
Modelling the Genetic Risk in Age-Related Macular
Degeneration
Felix Grassmann1, Lars G. Fritsche1, Claudia N. Keilhauer2, Iris M. Heid3,4, Bernhard H. F. Weber1*

1 Institute of Human Genetics, University of Regensburg, Regensburg, Germany, 2 University Eye Hospital Würzburg, Würzburg, Germany, 3 Institute of Epidemiology and

Preventive Medicine, University Hospital Regensburg, Regensburg, Germany, 4 Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center

for Environmental Health, Neuherberg, Germany

Abstract

Late-stage age-related macular degeneration (AMD) is a common sight-threatening disease of the central retina affecting
approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been
associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS)
for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve
(AUC) of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy,
younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69–2.05) than patients aged 75
and above (1.45, 95% CI: 1.36–1.54). Based on five equally sized GRS intervals, we present a risk classification with a relative
AMD risk of 64.0 (95% CI: 14.11–1131.96) for individuals in the highest category (GRS 3.44–5.18, 0.5% of the general
population) compared to subjects with the most common genetic background (GRS 20.05–1.70, 40.2% of general
population). The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when
compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the
highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two
lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings
underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-
category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive
treatment is available.
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Introduction

Age-related macular degeneration (AMD) is a common

degenerative disease of the central retina and a leading cause of

severe vision impairment in Western societies [1]. Advanced forms

of AMD (late-stage AMD) are known as geographic atrophy (GA)

of the retinal pigment epithelium (RPE) or neovascular (NV)

complications with RPE detachment, scar formation, and

subretinal hemorrhage [2,3]. To date, effective therapeutic

intervention is available for active NV, while GA still remains

untreatable [4,5].

AMD is a complex disease influenced by genetic and

environmental factors with estimates of heritability varying from

45% to 71% [6]. So far, several AMD susceptibility loci have been

identified. Two loci are accounting for an estimated 50% of AMD

cases: complement factor H (CFH) on 1q32 and age-related

maculopathy susceptibility 2 (ARMS2)/HtrA serine peptidase 1

(HTRA1) on 10q26 [7,8]. Fine-mapping studies and functional

analyses at the CFH locus indicate at least three independent risk

variants [8–13]. At the ARMS2/HTRA1 region, a single risk

haplotype was found to fully explain the observed association [14].

A crucial role of the complement system in AMD pathogenesis

was further supported by subsequent candidate gene studies.

These studies identified risk-associated variants in or near three

additional complement genes including the complement compo-

nent 2 (C2)/complement factor B (CFB) [15], complement

component 3 (C3) [16,17] and complement factor I (CFI) [18].

In addition, variants in genes involved in the cholesterol and lipid

metabolism were also implicated in AMD susceptibility [19,20].

Strongest signals peaked near the hepatic lipase gene (LIPC) on

chromosome 15q22 [19,20], the cholesterylester transfer protein

(CETP) and the lipoprotein lipase precursor (LPL) genes [19]. Also,

among the most replicated AMD risk variants are two coding

SNPs in the apolipoprotein E (APOE) gene [21,22]. A recent

genome wide association study established a significant association

of AMD with rs9621532, a variant intronic to synapsin III (SYN3)

and approximately 100 kb upstream of the tissue inhibitor of

metalloproteinases-3 gene (TIMP3) [19]. Finally, common varia-

tions near VEGFA and FRK/COL10A1 were associated with

AMD, further implicating angiogenesis as well as extracellular

matrix metabolism in AMD pathogenesis [23].

To predict the genetic risk in complex diseases, testing of single

susceptibility variants is generally of limited value [24]. In contrast,

genotyping and evaluating a series of independent disease

associated variants, a process also known as genetic profiling,

may be more appropriate [24]. This can be facilitated by a genetic
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risk score (GRS) which could simply represent the sum of risk

associated variants found in each individual. However, such an

approach may not be particularly effective in the presence of

greatly differing effect sizes of the respective variants [25].

Therefore, an extension to this model weighs each additional risk

allele by its effect size. For example, Seddon et al. (2009) calculated

a risk score for AMD based on 6 known genetic risk variants and

additional environmental factors. Their model revealed good

discriminatory power with a reported area-under-curve (AUC) of

the receiver-operating characteristic of 0.82 [26]. Other studies

reporting a GRS [19,20,23] primarily aimed at identifying novel

variants without using independent data or a cross-validation

approach and are thus likely biased to overestimate the effect of

these variants. The quantification of the genetic risk based on

frequently replicated AMD loci in a single study which is

independent from locus identification is still lacking.

Here, we present a genetic risk model for AMD, specifically the

late-stage forms of AMD, based on a large and well characterized

AMD case-control study group including 986 cases and 796

controls. We selected 13 genetic variants from eight gene loci that

have repeatedly been shown to be associated with AMD and

computed a genetic risk score. This was used to establish a

classification system that allows for discriminating subjects at high

and low genetic risk. Environmental variables such as smoking or

diet were not included in the model building.

Results

SNP selection based on published data and linkage
disequilibrium structure

Eight loci (CFH, ARMS2/HTRA1, CFI, CFB, C3, APOE,

LIPC and TIMP3) with 13 SNPs and established association with

AMD were included into our genetic risk score modeling (Table
S1). There were three further SNPs with reportedly established

association, which we did not select for the model: (i) at the CFH

locus, an association of four variants with AMD is known

(rs1410996, rs800292, rs1061170, rs6677604); however,

rs1410996 is present on two distinct haplotypes, each of which is

tagged by rs800292 (correlation r2 = 0.473 to rs1410996 [27]) or

rs6677604 (r2 = 0.283 to rs1410996 [27]), respectively [13], while

rs800292 and rs667604 are uncorrelated (r2 = 0.008 [27]), (ii)

among the three highly correlated ARMS/HTRA variants

(rs10490924, rs11200638, and c.del443ins54; pairwise r2 = 1),

rs10490924 was reported to fully capture the disease risk at this

locus [28]. We therefore selected rs1061170, rs800292 and

rs667604 at CFH and rs10490924 at the ARMS2/HTRA1 locus

yielding the 13 SNPs for model building.

Genotyping of SNPs in the Lower Frankonian AMD case-
control study

We genotyped the selected 13 SNPs as well as the three highly

correlated SNPs (to validate the correlations) in 986 cases and 796

controls from the Lower Frankonian AMD case-control study

(Table 1). All variants showed high genotyping quality with an

average call rate .99.5%. With the exception of rs1061170 at

CFH, all genotypes were in Hardy-Weinberg equilibrium in

controls (HWE, p.0.04). The variant rs1061170 was genotyped

twice with two independent assays yielding identical genotypes and

therefore persistent HWE violation in controls (p = 0.002) [29].

There were no missing genotypes at the 13 variants for any

individual in the study.

Association of the selected 13 SNPs with AMD
For each SNP, association with AMD was computed using a

logistic regression model, unadjusted for age or gender (Table 2).

Sensitivity analysis additionally adjusting for age and gender

yielded similar results. Odds ratio (OR) estimates per AMD risk

increasing variant ranged from 1.14 [95% CI: 1.00–1.30] for

rs2285714 to 3.13 [95% CI: 2.68–3.68] for rs10490924 and were

significantly different from unity for all 13 variants demonstrating

sufficient statistical power in our study (Table 2). In a subgroup

analysis, AMD cases with GA (n = 229) or NV (n = 581) or mixed

GA+NV in one or both eyes (n = 176) were compared to controls

using logistic regression for each variant separately (Figure S1).

Computing the genetic risk score
Based on the data from the 13 SNPs, we fit a multiple logistic

regression model (Figure 1). The odds ratios in this model ranged

from 1.070 to 4.063. This is, to our knowledge, the first study to

report these 13 variants together in one multiple logistic regression

accounting for other AMD risk variants. We computed a GRS for

each individual as the sum of AMD risk increasing alleles weighted

by the relative effect size of each SNP from the logistic model. We

added the alpha estimate of 210.13 to center the GRS on zero for

our study (see Methods). Cases had a significantly higher mean

GRS (1.61, 95% CI: 1.53–1.69) compared to controls (20.03,

95% CI: 20.12–0.06, p,0.01). The relative risk of AMD per

GRS unit approximated by the OR was 2.72 (95% CI: 2.46–3.01).

The mean GRS of our controls was slightly lower than the one for

the HapMap data representing a general population (0.00, 95%

CI: 20.14–0.14), which is in-line with our controls being selected

for having no AMD.

Good discriminative ability of the GRS
Computing the area-under-the-curve (AUC) of the receiver-

operating characteristic for the 13-SNP GRS, we observed good

ability to correctly classify those with and without the disease

(AUC = 0.820, Figure 2). We also computed the AUC per locus

demonstrating that the impact by gene varied substantially, as

expected. The three SNPs at the CFH locus alone (rs800292,

rs1061170, rs6677604) showed the highest classification efficiency

(AUC = 0.710), followed by rs10490924 at ARMS2/HTRA1

(AUC = 0.684), and the remaining variants (AUC from 0.512 to

0.571) (Figure 2).

Table 1. Summary characteristics of the case-control study.

Cases Controls Total

Subjects 986 796 1782

GA1 229 -

NV2 581 -

Mixed GA+NV3 176 -

Mean Age (S.D.) [in years] 78.7 (6.5) 78.3 (5.1) 78.5 (5.9)

Men [%] 34.1 39.3 36.4

Fraction smoker [%]4,5 15.9 14.3

1Geographic atrophy.
2Neovascular AMD.
3Mixed GA+NV: GA and NV in the same eye or GA in one and NV in the second
eye.
4Smoking was defined as ever smoked more than 20 pack years.
5This variable was surveyed incompletely in cases and controls and thus was
not further considered in the analysis.
doi:10.1371/journal.pone.0037979.t001

Risk Modelling in AMD
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Although we specifically avoided selecting the SNPs based on

association in our own data set but rather from the literature, there

could be a potential overestimation of the AUC: We estimated the

effect sizes per variant from our data and used these as weights for

the GRS. To evaluate this potential over-estimation, we

performed a sensitivity analysis via a cross-validation approach

by repeated (i = 2000) random sub-sampling with 2/3rd of the

data for model building and 1/3rd for testing. The cross validated

AUC of 0.813 (95% CI: 0.813–0.814) is close to the one described

in our initial study (AUC = 0.820).

Developing a parsimonious genetic risk score model
We evaluated whether a parsimonious model based on our data

could be developed. We thus explored several models by

subsequently excluding the loci with the weakest AUC and found

a model restricted to 10 variants with equally discriminatory

ability (AUC 0.820) and equal model fit (R2 = 0.247) (Table 3).

This model could be of value for translational studies minimizing

the genotyping burden. Whether this is specific to our data set or

holds true for other study populations needs to be evaluated

further. It should be noted that all further analyses are based on

the 13-SNPs-GRS.

Distribution of the genetic risk score
The distribution of GRS for cases and controls as observed in

our study is given in Figure 3A. To provide a more realistic view

of the GRS distribution, the proportion of cases were weighted to

reflect a general distribution. For this modeling, an AMD

prevalence of 15% was assumed as reported for the general

population aged .85 years [30–32] (Figure 3B). The derived

GRS is comparable to the distribution estimated from individual

HapMap data (Figure 3B).

Genetic risk score by age groups, gender and AMD
subtype

We further investigated differences of the GRS between age-

groups (below or older than 75 years), men and women, or types of

AMD (GA, NV, or mixed GA+NV) using a significance level of

0.05/3 to account for the three subgroup tests performed.

Significant differences in mean GRS were found between

younger (1.87, 95% CI: 1.69–2.05) and older (1.45, 95% CI: 1.36–

1.54) AMD cases (p = 8.761025), but there was no difference

between the age-groups among controls (p = 0.18). The OR per

GRS unit was 3.06 (95%CI: 2.64–3.59) for younger and 2.71

(95% CI: 2.44–3.05) for older individuals. We also found that the

AUC restricted to the younger subjects (cases and controls) was

higher (0.852) than when only older subjects (cases and controls)

were included in the calculations (0.809).

Cases with mixed GA+NV had a significantly higher mean

GRS (1.87, 95% CI: 1.69–2.04) compared to NV cases (1.44, 95%

CI: 1.34–1.55, p = 6.661025). It was also higher when compared

to GA cases (1.65, 95% CI: 1.48–1.83, p = 0.03), although the

latter was statistically not significant when applying a conservative

Bonferroni-adjusted significance level of 0.05/3. The OR per

GRS unit was also higher for mixed GA+NV cases (OR = 3.79,

95% CI: 3.13–4.67) than for NV cases (OR = 3.79, 95% CI: 3.13–

4.67) or for GA cases (OR = 2.84, 95% CI: 2.44–3.33). This effect

appeared to be independent of age, since mean age in GA (78.8

years, 95% CI: 77.9–79.6), NV (78.5 years, 95% CI: 77.9–79.0)

and mixed GA+NV (79.4 years, 95% CI: 78.4–80.3) was similar.

There was no significant difference in the GRS means between

men and women neither among cases nor among controls.

Figure 1. Risk estimates for each of thirteen AMD risk variants
from eight gene loci. Odds ratios (OR) per risk allele were derived
from multiple logistic regression models. Horizontal lines indicate 95%
confidence intervals.
doi:10.1371/journal.pone.0037979.g001

Figure 2. Area-under-the-curve of the receiver operating
characteristic for the 13-SNP genetic risk score and by gene
locus. Observed AUC was 0.820 and the locus-specific AUCs were
0.513, 0.524, 0.536, 0.547, 0.555, 0.571, 0.686 and 0.710 from bottom to
top.
doi:10.1371/journal.pone.0037979.g002

Table 3. Model fit and discriminative accuracy of
parsimonious models.

Model1 Variants2 R2 AUC

13-SNP model 1,2,3,4,5,6,7,8,9,10,11,12,13 0.2475 0.820

- TIMP3 1,2,3,4,5,6,7,8,9,10,11,12 0.2475 0.820

- PLA2G12A 1,2,3,4,5,6,7,8,9,11,12 0.2454 0.819

- APOE 1,2,3,4,5,6,7,10,11,12 0.2411 0.816

- LIPC3 1,2,3,4,5,6,7,8,9,10 0.2457 0.820

1SNPs from one additional locus at a time were omitted from the 13-SNP model
by starting with the locus with the smallest risk.
2Numbering corresponds to IDs in Table 2.
3This model contained the least number of SNPs without compromising R2 or
AUC values.
doi:10.1371/journal.pone.0037979.t003
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These subgroup analyses demonstrate a higher genetic risk of

the younger AMD patients compared to the older patients as well

as a higher genetic risk for those with mixed late-stage

manifestations (GA+NV) when compared to NV or GA alone.

Genetic risk groups and relative risk estimates
To establish a classification scheme, we formed five equally

sized intervals for the GRS spectrum (#21.79, (21.79)–(20.05),

(20.05)–1.70, 1.60–3.44, and .3.44; Table 4). The highest GRS

category (no. 5) contained 7.92% of AMD cases, but only 0.13%

of controls. In contrast, the two lowest GRS categories (nos. 1+2)

jointly contained only 9.8% of cases, but 48.7% of controls.

According to the HapMap data reflecting a general population,

the proportion of subjects in the two lowest risk groups combined

was 48.9% and 0.5% in the highest risk group. This is consistent

with the general population being a mixture of mostly controls and

only few cases.

The relative risks were approximated as ORs for each GRS

category using the middle category (no. 3) as reference (Table 4).

It can be seen that the OR is dramatically increased for category

four (OR = 5.44, 95% CI = 4.03–7.46) and even more for category

five (OR = 64.00, 95% CI = 14.11–1132.96). The odds ratios are

substantially decreased for categories two and one (OR = 0.22,

CI = 0.17–0.29 and OR = 0.12, 95% CI = 0.05–0.24) compared to

the reference. Thus, these GRS categories can effectively describe

genetic risk groups for AMD.

Due to the substantial differences found in mean GRS for

younger compared to older cases (see above), we derived these

ORs also separately by age-group. To avoid scarce data, risk

group one and two as well as four and five were combined to a low

and a high risk group, respectively (Table 4). This highlights the

higher genetic relative risk for AMD when restricting the analysis

to the younger (OR = 12.66, 95% CI: 6.76–25.65) compared to

the older (OR = 5.18, 95% CI: 3.70–7.38) subjects. Although the

95% confidence intervals overlap slightly, we observed a

significant difference (p = 0.0194).

Modeled absolute risk for late-stage AMD
To reflect the anticipated situation in the general population

and to compute the absolute risk of AMD per GRS group, we

computed the fraction of late-stage AMD cases per GRS category

by (i) utilizing the fraction of cases and controls as observed in each

GRS category (Table 4) and (ii) weighting the fraction of cases

assuming various AMD prevalences (1%–15%). The fraction of

cases and the fraction of subjects of the modeled general

population (also for comparison in the HapMap sample) by

GRS category are shown in Table 5. The fraction of late-stage

AMD in the highest GRS group (absolute AMD risk) ranged from

38.6–91.7% depending on the assumed AMD prevalence which

were chosen to correspond to the various age-groups as reported

[30–32]. For example, in a general population with an AMD

prevalence of 10% approximately 90% of the persons in the

highest GRS group are expected to be affected by late-stage AMD.

Consequently, the genetic relative risk for subjects in the highest

GRS group (compared to the middle GRS group) is higher for

younger compared to the older AMD cases. However, the absolute

risk of AMD among subjects in the highest GRS group is higher

for the older population due to the higher AMD prevalence

among the older persons.

We again adopted the same cross-validation approach to

compute absolute risks since the effect sizes of the variants in the

GRS model, on which the absolute risk estimates are based, were

estimated from our study data. This approach yielded overall

similar estimates (Table S2).

Discussion

Based on a genetic risk score including 13 reported SNPs from

eight established AMD gene loci, we propose a five-category

classification system that effectively differentiates subjects with

high or low genetic risk. With this, we extend on earlier efforts to

predict the genetic risk for late-stage AMD [26,33–35]. Seddon et

al. described a risk score model for six genetic variants in four loci

also including environmental factors like BMI, smoking, age and

diet (sample size was 1.446 individuals of which 279 progressed to

AMD) [26]. Similarly, a study from Gibson et al. included 470

cases and 470 controls and reported an AUC of 0.83 (95% CI 0.81

to 0.86) using six SNPs in four loci and two environmental factors

[33]. A study by Spencer et al. investigated one variant in each of

four loci as well as age and smoking as environmental factors and

found an AUC of 0.84 (95% CI: 0.81–0.88) [35]. Jakobsdottir et

al. reported an AUC of 0.79 based on one SNP in each of three

loci [34]. This study consisted of around 1.000 family-based cases

and 429 controls as well as a case-control study with 187 cases and

Figure 3. Genetic risk score distribution in the study population and in a modeled population. AMD cases are shown in red, controls in
blue, while overlapping bars are shaded blue/red. (A) Genetic risk score distribution for cases (N = 986) and controls (N = 796) in the present study. (B)
Counts of cases in (A) were scaled to represent 15% of the total population (assumed as AMD prevalence of the 85–90 year old general population).
The density curve represents the risk score distribution in 381 European ancestry samples available through the 1000 Genomes Project (Release
20110521).
doi:10.1371/journal.pone.0037979.g003

Risk Modelling in AMD

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37979



168 controls. We evaluated 13 SNPs from 8 AMD loci in a well

characterized and well powered case-control study and observed

an AUC of 0.820, which is sufficient to classify AMD patients and

controls into high risk and low risk groups [24]. Our study has not

contributed to the identification of any of the 13 SNPs as AMD

risk-increasing variants and would thus not be subject to winner’s

curse regarding the effect size. To our knowledge, this is a first

study to include most of the currently known genetic loci for their

value to predict late-stage AMD risk in a study that is independent

of the identification of any of these loci.

Interestingly, we find a higher relative risk of the CFB SNP

rs4151667 compared to CFH and ARMS2/HTRA1 risk-increas-

ing SNPs particularly in the multivariable logistic regression

model. This can also be seen in a previously published study

(Seddon et al., Table 4) [36], although it needs to be noted that the

models used in our and the published study differ in the sense that

Table 4. Five genetic risk groups and relative risk of AMD (ORs and 95% confidence intervals).

Genetic risk groups

GRS category 1 2 3 4 5

Sample size N = 63 N = 417 N = 761 N = 450 N = 79

GRS interval #21.79 ]21.79,20.05] ]20.05,1.70] ]1.70,3.44] .3.44

Cases [%] 0.81 9.00 42.5 39.7 7.92

Cases ,75 years [%] 1.70 6.20 34.0 42.3 15.8

Cases .75 years [%] 0.54 9.96 45.2 38.9 5.38

Controls [%] 6.99 41.7 43.6 7.50 0.13

Frequency in HapMap1 8.92 40.2 41.2 9.18 0.53

OR (95% CI) 0.12 (0.05–0.24) 0.22 (0.17–0.29) reference 5.44 (4.02–7.46) 64.00 (14.11–1131.96)

GRS categories low (1+2) 3 high (4+5)

Sample size N = 480 N = 761 N = 529

GRS interval #20.05 ]20.05,1.70] .1.70

OR (95% CI) 0.21 (0.16–0.27) reference 6.41 (4.76–8.76)

,75 years: OR (95% CI) 0.19 (0.10–0.33) reference 12.66 (6.76–25.65)

. = 75 years: OR (95% CI) 0.22 (0.16–0.29) reference 5.18 (3.70–7.38)

1Fraction of individuals in 1000 Genome Project European Ancestry Samples residing in risk groups.
doi:10.1371/journal.pone.0037979.t004

Table 5. Absolute risks for AMD by modeling a general population for various prevalences of AMD (reflecting various age-groups).

Modeled prevalence
(age-group [yrs])1 Absolute risk of AMD by genetic risk group [%]

1 (low) 2 3 4 5 (high)

GRS interval #21.79 ]21.79,20.05] ]20.05,1.70] ]1.70,3.44] .3.44

% cases, modeled general
population

1% (65–69) 0.12 0.22 0.97 5.08 38.6

2.5% (70–74) 0.30 0.55 2.44 12.0 61.5

5% (75–79) 0.61 1.13 4.87 21.8 76.6

10% (80–84) 1.30 2.40 9.80 37.0 87.4

15% (.85) 2.00 3.70 14.7 48.3 91.7

% subjects, modeled general
population

1% 6.84 40.9 43.6 8.31 0.32

2.5% 6.68 40.1 43.8 8.50 0.34

5% 6.69 40.1 43.6 9.12 0.52

10% 6.38 38.5 43.5 10.7 0.91

15% 6.10 36.8 43.5 12.3 1.30

% subjects, HapMap population2 8.92 40.2 41.2 9.18 0.53

1Approximate age-groups corresponding to the modeled prevalences for 65 and 79 years [30,31] and for those above 80 years [32].
2see Table 4.
doi:10.1371/journal.pone.0037979.t005

Risk Modelling in AMD

PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e37979



ours considers exclusively genetic factors while the other work

largely focused on non-genetic factors. The smaller allele

frequency of the CFB SNP (1.8% in our cases, 6.7% in the

European ancestry 1000G individuals) compared to SNP frequen-

cies in CFH and ARMS2/HTRA1 results in a reduced power to

detect association and may explain why CFB SNP rs4151667 was

not among those detected first by AMD GWAS.

As expected, the mean GRS was significantly higher in cases

when compared to controls. Importantly, patients with late-stage

AMD diagnosed at an earlier age had a significantly higher mean

GRS than individuals that developed AMD later in life. This

strongly suggests that genetic predisposition influences disease

onset, which is also reflected in the higher relative AMD risk for

younger subjects with an OR of 12.66 (95% CI: 6.76–25.65) when

compared to older individuals with an OR of 5.18 (95% CI: 3.70–

7.38). The mean genetic risk score in our control group was

slightly lower but similar to the mean score in the HapMap sample

(including a total of 381 European subjects from CEU, GBR, IBS,

TSI and FIN, 1000 Genomes Project (Release 20110521, http://

www.1000genomes.org, accessed 2 May 2012).). The slight

discrepancy would be in-line with the fact that our controls were

specifically selected to reveal no signs of early or late-stage AMD.

Limitations of our study for risk prediction should be

acknowledged. First, the analysis was based on a case-control

study, which has no element of a prospective study or a nested

case-control study. The controls were often spouses of AMD

patients and thus non-genetic risk factors could not be studied due

to the known similarities among spouses regarding life style factors.

However, our AMD patients were virtually incident AMD cases

and thus the age at study entry is likely the age-at-diagnosis and

the best possible proxy for age-of-onset (allowing for a delay of

about 1–2 years between onset and diagnosis). In a case-control

setting, absolute risk or positive/negative predictive values cannot

be derived without making assumptions on the overall AMD

prevalence, which a prospective cohort study could estimate

directly. Thus, the predictive ability of the risk score groups greatly

depends on those assumptions. Second, it might be considered a

limitation but also a strength that our study included exclusively

late-stage AMD with NV or GA in one or both eyes as well as

highly-matched controls with no signs of early or late-stage AMD

in any eye. A strength as our data might exhibit less disease

misclassification than other studies, but a limitation as the genetic

relative risk could be overestimated if the genetic risk is larger for

subjects with both eyes affected than for those with only one

affected eye. Third, we had no independent and equally well

characterized data set available to separate model building from

testing although this is also the case for all other studies published

on AMD risk score model building [26,33,34]. Only one study

[35] reported a small replication study. We avoided selecting SNPs

for our model based on association signals in our own data but

rather selected SNPs from the literature. However, the SNP-

specific effect sizes utilized as weights in the genetic risk score

computation were still estimated in our data set. Thus, estimations

of AUC or absolute risk in the same data could lead to a slight

over-estimation of risk. We therefore adopted a cross-validation

approach as sensitivity analysis, which did not provide evidence of

remarkable over-estimation.

The highest genetic risk group of our proposed five-category

classification scheme can effectively identify subjects at high risk

for AMD. The specificity in this risk group was 99.9% (95% CI:

99.3%–100%). For example, our data and model suggest that

87.4% of subjects testing positive at some time in life for a high

genetic risk are likely to develop AMD in their mid-eighties

(positive predictive value). Thus, this group of individuals could

greatly profit from a sight-saving prevention or early intervention

program while only 13% of (false-positive) subjects would be

alarmed and treated unnecessarily. However, still a large number

of cases would be missed if this was established as a screening

method (sensitivity 8.0% (95% CI: 6.5%–9.9%), i.e. 92% of all

AMD cases would not be found in the highest risk group). Also

individuals in the second highest risk group could possibly profit

from early intervention, which would increase sensitivity to 47.6%

and decrease specificity to 91.2%. However, this would only be

acceptable, if the prevention/intervention is not harmful to the

59.9% of subjects treated and alarmed unnecessarily (40.1%

positive predictive value). These numbers are well in the range of

established screening tests, e.g. for prostate cancer by prostate

specific antigen (PSA) (positive predictive value = 25.1%, sensitiv-

ity = 72.1%, specificity = 93.2%, [37]), albeit with a higher

predictive value at the cost of reduced sensitivity. Abnormal levels

of PSA are detected in about 10% of the male population, which is

comparable to the coverage of high risk group four and five [37].

Offering an effective prevention program to individuals in the

highest AMD risk group (approximately 400,000 individuals in

Germany alone), almost 10% of incident late-stage AMD could be

avoided. If individuals in risk groups four and five are included

(about 10% of the general population), up to 50% of future AMD

patients could be addressed.

So far, only the progression of the neovascular complications in

AMD can be slowed by treatment [38]. If disease progression to an

advanced neovascular form is detected early in high risk patients,

immediate intervention might prove essential to sustain full vision

for a more extended time. Accordingly, high risk individuals could

be advised to seek clinical follow-ups more frequently and could

also benefit from dietary recommendations, including the intake of

antioxidants [39] or omega-3 fatty acids [40,41]. Identification of

individuals at high risk for developing AMD may also help to

include defined candidates in clinical AMD trials and thus may

allow a better assessment of therapeutic effects.

In conclusion, our study provides a genetic risk score for late-

stage AMD from a well characterized case-control study

emphasizing the large proportion of disease explained by genetic

markers particularly for younger subjects. We propose a classifi-

cation scheme to identify subjects at high or low genetic risk that

might be suitable for risk stratification in therapy studies or genetic

screening once preventive treatment is available.

Methods

Ethics statement
This study followed the tenets of the declaration of Helsinki and

was approved by the Ethics Review Board at the University of

Würzburg, Germany. Informed written consent was obtained

from each patient after explanation of the nature and possible

consequences of the study.

The study subjects
The case-control sample includes 986 AMD patients and 796

controls recruited from the Lower Frankonian area at the

University Eye Clinic of Würzburg, Germany [14]. Controls were

often unaffected spouses or nonrelated acquaintances of cases of

similar age as the patient. All patients and controls were examined

by a trained ophthalmologist (CNK). Stereo fundus photographs

were graded according to standardized classification systems as

described previously [9,42,43]. Only patients with severe forms of

AMD (GA or NV) in at least one eye and signs of early AMD (e.g.

large soft drusen) in the other eye were included. The patients

were divided into three subgroups according to their type of late-
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stage AMD: patients with GA in the severe eye, patients with NV

in the severe eye and patients that had either GA in one eye and

NV in the other eye or that showed both late-stage forms in the

same eye (mixed GA+NV). Mean age in cases was 78.7 (66.5)

years and 78.3 (65.1) in controls. A total of 34.1% of cases and

39.1% of controls were male. Study characteristics are summa-

rized in Table 1.

Genotyping
Genomic DNA was extracted from peripheral blood leukocytes

according to established protocols. Genotyping of SNPs was

achieved by direct sequencing, restriction enzyme digestion of

PCR products, TaqMan SNP Genotyping (Applied Biosystems,

Foster City, USA) or primer extension of multiplex PCR products

with detection of the allele-specific extension products by the

matrix-assisted laser desorption/ionization time of flight (MALDI-

TOF) mass spectrometry method (Sequenom, San Diego, USA)

(Table S3). Direct sequencing was performed with the Big Dye

Terminator Cycle Sequencing Kit Version 1.1 (Applied Biosys-

tems, Foster City, USA) according to the manufacturer’s

instructions. Reactions were analyzed with an ABI Prism Model

3130xl Sequencer (Applied Biosystems). TaqMan Pre-Designed

SNP Genotyping Assays (Applied Biosystems) were performed

according to the manufacturer’s instructions. Additionally, some

variants were genotyped by PCR followed by restriction enzyme

digestion (New England Biolabs, Ipswich, USA) and subsequent

restriction fragment length analysis. The c.del443ins54 variant in

the 39-region of the ARMS2 locus was genotyped by a single PCR

with oligonucleotide primers 59-ACTCATCACGTCATCAC-

CAAT-39 and 59-CTCTCTGCAGCCCTCATTTG-39 resulting

in distinct fragment sizes due to the presence or absence of the

deletion/insertion polymorphism.

Estimating genetic risk and model fit
Genotypes were coded as the number of AMD risk increasing

alleles (0, 1, and 2). Logistic regression analyses were carried out

using the R software [44]. Odds ratios (OR) per risk allele and

95% confidence intervals (95% CI) were calculated from the

estimated beta-coefficients to derive an approximate relative risk.

The goodness-of-fit of each model was assessed by calculating

McFaddens pseudo R2 [45], which however, does not reflect the

variance explained by the model [46].

Computing the genetic risk score
Based on the intercept ‘‘a’’ and the single-SNP beta-coefficients

estimated using the logistic regression model including all SNPs at

once, the genetic risk score (GRS) was calculated as

GRS~az
Xk

i~1

bi � xi ð1Þ

with k being the number of SNPs in the model and xi the genotype

of the ith SNP. Here, ‘‘a’’ denotes a constant that centers the risk

score distribution around zero and bi relates to the ith variant. The

odds ratio of the effect of the ith variant is thus given by exp(bi)

[19,23,26]. The mean GRS by age-group, sex, or AMD subtype

were compared based on the independent samples t test using the

R software [44] and differences were considered as significant, if

P,0.05/3 accounting for the three comparisons performed.

Assessing the discriminative ability
To estimate the ability of a potential genetic screening test to

discriminate between AMD cases and healthy subjects, we

computed the receiver-operating-characteristic (ROC) curve. This

involves ranking all subjects according to their GRS starting with

the smallest, computing sensitivity and specificity at each possible

GRS cut-off, and plotting sensitivity versus 1-specificity. The area-

under-the-curve (AUC) is a measure of how well the GRS cut-offs

can separate AMD cases from controls. We used the package

EPICALC [47] for AUC computations and forest plots were

generated with RMETA [48].

Internal validation by cross-validation
Although we have not selected the SNPs into the model based

on their association in our data set but rather with information

from the literature, there is a potential overestimation of the AUC

due to the fact that we used the SNP effect sizes to weigh the risk

alleles when computing the GRS. Thus, we conducted a sensitivity

analysis using a cross-validation approach to derive AUC estimates

that are not subject to this bias to compare with the original data

AUC. We randomly assigned 2/3rd of the data to the model

building (to compute the effect sizes and thus establish the GRS

model) and 1/3rd of the data to testing (to compute the AUC and

positive predictive values) ([49,50]). We repeated this 2000 times

and computed the average AUC as an unbiased estimate.

Modeling of the absolute risk by GRS group
In order to derive the fraction of cases in the five GRS

categories as expected in the general population (corresponding to

the absolute AMD risk) from the number of cases (N_cases = 986)

and controls (N_controls = 796) in our case-control study, we

weighted the number of AMD cases in our study by

weight~
prevalence �N controls

1-prevalenceð Þ�N cases
ð2Þ

where prevalence denotes the fraction of AMD cases in the general

population, that we chose to reflect previously reported preva-

lences of AMD in the various age groups (65–69 years: 1%, 70–74

years: 2.5%, 75–79 years: 5%, 80–84 years: 10% and .85 years:

15%) [30–32]. These were also used to compute positive and

negative predictive value for the highest GRS category as a

screening test for AMD. The cross-validation approach described

above was also adopted for a sensitivity analysis to compute

unbiased absolute risk.

Supporting Information

Figure S1 Risk estimates for 16 AMD associated
variants by disease subtypes. Logistic regression models

were fitted with all patients (N = 986), GA cases only (N = 229),

NV cases only (N = 581) or mixed GA+NV cases (N = 176) versus

controls (N = 796). Odds ratio estimates (OR) are given per risk

allele; horizontal bars indicate 95% confidence intervals and the

arrow indicates that the boundary extends below 1 or above 6.

(TIF)

Table S1 Published genetic variations associated with
AMD.

(DOC)

Table S2 Cross validated absolute risks for late stage
AMD in different risk groups in the modeled population.

(DOC)

Table S3 Primers and methods used for genotyping.

(DOC)
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