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Abstract

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and
Food Allergens (NDA) has derived dietary reference values (DRVs) for chloride. There are no
appropriate biomarkers of chloride status, no balance studies and no adequate evidence on the
relationship between chloride intake and health outcomes that can be used to set DRVs for chloride.
There is a close relationship between sodium and chloride balances in the body. Sodium chloride is the
main source of both electrolytes in European diets and similar urinary excretion levels of sodium and
chloride (on a molar basis) are typically observed in Western populations. Hence, the Panel considered
that reference values for chloride can be set at values equimolar to the reference values for sodium for
all population groups, and are as follows: 1.7 g/day for children aged 1–3 years, 2.0 g/day for children
aged 4–6 years, 2.6 g/day for children aged 7–10 years, 3.1 g/day for children aged 11–17 years and
3.1 g/day for adults including pregnant and lactating women. Consistent with the reference values for
sodium, these levels of chloride intake are considered to be safe and adequate for the general EU
population, under the consideration that the main dietary source of chloride intake is sodium chloride.
For infants aged 7–11 months, an adequate intake of 0.3 g/day is set.
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Summary

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and
Food Allergens (EFSA NDA Panel) was asked to deliver a Scientific Opinion on dietary reference values
(DRVs) for the European population, including chloride.

Chloride (Cl�) is the predominant anion in intracellular fluid and one of the most important
extracellular anions. It contributes to many body functions including the maintenance of osmotic and
acid–base balance, muscular and nervous activity, and the movement of water and solutes between
fluid compartments.

Dietary chloride deficiency is rare. Sodium chloride added during industrial food processing,
discretionary use or food preservation is the major source of dietary chloride in Western diets. Other
sources of chloride include inherently food-borne sources, and chloride-containing food additives, in
which chloride may be associated with cations other than sodium.

In healthy people, chloride is efficiently absorbed in the gut. Following absorption, chloride anions
are freely transported in the blood, where their concentration is maintained within a narrow range.
Renal excretion of chloride is coupled to that of sodium and potassium. The overall regulation of
chloride balance is linked to that of sodium through hormonal control by the renin–angiotensin–
aldosterone system and cortisol. The close interrelationship between sodium and chloride physiology
and intakes are reflected by high correlations between sodium and chloride urinary excretion. Studies
which quantified 24-h urinary excretion of sodium and chloride in subjects from Western populations
indicate that, on a molar basis, both electrolytes are excreted in similar amounts.

As for sodium, the amount of chloride excreted in the urine of an individual varies widely within the
day and between days. In a long-term controlled feeding trial, a daily variation in chloride excretion
with a seven-day rhythm was observed, which indicates that the day-to-day variation in chloride
excretion is partly independent of chloride intake.

Because of its tight homeostatic regulation, serum chloride concentration is not a sensitive marker
of chloride intake or status. Values outside the reference range are typically related to disorders
affecting water and electrolyte balances. Overall, there are no appropriate biomarkers for chloride
status that can be used for setting DRVs for chloride.

A few studies have measured chloride intake and losses and related chloride ‘balance’ in various
experimental settings. These studies have important limitations. No balance studies can be used to set
DRVs for chloride.

There is evidence that chloride can contribute to the effect of sodium chloride on blood pressure.
Data from studies on hypertensive rats, and some clinical observations, suggest that the full
expression of sodium chloride-dependent elevation in blood pressure relies on the concomitant
presence of both sodium and chloride. An independent effect of chloride on cardiovascular risk has
also been explored in observational studies using serum/plasma chloride concentration. However,
serum/plasma chloride concentration cannot be used as a marker of chloride intake. No studies are
available which investigate the association between chloride intake or urinary excretion and
cardiovascular disease-related health outcomes.

There are no data that can be used to determine Average Requirements and population reference
intakes for chloride. Hence, the Panel considered that reference values for chloride can be set at the
value equimolar to the reference values for sodium for all population groups, and are as follows: 1.7 g/
day for children aged 1–3 years, 2.0 g/day for children aged 4–6 years, 2.6 g/day for children aged 7–
10 years, 3.1 g/day for children aged 11–17 years and 3.1 g/day for adults including pregnant and
lactating women. Consistent with the reference values for sodium, these levels of chloride intake are
considered to be safe and adequate for the general EU population, under the consideration that the
main dietary source of chloride intake is sodium chloride. For infants aged 7–11 months, an adequate
intake of 0.3 g/day is set.
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Background as provided by the European Commission

The scientific advice on nutrient intakes is important as the basis of Community action in the field of
nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The
Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European Community
dates from 1993. There is a need to review and if necessary to update these earlier recommendations to
ensure that the Community action in the area of nutrition is underpinned by the latest scientific advice.

In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European Community.1

The report provided Reference Intakes for energy, certain macronutrients and micronutrients, but it did
not include certain substances of physiological importance, for example dietary fibre.

Since then new scientific data have become available for some of the nutrients, and scientific advisory
bodies in many European Union Member States and in the United States have reported on recommended
dietary intakes. For a number of nutrients these newly established (national) recommendations differ
from the reference intakes in the (SCF, 1993) report. Although there is considerable consensus between
these newly derived (national) recommendations, differing opinions remain on some of the
recommendations. Therefore, there is a need to review the existing EU Reference Intakes in the light of
new scientific evidence, and taking into account the more recently reported national recommendations.
There is also a need to include dietary components that were not covered in the SCF opinion of 1993,
such as dietary fibre, and to consider whether it might be appropriate to establish reference intakes for
other (essential) substances with a physiological effect.

In this context the EFSA is requested to consider the existing population reference intakes for
energy, micro- and macronutrients and certain other dietary components, to review and complete the
SCF recommendations, in the light of new evidence, and in addition advise on a population reference
intake for dietary fibre.

For communication of nutrition and healthy eating messages to the public it is generally more
appropriate to express recommendations for the intake of individual nutrients or substances in food-
based terms. In this context the EFSA is asked to provide assistance on the translation of nutrient
based recommendations for a healthy diet into food based recommendations intended for the
population as a whole.

Terms of reference as provided by the European Commission

In accordance with Article 29(1)(a) and Article 31 of Regulation No 178/2002,2 the Commission
requests EFSA to review the existing advice of the Scientific Committee for Food on population
reference intakes for energy, nutrients and other substances with a nutritional or physiological effect in
the context of a balanced diet which, when part of an overall healthy lifestyle, contribute to good
health through optimal nutrition.

In the first instance the EFSA is asked to provide advice on energy, macronutrients and dietary
fibre. Specifically, advice is requested on the following dietary components:

• Carbohydrates, including sugars;
• Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty

acids, trans fatty acids;
• Protein;
• Dietary fibre.

Following on from the first part of the task, the EFSA is asked to advise on population reference
intakes (PRIs) of micronutrients in the diet and, if considered appropriate, other essential substances
with a nutritional or physiological effect in the context of a balanced diet which, when part of an
overall healthy lifestyle, contribute to good health through optimal nutrition.

Finally, the EFSA is asked to provide guidance on the translation of nutrient based dietary advice
into guidance, intended for the European population as a whole, on the contribution of different foods
or categories of foods to an overall diet that would help to maintain good health through optimal
nutrition (food-based dietary guidelines).

Dietary reference values for chloride

1 Scientific Committee for Food, 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific
Committee for Food, 31st series. Food – Science and Technique, European Commission, Luxembourg, 248 pp.

2 Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general
principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in
matters of food safety. OJ L 31, 1.2.2002, p. 1–24.
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Data and methodology

The assessment is conducted in accordance with the NDA Panel’s Scientific Opinion on principles for
deriving and applying dietary reference values (DRVs) (EFSA NDA Panel, 2010).

The Opinion is structured as follows:

• Sections 1–4 include relevant background information on chloride; this encompasses an
introduction (Section 1), information on chemistry, function, physiology, metabolism,
interaction with other nutrients and biomarkers for intake and status (Section 2), information
on dietary sources and intake data (Section 3) and an overview of DRVs and recommendations
from other bodies (Section 4).

• Section 5 covers the assessment of the evidence on the criteria (endpoints) on which to base
DRVs.

• Section 6 provides the integration of the available evidence and derivation of DRVs.

To inform Sections 1–4 of the Scientific Opinion, a literature search covering chloride physiology
and metabolism in healthy adults, biomarkers for intake, and genotypes affecting chloride metabolism
was commissioned from the University of Hertfordshire (Lewis et al., 2019).

In order to complement the information gathered in a previous opinion on the concentration of
chloride in breast milk (SCF, 2003) (Section 2.3.3.4), a comprehensive review of the literature
published since January 2000 on healthy women living in Europe, North America and Australia was
conducted by LASER Analytica (LASER Analytica, 2014).

An ad hoc questionnaire developed by the members of the working group on DRVs for minerals was
disseminated to EFSA’s focal points and the members of the EFSA Food Consumption Network in order
to collect information on the levels of urinary chloride excretion in European populations (Section 3.2).

To identify relevant health outcomes upon which DRVs for chloride could be based (Section 5.5), a
comprehensive search of the literature published between 1990 and September 2012 was
commissioned from Pallas health research and consultancy (Eeuwijk et al., 2013).

Additional information was gathered by the members of the working group on DRVs for minerals
and EFSA staff. Studies were retrieved through searches in bibliographic databases, and were selected
on the basis of their relevance.

In April 2019, the draft scientific opinion was published for public consultation.3 No comments were
received during the consultation period (EFSA, 2019).

Assessment

1. Introduction

In 1993, the SCF adopted an Opinion on the nutrient and energy intakes for the European
Community. With respect to chloride, the SCF acknowledged the absence of definitive information and
since daily chloride was principally derived from the intake of sodium chloride, the Committee decided
that chloride requirements should match those for sodium (SCF, 1993). For sodium, an acceptable
range of intakes (0.575–3.5 g/day, corresponding to 25–150 mmol/day) was set for adults. This is
equivalent to 0.89–5.4 g chloride/day.

The Panel notes the difficulty of dissociating the physiological effects of chloride from those of
sodium or potassium and recommends that this opinion should be read in conjunction with the Panel’s
opinions on the dietary reference values for sodium and potassium (EFSA NDA Panel, 2016, 2019).

2. Definition/category

2.1. Chemistry

Chlorine is a halogen and has an atomic mass of 35.5 Da, with two stable isotopes 35Cl and 37Cl
which account for approximately 75% and 25% of the element’s natural abundance (Wieser and
Coplen, 2011). Chloride (Cl�) as a monoatomic free hydrated anion (i.e. an electrolyte) is the form in
which the element, in association with the cations sodium, potassium, calcium and magnesium, is
essential for physiological processes in life forms. Cl� can also form covalent organic compounds, but
these fulfil pharmacological and toxicological roles and are not relevant for the derivation of DRVs.

Dietary reference values for chloride
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Sodium chloride (NaCl) is table salt. One gram of salt consists of 17 mmol sodium and chloride,
providing 0.4 g sodium and 0.6 g chloride.

2.2. Function of chloride

2.2.1. Biochemical functions

Chloride and bicarbonate (HCO3
�) are the two dominant anions in the extracellular fluid, whereas in

the intracellular fluid, Cl� is the predominant anion. This compartmentalisation of chloride and
bicarbonate, and of sodium (Na+) and potassium (K+), is achieved by the regulated exchange of the
ions across the lipid membranes.

The transport of chloride across biological membranes is mediated by chloride channels, which are
ubiquitously expressed. Chloride channels are classified into voltage-gated chloride channels (the ClC
family), the cystic fibrosis transmembrane conductance regulator (CFTR), the Ca2+-activated chloride
channels, the volume-regulated anion channels and the ligand-gated anion channels (Berend et al.,
2012; Kondratskyi et al., 2014).

These channels maintain and modulate membrane electropolarity, and osmotic and acid–base
balance between intracellular compartments and the cytoplasm, as well as between the cytoplasm and
extracellular fluid (Berend et al., 2012). They enable the generation of electrical signals in muscle and
in the peripheral and central nervous systems, the transport of solutes across membranes (Greenwood
and Earnshaw, 1997; Frausto da Silva and Williams, 2001), as well as the secretion and resorption of
fluid, particularly in the lung alveoli where the lung air/fluid interface is central to gas absorption
(Hollenhorst et al., 2011). Chloride-dependent secretion of water in the lung and exocrine organs
moistens mucus and provides its fluidity; this is regulated by the CFTR channel, a defect in which is
responsible for cystic fibrosis, which is also known as mucoviscidosis (Johnson et al., 2006).

Chloride secretion by channels in the parietal (oxyntic) cells of the gastric mucosa is crucial for the
secretion of HCl (Berend et al., 2012). In erythrocyte membranes, a Cl�/HCO3

� exchange channel
facilitates the uptake of oxygen and release of carbon dioxide in the lung vascular system and the
release of oxygen and uptake of carbon dioxide in peripheral tissues. In the lungs, the exchange
channel releases CO2 which has been taken up as bicarbonate and enables the entry of chloride ions
which, in turn, induce a conformational change in haemoglobin that increases its affinity for O2. This
phenomenon is known as the ‘chloride shift’ (Prange et al., 2001; Fischer et al., 2007).

Other functions of chloride include the production by neutrophils of hypochlorous acid (HClO), the
cytotoxic effect of which is a component of the innate cellular immune inflammatory response
(Nauseef, 2014). It has been proposed that chloride has roles in the cell cycle and apoptosis (Nilius
and Droogmans, 2003; Kondratskyi et al., 2014).

2.2.2. Health consequences of deficiency and excess

2.2.2.1. Deficiency

Dietary chloride deficiency is rare (Meletis, 2003). Low intakes of chloride have been described in
two breast-fed infants whose mothers’ milk was deficient in chloride (concentration of 2 mmol/L
(70 mg/L) and undetectable, respectively) (Asnes et al., 1982; Hill and Bowie, 1983). Insufficient
intakes have also occurred in infants given chloride-deficient breast milk substitutes (Rodriguez-Soriano
et al., 1983; Kaleita, 1986) and among children and adult patients provided with chloride-deficient
liquid nutritional products (Miyahara et al., 2009). In infants, hypochloraemia features included growth
failure, lethargy, irritability, anorexia, gastrointestinal symptoms, and weakness in addition to
hypokalaemic metabolic alkalosis and haematuria (Grossman et al., 1980). These features are
consistent with those seen in infants and children with hypochloraemia induced by congenital chloride
diarrhoea (OMIM 214700) secondary to a defect in the ileal and colonic Cl�/HCO3

� exchange carrier
for chloride absorption.

Hypochloraemia, which is characterised by abnormally low blood chloride concentration (below the
reference range, typically 97�107 mmol/L; see Section 2.3.2), may be induced by excessive
gastrointestinal and renal losses, as well as by acquired or inherited metabolic disorders (Tang et al.,
2010; Berend et al., 2012).

Dietary reference values for chloride
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2.2.2.2. Excess

Chloride excess secondary to dietary intake is uncommon. Hyperchloraemia, which is defined as a
serum chloride concentration above the reference range (97�107 mmol/L), is usually caused by loss of
bicarbonate in the faeces due to severe diarrhoea (metabolic acidosis). Hyperchloraemia may occur
with several other conditions associated with abnormal losses of water (skin, renal or extra-renal),
extracellular fluid volume depletion or an increase in the tubular chloride reabsorption. It can also be
the result of excessive administration of salts (e.g. NaCl, NH4Cl, CaCl2) or intake of certain medications
(e.g. cortisone preparations, acetazolamide).

Because of insufficient data, EFSA did not set a tolerable upper intake level (UL) for chloride (EFSA,
2005a,b), but noted that current levels of intake among European populations exceeded amounts
required for normal function and that increased intake of chloride, as sodium chloride, has been
associated with a greater likelihood of elevated blood pressure, which can lead to cardiovascular and
renal disease.

2.3. Physiology and metabolism

2.3.1. Intestinal absorption and secretion

Gastrointestinal secretions are rich in chloride, with gastric secretions being the predominant
source. Chloride may also be actively secreted in the lumen, which is an important determinant of
intestinal fluid secretion throughout the gastrointestinal tract (Murek et al., 2010).

Enterocyte absorption and secretion of chloride are regulated by endocrine, paracrine, autocrine,
neuronal and immunological agents as part of the overall regulation of intestinal function (Kato and
Romero, 2011; Malakooti et al., 2011).

In healthy people, chloride is efficiently absorbed in the gut and concentrations in faeces are low
(10–15 mmol/L) (Kiela and Ghishan, 2016) (Section 2.3.3.2). Chloride is absorbed and transferred by
the intestinal mucosa throughout the small and large intestine; the mechanisms involved vary with
intestinal site (Strain and Cashman, 2009; Chang and Leung, 2014). Proximally, chloride is taken up
actively by specific exchange mechanisms (e.g. Cl�/HCO3

�, Cl�/OH�) or passively by following
electrochemical or concentration gradients. Net intestinal absorption of chloride occurs in the distal
small intestine and proximal colon, where sodium and electrolyte salvage is achieved by electroneutral
absorption of chloride ions coupled to the absorption of sodium. This is facilitated by two carrier
proteins, the Na+/H+ and Cl�/HCO3

� exchangers (Sundaram et al., 1991; Gropper et al., 2013). In the
ileum, colon and rectum, chloride is also absorbed by an HCO3

�-dependent pathway, probably
involving a luminal membrane Cl�/HCO3

� exchanger not coupled to an Na+/H+ exchanger, as well as
by voltage-dependent diffusion (Chang and Leung, 2014).

When the intestinal mucosa is stimulated by agents that increase intracellular second messengers,
electroneutral sodium chloride absorption is inhibited and secretion of sodium chloride and potassium
chloride is activated, facilitated by transport proteins in the intestinal mucosa (the most important
being the CFTR channel) and basolateral membranes (Na+-Cl�-K+ cotransporter, K+ channels, Na+-K+-
ATPase) (Kato and Romero, 2011).

2.3.2. Transport in blood and distribution to tissues

Following absorption, chloride anions are freely transported in the blood (Gropper et al., 2009b). In
healthy adults, serum chloride concentrations are approximately 97–107 mmol/L. Reference ranges of
values vary slightly among different laboratories due to the variation in measurement techniques
(Morimatsu et al., 2003).

The total body content of chloride has been estimated to be 85–115 g in an adult, corresponding to
about 0.15% of total body weight (Pike and Brown, 1984; Yunos et al., 2010; Berend et al., 2012).
Most systemic chloride (88% of total body content) is in the extracellular fluid. The concentration of
chloride in the interstitial fluid is approximately 115 mmol/L (Bailey et al., 2014). Within cells, chloride
is present at lower concentrations depending on the resting membrane potential of each cell type
(Berend et al., 2012; Bailey et al., 2014). The variation in the resting membrane potential of cells
drives the differences in the intracellular concentration of chloride (approximately 70 mmol/L in red
blood cells and 3 mmol/L in muscle tissue) (Yunos et al., 2010; Berend et al., 2012).

Studies, primarily focusing on sodium, provide evidence that sodium chloride retention does not
inevitably lead to extracellular fluid volume retention and that there are metabolically relevant
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electrolyte storage sites that are not controlled by the kidneys (Heer et al., 2000, 2009; McCallum
et al., 2015; Titze, 2015; Birukov et al., 2016).

2.3.3. Elimination

Body chloride content is determined by the balance between dietary intake and renal excretion and
closely follows that of sodium (Gropper et al., 2009b; Birukov et al., 2016).

2.3.3.1. Urine

The kidney has the capacity to filter large amounts of chloride, more than 99% of which is then
reabsorbed (Greger, 2000). Most of the reabsorption of chloride occurs in the proximal tubule, by
passive reabsorption, ion conductance or active coupled transport with other ions (Yunos et al., 2010).
Under controlled conditions with constant chloride intake, the mean recovery rates of dietary chloride
in 24-h urine samples were 87–90%4 (200 or 400 mmol chloride/day for 7-day periods) and 99–105%
(100, 150 or 200 mmol chloride/day for periods > 29 days) (Luft et al., 1982a; Birukov et al., 2016).

Renal excretion of chloride is coupled to that of sodium and potassium (Brungel et al., 2001;
Gropper et al., 2009a; Heer et al., 2009; Birukov et al., 2016). The overall regulation of chloride
balance is linked to that of sodium through hormonal control by the renin–angiotensin–aldosterone
system and cortisol. Studies in cohorts of four and six men lasting, respectively, 105 and 205 days
consuming 4 g potassium per day, with periods of ingesting 6, 9 and 12 g sodium chloride/day,
demonstrate an aldosterone- and cortisol-dependent weekly variation in daily sodium urinary excretion
(Birukov et al., 2016; EFSA NDA Panel, 2019). There is a similar periodicity for urinary loss of both
chloride and potassium. Furthermore, the longer (i.e. over a month or more) rhythmic periodicity
observed for sodium also occurs for chloride (Rakova et al., 2013; Birukov et al., 2016). The close
interrelationships between sodium and chloride physiology and intakes are reflected by high
correlations between sodium and chloride urinary excretions (r ≥ 0.86 at various levels of intake) (Luft
et al., 1982a,b, 1985; Jeffery et al., 1987; Brungel et al., 2001; Birukov et al., 2016).

The Panel notes that the kidney is the main route of chloride excretion and that excretion of
sodium and chloride in urine are closely related.

2.3.3.2. Faeces

Chloride excretion in faeces mainly consists of the ions lost after gastrointestinal secretion/
absorption/recirculation (Gropper et al., 2009a).

Chloride losses in faeces are generally small (a few mmol/day) and relatively constant (Rose et al.,
2015). The contribution of faecal excretion to overall losses can become significant when chloride
intakes are low, as observed in depletion studies (McCance, 1936; Dole et al., 1950), or in the rare
condition of chloride malabsorption, such as congenital chloride diarrhoea (Section 2.2.2.1).

2.3.3.3. Dermal losses

Chloride concentrations in sweat are typically around 20–40 mmol/L in healthy adults (Mishra et al.,
2008; Taylor and Machado-Moreira, 2013). Chloride concentration in sweat is influenced by sweat rate
(Dill et al., 1966; Taylor and Machado-Moreira, 2013), degree of heat acclimation (Fukumoto et al.,
1988; Periard et al., 2015) and age (Mishra et al., 2008).

Assuming a sweat volume of 0.5 L/day in adults (Shirreffs and Maughan, 2005) and a chloride
concentration of 30 mmol/L, under conditions of moderate temperature and exercise levels, chloride
losses via sweat can be estimated to be about 15 mmol/day (0.5 g/day).

2.3.3.4. Breast milk

Chloride concentration in breast milk decreases rapidly during the first days after giving birth. This
is followed by a more gradual decline in chloride concentration of mature milk (Atkinson et al., 1995).

The concentration of electrolytes, including chloride, in human milk is lower than in plasma. It is
determined by an electrical potential gradient in the mammary epithelial cells regulated through
membrane transport pathways (Wack et al., 1997; Truchet and Honvo-Houeto, 2017). Chloride
concentration in breast milk is not influenced by nutritional factors (L€onnerdal, 1986; Atkinson et al.,
1995). Diurnal variations in breast milk chloride concentration have been reported and are similar to
the diurnal pattern of breast milk sodium concentration (Keenan et al., 1982, 1983). Factors which
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have been associated with increased chloride concentration in breast milk include premature birth
(Gross et al., 1980) or pathological processes such as mastitis (Ramadan et al., 1972).

Appendix A reports data on chloride concentration in breast milk from studies which involved
mothers of term infants in Western populations. Mean chloride concentrations are between 339 and
586 mg/L from six studies which analysed mature breast milk (Atkinson et al., 1980; Gross et al.,
1980; Picciano et al., 1981; Lemons et al., 1982; Neville et al., 1991; Wack et al., 1997) and 387 mg/L
from one study which reported on mixed samples (collected between 1 and 8 weeks post-partum)
(Bauer and Gerss, 2011). The Panel notes that in some studies chloride concentrations in breast milk
vary widely across subjects.

Based on available data, the Panel considers an approximate midpoint of chloride concentration in
mature breast milk of women from Western countries to be 400 mg (11.3 mmol)/L. Based on a mean
milk transfer of 0.8 L/day (Butte et al., 2002; FAO/WHO/UNU, 2004; EFSA NDA Panel, 2009) during
the first six months of lactation in exclusively breastfeeding women, the Panel estimates a loss of
chloride through breast milk of 320 mg (9 mmol)/day.

2.3.4. Interactions with other nutrients

The interaction of chloride with other nutrients and metabolites, predominantly involves sodium and
potassium, and bicarbonate. It is fundamental for their effective physiological function, which depends
on their existence as free ions in aqueous media and on the ability of selective and specific ion channels
across lipid membranes to distribute the ions such that their individual physicochemical properties can
control membrane polarisation, the transport of solutes and water across membranes (e.g. in intestinal
absorption and exocrine function), and the generation of electrical signals in muscle, and in peripheral
and central nervous systems (Berend et al., 2012; Imbrici et al., 2015) (Section 2.2.1). It is noteworthy
that some roles of chloride are independent of sodium and the other counter ions. Chloride is rate-
limiting for the transport of sodium and chloride in the thin ascending loop of Henle, because of the
differences in the affinities of sodium and chloride for the cotransporters, and the availability of chloride
having a determinant effect on the release of renin (Kotchen et al., 1987).

Data from studies on hypertensive rats, and some clinical observations, suggest that the full-
expression of sodium chloride-dependent elevation in blood pressure relies on the concomitant presence
of both sodium and chloride: sodium chloride causes a greater elevation of mean blood pressure, in both
normotensive and hypertensive subjects, than does sodium combined with other anions (e.g. citrate,
phosphate, bicarbonate) (Kurtz et al., 1987; Shore et al., 1988; Luft et al., 1990; Kotchen and Kotchen,
1997; McCallum et al., 2015). As yet, mechanisms by which chloride may have a direct effect on blood
pressure, independent of sodium, have not been established (McCallum et al., 2015).

The Panel notes that there is evidence that chloride can contribute to the effect of sodium chloride
on blood pressure.

2.4. Biomarkers

2.4.1. Biomarkers of intake

Chloride is efficiently absorbed (Section 2.3.1) and most ingested chloride has been observed to be
excreted in urine across a wide range of chloride intakes (Luft et al., 1982a; Birukov et al., 2016)
(Section 2.3.3). As for sodium, the amount of chloride excreted in the urine of an individual varies
widely during the day (e.g. lower concentration in nocturnal vs diurnal samples) (Wang et al., 2013)
and between days (Wang et al., 2013; Birukov et al., 2016; Terry et al., 2016).

The validity of using 24-h chloride urinary excretion as a biomarker of chloride intake was assessed
in a long-term well-controlled feeding trial in which 10 healthy young men received constant amounts
of sodium chloride (Birukov et al., 2016) (Section 2.3.3). A daily variation in chloride excretion with a
seven-day (infradian) rhythm was observed, which indicates that the day-to-day variation in chloride
excretion is partly independent of chloride intake. Through the use of Bland–Altman plots, Birukov
et al. (2016) concluded that single 24-h urine collection misclassified chloride intake half of the time.
Accuracy improved as the number of collections increased and reached 72% when three 24-h urine
samples were used to predict intake.

In a feasibility study by the US National Health and Nutrition Examination Survey (NHANES), 282
subjects collected one 24-h urine sample, and 108 of them collected a second 24-h sample after
3–10 days. Although urinary excretions of chloride differed between collections at the individual level,
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mean daily excretions of the study groups did not differ significantly between the first and second 24-h
urine collections, overall, by sex or by race (Terry et al., 2016).

The Panel notes the similar characteristics of urine chloride and urine sodium as biomarkers of
intake (EFSA NDA Panel, 2019). The Panel considers that a single 24-h excretion of chloride may be a
valid marker for groups’ average intake of chloride. The Panel notes that a single 24-h urine collection
does not reliably reflect an individual’s usual intake, primarily due to the day-to-day variability in intake
and excretion.

2.4.2. Biomarkers of status

Serum chloride concentration is tightly regulated by homeostatic mechanisms due to its role in
maintaining serum osmolarity, fluid balance, membrane electroneutrality and polarisation (Section 2.3.3).
Thus, serum chloride concentration is not a sensitive marker for chloride status. Reference serum chloride
concentrations are in the range of 97–107 mmol/L (Section 2.3.2). Values outside the reference range
(i.e. hypo- and hyperchloraemia) are typically related to disorders affecting water and electrolyte
balances, and are seldom due to inappropriate chloride intake (Section 2.2.2).

The Panel notes that there is no biomarker of chloride status that can be used for setting DRVs for
chloride.

2.5. Effects of genotype

Mutations affecting genes of all classes of chloride channels and ion exchange transporters have
been identified (OMIM database5). These affect plasma membrane chloride channels (i.e. chloride
channelopathies) or chloride transporters (mostly Cl�/H+ exchangers), mainly located in intracellular
compartments (e.g. endosomes, lysosomes, synaptic vesicles). Mutations of the CFTR channels (OMIM
602421) are responsible for variants of cystic fibrosis.

Overall, inherited disease genotypes produce a range of phenotypic conditions and diverse diseases
nearly all of which are unresponsive to chloride intake (a possible exception is congenital chloride
diarrhoea (OMIM 214700)) (Puljak and Kilic, 2006; Planells-Cases and Jentsch, 2009).

The Panel considers that, as yet, no genotype has been identified that requires consideration in the
estimation of DRVs for chloride in the general population.

3. Dietary sources and intake data

3.1. Dietary sources

All unprocessed foods contain chloride, albeit at low levels. The chloride content of unprocessed
meat and fish may be up to 4 mg/g, whereas fruit and vegetables contain generally less than 1 mg/g
(Scherz and Senser, 2000; UK Food Standards Agency, 2002; Anses, 2016). Chloride content can be
substantially higher than sodium in fruit and vegetables, while sodium is found in somewhat higher or
equimolar concentrations compared with chloride in animal tissues. Analyses of 14 experimental 1-day
diets free from added sodium chloride were found to contain between ca 20 and 60 mmol (900–
2,700 mg) chloride (energy content ranged between 1,900 and 2,300 kcal) (Hulet, 1955), which
indicates the ‘natural’ content of chloride in the diet. The sodium content of these diets was between
10 and 35 mmol (230–805 mg).

The chloride content of drinking water is affected by anthropogenic sources (e.g. use of inorganic
fertilisers or treatment with chlorine or chloride for disinfection purposes). Concentrations of chloride in
tap water are typically below 50 mg/L (WHO, 2003). The Panel notes that the water chloride content
is low as compared with dietary sources and the contribution of drinking water to overall chloride
intake is expected to be small.

Chloride may be added to food as sodium chloride (‘table salt’) or as mixtures of sodium chloride
and potassium chloride. Other chloride-containing food additives include chloride in conjunction with
calcium, chromium (III), magnesium, manganese and zinc, as well as thiamine hydrochloride and
pyridoxine hydrochloride, which may be added to both food6 and food supplements,7 and thiamine
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monophosphate chloride and thiamine pyrophosphate chloride, which can be added to food
supplements only.7 The chloride content of infant and follow-on formula is regulated.8

A study of processed foods in the Netherlands reported average chloride content of between
3 mg/g in cakes and pastries and more than 10 mg/g in chips/nuts, sauces, processed meat and
cheese (Capuano et al., 2013). The molar concentrations of chloride and sodium were similar in about
half of the examined commodities, while they differed significantly in the other half. The largest
differences were found for the group of cakes/pastries and processed meat, which was partly
explained by the use of sodium-containing food additives in these products (e.g. sodium bicarbonate
in pastries, sodium nitrate in processed meat). In the other food groups, differences were �10%.

The Panel is not aware of any assessment of the relative contribution of sodium chloride vs
chloride-containing food additives vs inherently food-borne sources of chloride to total chloride intake.
In view of the low content of chloride in unprocessed (unsalted) foods relative to the levels of
consumption of sodium chloride in Western countries, sodium chloride (from processed food and
discretionary use) is considered to be the principal source of dietary chloride in Western diets. In
studies which involved individuals consuming their habitual diet, the levels of excretion of sodium and
chloride, in mmol/day, were found to be similar (Sanchez-Castillo et al., 1987b; K€ubler, 1995; Wang
et al., 2013; Curcio et al., 2016; Terry et al., 2016) (Appendix B.1). Differences (in mmol) in urinary
excretions of sodium and chloride become more prominent when a no- or low-salt diet is consumed
(Dole et al., 1950, 1951; Oliver et al., 1975). In a study of 26 Yanomamo Indians, average daily
urinary excretion was 1.0 mmol sodium vs 13.7 mmol (about 0.5 g) chloride (Oliver et al., 1975).

The Panel notes that sodium chloride added during industrial food processing, discretionary use or
food preservation is the major source of dietary chloride in Western diets. Other sources of chloride
include inherently food-borne sources, and chloride-containing food additives, in which chloride may be
associated with cations other than sodium.

3.2. Dietary intake

There is a paucity of publications providing estimates of daily chloride intake based on food
consumption data, primarily reflecting limitations in capturing the intake of chloride sources (e.g.
sodium chloride added at the table or in cooking) and the restricted knowledge of the chloride content
of foodstuffs.

Since 24-h urine excretion of chloride may be a valid marker of a population’s average intake, the
Panel launched a call to collect available data on urinary chloride levels in Europe. Replies were
received from 20 out of 32 countries. Only one country (Austria) provided data, which were chloride
concentrations in single spot urine samples (Elmadfa, 2012) and thus do not reflect daily chloride
intake (Appendix B.2).

Studies which quantified 24-h urinary excretion of sodium and chloride in subjects from Western
populations are tabulated in Appendix B.1. These data indicate that, on a molar basis, both
electrolytes are excreted in similar amounts.

The Panel notes that, in Western diets, sodium chloride is the major source of chloride intake which
is reflected in the similar levels of urinary excretion of sodium and chloride, on a molar basis.

4. Overview of dietary reference values and recommendations

4.1. Adults

The German-speaking countries (D-A-CH, 2016), the US Institute of Medicine (IOM, 2005) and the
UK Committee on Medical Aspects of Food Policy (COMA) (DH, 1991) derived an adequate intake (AI)
for chloride in adults from the values of sodium, on an equimolar basis. For pregnant and lactating
women, the same values as for other adults were adopted by these bodies.

The SCF (1993) did not set DRVs for chloride but stated that chloride intake should match the
acceptable range of intakes for sodium (Table 1).
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4.2. Infants and children

As for adults, the US Institute of Medicine (IOM, 2005) and the UK Committee on Medical Aspects
of Food Policy (COMA) (DH, 1991) derived AIs for chloride in infants and children from the values of
sodium, on an equimolar basis.

The German-speaking countries (D-A-CH, 2016) estimated values for infants based on chloride
intake from human milk, while for older children values for chloride were set at a level equimolar to
reference values for sodium (Table 2).

5. Criteria (endpoints) on which to base dietary reference values

5.1. Biomarkers as indicators of chloride requirement

As stated in Section 2.4, the Panel considers that there are no appropriate biomarkers of chloride
status that can be used to set DRVs for chloride.

Table 1: Overview of dietary reference values for chloride for adults

D-A-CH (2016) IOM (2005) DH (1991)

Age (years) 19–50 ≥ 19

AI (mg/day) 2,300(a) 2,300(a) 2,500(a),(b)

Age (years) 51–70

AI (mg/day) 2,000
Age (years) > 70

AI (mg/day) 1,800

AI: adequate intake; D-A-CH: Deutschland-Austria-Confoederatio Helvetica; DH: Department of Health (UK); IOM: US Institute of
Medicine of the National Academy of Sciences.
(a): the value also applies to pregnant and lactating women.
(b): Reference nutrient intake.

Table 2: Overview of dietary reference values for chloride for children

D-A-CH (2016) IOM (2005) DH (1991)

Age (months) 4–< 12 0–6 4–6

AI (mg/day) 450 180 426(a)

Age (months) 7–12 7–9

AI (mg/day) 570 497(a)

Age (months) 10–12

AI (mg/day) 533(a)

Age (years) 1–3 1–3 1–3

AI (mg/day) 600 1,500 781(a)

Age (years) 4–6 4–8 4–6

AI (mg/day) 750 1,900 1,065(a)

Age (years) 7–9 7–10

AI (mg/day) 1,150 1,775(a)

Age (years) 10–12 9–18 11–18

AI (mg/day) 1,700 2,300(b) 2,485(a)

Age (years) 13–14

AI (mg/day) 2,150
Age (years) 15–18

AI (mg/day) 2,300

AI: adequate intake; D-A-CH: Deutschland-Austria-Confoederatio Helvetica; DH: Department of Health (UK); IOM: US Institute of
Medicine of the National Academy of Sciences.
(a): Reference nutrient intake (expressed in mmol/day in the original report).
(b): the value also applies to pregnant and lactating adolescents aged 14–18 years.
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5.2. Balance studies

A few studies have measured chloride intake and losses and related chloride ‘balance’ in various
experimental settings (McCance, 1936; Falconer and Lyall, 1937; Dole et al., 1950; Heer et al., 2009).
One of them was a balance study designed to determine the basal requirement of sodium chloride
(Falconer and Lyall, 1937; Lyall, 1939). However, this study involved only three participants and used
the terms ‘sodium chloride’ and ‘chloride’ interchangeably without any adjustment to quantities, which
render its interpretation difficult. In the other studies, the assessment of chloride ‘balance’ was part of
the data collected to characterise the metabolic effects of sodium chloride deficiency (McCance, 1936),
the rice-fruit Kempner diet for treating hypertension (Dole et al., 1950) or of increasing sodium intake
(Heer et al., 2009). Furthermore, these studies bear important limitations such as: (a) the very small
number of study participants (two in McCance (1936)); (b) the inclusion of study participants with pre-
existing medical conditions (Dole et al., 1950); and (c) the absence of adaptation periods and lack of
measurements of both faecal and dermal losses (Heer et al., 2009).

The Panel considers that there are no balance studies that can be used to set DRVs for chloride.

5.3. Indicators of chloride requirement in pregnancy and lactation

At all gestational ages, foetal chloride concentration is 5 mmol/L higher than in maternal blood.
Chloride transport mechanisms across the human placenta have been characterised, although the
physiological roles of the chloride transporters and channels remain unclear (Riquelme, 2009;
Sadovsky and Jansson, 2015).

Pregnancy is associated with physiological adaptive changes in electrolytes’ metabolism (Gupta and
Nath, 1964; Cheung and Lafayette, 2013; EFSA NDA Panel, 2019). As for sodium, the Panel assumes
that these processes provide the chloride necessary for covering the need related to the expansion of
the maternal extracellular fluid volume and the compositional requirements of the fetus, placenta and
the amniotic fluid, without requiring an increase in maternal dietary intake.

Chloride losses in human milk are relatively low (a few mmol/day). Chloride concentration in human
milk, as for that of other electrolytes, is regulated by the secretion mechanisms in the mammary cells
and is not influenced by dietary factors (Section 2.3.3.4). The Panel considers that there is no
evidence that the chloride requirement of lactating women differs from the requirement of non-
lactating women.

5.4. Indicators of chloride requirement in infants and children

Fomon (1993) proposed a factorial approach for the determination of the chloride requirement of
infants. The whole body content of chloride for each of the first 12 months was calculated from the
amount of extracellular water and its chloride content (ca. 4 g/kg), on the assumption that the
chloride not present in the extracellular water is negligible. The daily increment in body chloride was
calculated by dividing the difference of the whole body chloride content between the beginning and
the end of a month by the number of days. The average daily increment between age zero and
4 months (29 mg/day) and between age 4 and 12 months (16 mg/day) was added to the inevitable
chloride losses via urine (assumed to be zero) and skin to calculate the chloride physiological
requirement (76 and 74 mg/day for 0–4 and 4–12 month-olds, respectively). Assuming an absorption
of 95% for dietary chloride, the chloride dietary requirement would be 78 and 76 mg/day for 0–4- and
4–12-month-olds, respectively. Fomon (1993) proposed a daily recommended intake of 120 mg
(3.5 mmol) of chloride for infants throughout the first year of life in consideration of both the
uncertainty created by the limited data available and the need for assumptions to be made, and the
necessity to provide for individual variability of requirements. The Panel notes that the amount of
chloride provided by human milk during the first six months of life (i.e. 320 mg/day assuming a
volume of 0.8 L/day and a chloride concentration of 400 mg/L, see Section 2.3.3.4) is higher than this
calculated physiological requirement.

5.5. Chloride intake and health consequences

5.5.1. Cardiovascular disease

The Panel notes that there is evidence that chloride can contribute to the effect of sodium chloride
on blood pressure (Section 2.4). An independent effect of chloride on cardiovascular risk has been
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explored in observational studies using serum/plasma chloride concentration (McCallum et al., 2013).
The Panel notes that serum/plasma chloride concentration cannot be used as a marker for chloride
intake (Section 2.4.2). The Panel notes that no studies are available which investigate the association
between chloride intake or urinary excretion and cardiovascular-disease-related health outcomes.

The Panel considers that the available evidence on cardiovascular disease cannot be used to set
DRVs for chloride.

5.5.2. Gastric cancer

A number of prospective cohort studies have assessed the association between sodium chloride
intake and gastric cancer incidence and/or mortality (EFSA NDA Panel, 2019, Annex A). The
population-based studies available in the literature evaluated associations between sodium chloride or
sodium intake and gastric cancer risk and there are no studies that evaluated the independent role of
chloride from sodium chloride in the disease occurrence.

The Panel considers that the available evidence on gastric cancer incidence and/or mortality cannot
be used to set DRVs for chloride.

6. Data on which to base dietary reference values

The Panel considers that there is no data that can be used to derive Average Requirements (ARs)
and PRIs for chloride.

The Panel noted the close relationship between sodium and chloride balances in the body
(Sections 2.3.3.1 and 2.4.1). Sodium chloride is the main source of both electrolytes in European diets
and similar urinary excretion levels of sodium and chloride (on a molar basis) are typically observed in
Western populations (Section 3). Hence, the Panel considers that reference values for chloride can be
set at values equimolar to the reference values for sodium (EFSA NDA Panel, 2019), for all age and
life-stage groups (Table 3). Consistent with the reference values for sodium, the values proposed for
chloride are considered to be safe and adequate intakess for the general EU population, under the
consideration that the main dietary source of chloride intake is sodium chloride (Section 3). Box 1
provides an explanation for the use of the terms ‘safe’ and ‘adequate’.

Table 3: Summary of dietary reference values for chloride

Age Safe and adequate intake for chloride(a) (g/day)

7–11 months 0.3(b)

1–3 years 1.7
4–6 years 2.0

7–10 years 2.6
11–17 years 3.1

≥ 18 years(c) 3.1

(a): Derived bymultiplying the reference values for sodium (EFSA NDA Panel et al., 2019) by 35.5/23 and rounded to the nearest 0.1.
(b): adequate intake.
(c): Including pregnant and lactating women.

Box 1: Safe and adequate intake: explanation for the terms

Safe: Although the term ‘safe intake’ is not defined in the principles on deriving and applying DRVs (EFSA
NDA Panel, 2010), the concept of a safe intake has been used in previous assessments regarding a daily
intake of a nutrient which does not give rise to concerns about adverse health effects, in instances when a
tolerable upper intake level (UL) could not be established (SCF, 2000; EFSA NDA Panel, 2012).

Adequate: An adequate intake (AI) is the value estimated when a population reference intake (PRI) cannot
be established because an average requirement (AR) cannot be determined (EFSA NDA Panel, 2010). The AI
is the level of intake that is assumed to be sufficient based on observations from groups of apparently
healthy people.

The reference values for chloride are set at values equimolar to the reference values for sodium, under the
consideration that the main dietary source of chloride intake is sodium chloride. The reference values for
chloride are called ‘safe’ and ‘adequate’ consistent with the use made of these terms for sodium (EFSA NDA
Panel, 2019).
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Conclusions

The Panel concludes that there is insufficient evidence to derive an AR and a PRI for chloride. The
Panel proposes references values for chloride which are derived from the reference values for sodium
on an equimolar basis, for all age and life-stage groups (Table 3). Consistent with the reference values
for sodium, the values proposed for chloride are considered to be safe and adequate intakes for the
general EU population, under the consideration that the main dietary source of chloride intake is
sodium chloride.

Recommendations for research

There is a need for studies, using robust assessment methods for chloride intake and the outcome
of interest, to investigate the effects on health of chloride intake, independent from that of sodium.
This will become particularly relevant if a significant proportion of sodium chloride becomes substituted
by other chloride salts in the diet.
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Appendix A – Concentrations of chloride in breast milk from mothers of term infants

Reference

Number of
women
(number of
samples)

Country

Stage of
lactation
(time post-
partum)

Cl concentration

Analytical methodmmol/L mg/L

Mean � SD(a)

Allen et al.
(1991)

13(b) USA 21 days 15.4 � 0.8 547 � 28 Samples collected by manual expression from each breast. Chloride analysed
by an automated colorimetric procedure45 days 13.0 � 0.6 461 � 21

90 days 11.6 � 0.8 412 � 28

180 days 13.9 � 0.7 493 � 25
Atkinson et al.
(1980)
Atkinson et al.
(1995)

10 (32) Canada 3–5 days 23.0 � 0.15(c) 817 � 5(c) 24-h milk samples collected by a manual or electric breast pump 4–6 times
per day. Chloride analysed by ashing, followed by ion-specific electrode
measurement

7–10 days 18.1 � 1.8(c) 645 � 64(c)

30 days 12.0 � 1.0(c) 426 � 36(c)

Bauer and
Gerss (2011)

10 (8) Germany 1–8 weeks 10.9 � 1.0(c) 387 � 36(c) Samples obtained mechanically with an electric breast pump. Chloride
analysed by an absorption spectrometer and a colorimetric assay

Gross et al.
(1980)

10 (10) USA 3 days 26.9 � 2.4(c) 955 � 85(c) Samples collected by manual or mechanical emptying of both breasts.
Chloride analysed by amperometric titration13 (13) 7 days 21.3 � 2.7(c) 756 � 96(c)

13 (13) 14 days 14.5 � 1.5(c) 515 � 53(c)

12 (12) 21 days 15.2 � 1.9(c) 540 � 67(c)

11 (11) 28 days 13.1 � 2.3(c) 465 � 82(c)

Lemons et al.
(1982)

7 (7) USA 7 days 13.9 � 1.57(d) 493 � 56(d) Complete 24-h milk expressions obtained by an electric pump. Chloride
analysed by automated colorimetric procedure7 (7) 14 days 12.11 � 1.82(d) 430 � 65(d)

7 (7) 21 days 10.53 � 1.17(d) 374 � 42(d)

7 (7) 28 days 10.46 � 0.91(d) 371 � 32(d)

Picciano et al.
(1981)

26 (234) USA 1 month 12.0 � 2.37 426 � 84 Samples collected with a manual breast pump or by manual expression.
Chloride analysed by ashing, followed by ion-specific electrode measurement2 months 11.7 � 2.09 415 � 74

3 months 11.93 � 2.57 424 � 91
Wack et al.
(1997)

30 (140) USA 0–60 days 12.93 � 3.49 459 � 124 Samples collected by hand expression or breast pump from a single breast.
Chloride determined by a potentiometric method using a Buchler Digital
Chloridometer

61–120 days 11.32 � 2.73 402 � 97
121–180 days 9.55 � 4.54 339 � 161

181–240 days 12.96 � 6.54 460 � 232
241–300 days 11.83 � 3.75 420 � 133

301–360 days 10.82 � 5.55 384 � 197

> 360 days 11.18 � 3.52 397 � 125
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Cl: chloride; NR: not reported; SD: standard deviation; SE: standard error; SEM: standard error of mean.
Studies were identified by a comprehensive literature search for publications from January 2010 to January 2014 (LASER Analytica, 2014) and from a previous review by Atkinson et al. (1995). If
studies did not report whether infants were born at term or not, it was presumed that infants were born at term.
(a): Unless specified otherwise.
(b): Post-partum milk samples were obtained twice daily for the first 3 days, daily to 7 days, every other day to 14 days, weekly to 8 weeks and monthly thereafter.
(c): Mean � SEM.
(d): Mean � SE.
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Appendix B – Urinary excretion of sodium and chloride in Western adult populations

B.1 Daily urinary excretion

Reference Country Population
Age

(years)
N

Na
(mmol/day)

Cl
(mmol/day)

Method
Mean � SD(a) 97th

perc.(a)
Mean � SD(a) 97th

perc.(a)

Sanchez-
Castillo et al.
(1987a)

UK 20–60 Multiple 24-h urinary collection.
Completeness checked based on the
creatinine content of the samples
(incomplete if < 2 SD below the mean
creatinine output for the individual) and
excluded. Cl- measured by the ferric
ammonium sulfate/mercuric thiocyanate
technique and Na+ by an autoanalyser

Men 33 187 � 55 – 182 � 54 –

Women 50 131 � 35 – 127 � 35 –

Wang et al.
(2013)

USA 18–39 Single 24-h urinary collection.
Completeness checked based on the
length of collection, urine volume and
responses to eight questions asked upon
return of the specimens. If the participant
was unable or unwilling to redo an
incomplete collection, the existing sample
was excluded. Na+ and Cl- measured using
ion-selective electrodes

Men (non-black) 97 154 � 62 200(b) 148 � 61 181(b)

Women (non-black) 114 131 � 53 172(b) 124 � 49 153(b)

Men (black) 89 153 � 70 179(b) 142 � 64 169(b)

Women (black) 107 138 � 57 163(b) 131 � 57 150(b)

K€ubler (1995) Germany 18–88 Single 24-h urinary collection. Collection
with creatinine < 4 mmol/24 h or
> 20 mmol/24 h excluded. Na+ measured
using flame-photometry and Cl- measured
by colorimetry

Men (Q1) 167 143.0(c) 304.6 143.5(c) 266.9

Men (Q2) 178 173.5(c) 344.3 167.9(c) 360.3
Men (Q3) 181 198.5(c) 393.0 191.7(c) 352.7

Men (Q4) 167 202.4(c) 339.8 191.1(c) 334.8
Women (Q1) 224 110.9(c) 288.5 104.0(c) 264.4

Women (Q2) 245 132.3(c) – 127.5(c) 244.3
Women (Q3) 244 138.1(c) – 125.5(c) 280.0

Women (Q4) 233 153.1(c) – 152.8(c) 283.3
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Reference Country Population
Age

(years)
N

Na
(mmol/day)

Cl
(mmol/day)

Method
Mean � SD(a) 97th

perc.(a)
Mean � SD(a) 97th

perc.(a)

Curcio et al.
(2016)

Switzerland Median Median Single 24-h urinary collection. Participants
with an estimated GFR < 60 mL/min/
1.73 m2 or a 24-h urine collection of <
600 mL excluded. Na+ and Cl- measured
using ion-selective electrodes

Men 20–89 121(d) 159(c) 326 160(c) 289

Women 19–82 118 121(c) 217 124(c) 207

Cl: chloride; GFR: glomerular filtration rate; N: number; Na: sodium; Q: quartile of intake, estimated by seven-day consumption diaries; SD: standard deviation; SE: standard error.
(a): Unless specified otherwise.
(b): 75th percentile.
(c): Median.
(d): Number of samples available for chloride analysis: N = 119.

B.2. Urinary concentration

Reference Country Population Age (years) N
Na

(mmol/L)
Cl

(mmol/L)
Method

Elmadfa (2012) Austria Boys 7–14 392(a) 144.2 107.7 Single spot urine samples
Girls 7–14 132.8 107.1

Men 18–64 419(a) 108.5 106.1
Women 18–64 82.7 106.0

Men 65–80 196(a) 104.7 108.1

Women 65–80 85.2 107.6

Cl: chloride; N: number; Na: sodium;
(a): Boys and girls.
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