useful for quantifying changes to OC relating to agricultural 116 

management (Baldock et al. 2018), especially when models are developed and validated 117 

within a particular ecosystem of interest (Baldock et al. 2013a). 118 

 119 



Quantification of the impacts of monoculture and mixed species under-vine cover crops on 120 

the improvement of soil quality in vineyards has not yet been attempted across multiple 121 

sites, nor across varied soil types. This study evaluated the potential for grass and legume 122 

cover crops to increase OC and N accumulation in under-vine soils in four edaphically distinct 123 

vineyard agroecosystems. Additionally, in an attempt to reduce the time and financial costs 124 

associated with quantifying OC and N contents at the farm scale (MacLeod et al. 2015; 125 

Schipanski et al. 2014), we also evaluated the use of IRS/PLSR spectral analysis to detect 126 

treatment level changes to OC and N pools, thereby developing a calibration dataset for use 127 

in vineyards. The aims of this study were: 1) to compare the effects of grass and legume 128 

cover crop mono- and polycultures on contents of OC,  TN and ExN in bulk soil and their 129 

associated coarse (≥50 µm) and fine (<50 µm) soil fractions; and 2) to assess the potential for 130 

using easily-acquired infrared spectra in combination with partial least squares analysis to 131 

build models that accurately predict the contents of OC and N in vineyard soils under 132 

differential management. We anticipate that by demonstrating the effectiveness of under-133 

vine cover cropping for improving soil carbon accumulation and nitrogen retention using a 134 

simple, cost effective technique, we might increase the adoption of sustainable viticulture 135 

practices in vineyards that have the benefit of improving soil health.  136 

 137 

2. Materials and Methods 138 

2.1 Experimental design and sites 139 

A set of intra-row cover crop experiments were planted in 2014 by the University of Adelaide 140 

and Wine Australia on commercial vineyards, in collaboration with local growers at Eden 141 

Valley, Nuriootpa, Langhorne Creek and Waikerie, in southern Australia (Fig 1). The 142 

experimental design consisted of grasses and legumes grown in monoculture and mixture, 143 

with a herbicide-treated (plant-free) control established in a fully randomised complete 144 

block design (Fig 2). Vines were Vitis vinifera “Shiraz” cultivar at Eden Valley and Nuriootpa, 145 

and “Merlot” cultivar at Langhorne Creek and Waikerie. Plant functional types (grass vs 146 

legume) were maintained across the sites, though it was necessary to adjust the cover crop 147 

varieties sown according to soil type and seasonal rainfall, which varied considerably across 148 

the viticultural regions. Details of site characteristics, vineyard management and cover crop 149 

species at the individual sites are given in Table 1. At each vineyard, there were four 150 



replicates of each treatment giving a total of 16 experimental plots (each 10.5 m2) per site. 151 

Effective weed control was maintained in the control (bare ground) treatments across sites 152 

with an average of 91% (± 5% SD) bare soil, whereas the grass and legume treatments had 153 

>80% vegetation cover, with bare soil averaging only 18.8 % (± 17% SD) across sites. The 154 

mixed grass and legume treatments averaged 75:25 legume:grass cover at 3 sites (Eden 155 

Valley, Nuriootpa and Waikerie), differing at the Langhorne Creek site where the ratio was 156 

55:45. All vineyards were drip-irrigated in the intra-row zone and, prior to commencement 157 

of the trials, all plots had been maintained for four years with bare soil under-vine, using 158 

herbicide. Herbicides were applied in the cover crop treatment plots in 2014/15 to maintain 159 

treatment integrity and subsequent weed control was achieved using a line trimmer. The 160 

mid-row zones contained volunteer mixed swards maintained where required by mowing. 161 

The under-vine cover crops were not cut, but were instead left to naturally senesce with all 162 

above-ground residues remaining in-situ. In the interest of providing information on 163 

important vine performance parameters we refer to a report prepared by (Penfold 2018) for 164 

these sites. Briefly, bunch yields were not negatively affected by the cover crop treatments 165 

and at some sites were increased under mixed cover crops compared with the control. Yeast 166 

assimilable nitrogen, which provides a measure of available N for the fermentation process 167 

and significantly determines fruit quality (Neilsen et al. 2010) was increased under legume 168 

cover crops (Penfold 2018).  169 

 170 

Figure 1: Location map of the studied commercial vineyard sites in South Australia. (Map credit: Johanna 171 
Pihlblad 2020) 172 



 173 

 174 

Figure 2: Plot level experimental design focused on under-vine treatments; a Control, b Grass only, c Legume 175 
only, d Grass + Legume (mixture). Mid-rows showing volunteer mixed sward. (Photo credit: Chris Penfold, 176 
2015) 177 
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Table 1: Site characteristics, vineyard management and plant species within treatments. Variables are 178 
reported as means (±se) 179 

 180 

Site Eden Valley Nuriootpa Langhorne Creek Waikerie 

Soil Classification* Black Sodosol Brown Sodosol Brown Sodosol Red Kandosol 

pH (H2O) 7.0 7.0 7.6 6.8 

pH (CaCl2) 6.3 6.4 6.9 6.2 

Sand** % 62.0 ± 1.91  55.0 ± 2.58  28.0 ± 6.8  84.0 ± 1.91  

Silt** % 12.0 ± 1.0  9.0 ± 1.15  38.0 ± 7.37  1.0 ± 4.16  

Clay** % 26.0 ± 2  36.0 ± 3.65  34.0 ± 7.74  15.0 ± 3.0  

Coarse Soil % 74.8 ± 4.7  58.4 ± 2.7 39.3 ± 2.8 92.2 ± 1.5 

Fine Soil %  25.0 ± 4.7 41.5 ± 2.7 60.6 ± 2.8 7.7 ± 1.5 

MAT (°C) 21.6 21.6 22.1 25.7 

MAP (mm) 620 525 415 255 

Fertiliser application***  

(kg ha/year, 2016-18) 

N – 0.03 

P – na 

N – 0.07 

P - na 

N – 0.02 

P - na 

N - 0.20 

P – 0.02 

Plot level Irrigation  

(L/year, 2016-18) 

1986 1125 3312 8496 

Vine Establishment (year) 1998 2001 1999 1998 

Vines (ha-1)/Spacing (m) 1962 / 1.7 1271 / 2.2 2312 / 1.7 1665 / 2.0 

Row width (m) 2.7 3.5 2.5 3.0 

Legume Only Medicago truncatula Medicago truncatula Medicago truncatula Medicago tornata 

 Medicago littoralis Medicago littoralis Medicago littoralis  

Grass Only Dactylis glomerata Dactylis glomerata Dactylis glomerata Dactylis glomerata 

Grass+Legume Festuca ovina Festuca ovina Festuca ovina Lolium rigidum 

 Trifolium fragiferum Trifolium fragiferum Trifolium fragiferum Medicago polymorpha 

*Soil classification data derived from Department of Environment and Water Soil and Land Program (Hall 2009). **n= 4; # 181 

n=16. ***N = nitrogen, P = phosphorus. MAT = Mean annual temperature, MAP = Mean annual precipitation. na = not 182 

applied.  183 



2.2 Cover crop composition and cover crop contributions to below-ground biomass 184 

Cover crop composition was assessed three times per year using the ‘Botanal’ method 185 

(Tothill et al. 1992). Briefly, composition was estimated from percentage cover of all species 186 

and bare soil in a 10.5 m2 quadrat and is an average estimate of percentage cover for the 187 

years 2015 and 2016.  188 

 189 

For the purposes of discussing C and N inputs as they relate to the cover crops, we 190 

compared cover crop root biomass among all treatments (including the control). Four soil 191 

cores of 5 cm diameter and a depth of 10 cm were removed from each replicate cover crop 192 

and control plot in March of 2017, composited, air dried and sieved to 2 mm, and all root 193 

biomass removed and quantified. Soils were air dried and roots carefully removed from dry 194 

soil (as opposed to washed) to comply with methods for the subsequent infrared spectral 195 

analysis (Baldock et al. 2013a). We separated biomass into fine herbaceous roots (<0.1 mm-196 

0.3 mm), fine vine roots (>0.3 mm-1 mm) and coarse vine roots (>1 mm) (Centinari et al. 197 

2016; Garcia et al. 2018; Roumet et al. 2008). Vine roots were easily distinguishable from 198 

cover crop roots due to their larger diameter, darker colour and acute branching angles 199 

(Klodd et al. 2016), but we were unable to distinguish between grass and legume root 200 

biomass in mixed treatments. On average, 95 – 100% of the root biomass in the treatments 201 

was contained in the 0-10 cm depth (data not shown), hence we chose to restrict sampling 202 

to this depth for the purpose of quantifying cover crop root contributions to measured 203 

variables. Cover crop treatment effects on root biomass were quantified only as they 204 

related to fine herbaceous root biomass; vine root biomass did not differ significantly 205 

among sites or treatments, including the herbicide control (data not shown). 206 

 207 

2.3 Total C, total N, extractable N and texture analyses 208 

To prepare soil for C, N and IRS analyses, 10 g of sieved (< 2 mm) air dried soil was ball 209 

milled for 180 s using a Retsch stainless steel ball mill (Baldock et al. 2014). The presence of 210 

inorganic C (IC) was evaluated by applying a few drops of 1M HCl to a well-homogenized 1g 211 

subsample of soil. Where a positive fizz test was recorded, carbonates were removed before 212 

C and N combustion analyses by acid digestion (Baldock et al. 2013a). At only one site within 213 



the study (Eden Valley) was carbonate removal necessary. Soil water content was 214 

determined gravimetrically by drying at 105° C, and all analyses were corrected for soil 215 

moisture content. The remaining air-dried bulk soil was kept aside for bulk density 216 

calculations and fractionation analyses.  217 

 218 

Texture analysis was undertaken by sedimentation (Shirazi & Boersma 1984) on sieved (<2 219 

mm), air dried soil to determine sand, silt and clay contents (Table 1). Extractable N (mg g-1) 220 

was determined by shaking 40 ml of 2M potassium chloride (KCl) solution with 4.0 g soil (< 2 221 

mm) at 170 rpm for 1 hour and then filtering with a 2.5 µm ashless filter (Grade 42, 222 

Whatman plc, Kent, U.K). Soil extracts were stored at -20 oC until colorimetric analysis in a 223 

discrete analyser (AQ2, SEAL Analytical, Ltd., Milwaukee, WI USA). Total C (mg g-1) and TN 224 

(mg g-1) were obtained from combustion analyses using a LECO TruMac carbon and nitrogen 225 

analyser (LECO, St. Joseph, MI, USA). Site-level edaphic characteristics were measured and 226 

compared using soils obtained from the control treatments (n=16). 227 

 228 

2.4 Physical fractionation procedure  229 

The physical fractionation procedure used was modified from Baldock et al. (2014) and 230 

Skjemstad et al. (2004). Briefly, 10 g of sieved (<2 mm), air-dried bulk soil was dispersed in 231 

40 ml of a 5 g L-1 sodium hexametaphosphate solution by shaking on a flatbed orbital shaker 232 

overnight at 180 rpm. The dispersed soil and hexametaphosphate solution was poured on 233 

an automated sieving system (Analysette Pro, Fristch, Germany) equipped with a 50 µm 234 

sieve (Baldock et al. 2014). The shaker was set to apply DI water at a spray rate of 150 ml 235 

per minute, and to shake at an amplitude of 2.5 mm for no less than 3 minutes. Sieving was 236 

complete when the water exiting the machine ran clear. If this was not achieved within the 237 

allocated time, the process was repeated. Sieves were visually inspected to ensure that the 238 

fine particles had passed through and the >50 m fraction (coarse fraction) and the <50 m 239 

fraction (fine fraction) were separated and captured directly. The samples were then freeze 240 

dried and weighed. Coarse fraction samples were homogenised and ground for 60 s using a 241 

stainless-steel ball mill. Fine fractions were ground with a mortar and pestle by hand. 242 

Organic C (mg g-1) and total N (mg g-1) content of the two fractions was determined on a 243 

LECO CNS-2000 analyser using the same methods as for bulk soil. The allocation of soil mass 244 



to the coarse and fine fractions was expressed as a percentage of the total mass of soil that 245 

was fractionated. 246 

 247 

2.5 IRS Analysis 248 

Infrared spectra (IRS) were obtained from air dried and finely ground soil as described by 249 

Baldock et al. (2013). Approximately 100 mg of prepared bulk soil was placed into 9 mm 250 

stainless steel autosampler cups and levelled. IR spectra were obtained using a Nicolet 6700 251 

FTIR Spectrometer (Thermo Fisher Scientific Inc., Waltham, MA USA) equipped with a KBr 252 

beam splitter, a DTGS detector and an AutoDiff automated diffuse reflectance accessory 253 

(Pike Technologies, Madison, WI, USA). For the set of 64 soil samples, the background signal 254 

intensity was acquired on a silica carbide disk by collecting 240 scans; two standard soils 255 

were included for determination of analytical precision. For each sample, 60 scans were 256 

collected over a spectral range of 8000-400 cm-1 with a resolution of 8 cm-1. Spectral peaks 257 

in several regions have been positively correlated with soil organic carbon, such as those 258 

between 1500 - 2853 cm-1 (Hunt 1977) as well as those related to aromatic carbon 259 

structures at 1580, 1390 and 1220cm-1 (Baldock et al. 2018; Janik et al. 2007). 260 

 261 

2.6 Statistical analysis and model selection 262 

We tested site-level differences on the dependent variables total organic C (OC), total N 263 

(TN), coarse and fine fraction OC and TN and extractable N (ExN) within the herbicide 264 

control treatments using the “aov” function in base R (R Development Core Team, 2018, 265 

version 3.5.1) and performed Tukey HSD tests to obtain multiple comparisons. All 266 

assumptions of normality and homogeneity of variance were met, and we report means 267 

with standard errors. As the root biomass data displayed unequal variance, we used R to 268 

perform Kruskal-Wallis tests and performed posthoc comparisons using the “dunnTest” 269 

function from the “FSA” package with Bonferroni adjusted p-values. In this instance we 270 

report median values and quartiles.  271 

Preliminary analyses revealed no interactions between site and cover crop treatments on 272 

soil parameters, so we evaluated treatment effects across sites. To test the effect of cover 273 

crop treatment on the dependent variables OC, TN, coarse and fine fraction OC and TN and 274 



ExN we used linear mixed effects models (LMEMs) constructed using the “lmer” function 275 

from the “lme4” package (Bates et al. 2014) within R (R Development Core Team, 2018, 276 

version 3.5.1). We tested the null hypothesis that cover cropping treatments did not affect 277 

these variables and included ‘site’ as a random effect. Response variables were sqrt 278 

transformed to meet model assumptions and allow direct comparison of the response 279 

variables with PLSR predictions which are optimally obtained using sqrt transformation 280 

(Baldock et al. 2013b). Examination of residual plots were satisfactory, indicating 281 

appropriate model selection. We used the “glht” function from the “multcomp” package 282 

(Hothorn et al. 2017) within the R statistical package to perform multiple comparisons using 283 

the Tukey’s HSD method. Single step adjusted p-values (α = 0.05) are presented and we 284 

report all summary statistics as means with standard errors. Unless otherwise noted, 285 

significant effects are considered at p < 0.05. 286 

 287 

2.7 Chemometric Analysis of Spectral Data 288 

Omnic software (Version 8.0, Thermo Scientific Inc.) was used to convert the reflectance 289 

spectra to absorbance spectra (Fig 3). All IR spectra were truncated to 6000 – 600 cm-1, 290 

baseline corrected and mean centred prior to analyses and all PLSR analyses were 291 

performed using the Unscrambler 10.3 Software (CAMO Software AS, Oslo, Norway). PCA is 292 

applied as a component of the PLSR analysis to identify spectral components most 293 

important for sample differentiation, and to identify outliers. A square root transformation 294 

(sqrt) of all measured analytical variables (OC, TN, Coarse and Fine OC) was performed to 295 

improve linearity and homogeneity of residuals prior to model derivation. PLSR derives 296 

predicted values via detection of the main multivariate syndromes, in this case the spectral 297 

components, that maximise the variance explained in the response variable (Wold et al. 298 

2001). Appropriate model selection was evaluated using the relationship between predicted 299 

PLSR values (ŷ) vs the measured (reference) (yi) values, and we report these fits using the 300 

slope, R squared value (R2), root mean square error (RMSE; equation 1) and the ratio of 301 

performance to variation (RPD; equation 2). The R2 represents the total variance of the 302 

residuals in the PLSR model, whereas the RMSE defines the standard deviation of the 303 

residuals. The RPD value divides the standard deviation (s) of the measured values in the 304 

calibration, validation or cross validation sets by their corresponding RMSE values (Chang et 305 



al. 2001; Nocita et al. 2014). RPD values >2 have been used to characterise robust model 306 

prediction (Chang et al. 2001). All resultant PLSR models were optimally derived from 4 307 

factors, and where spectral outliers were identified they were removed from model 308 

derivation. For OCsqrt Coarse, we removed 3 spectral outliers from the calibration dataset 309 

after identifying standard residuals greater than 3 times the standard error of calibration 310 

(SEC) which we attributed to equipment failure. Models were linear, and homogeneity of 311 

residuals was confirmed. 312 

       313 

RMSE = √∑
(yp𝑖−ŷp𝑖)²

n

𝑛

𝑖=1
       (1) 314 

 315 

where ypi is the observed (measured) value from the sample i, and ŷpi is the predicted 316 

value. 317 

 318 

RPD =   
SD𝑦

RMSE
          (2) 319 

 320 

where SDy is the standard deviation attributed to the measured reference values. 321 

 322 

As one of the aims of this study was to use IRS/PLSR to detect differences in OC and TN 323 

contents between different cover crop treatments, where we detected significant 324 

differences in our measured variables using LMEMs, we further tested the ability of the 325 

IRS/PLSR predicted values to detect the same. To assess the potential for predicted values to 326 

detect treatment level differences, we compared the standard error of prediction (SEP) 327 

values from the PLSR models with the measured value differences between treatments. 328 

Differences in measured values between treatments that exceeded the model’s SEP were 329 

more likely to detect treatment level differences. SEP values were obtained from the PLSR 330 

models using equation 3, which uses the measured data as a test set against the predicted 331 

values (Mevik & Cederkvist 2004).  332 

SEP =
1

𝑛𝑀
∑ (𝑓𝑀(𝑥𝑖) −  𝑦𝑖)

𝑛𝑀
𝑖=1        (3) 333 



 334 

where the measured data is represented as  M  {(𝑥𝑖, 𝑦𝑖)}, and 𝑓𝑀 is the standard deviation 335 

of the measured data estimated by √𝑉𝑀 /𝑛𝑀 , 𝑉𝑀 being the sample variance of M. 336 

 337 

3. Results 338 

3.1 Among-site comparisons of soil organic carbon and nitrogen concentrations 339 

Total soil OC (mg g-1) ranged from 7 to 17 mg g-1 and differed among sites at α = 0.10; total 340 

OC was highest at Eden Valley and lowest at Waikerie, with the other sites intermediate 341 

(Table S1). TN ranged from 0.5 to 1.8 mg g-1 and followed a similar pattern as OC: TN at 342 

Waikerie was significantly lower than at Eden Valley (Table S1). Extractable N (ExN, µg g-1) 343 

ranged from 2.4 to 7.3 g g-1, and was 204% greater at Eden Valley than Nuriootpa, with the 344 

other sites intermediate (p≤0.01).  345 

 346 

Coarse fraction OC concentration (mg g-1) ranged from 1.5 to 12 mg g-1 and was significantly 347 

higher at Langhorne Creek than at the Waikerie and Nuriootpa sites, with Eden Valley being 348 

intermediate (Table S1). Coarse fraction TN (mg g-1) was significantly higher at the 349 

Langhorne Creek site than at Eden Valley and Nuriootpa (Table S1). 350 

 351 

Fine fraction OC concentration ranged from 12 to 47 mg g-1, and was highest at Eden Valley 352 

and Waikerie, intermediate at Nuriootpa, and lowest at Langhorne Creek; it was 280% 353 

higher at Eden Valley than at the Langhorne Creek site (Table S1). Fine fraction TN (mg g-1) 354 

followed a similar pattern, with Eden Valley having the highest TN concentration, 355 

approximately 300% greater than Langhorne Creek (Table S1). 356 

 357 

3.2 Fine root biomass comparison between cover-crop treatments  358 

Fine root biomass did not differ significantly between sites (p=0.09) but was higher in 359 

treatments containing grasses compared to those without (p≤0.001). No fine root biomass 360 

was measured in the herbicide-treated controls; biomass was 2.2 kg m2 ([0-6.2]) in legume 361 



treatments, 10.6 kg m2 ([3.9-34.3]) in mixed treatments and 69.2 kg m2 ([32.3-94.1]) in the 362 

grass treatments.  363 

 364 

3.3 Cover crop effects on soil OC, TN and ExN contents 365 

Preliminary analyses indicated no interaction between cover crop treatments and site 366 

effects, so here we examined treatment effects across all sites. Treatments containing 367 

grasses increased total OC (mg g-1) across sites, being on average 14% higher in the grass 368 

and mixed treatments compared with the legume and control (Table 2). Mixed cover crop 369 

treatments increased TN by approximately 15% from the control, grass and legume (Table 370 

2). ExN (µg g-1) was positively affected by the presence of legumes (Table 2), and grasses 371 

and legumes grown together resulted in ExN on average 75% greater than in control and 372 

grass only treatments, and 17% more than in legume only treatment at α = 0.10 (p=0.09). 373 

 374 

Table 2: Means (+/- standard errors) of the dependent variables total, coarse and fine fraction soil OC and TN 375 

and ExN by treatment with results of linear mixed effects models examining the effects cover crop type on the 376 

dependent variables, across the four sites (n=16). Different lowercase letters represent significant differences 377 

between treatment groups (α= 0.05). Values of OC and TN were measured and reported as concentrations (mg 378 

g-1) in bulk soil, and coarse and fine fractions.  379 

 380 

Cover Crop OC (mg g-1) TN (mg g-1) Ex N (µg g-1) OC (mg g-1) 
Coarse 

TN (mg g-
1)  

Coarse 

OC (mg g-1) 
Fine 

TN (mg g-1) 
Fine 

Grass Only 14.22 ± 1.22 b 1.24 ± 0.16 a   4.77 ± 0.43 a 7.42 ± 1.43 b 0.62 ± 0.06 35.50 ± 4.74 b 3.45 ± 0.38  

Legume Only 13.62 ± 1.10 a 1.15 ± 0.10 a 6.82 ± 0.62 b 6.96 ± 1.15 b 0.67 ± 0.11 32.77 ± 4.23 a 3.76 ± 0.35  

Mixture 14.64 ± 1.29 b 1.31 ± 0.15 b 8.80 ± 0.10 c 9.36 ± 1.86 b 0.68 ± 0.10 34.56 ± 4.55 b 3.37 ± 0.39  

Control 11.41 ± 1.02 a 1.05 ± 0.14 a 4.93 ± 0.56 a 5.36 ± 1.01 a 0.55 ± 0.06 30.57 ± 3.91 a 2.67 ± 0.56  

p-value  <0.01 0.01 ≤ 0.01  ≤ 0.01 0.51 0.02 0.11 

 381 

Treatment effects on coarse fraction OC (mg g-1) revealed an average of 45% more OC (mg g-382 

1) in grass, legume and mixed treatments compared with the control (Table 2). There were 383 

no treatment effects on coarse fraction TN (mg g-1) (Table 2).  384 

 385 



Fine fraction OC (mg g-1) across sites was positively affected by treatments containing grass, 386 

which were on average 10% greater than the control and legume (Table 2). Fine fraction TN 387 

(mg g-1) did not differ among treatments.  388 

 389 

3.4 IRS-derived predictions for carbon and nitrogen pools 390 

The obtained spectra defined by site are presented in Fig 3. As a component of the PLSR 391 

analysis, principle components analysis (PCA) was used to identify differences by site and 392 

treatment in the IR spectra. No outliers were removed from the PCA, as potential outlier 393 

removal did not improve the explained variance proportions nor alter the spectral loadings. 394 

PCA revealed separation among sites (Fig 4a), but not among treatments (data not shown); 395 

the first four components accounted for 98% of the variation in the spectra (Fig 4a). Loading 396 

spectra for the first 4 principle components revealed that positive signals around 3700, 397 

3600, 2000, 1950, 1700, 1500, 1200, 1100, 900, 650 and 600 cm-1 contributed most to PC1 398 

(Fig 4b). In our spectra (Fig 3), significant positive peaks in these regions occur at 2000, 399 

1700, 1500 and 1200 cm-1, however peaks at 2000, 1500 and between 3700-3600 are 400 

possibly overlapped by mineral signals as these peaks have previously been attributed to 401 

the presence of quartz and clay (Hunt 1977; Janik & Skjemstad 1995). Similar positive peaks 402 

around 3700-3600 soil spectra have previously been attributed to clay minerals (Janik & 403 

Skjemstad 1995). Peaks around 2800, 2500 and 1800 have previously been attributed to the 404 

presence of carbonates (Hunt 1977). Although we detected a minimal amount of IC in the 405 

Eden Valley samples (data not shown), the spectral signature related to carbonates was not 406 

significant. Mineralogy contributed most to the spectral variations across sites, with some 407 

important contributions from organic components.  408 

 409 

Because many of the spectral peaks overlap in areas that define both mineral and organic 410 

characteristics, IRS/PLSR was expected to be less sensitive in its ability to predict treatment 411 

level differences than direct combustion analyses. Therefore, in order to measure the ability 412 

of IRS/PLSR to quantify treatment level differences, we only tested the PLSR predicted 413 

values by treatment where compositional differences were evident from combustion 414 

analyses.  415 



Figure 3: Mean (+95% CI) absorbance spectra by site (baseline corrected 6000-600cm-1) obtained in the control 416 

treatments. Values are stacked (+0.5) by site for ease of interpretation. Grey shading indicates the within site 417 

95% confidence interval (n = 4).  418 



 419 

Figure 4 a) PCA plots for the first 3 principle components demonstrating separation between sites. Diamonds = 420 

Eden Valley, triangles = Nuriootpa, squares = Langhorne Creek, circles = Waikerie b) PCA loadings spectra (cm-421 

1) for each significantly contributing principle component. Individual y axes demonstrate the relative 422 

percentage variation explained by each individual principle component. 423 

 424 

3.5 Using PLSR to predict OC and TN pools from IRS data  425 

Summary statistics from PLSR models calibrated using spectral data and tested using 426 

measured values are presented in Table 3. Our derived models, using data from all sites to 427 

predict treatment effects on OCsqrt, OCsqrt coarse and OCsqrt fine, predicted a significant 428 

a 

b 



amount of variation in the measured variables (Table 3). Our derived models predicting TN 429 

(mg g-1) in the soil fractions were excluded from the results as the IRS-predicted values 430 

explained only 57% (RPD = 1.00) and 67% (RPD = 0.99) of the variation in the coarse and fine 431 

fractions, respectively, and were therefore not considered to be reliable (Chang et al. 2001). 432 

Additionally, our TNsqrt predicted values were highly correlated with those obtained for 433 

OCsqrt, which is not uncommon (McCarty et al. 2002; Reeves & McCarty 2000). Simple linear 434 

regression revealed that the PLSR-derived beta coefficients for OCsqrt and TNsqrt were highly 435 

correlated (r2 = 0.90, p<0.0001) which suggests that OCsqrt and TNsqrt are being predicted 436 

with a very similar PLSR algorithm (Fig 5). We therefore focus the discussion on the derived 437 

PLSR models to predict OC contents, and exclude the IR/PLSR results for TN.  438 

 439 

Figure 5: PLSR derived β coefficients for OCsqrt and TNsqrt, as obtained from an optimal number of (4) model 440 

factors. Spectral peaks that most influence the models overlap significantly, and simple linear regression 441 

between the β coefficients further demonstrates high correlation between the two variables OCsqrt and TNsqrt  442 

 443 

3.6 Using IRS/PLSR derived OC predictions to quantify treatment effects among cover 444 

cropping treatments  445 

The potential capacity of our IR/PLSR predicted values to detect treatment level differences 446 

was assessed by comparing the range of measured OCsqrt values for each model with the 447 

OCsqrt = -0.004 + 13.841*TNsqrt, r2 =0.90 

OCsqrt 

TNsqrt 



model’s standard error of prediction (SEP). This information provides the measured OC 448 

value increase between treatments that would be required to be detected by the model 449 

(Table S2). Then, using the same LMEM structure previously described, we tested 450 

differences among treatments using model predicted values. On average across sites, the 451 

OCsqrt predicted values in mixed treatments (3.91 (mg g-1)0.5 [3.55-4.27]) were on average 452 

6.5% greater than the control, legume and grass treatments (3.67 (mg g-1) 0.5 [3.46-3.88]), 453 

(p=0.04). Predicted OCsqrt coarse values were also significantly different among treatments 454 

(p=0.02), where the mixed treatment (2.79 (mg g-1) 0.5 [2.50-3.08] was predicted to be 13% 455 

greater than the control, legume and grass treatments (2.46 (mg g-1) 0.5  [2.20-2.72], despite 456 

a high model SEP (Table S2). Treatment effects on fine fraction OC were not detected. As 457 

expected, predicted values were less sensitive at detecting differences than combustion 458 

measurements. 459 

 460 

Table 3: Summary statistics calculated according to equations 1 and 2 for the derived partial least square 461 

regression models for OCsqrt, OCsqrt coarse and OCsqrt fine. Cal = calibration, Val= validation. RMSE = Residual 462 

mean square error, RPD = Ratio of performance to deviation.  463 

 464 

Variable   Factors n Slope Offset r R2 RMSE Bias SE s RPD 

OC 

(mg g-1) 0.5 

  

Cal  4 64 0.946 0.200 0.972 0.946 0.176 0.000 0.177 0.739 4.175 

Val  64 0.930 0.250 0.964 0.931 0.201 0.000 0.203 0.760 3.744 

OC Coarse 

(mg g-1) 0.5 

  

Cal  4 61 0.869 0.331 0.932 0.869 0.352 0.000 0.355 0.907 2.555 

Val  61 0.846 0.387 0.910 0.828 0.404 -0.004 0.408 0.975 2.390 

OC Fine 

(mg g-1) 0.5 

  

Cal  4 64 0.935 0.357 0.967 0.935 0.397 0.000 0.400 1.519 3.798 

Val  64 0.925 0.406 0.955 0.915 0.462 -0.006 0.466 1.568 3.365 

 465 

4. Discussion 466 

4.1 Grass and legume cover crops both contribute positively to soil OC  467 

After accounting for the variability in OC concentration across the sites, grasses consistently 468 

increased OC in the total pool, coarse and fine fractions. We attribute the increases in OC 469 

contents to greater root biomass in treatments containing grass, with fine root biomass 470 



being, on average, 22% higher than in legume-only treatments. Indeed, in cropping systems 471 

it has been shown that, on average, 35% more root biomass-derived C is retained in the soils 472 

compared with shoot-derived C in a single growing season (Puget & Drinkwater 2001) and 473 

root-C has been demonstrated to be a significant contributor to long term soil OC storage 474 

(Fisher et al. 1994; Molina et al. 2001; Rasse et al. 2005), contributing an average of 2.4 475 

times the amount of OC compared with senesced shoots (Rasse et al. 2005).  476 

 477 

A higher potential for the retention of C in fine soil fractions because of mineral adsorption 478 

(Solomon et al. 2012), coupled with higher grass root biomass may explain the observed 479 

increase in fine fraction C under grass treatments. Higher root biomass is also likely to have 480 

a greater effect on C retention and aggregate stability in clay soils than in sandy soils due to 481 

particle binding occurring between high surface area minerals (Six et al. 1998; Six et al. 482 

2006; Tisdall & Oades 1982). In a study comparing the effects of grasses and legumes on soil 483 

aggregate structures, grasses were found to positively influence stability, compared to 484 

legumes which decreased it (Pérès et al. 2013). However, it has been suggested that in low 485 

nutrient, sandier soils more prone to C and N losses (Lobe et al. 2001), legumes may have 486 

greater potential to build root biomass and contribute to aggregate stability compared to 487 

grasses, as they are more resilient under less favourable conditions (Garcia et al. 2018). 488 

Although we did not measure the direct impacts of these crop species on soil matrix 489 

structures, we highlight their positive benefits to the system via their role in the provision or 490 

retention of nutrients and carbon that may lead to increases in overall plant biomass and 491 

the subsequent building of SOM.  492 

 493 

As changes to bulk SOC resulting from differential management are not easily detected in 494 

the short-term, measuring changes in the more sensitive coarse organic matter fraction is 495 

becoming increasingly popular and was useful to confirm treatment level effects in our 496 

study (Cambardella & Elliott 1994; Ojeda et al. 2018). The positive effects of grass and 497 

legume cover crops on OC concentration were, as expected, more strongly observed in the 498 

coarse fraction (Ojeda et al. 2018) where legumes were also found to increase OC. It is well 499 

understood that N transfer from legumes to grasses can increase growth of the whole plant, 500 

including root biomass, root density and rooting depth (Heichel & Henjum 1991; Peoples et 501 

al. 2009; Peoples et al. 2015; Ramirez-Garcia et al. 2014) which can, in turn, increase soil 502 



carbon accumulation (Fornara & Tilman 2008). Compared with grasses, legumes are also 503 

considered to provide a more readily decomposable source of C from root structures owing 504 

to lower root C:N ratios and higher root N contents (Fornara et al. 2009). Therefore, we can 505 

explain the measured positive impacts on coarse fraction OC resulting from grasses by their 506 

dense root biomass (Fisher et al. 1994), from legumes owing to their increased root 507 

decomposability (Amato et al. 1984; Fornara et al. 2009), and from mixtures because of 508 

potential facilitation and complementarity (Duchene et al. 2017). Despite differences in site 509 

management, rainfall, fertilisation and irrigation, the incorporation of legumes into cropping 510 

systems has been shown to positively affect the mean residence time of C in soil owing to 511 

the deposition of more resistant, aromatic forms of OC (Drinkwater et al. 1998; Gregorich et 512 

al. 2001). Moreover, the presence of legumes has been shown to slow the decomposition of 513 

grass roots via a reduction in microbial priming (Saar et al. 2016), potentially enhancing OC 514 

content in mixed swards.  515 

 516 

4.2 Grass + legume mixtures increase soil nitrogen to a greater extent than legumes grown 517 

alone 518 

Unfortunately, the majority of vineyard-based cover cropping studies have focussed on the 519 

potential for resource competition, and were performed in pure grass stands negating 520 

exploration of the possible effects of legume-grass complementarity and increased nutrient 521 

retention by grass roots (Beslic et al. 2015; Celette et al. 2009; Ripoche et al. 2011). Across 522 

our sites, treatments containing legumes had higher concentrations of soil extractable N, 523 

likely owing to the presence of N-fixing symbionts which are known to increase available N 524 

(Peoples et al. 2009). Unexpectedly, however, the increases in soil available and total N 525 

were greatest in our mixed treatments. In many cover cropping systems, N retention has 526 

been shown to increase in grass-legume mixtures compared with monocultures (Finney et 527 

al. 2016). Therefore, although grasses are rarely seen to be beneficial in vineyard cropping 528 

systems, N retention by root structures is a currently undervalued benefit that could be 529 

obtained via the incorporation of mixed- compared with legume-only cover crops in 530 

vineyard systems. Cover crop effects on N retention were not, however, directly tested in 531 

our study. In addition to N retention, N fixation in legumes has been shown to be up-532 

regulated by the presence of grasses in mixed stands compared with legumes grown alone 533 



(Nyfeler et al. 2011). Further, despite the perception that grass cover crops may negatively 534 

influence N availability to vines (King & Berry 2005a), other studies have found that deeper-535 

rooted, mature grapevines are fairly robust to competition with grasses for both N and 536 

water (Klodd et al. 2016). Earlier data from these field sites showed that fruit yield was not 537 

affected by the legume-only or mixed sward, and yeast-available N in fruit was higher in 538 

treatments containing legumes (Penfold 2018). Therefore, the combined benefits of 539 

increased N retention and symbiotic N fixation in grass and legume mixtures demonstrate 540 

that mixed cultivations have the potential to contribute significantly to building more 541 

resource-efficient viticultural systems.   542 

 543 

4.3 IRS/PLSR accurately predicts soil OC pools in vineyard agroecosystems, detecting 544 

treatment level differences 545 

Total OC and TN are two of the parameters most accurately predicted using IRS and visible 546 

near infrared spectroscopy (Brunet et al. 2007; St. Luce et al. 2014). Both the spectrally 547 

derived OC and TN models accurately predicted the measured OC and TN contents 548 

(p<0.001), however due to correlation between the model β coefficients (Fig. 5), we 549 

excluded the PLSR predictions for TN from our analysis. In a few previous studies, IRS 550 

determination of N content in soils has been shown to be closely correlated with predictions 551 

of C content (Malley et al. 2000; Morra et al. 1991; Reeves & McCarty 2000). Thus, we focus 552 

our discussion on the reliability of IRS to predict OC contents and highlight the need for 553 

further calibrations of IRS models for soil N contents along a gradient of N availability.  554 

 555 

This study confirms the accuracy of IRS/PLSR for predicting OC concentration in edaphically 556 

distinct vineyard agroecosystems, as well as the reliability of using IRS/PLSR to detect the 557 

effects of differential management (i.e., cover crop types). Between our two most 558 

contrasting treatments (control vs mixture), treatment-level differences in total OC were 559 

accurately predicted using the IR/PLSR derived estimates. Similarly, for the coarse OC 560 

fraction, we were able to use the IRS/PLSR predicted values to detect a treatment 561 

difference, again only in the mixed treatment. The conservativeness of the predicted values 562 

is likely an artefact of the nature of PLSR model derivation, which predicts the response (y) 563 

variables based on the independent variables (x) by explaining as much of the covariance as 564 



possible between x and y (Zhao et al. 2014). In a dataset where measured variables display a 565 

naturally large amount of variation, PLSR ‘smooths’ the within-treatment variation in the 566 

derivation of the y predictions to a greater extent than analysis of variance does using 567 

transformed, measured values. Nevertheless, if SEP values are larger, and differences 568 

between organic C contents are smaller, a high level of replication will be required to reduce 569 

the signal-to-noise ratio and improve predictive capacity (Forouzangohar et al. 2015). In an 570 

agricultural study reporting coarse fraction OC contents similar to ours, changes to OC after 571 

differential management were also successfully detected with a similar SEP (1.1 mg g-1)0.5, 572 

but over a longer timeframe (9 years) (Baldock et al. 2018). Prediction errors for other OC 573 

spectral models of 2.70 mg g-1 (McCarty et al. 2002) and 6.70 mg g-1 (Grinand et al. 2012) 574 

were larger than we observed, but the former models were calibrated across a larger 575 

variation in OC contents which likely allowed for strong predictive capacity despite large 576 

SEPs. It is important to note that the PLSR-derived estimates of increases in total and coarse 577 

fraction OC were ~40% more conservative than those obtained from combustion analyses. 578 

By successfully comparing measured pools with spectrally-derived estimates of OC, we have 579 

demonstrated the capacity of the calibration dataset to predict carbon pools among 580 

different cover cropping treatments and highlight its potential to be used in other vineyard 581 

agroecosystems for the same purpose.  582 

 583 

4.4 Improving the predictive capacity of IRS/PLSR for application across varied soil types 584 

Organic matter is a complex mixture of chemically diverse, mostly infrared-active 585 

compounds which are difficult to differentiate with clearly separated spectral peaks (Janik & 586 

Skjemstad 1995). Mineral composition is considered to control predictions of C and N 587 

contents in fractions using spectra obtained from whole soil and, in our derived spectra, 588 

peaks associated with changes to C contents were strongly associated with mineral peaks. A 589 

high degree of correlation between silt+clay fraction C and total OC has been found 590 

elsewhere (Brunet et al. 2007), and therefore, it may be argued that using IRS to detect 591 

changes in OC content is more to do with the ‘relatedness’ of OC to other mineral 592 

components than to a direct measurement of OC content itself. Nevertheless, as we 593 

continue to recognise the roles of different components of the soil matrix in the building 594 

and maintenance of OC (Allison 2012; Solomon et al. 2012) we suggest that soil spectral 595 



analysis will become an increasingly useful tool to predict changes to OC pools. There is 596 

potential to separate spectral diversity relating to mineralogy from diversity in organic 597 

compounds via larger sample sets spanning a greater range of organic C contents collected 598 

in texturally similar soils (Brunet et al. 2007). In contrast, it is possible that spectral diversity, 599 

such as occurs in the presence of compounds that correlate positively (clay minerals) and 600 

negatively (quartz minerals) with organic C contents, may be reduced in more homogenous 601 

soil samples and diminish the predictive capability of IRS/PLSR (Van Groenigen et al. 2003; 602 

Wight et al. 2016). These limitations emphasise the need for repeated calibrations across a 603 

range of soil types, as in the current study, to improve the accuracy of IR predictions for 604 

wider geospatial applicability. In recommending the IRS/PLSR technique for similar 605 

applications, we would advise caution using existing calibration models in uncalibrated 606 

systems; specific calibration of the IRS/PLSR technique in various soil types to produce 607 

robust models is of vital importance to the development of the method. A comprehensive 608 

library of spectral indicators that can reliably detect changes in organic matter composition 609 

across variable soil types would also help to predict the outcomes of differential 610 

management in diverse systems.   611 

 612 

4.5 Conclusions 613 

Traditional ground cover management practices in vineyards will require significant re-614 

thinking and improvement to prevent significant soil degradation (Daane et al. 2018). 615 

However, expanding industry engagement in vineyard management practices that improve 616 

soil health by increasing soil OC and N relies on both proving the efficacy of practices such as 617 

cover cropping for this purpose (García-Díaz et al. 2018), and making the results of 618 

differential management easily quantifiable and accessible (Askari et al. 2015). This study 619 

contributed to achieving both outcomes by demonstrating the positive influence of cover 620 

crops on important soil properties, and by demonstrating the capacity of soil spectroscopy 621 

to detect management-related changes across varied vineyard soil types. Whilst it is well 622 

understood that grass cover crops can increase soil OC, and legumes soil N, it is not common 623 

to discover that legumes can also improve soil OC, or that grasses play a role when grown 624 

alongside legumes in increasing soil N to a greater extent than legumes grown alone. 625 

Despite the potential benefits of cover cropping, there is industry resistance to 626 



incorporating grasses in the under-vine region because of perceived cover crop-vine 627 

nitrogen competition, which has been indicated in previous studies, but not assessed in 628 

mixed grass+legume cultivations (Celette et al. 2009; King & Berry 2005b; Vystavna et al. 629 

2020). Not only were yields and fruit quality unaffected by the cover cropping treatments  in 630 

our study, we demonstrated that the combination of grass and legume cover crops in the 631 

under-vine region represents a more valuable contribution towards the building and 632 

maintenance of OC and N in the rooting zone, where vines can access it, than legume cover 633 

crops alone.  634 

 635 

The ongoing development of soil spectroscopy for the purpose of monitoring soil health is 636 

likely to contribute significantly to improving the sustainable management of vineyard 637 

agroecosystems internationally (Dunne et al. 2020; Sanderman et al. 2020; Sepahvand et al. 638 

2019). With relatively low-effort sample collection and processing, our acquired IRS/PLSR 639 

analyses accurately predicted total and coarse OC (mg g-1) across all sites confirming the 640 

usefulness of IRS/PLSR to predict OC pools from easily obtained bulk soil analyses, in 641 

different soil types. Additionally, and most importantly, we successfully used IRS/PLSR to 642 

predict differences in OC pools related to differential ground cover management in vineyard 643 

agroecosystems; this represents an important contribution to validating new approaches for 644 

the rapid quantification of short-term impacts of differential management strategies for the 645 

viticultural industry.   646 
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