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Small-worldness favours network 
inference in synthetic neural 
networks
Rodrigo A. García*, Arturo c. Martí, cecilia cabeza & nicolás Rubido

A main goal in the analysis of a complex system is to infer its underlying network structure from time-
series observations of its behaviour. the inference process is often done by using bi-variate similarity 
measures, such as the cross-correlation (cc) or mutual information (Mi), however, the main factors 
favouring or hindering its success are still puzzling. Here, we use synthetic neuron models in order 
to reveal the main topological properties that frustrate or facilitate inferring the underlying network 
from CC measurements. Specifically, we use pulse-coupled Izhikevich neurons connected as in the 
Caenorhabditis elegans neural networks as well as in networks with similar randomness and small-
worldness. We analyse the effectiveness and robustness of the inference process under different 
observations and collective dynamics, contrasting the results obtained from using membrane potentials 
and inter-spike interval time-series. We find that overall, small-worldness favours network inference 
and degree heterogeneity hinders it. in particular, success rates in C. elegans networks – that combine 
small-world properties with degree heterogeneity – are closer to success rates in erdös-Rényi network 
models rather than those in Watts-Strogatz network models. these results are relevant to understand 
better the relationship between topological properties and function in different neural networks.

Network Neuroscience seeks to unravel the complex relationship between functional connectivity in neural sys-
tems (i.e., the correlated neural activity) and their underlying structure (e.g., the brain’s connectome); among 
other goals1–5. The functional connectivity is responsible for many tasks, such as segregation, transmission, and 
integration of information6,7. These (and other) tasks are found to be optimally performed by neural structures 
that show small-world properties2,4,6, which range from human brain connectomics5,8,9 to the Caenorhabditis 
elegans nematode neural networks10–12. In general, structural networks have been revealed by tracing individual 
neural processes, e.g., by diffusion tensor imaging or electron-microscopy— methods that are typically unfeasible 
for large neural networks. On the other hand, functional networks are revealed by performing reverse engineer-
ing on the time-series measurements of the neural activity, e.g., by using EEG or EMG recordings. These methods 
are known as network inference and are mainly affected by data availability and precision.

In general, network inference has been approached by means of bi-variate similarity measures, such as the 
pair-wise cross-correlation9,13,14, Granger Causality15–17, Transfer Entropy18–20, and mutual information21–24, to 
name a few. The main idea behind the similarity approach is that, units sharing a direct connection (namely, a 
functional or structural link exists that joins them) have particularly similar dynamics, whereas units that are 
indirectly connected (namely, a functional or structural link joining them is absent) are less likely to show similar 
dynamics. Although intuitive, this approach has found major challenges in neural systems due to their complex 
behaviour and structure connectedness, resulting in highly correlated dynamics from indirectly connected units 
and loosely correlated dynamics for directly connected units. Moreover, because most works have focused on 
maximising the inference success (in relation to its ability to discover the structural network) and/or optimising 
its applicability22,24–26, we are still unaware of which are the main underlying mechanisms that affect the infer-
ence results. Namely, differentiating the underlying structure with the functional connectivity – particularly with 
respect to establishing which of the different network properties are mainly responsible for hindering inference 
success rates.

In this work, we reveal that the degree of small-worldness is directly related to the success of correctly infer-
ring the network of synthetic neural systems when using bi-variate similarity analysis. Our neural systems are 
composed of pulse-coupled Izhikevich maps and connected in network ensembles with different small-worldness 
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values – but statistically similar to the C. elegans neural networks. The inference process is done by measuring the 
pair-wise cross-correlation and the mutual information between the neurons’ activity. We assess the inference 
effectiveness by means of receiver operating characteristic (ROC) analysis and, in particular, the true positive 
rate (TPR), which we show is the only relevant quantity under our inference framework. Our findings show 
that the TPR peaks around a critical coupling strength where the system transitions from synchronous bursting 
dynamics to a spiking incoherent regime. Specifically, we find that the highest TPR is for networks with significant 
small-worldness level. We analyse these results in terms of different topology choices, collective dynamics, neural 
activity observations (inter-spike intervals or membrane potentials), and time-series length. We expect that these 
results will help to understand better the role of small-worldness in brain networks, but also in other complex 
systems, such as climate networks27–29.

Results
We infer the underlying network of a synthetic neural system by creating a binary matrix of 1s and 0s from the 
pair-wise cross-correlation (CC) – or mutual information (MI) – matrix of the signal-measurements. The result-
ant binary matrix represents the inferred connections that the neurons composing the system share, which we 
obtain by applying a threshold to the CC matrix. The threshold assumes that a strong [weak] similarity in the 
measured signals, i.e., a CC value above [below] the threshold, correspond to a 1[0] in the inferred adjacency 
matrix, suggesting that a direct [indirect] structural connection exists. In spite of this (seemingly) 
over-simplification, this binary process is broadly used in network inference4,5,9,22,24 and it tends to keep the most 
relevant information from the underlying connectivity. Moreover, when the underlying network is known, it 
allows to quantify how poorly or efficiently the bi-variate method performs in terms of the receiving operation 
characteristic (ROC) analysis30–32. In particular, we set the threshold such that the inferred network has the same 
density of connections, ρ = −M N N2 / ( 1), as the underlying structure, where N is the network size and M is the 
number of existing links. This means that, in all of our results, we assume an a priori (minimal) knowledge about 
the underlying structure, namely, we require knowing ρ in order to choose the threshold such that the inferred 
network has the given ρ.

The true positive rate, also known as sensitivity, is the proportion of correctly identified connections with 
respect to the total of existing connections30, i.e., ≡ +TPR TP TP FN/( ), where TP is the number of true positives 
and FN  is the number of false negatives. This quantity is part of the ROC analysis, which includes the true nega-
tive rate, TNR, false positive rate, FPR, and false negative rate, = −FNR TPR1 . Taken together, these variables 
quantify the performance of any method. However, when fixing the inferred network’s density of connections, ρ, 
to match that of the underlying network, we can show that the TPR is the only relevant variable in the ROC anal-
ysis – all remaining quantities can be expressed in terms of the TPR and ρ. For example, the = −TNR FPR1 , also 
known as specificity, can be expressed in terms of the TPR and ρ by
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where we use the fact that + =TP FN M is the number of existing connections, + = − −TN FP N N M( 1)/2  
is the number of non-existing connections, ρ = −M N N2 / ( 1) is the density of connections, and + =TP FP M 
is the number of connections we keep fixed for the inferred matrix in order to maintain ρ invariant. Hence, as a 
result of our threshold choice, =FN FP, implying that the ≡ +FNR FN FN TP/( ) is identical to the false discov-
ery rate, ≡ +FDR FP FP TP/( ), and that the precision, ≡ +PPV TP TP FP/( ) is identical to the TPR. Overall, 
these relationships mean that in order to quantify the inference success or failure, we can solely focus on studying 
how the TPR changes as the dynamical parameters and network structure change.

The following results are derived from time-series measurements of pulse-coupled Izhikevich maps interact-
ing according to different network structures and coupling strengths, where each map’s uncoupled dynamic is set 
to bursting (see Methods for details on the map and network parameters). Pulse coupling is chosen because of its 
generality, which has been shown to allow the representation of several biophysical interactions33–35, and single 
parameter tuning, i.e., the coupling strength, ε. In particular, we register the neurons’ membrane potentials (sig-
nals coming from the electrical impulses) and inter-spike intervals (time windows between the electrical pulses) 
of 10 randomly-set initial conditions and = ×T 7 104 iterations, from which we discard the first 2 × 104 itera-
tions as transient (we also analyse the effects of keeping shorter time-series).

Without losing generality, we restrict our analyses to connecting the neurons (maps) in symmetric 
Erdös-Rényi (ER)36 and Watts-Strogatz (WS)37 network ensembles that have identical size, N, and sparse density 
of connections, ρ, similar to that of the C. elegans frontal and global neural network10–12. Specifically, when con-
structing the ER and WS network ensembles we set =N 131f  with ρ . 0 08f  (which corresponds to setting a 
mean degree, .k 10 5f

) or =N 277g  with ρ . 0 05g  (which corresponds to setting a mean degree, .k 13 8g
) 

to match the macroscopic characteristics of the C. elegans frontal and global networks, respectively. The reason 
behind this choice is that the C. elegans neural networks are one of the most cited examples of real-world 
small-world networks5,10–12,37, showing small average shortest paths connecting nodes and high clustering. 
Namely, this neural networks have a high small-worldness coefficient σ, defined as the normalised ratio between 
the clustering coefficient and average path length38,39, but also show an heterogeneous degree distribution. More 
importantly, these network ensembles constitute a controlled setting where to compare and distinguish the main 
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topological factors favouring or hindering the inference success, providing us with a reproducible framework to 
modify the network properties within each realisation.

We find that the resultant average sensitivity from these network ensembles is more significant, robust, and 
reliable on WS ensembles than on ER ensembles, pointing to a fundamental importance of the underlying 
small-worldness for a successful inference. In particular, Fig. 1 shows the resultant success rates –in (a) and (b) 
using the CC as our similarity measure and in (c) and (d) using the MI– for ER (dotted lines with unfilled squares) 
and WS (dotted lines with unfilled diamonds) ensembles, plus, a comparison with the results we obtain when 
using the C. elegans (CE) neural frontal (left panels) and global (right panels) network structure (continuous lines 
with filled circles). Specifically, Fig. 1(a,b) show the ensemble-averaged TPR results for N = 131 and N = 277 
pulse-coupled Izhikevich maps, respectively, as a function of the coupling strength, ε, between the maps. From 
both panels we also note that the CE overall resultant success rates are closer to the ER ensemble-averaged TPR 
results than to the WS ensemble-averaged TPR results –in spite of the CE small-worldness coefficient for the 
N = 131 networks being the same as the WS, σ = .2 80. The results in Fig. 1 show how important the underlying 
degree distribution and small-worldness are in the generation of collective dynamics that can be analysed by 
means of a bi-variate inference method with a sufficiently high success rate.

Comparing the εTPR( ) values in Fig. 1 when using CC – panels (a) and (b) – versus MI – panels (c) and (d)) –, 
we can see an overall improvement in the inference efficiency regardless of the network size. Specifically, MI 
achieves larger success rates than CC ( .TPRmax ( ) 0 6MI , whereas .TPRmax ( ) 0 5CC ) for both network sizes 
as well as it allows to partly infer the network at coupling strengths where CC completely fails to do so; namely, for 
the interval where ε. < < .0 2 0 25 (CC for this point shows worse TPR values than making a random blind 
choice). This points to the known fact that the use of MI as a bi-variate similarity measure usually results in more 

Figure 1. Network inference success rates for different networks, coupling strengths, sizes and similarity 
measures. Panels (a,c) [Panels (b,d)] show the true positive rates, TPR, obtained using, respectively, cross 
correlation (CC) and mutual information (MI) measures to infer the networks connecting N = 131 [N = 277] 
pulse-coupled Izhikevich maps; map parameters are set such that their isolated dynamics is bursting (see 
Methods). The underlying connectivity structures correspond to Erdös-Rényi (ER), Watts-Strogatz (WS), or  
C. elegans (CE) frontal [global] neural networks. The TPR values for the ER and WS are ensemble –and initial-
condition– averaged. Each of the 20 realisation with similar topological properties to that of the CE is repeated 
for 10 initial conditions. For the CE, the results are averaged only on the initial conditions. The TPR is found by 
comparing the true underlying network with the binary matrix obtained from the membrane potential time-
series’ CC or MI ( = ×T 5 104 iterations) after fixing a threshold such that the inferred density of connections 
ρf  matches that of the CE: ρ . 0 08f  in the left panels and ρ . 0 05f  in the right panels. The horizontal dashed 
line in all panels is the random inference TPR, namely, the null hypothesis.
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successful and robust network inferences. Instead of trying to find an even better similarity measure that achieves 
a higher inference success rate, we highlight that we are mainly interested in establishing which are the main 
topological features that either enhance or hinder the bi-variate inference analysis.

In order to critically explore the significance that the underlying small-worldness has on the resultant infer-
ence, we fix the degree distribution and density of connections as we increase [decrease] σ in each of the 20 
underlying ER [WS] network realisations using the rewiring method proposed in ref. 40 (see Methods). Figure 2 
shows the resultant network inference – quantified by the ε σTPR( , ) – after we make the isolated changes in the 
small-worldness coefficient, σ, of the underlying structure for the =N 131 pulse-coupled Izhikevich maps (sim-
ilar results are found for =N 277). The ensemble-averaged inference results (colour coded curves) that we get 
from making this topological change to σ on the underlying ER and WS networked system are shown in 
Fig. 2(a,b), respectively. We can see from these panels that the highest TPR values are achieved for the largest σ 
values, meaning that the best inference happens for networks with large σ. Also, we can see that there is a broad 
coupling strength interval (  ε. .0 25 0 33) for both network classes that allows us to infer better than making 
blind random inference (dashed horizontal lines). From these panels, we note that network inference effectiveness 
increases robustly (namely, regardless of parameter changes) and significantly (namely, reliably across ensembles 
and random initial conditions) as the small-worldness, σ, of the underlying structure is increased – whilst keep-
ing its density of connections and degree distribution invariant. Consequently, in order to increase the inference 
success rates in the sparse ER networks, we need to increase the local clustering inter-connecting the maps. On 
the contrary, WS networks show optimal inference efficiency without modifying their clustering because of their 
inherent large small-worldness coefficient.

The coupling strength ε .

⁎ 0 26, which maximises the TPR, implies an average impulse per map of 
ε .

⁎ k/ 0 025. This coupling is associated to a collective regime with a loosely coupled dynamic, as we show in 
Fig. 3, since it corresponds to an average .2 5% synaptic increment of the membrane potential range (i.e., the dif-
ference between maximum and minimum membrane potential values) due to the action from neighbouring 
maps. The fact that our inference method recovers approximately 50% of all existing connections at ε ∼ .0 26 

Figure 2. Network inference success rates as a function of coupling strength and small-worldness coefficient. 
Using map and network parameters set as in Fig. 1, panels (a,b) [panels (c,d)] show the ensemble and initial-
condition averaged TPR as function of ε for N = 131 [N = 277] pulse-coupled Izhikevich maps in Erdös-Rényi 
(ER) and Watts-Strogatz (WS) network ensembles, respectively. A successive rewiring process40 is done to each 
network realisation in order to change its small-worldness coefficient, σ, whilst maintaining the underlying 
density of connections and degree distribution invariant. The colour code indicates the resultant σ for each 
rewiring step that increases [panels (a,c)] or decreases [panels (b,d)] the networks’ small-worldness.
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( = .TPR 0 5), implies that the = .FNR 0 5, and from Eq. (1), this also implies that .TNR 0 96 and that 
.FPR 0 04 for ρ . 0 08. This means that for ε ∼ .0 26, the inference method is highly efficient in detecting true 

nonexistent connections ( →TNR 1) and falsely classifying these connections as existing ones ( →FPR 0). This 
efficiency is a consequence of sparse networks having more non-existing connections than existing connections 
( − N N M( 1)/2 ); as it happens in our ensembles. Hence, in sparse networks the challenge is to correctly 
identify the existing connections.

In spite of the similar results in Fig. 2 panels, we can distinguish a slight advantage in the ER networks 
ensemble-averaged TPR values [Fig. 2(a)] over the WS TPR values [Fig. 2(b)], which also appear when =N 277. 
We understand that differences in the inference results have to appear because of the dependence on the underly-
ing degree distribution (as well as in the small-worldness), as it is observed in the results for the CE and ER net-
works shown in Fig. 1. In Fig. 2, the degree distributions correspond to those of the ER and WS networks 
respectively, which are kept invariant as the small-worldness of the underlying network is changed. However, the 
similarity in the results from Fig. 2(a,b) (for similar small-worldness values) can be explained due to the finite size 
systems, which make the ER and WS degree distributions similar (a similar behaviour is also observed for 

=N 277 – not shown here). We also note that the modified ER networks TPR results narrowly outperform WS 
inference results, where success rates reach values higher than 50% for coupling strengths close to ε .

⁎ 0 26. 
These TPR values are significantly higher than making a blind random inference of connections (dashed horizon-
tal lines), which successfully recover only 8% of the existing connections.

All TPR curves share an abrupt increase in the success rate around a critical coupling strength of ε ≈ .⁎ 0 26. 
Figures 1 and 2 show this abrupt jump in the inference success for all networks analysed – though the exact value 
of ε* may vary slightly for each topology realisation. This sudden increase in the success rates points to a drastic 
change in the systems’ collective dynamics as the coupling strength is increased beyond ε*. In order to analyse the 
maps’ collective dynamics as a function of ε and the underlying topology, we compute the order parameter, R, 
defined as the time-average of the squared difference between two inter-spike intervals (ISIs) time-series (i.e., the 
series of time differences between two consecutive spikes) summed over all pairs of ISIs. Specifically, = ∑ <R Rj i ij, 
with = 〈 − 〉R T T( )ij i j t

2 , where Ti is the i-th neuron ISI time-series and 〈⋅〉t is the time-average. This means that the 
R value is high [low] when the time series are different [similar].

In Fig. 3(a) we show how the order parameter R changes with the coupling strength, ε, for different systems 
with =N 131 neurons (similar results are also found for =N 277 – not shown). The R values for the C. elegans 
(CE) frontal neural network structure are shown by the filled (black online) circles, whereas for the ER and WS 

Figure 3. Collective dynamics for different coupling strengths and network structures. In panel (a) we show the 
ensemble-averaged order parameter, R, for the inter-spike intervals time-series of N = 131 maps connected 
using the C. elegans frontal neural network (CE, with small-worldness coefficient σ = .2 8), Erdös-Rényi (ER, 
with σ = .1 0) and Watts-Strogatz (WS, with σ = .2 8) ensembles. For the ER networks, panels (b) (ε = 0.23) and 
(c) (ε = 0.26) show raster plots indicating the firing pattern of the coupled neuron maps before and after the 
abrupt drop in panel (a)’s R values. Panel (d) shows R for the rewired ER and WS networks, such that all these 
ensembles have σ = .2 1 (for comparison, black dots show R for the CE network also shown in panel (a)). Panels 
(e) (ε = 0.23) and (f) (ε = .0 26) show the corresponding raster plots.
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networks, the ensemble-averaged and initial-condition averaged R values are shown by unfilled (blue online) 
diamonds and unfilled (red online) circles, respectively. These ensemble averages are calculated from 20 realisa-
tions, each one also averaged over 10 different randomly selected initial conditions. For the CE network, each R 
value is solely the average over 10 initial conditions. We can observe that close to ε ≈ .0 25, R decreases abruptly 
for all network structures – falling 2 orders in magnitude. This drop corresponds to a switch from a collective 
bursting regime to a lightly disordered spiking regime, which is more disordered than the apparently synchronous 
bursting dyna (ε < .0 25), but it is in fact partially coherent – a particularly suitable condition to perform a suc-
cessful network inference22. For example, Fig. 3 panels (b) and (c) show the raster plots for ER networks with 

=N 131 maps coupled with ε = .0 23 and ε = .0 26, respectively. Similarly, Fig. 3(d) shows the same behaviour 
for the averaged R parameter in networks with ER and WS degree distributions but with different small-worldness 
levels (as previously described). This means that the collective dynamics’ abrupt change also happens for the 
modified networks, namely, the networks modified by our rewiring process to increase or decrease their overall 
small-world coefficient. Panels (e) and (f) show the resultant raster plots for ε = .0 23 and .0 26, respectively, for a 
realisation of an ER network with =N 131 maps and σ = .2 1.

Furthermore, we can see from Figs. 1 and 2 that the sensitivity falls rather smoothly for all networks as we 
increase ε beyond the critical value ε*. The reason behind this smooth change is that, as ε increases beyond ε*, 
the neurons gradually begin to fire in a more ordered spiking, namely, achieving synchronisation. Thus, partial 
coherence between the time-series vanishes and inference becomes impossible. The smooth decrease in sensitiv-
ity can be observed by the rate in which the order parameter decreases for ε larger than ε*, as in Fig. 3 panels (a) 
and (d). In general, the neural systems we analyse stay in a partially coherent spiking regime for an interval of 
coupling strength values (approximately between ε ≈ .0 25 and .0 30), where network inference TPR values remain 
above the random line.

So far we have shown that increasing small-worldness favours network inference, obtaining success rates that 
appear robust to changes in the degree-distribution type (e.g., ER, WS, and CE), initial conditions, and similar for 
a broad coupling strength region. However, we can see from Fig. 1 that as the N increases from 131 (panel (a)) to 
277 (panel (b)), the TPR drops significantly for the C. elegans networks. The reason for this drop comes from the 
broadness in the global CE neural-network’s degree-distribution. As we can see from Fig. 4, when N = 131 (panel 
(a)), all degree distributions are somewhat similar and narrow, but when N = 277 (panel (b)), the CE topology 
shows the presence of hubs and a long tailed distribution. This is why on Fig. 1(b), the TPR results for the N = 277 
WS network ensemble are extremely similar to those TPR values when N = 131 in Fig. 1(a). Similarly, we can see 
the same resemblance in the TPR results for ER networks, which also hold a narrow degree distribution, as shown 
by the dashed curves in Fig. 4. On the contrary, the significant differences emerging from the CE degree distribu-
tions for N = 131 and N = 277 impact directly into the inference success rates. This leads us to believe that heter-
ogeneity in the node degrees hinders network inference.

We find that the former results are also robust to changes in the time-series length. Moreover, our conclusions 
regarding small-worldness favouring inference still hold if one chooses a different time-series representation for 
the neural dynamics of each map. Namely, our findings hold for inter-spike intervals (ISI) as well as membrane 
potentials (see Supplementary Information for further details). Remarkably, we see that when using ISIs to meas-
ure the neural activity, inference success rates are significantly lower than when using membrane potentials – 
regardless of the particular topology or collective dynamics. However, these TPR values are more robust to 
changes in the topology realisation (i.e., different structures constructed with the same canonical models and 
parameters). This leads us to conclude that, using ISIs instead of membrane potentials, allows us to achieve worst 
inference success rates but with a more reliable outcome.

Figure 4. Average degree distributions of our neural network structures. Panel (a) [(b)] shows the N = 131 
[N = 277] nodes degree-distributions for Erdös-Rényi (ER, dashed – blue online) and Watts-Strogatz (WS, 
continuous – pink online) ensembles, averaged over 20 network realisations. Also, the C. elegans (CE) frontal 
[global] neural network structure is shown with continuous black lines.
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Discussion
In this work, we have shown that network inference methods based on the use of cross correlation (CC) or mutual 
information (MI) to measure similarities between components of a synthetic neural network are more effective 
when inferring small-world structures than other types of networks. This conclusion has broad implications, 
since CC and MI are widely used to reveal the underlying connectivity of real neural systems, such as the brain, 
and to gain information about long-range interaction in other systems, such as in climate networks. The effect 
that the topology has on the network inference success rates has been recently analysed in other networks. For 
example, in41 the authors show that the topological properties affect network inference performance in small, 
weighted, and directed gene-regulatory networks. Our results support that the topological properties of complex 
systems are of importance when attempting to infer the connectivity from observations of nodes’ behaviour.

We have shown that, for networks with similar degree distributions, the small-worldness level is the main 
topological factor affecting the inference success rates. The results shown in Figs. 1 and 2 account for the reliability 
and robustness of this conclusion. Also, in Fig. 1 we observe that our inferring method is consistently and robustly 
more successful when inferring Watts-Strogatz networks than the C. elegans (CE) neural structure, despite both 
having the same small-worldness level. This points to the effect that degree-distribution range has on the infer-
ence success, namely, the broader the degree distribution, the less effective the inference is. These conclusions 
complement other works, which are focused on obtaining high inference performances rather than studying the 
main topological factors affecting the success rates, such as refs. 42,43.

Our results show that the appearance of highly connected nodes (hubs), such as in the CE global network, is 
another important factor, hindering successful inference. In other words, we find that success rates are generally 
lower when inferring networks which have higher degree heterogeneity. This finding is relevant because real 
small-world networks, such as the C. elegans neural structure, often combine small-world properties with other 
complex features – such as the presence of hubs, hierarchies or rich clubs –, resulting in a higher degree heter-
ogeneity with respect to the canonical Watts-Strogatz network model. In particular, hubs have been related to 
the phenomenon of hub synchronisation in brain networks44 and scale-free networks45. Hub synchronisation is 
particularly detrimental for network inference, since it leads to strong correlations between non-connected nodes 
and weak correlations between the hubs and their neighbouring nodes.

Regardless of the underlying structure, the coupling strength range that allows for a successful network infer-
ence using bi-variate similarity measures is located after a critical value, in which the system transitions from a 
collective dynamics with an apparently synchronous bursting regime to a collective asynchronous spiking. This 
transition has been reported to take place in C. elegans neural networks46 and corresponds to a partially-coherent 
state, which has been shown to be necessary for having successful network inference22. Figure 3 shows an abrupt 
change in the systems’ order parameter around the critical coupling strength, revealing a coherence-loss after 
the transition. Although we can only perform successful network inferences when the systems are in partial 
coherence, it is reasonable to assume that real neural systems are in such states, since they consistently transition 
between synchronous and asynchronous states in order to perform different tasks and cognitive functions1–6,46,47.

In future works it would be crucial to study how these conclusions extend to other coupling models and net-
work structures. In ref. 47 the authors show how the combined action of two different coupling types (electrical 
and chemical synapses) can lead to novel dynamical regimes in neural systems with the C. elegans structure such 
as chimera states, which could play a key role in the development of brain diseases. In this context it would be 
relevant to study how these different coupling models and collective dynamics affect the relationship between the 
network’s small-worlndess level and the inference success rates that we have reported. Furthermore, it would be 
relevant to address the question of how our results extend to network structures with other degree distributions, 
such as scale-free networks.

Methods
Synthetic neural network model. Our synthetic neural model is the Izhikevich map33–35, which belongs 
to the bi-dimensional quadratic integrate-and-fire family. This map consists of a fast variable, v, representing the 
membrane potential, and a slow variable, u, modelling changes in the conductance of the ionic channels. One of 
the main advantages of using Izhikevich maps is that it combines numerical efficiency (inherent to map-based 
models, which we can simply iterate to find their temporal evolution) with biological plausibility34. The isolated 
map equations of motion are given by
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When different values of i, c, and d, are fixed, the Izhikevich map can show extensive dynamical regimes, 
which have been observed in real neurons. We set the parameter values such that the regime exhibits bursting 
dynamics. Namely, d = 0, c = −58, and =I 2. However, when Izhikevich maps interact, the resulting 
single-neuron dynamics can differ significantly from the bursting regime.

The interactions are set to be pulsed via the fast variable, v, and controlled by a global coupling-strength order 
parameter, ε. This pulse-coupling type is able to represent many real neural interactions. With this model, every 
time a neuron spikes it sends a signal to the adjacent neurons (i.e., to all neurons that are connected to it), instantly 
advancing their membrane potentials by a constant value. Specifically, the dynamics for the n-th neuron is given 
by
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where ki is the i-th node degree (i.e., its number of neighbours), Aij is the ij-th entry of the network’s adjacency 
matrix, ε is the coupling strength, and δ x( ) is the Kronecker’s delta-function. We iterate Eq. (3) ×7 104 steps from 
10 random initial conditions for each topology and coupling strength, removing a transient of ×2 104 steps. In 
particular, the coupling term, δ∑ −ε

≠ A v( 30)
k j i ij j n,

i
, acts as follows. If a connection between neurons i and j exists, 

then =A 1i j,  and neuron i receives an input of value ε k/ i every time neuron j reaches the threshold =v 30j n, . 
Otherwise, the neuron remains unchanged.

C. elegans neural structure. We use data from Dynamic Connectome Lab10,11 to construct the C. elegans’ 
frontal (N = 131 nodes) an global (N = 277 nodes) neural networks. These networks are represented by weighted 
and directed graphs, that we simplify by considering the unweighted non-directed versions. The reason behind 
this choice is to bring up-front the role of structure alone into our systems’ collective behavior. Under these sym-
metric considerations, we find that the network’s mean degree is = .k 10 5f  ( = .k 13 8g ) for the frontal (global) 
connectome, with a sparse edge density of ρ = .0 08f  (ρ = .0 05g ). The average shortest-path length for our C. ele-
gans frontal (global) neural network is = .l 2 5f  ( = .l 2 6g ) and its clustering coefficient is = .C 0 25f  ( = .Cg 0 28). 
Both neural structures have short average path lengths (similar to Erdö-Rényi networks with equal edge density) 
and high clustering coefficients (similar to Watts-Strogatz networks with equal average degree), hence, they show 
small-world properties. The small-worldness coefficient of our C. elegans frontal (global) neural network is 
σ = .2 8f  (σ = .5 1g ), which falls within the expected small-world range (σ > 2).

network ensembles. In order to study the role that small-worldness and degree heterogeneity have in the 
network inference results, we build two ensembles of 20 Erdös-Rényi (ER) adjacency matrices with N = 131 and 
N = 277 nodes respectively, and two ensembles of 20 Watts-Strogatz (WS) adjacency matrices. We choose the 
number of nodes in our network ensembles to match the sizes of the C. elegans (CE) frontal (N = 131 nodes) and 
global (N = 277) neural structures. We also tune the algorithms to build these networks such that they have the 
same edge densities as the CE frontal and global neural networks, namely, ρ = .0 08 and ρ = .0 05, respectively. In 
addition, the WS ensemble is also tuned such that the algorithm parameters produce networks with similar 
small-worldness levels to that of the CE networks. In what follows, 〈 〉k  denotes average among network ensembles, 
while k expresses the average among nodes of a single network.

Our ER ensemble is built with a probability to linking nodes in each network of = .p 0 08 (0.05) for N = 131 
(N = 277) – values which are above the percolation transition. These probabilities yield mean degrees of 
〈 〉 = .k 10 5 (〈 〉 = .k 13 8) for the N = 131 (N = 277) networks. In both cases, the variability within the ensemble of 
these mean degrees is σ = .0 3k . We can corroborate that the nematode’s neural networks also have mean degrees 
falling within one standard deviation of the ER ensemble-averaged mean degrees. The clustering coefficient in the 
ER model is usually low (C = p in the thermodynamic limit), being 〈 〉 = .C 0 08 (〈 〉= .C 0 05) for our N = 131 
(N = 277) network ensembles. The ER networks also hold a small average shortest-path length. In our ensembles, 
the shortest-path lengths are 〈 〉 = .l 2 3 (〈 〉 = .l 2 4) for the N = 131 (N = 277) networks. Correspondingly, the aver-
aged small-worldness levels of our ER ensembles are σ〈 〉 = .1 0 in both cases – as expected –, indicating the 
absence of small-world effect.

The Watts-Strogatz (WS) algorithm takes an initial ring configuration in which all nodes are linked to k/2 
neighbours to each side, and then rewires all edges according to some probability p37. Using this model, we con-
struct a network ensemble with link density and small-worldness levels similar to the CE neural networks. In 
particular, we choose a mean degree and rewiring probability that yields similar average path lengths and cluster-
ing coefficients as the CE neural structures. Specifically, we fix the mean degree at an integer value, namely, 
〈 〉 =k 10 (14) for =N 131 (277) nodes. Then, for each rewiring probability p, we generate 20 adjacency matrices 
and calculate the mean average path length and clustering coefficients. Thus, for each rewiring probability p we 
have a point in the 〈 〉C l[ , ] space. This allows us to choose the rewiring probability, ⁎p , which holds the closest 
point in the 〈 〉C l[ , ] space to the CE networks values. For such ⁎p , our ensembles have shortest-path lengths of 
〈 〉 = .l 2 5 (〈 〉 = .l 2 6), and clustering coefficients of = .C 0 4 ( = .C 0 28) when N  =  131 ( =N 277). 
Correspondingly, our networks’ small-worldness levels are σ〈 〉 = .2 8 ( σ〈 〉 = .5 3) when N = 131 (N = 277). These 
values are similar to the CE small-worldness levels and indicate the presence of the small-world effect.

controlling small-worldness. To obtain the results shown in Fig. 2 we build network ensembles that share 
the same degree distribution but have different small-worldness levels. We achieve that using the rewiring scheme 
proposed by Maslov et al. in40. This method consists in taking two pairs of connected nodes, say (a, b) and (c, d),  
removing their links and adding new crossed edges, for example (a, d) and (b, c), always checking that the new 
links were absent before and that the network remains connected after this process. This scheme preserves the 
degree of each node, hence the degree distribution remains invariant. However, this rewiring changes the clus-
tering coefficient and average path length, thus, modifying the small-worldness coefficient, σ. To construct net-
work ensembles with the same degree distributions but modified small-worldness, we start from the ER and WS 
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network ensembles. Then, we perform multiple random rewiring steps – accepting or rejecting them – until we 
achieve a desired value for σ for each network realisation. Finally, we store the resultant networks as a modified 
ER or WS ensemble and repeat these steps to achieve another σ value. Consequently, we obtain network ensem-
bles with ER and WS degree distributions but different small-worldness levels.

Bi-variate similarity measures. Our method to infer the underlying network of a synthetic neural system 
is done by creating binary matrices of 1s and 0s from the pair-wise cross-correlation or mutual information matri-
ces of the signal measurements. Given two time-series, for example two membrane potentials v(1) and v(2), we 
calculate the pair-wise CC between them as

∑ σ σ
=

−
− −

=
CC

T
v v v v1

1
( )( ) ,

(4)
v v

n

T
n n

v v
,

1

(1) (1) (2) (2)
(1) (2)

(1) (2)

where T is the time-series length, v  is its time-average, and σv is its standard deviation. The CC is able to detect 
linear relationships between time-series. Moreover, we take its absolute value in order to include anti-synchronous 
states, these are strongly correlated states, possibly due to an underlying connection between the neurons.

Alternatively, we can compare two signals by means of their mutual information, which performs better when 
the relationship between the time-series is non-linear. We find the mutual information between two membrane 
potentials, v(1) and v(2), from

= + −MI H H H , (5)v v v v v v, ( , )(1) (2) 1 2 1 2

where Hv is an estimate for the membrane potential’s Shannon entropy and H v v( , )1 2  is an estimate for their joint 
Shannon entropy. Specifically, given a membrane potential time-series, v, we estimate its Shannon entropy by 
splitting the configuration space (i.e. the membrane potential possible values range) into 20 equally-sized bins 
and calculating the frequency fk in which the time-series falls within the k-th bin. We then calculate 

≡ − ∑H f log f( )v k k k . Similarly, we estimate the joint Shannon entropy by splitting the two-dimensional configu-
ration space in 400 (20 × 20) equally sized bins, and finding the frequency, fk,j, in which the joint (2-D) time-series 
falls within the bin [k, j]. Then, ≡ − ∑ ∑H f flog( )u v k j k j k j( , ) , , .
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