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•  A data driven computational model to predict the deformation and failure in nanomaterials is presented.
•  Model accounts for more than two material state variables.
•  Model is able to take unprocessed experimental data.
•  The model capability of capturing the strain rate dependent deformation and failure has been demonstrated through predictions.
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A  data  driven  computational  model  that  accounts  for  more  than  two  material  states  has  been
presented in this work. Presented model can account for multiple state variables, such as stresses,
strains, strain rates and failure stress, as compared to previously reported models with two states.
Model  is  used  to  perform  deformation  and  failure  simulations  of  carbon  nanotubes  and  carbon
nanotube/epoxy  nanocomposites.  The  model  capability  of  capturing  the  strain  rate  dependent
deformation  and  failure  has  been  demonstrated  through  predictions  against  uniaxial  test  data
taken from literature.  The predicted results show a good agreement between data set taken from
literature and simulations.
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Material  constitutive  modelling  at  various  length  scales  has
been  under  investigation  for  many  decades,  however  several
challenges  still  exist  which are  under  rigorous  research to  date.
Some of  these  challenges  include,  formulation  of  complex  ma-
terial  constitutive  models  [1–6]  which  incorporate  underlying
physical  mechanisms,  and  identification  of  a  large  number  of
material  parameters  [7–11]. Presently,  no  unified  material  con-
stitutive model  exists  which  incorporates  all  physical  mechan-
isms and their interactions. This is due to the complexities asso-
ciated with the active mechanisms and their interactions. There-
fore,  depending  upon  the  active  mechanisms  and  length  scales
different material constitutive models exist. These models can be
classified into many different types, for example due to mathem-
atical principles being used (for e.g. variational principles [4]), or

to incorporate specific microscale phenomenon [12], or to simu-
late specific type of manufacturing process [13, 14].

Recently, a number of researchers have developed data driv-
en  (DD)  computing  in  the  context  of  boundary  value  problems
[15–21]  and  nonparametric  regression  approach  [22]. Such  ap-
proaches  directly  use  the  experimental  data  and  eliminate  the
efforts, uncertainties  and  errors  induced  during  inverse  model-
ling to generate stress-strain curves.  Kirchdoerfer and Ortiz [15,
21] presented a new paradigm of data driven computing by elim-
inating  material  constitutive  modelling  and  using  experimental
data  directly.  Nguyen  and  Keip  [18] presented  a  similar  ap-
proach to nonlinear elasticity. Leygue et al. [16, 23] used experi-
mentally  measured  strain  fields  to  build  a  database  of  stress-
strain  fields  which  were  then  used  to  predict  the  behaviour  of
one- and two-dimensional solids.

In the present work, data driven approach presented in Refs.
[20, 21 ] is  extended  and  implemented  in  the  context  of  bound-
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ary value problem using linear finite element methods. As com-
pared to previous works, this research deals with more than two
state  variables,  i.e.  stresses,  strains,  strain  rates,  and  failure,  of
nanomaterials.

σ ε ε̇ σ f

σ ε ε̇

σ f

The classical  formulation has been discussed elsewhere (for
details see Refs. [15, 20, 21]) and is not repeated here for brevity.
A brief summary of the model with emphasis on the extension is
discussed in the following. Data driven framework is implemen-
ted in the context of linear finite element methods. Starting with
the corresponding phase space for three-dimensional boundary
value  problem,  which  comprises  of  set  ( , , , )  of  stresses,
strains,  strain  rates,  and  failure  stress,  respectively.  For  the
threedimensional problem the corresponding phase space is as-
sumed to be 19 dimensional with , , and  are six dimensional
each whereas  is scalar.

u = ξa(x, y, z)ua ua

fa

A discretised finite  element model  with linear  elements  of  a
nonlinear elastic solid is considered as a starting point. Each ele-
ment (e) is comprising of N  nodes and M  gauss points. The dis-
cretised  model  undergoes  displacements u  which  is  given  by

 with sum on a and a = 1, 2, ..., N. Where  being
nodal  displacement  due  to  applied  nodal  forces ,  and ξa  are
the  interpolation  (shape)  functions  which  are  based  on  linear
element.

For  a  known  material  dataset,  i.e.  local  phase  space  (Me),
data  driven  framework  searches  for  optimal  local  state  of  each
element of the material or structure while at the same time satis-
fying compatibility and equilibrium, viz.

εe =
∑N

a=1
Bea ua ,

∑M

e=1
we B T

eaσe = fa , (1)

Beawhere  is strain matrix and corresponds to the finite element
mesh geometry and connectivity.

σ ε

ε̇ σ f

As  mentioned  above,  material  data  set  (Me) can  be  com-
prised  of  a  number  of  state  variables  (βi, i  =  1,  2,  …, n ).  For  the
present work n = 19, i.e. stresses ( ), strains ( ), and strain rates
( )  with  six  components  each,  and  scalar  failure  stress  ( ), re-
spectively, are known material states.

For the  current  multi-state  data  set,  following  penalty  func-
tion Fe is used

Fe

(
βi

)= min︸︷︷︸
β′

i ∈Me

∑n

i=1
Ci

(
βi −β′

i

)2
, (2)

with the minimum is searched for all  local states in the data set
(Me).  Here Ci  is  a  numerical  value  and  does  not  represent  a
material  property.  Overall  objective of  the solver  is  to  minimise
the  global F  by  enforcing  conservation  law  and  compatibility
constraints

F = min︸︷︷︸
β′

i ∈Me

∑M

e=1
we Fe

(
βi

)
, (3)

with we  being  the  weight  factor  which  is  the  volume  of  the
element e in undeformed configuration Vo

e.

σe = σ̂e

(
εe , ε̇e ,σ f e

)
Equations (2) and (3) eliminate the traditional material mod-

elling  step  which  requires  material  constitutive  law,
, comprising of a number of unknown material

parameters  which are  required to  be  identified through inverse
modelling [8, 9, 11, 24, 25].

Finally, general form of equilibrium constraint is given by

δ
[∑M

e=1
we Fe

(∑N

a=1
Bea ua ,σe , ε̇e ,σ f e

)
−∑N

a=1

(∑M

e=1
we B T

eaσe − fa

)
ηa

]
= 0. (4)

Following standard procedure of taking possible variations, a
system  of  linear  equations  is  obtained  for  nodal  displacement,
the local stresses and the Lagrange multipliers and is given by

G a (ub) = 0, a,b = 1,2, . . . , N . (5)

Note: For dynamic analyses, inertia can be incorporated sep-
arately as

M ab üb +G a (ub) = 0, a,b = 1,2, . . . , N . (6)

Once all  optimal data points are determined, Eq. (5) is  used
to define  nodal  displacements,  the  local  stresses  and  the  Lag-
range multipliers.

The applicability  of  the  presented  formulation  is  demon-
strated by performing simulations on deformation and failure in
carbon-nano-tubes (CNT) and CNT/Epoxy based nanocompos-
ite materials.  All  simulations are based on static analyses in the
context of finite element methods using Eq. (6) and linear inter-
polation (shape) functions. Brief description of individual exper-
iments, molecular  dynamic  simulations  and results  are  presen-
ted in the following.

Kok  and  Wong  [26]  performed  molecular  dynamics  (MD)
studies  on  single-walled  carbon  nanotubes  (SWCNT)  and
double-walled  carbon  nanotubes  (DWCNT)  to  evaluate  their
mechanical  properties.  Mechanical  properties  were  estimated
for  various aspect  ratios  and strain rates.  For  the present  study,
MD  results  for  (5,  5)  armchair  SWCNT  at  different  strain  rates
were  used.  For  model  application  purposes  and  to  check  the
handling  of  data  size  by  presented  model,  data  for  different
strain rates was used to generate the stress strain curves for un-
known  intermediate  strain  rates  (see  surface  plot  in Fig.  1).  At
continuum  scale,  carbon  nanotubes  have  been  modelled  as
shells  [27],  beam  [28], and  a  combination  of  many  truss  ele-
ments [29] (for details and other literature please see references
there in).  To demonstrate the application of  the presented data
driven  formulation  a  similar  approach  has  been  used,  i.e.  by
modelling  the  SWCNT  as  a  single  truss  element  under  tensile
loading. Comparison  between  MD  generated  stress  strain  re-
sponse and model predictions for three different strain rates are
shown  in Fig.  1.  Results  show  a  very  good  agreement  between
MD simulations and DD model response for multi-state materi-
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Fig. 1.   Comparison of data driven model prediction and MD gener-
ated data of SWCNT from Kok and Wong [26]
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al dataset.
Nahm [30] performed tensile testing of MWCNT using a nan-

omanipulator and sub nano-resolution force sensor in scanning
electron  microscope  (SEM).  As  explained  previously,  MWCNT
was modelled using a truss element. Comparison of experiment-
al  and  predicted  stress-strain  response  are  plotted  in Fig.  2
showing a very good agreement up to the final failure of the nan-
otube without  using  any  material  constitutive  model  and  dir-
ectly using experimental data.

Yu and Chang [31] performed experimental studies to under-
stand  tensile  behaviour  of  MWCNT-reinforced  epoxy-matrix
composites.  Effect  of  the  weight  fractions  and  diameters  of
CNT's on stress-strain behaviour, and strength was investigated.
For the model application purposes, CNT/epoxy composite with
1% MWCNT weight data is used. Uniaxial tension test is simula-
tions using three-dimensional eight node cube element with one
integration (gauss) point. A comparison between model predic-
tions and experimental results are presented in Fig. 3 showing a
good agreement.

Finally, in  order  to  demonstrate  the  application  of  the  pro-
posed data driven model to finite elementbased analysis and to
show  the  models  ability  to  capture  realistic  fracture  patterns
during deformation; a finite element model of dog-bone sample
is used. The sample is based on ASTM D638 which was used by
Yu  and  Chang  [31]  in  above  example.  Experimental  data  from
Fig.  3 is  directly  used  without  using  any  material  constitutive
model or material parameters. Model was discretised using 4488
reduced  integration  eight  node  hex  elements.  Displacement
boundary condition of 1.0 mm/min as used during experiments
was prescribed. Contour plots of the von Mises stress at different
stages  of  the  deformation  are  plotted  in Fig.  4 showing  the
presented  DD  model's  capability  of  predicting  the  stresses  and
macroscopic fracture without any numerical difficulties.

A data driven computational method for predicting mechan-
ical response  for  nanomaterials  was  extended  and  used  to  pre-
dict  the  deformation  and  failure  in  nanomaterials.  Numerical
predictions  were  presented  using  the  developed  data  driven
model  and  showed  a  good  agreement  with  the  data  set  taken

from experiments and molecular dynamics simulations. Presen-
ted model is applied in the context of nanomaterials, however it
can be applied to any length scale. As a future work, the model is
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Fig. 2.     Comparison of data driven model prediction and experi-
mental data reported in Nahm [30] for MWCNT

 

DD simulation result
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Fig. 3.     Comparison of data driven model prediction and experi-
mental data of CNT/epoxy composite (1% MWCNT weight fraction)
reported in Yu and Chang [31]
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Fig. 4.   Mechanical response and failure in CNT/Epoxy Composite with 1%wt fraction of CNT under uniaxial tensile loading
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further extended to account for plasticity in the context of micro-
scale slip in single crystals.  Current  crystal  plasticity  models  re-
quire a large number of parameters which can be avoided if ma-
terial  data  set  can  directly  be  used  to  account  for  microscale
plasticity  which  is  under  development  and  will  be  reported  in
near future.
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