
Measuring QUIC Dynamics
over a High Delay Path

IETF-105, Montreal
MAP-RG Meeting

r09

G Fairhurst, Ana Custura, Tom Jones

University of Aberdeen

QUIC vs HTTP/TLS & OpenVPN
QUIC: Debian Linux, quicly v20, reno
TCP: Debian Linux, cubic, SACK, IW10
TCP: Debian Linux, OpenVPN, cubic, SACK, IW10

QUIC vs HTTP/TLS & OpenVPN
QUIC: Debian Linux, quicly v20, reno
TCP: Debian Linux, cubic, SACK, IW10
TCP: Debian Linux, OpenVPN, cubic, SACK, IW10

• Shared: MF-TDMA network

• Ave. Forward Capacity: 8.5 Mbit/s

• Ave. Return Capacity: 1.4 Mbit/s

• Large BDP: RTT > 550 ms

Satellite Residential Broadband
(SLA varies by customer)

Measured with iperf3 using TCP

M
bp

s
M

bp
s

0.0

0.5

1.0

1.5

2.0

2.5

RT
T

(s
ec

s)
Hourly RTT Measurements

RTT 580 - 2900 ms, ave. 639 ms

Measured with ping

QUIC

TCP/PEP

TCP

100KB 1 MB

Packet Number v Time - QUIC vs HTTP+TLS1.3

QUIC - 1MB downloads

• Not always the case: Same download, different behaviour,
e.g the second download takes 10s to complete

Conclusions
• Using quicly was a good experience

• TLS 1.3 has a 2 RTT advantage, more noticeable in small transfers

• Performance of QUIC over satellite not as good as for TCP (with PEP)

• Down-grading to TCP is not a long-term solution

• Need to understand the root causes of performance issues

• Could be implementation details or need small changes to spec

• Likely to benefit from new (maybe simple) mechanisms…

Future Plans

• We will continue measurements

• Happy to talk about logging and tracing!

• Aware there are many different satellite systems!

Extra Slides

Test setup
• HTTP over TLS

1.2/1.3 on Debian
Linux

• SACK, W Scaling

• CUBIC

• IW 20 (29200 B)/
IW 10 (14600 B)

• MSS 1460

• HTTP over TLS
1.2/1.3 over
OpenVPN

• SACK, W Scaling

• CUBIC

• IW 20 (27160 B)/
IW 10 (13580)

• MSS 1358

• QUIC on Debian
Linux

• QUIC 20

• RENO

• IW10 (12800 B))

• MSS 1460

Measurements
• We use vagrant to configure and start a test virtual machine,

• This compiles and builds quicly from source, and also installs openvpn-client

• The machine is bridged on the satellite network and runs scripts that:

• 1. start tcpdump, writing pcap files to a shared results folder

• 2. perform a wget request to a webserver hosted by the University of Aberdeen

• 3. stop tcpdump

• 4. performs a quicly download from a quicly webserver hosted by the University of Aberdeen, saving
json logs to a shared result folder

• 5. sets up openvpn

• 6. performs steps 1 -> 3

• 7. stop openvpn

• //Rinse and repeat every hour and with different file sizes etc.

• 8. In parallel, the webservers continuously capture packets and log quicly webserver interactions.

• The pcap traces were analyzed with python3-libtrace, which allows access to the IP and TCP layers.
The quicly logs are json and therefore easily parsed - they provide fields for PNs, ACKs, CWND and
timestamps.

• We use python3-matplotlib to plot the data extracted from traces and logs.

Forward path

QUIC

TCP/PEP

TCP

Packet Number v Time - QUIC vs HTTP+TLS1.2

100KB 1 MB

TCP and TCP over
OpenVPN - 1MB downloads

• Connection setup with TLS 1.2 - adds 2x RTT

TCP and TCP over OpenVPN
- 100KB downloads

• Connection setup with TLS 1.2 - adds 2x RTT

QUIC - 1MB downloads

• Not always the case: Same download, different behaviour,
e.g the second download takes 10s to complete

QUIC RTT and CWND

Queue delay?

100KB 1M

CWND just
grows forever

TCP RTT and CWND
100KB 1M

60K 60K

IW10 IW10

OpenVPN RTT and CWND
100KB 1M

Return path

TCP and TCP over
OpenVPN - 1M Requests

• The horizontal lines were ACKs all along

QUIC 1M Requests

• ACKs for every packet, closely following data received from server

• Cannot pinpoint where the GET request and initial crypto happen

