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Abstract
Data contributed by a large number of non‐experts is in‐
creasingly used to validate and curate land cover data, with 
location‐based games (LBGs) developed for this purpose 
generating particular interest. We here present our find‐
ings on StarBorn, a novel LBG with a strong focus on game 
play. Users conquer game‐tiles by visiting real‐world loca‐
tions and collecting land cover data. Within three months, 
StarBorn generated 13,319 land cover classifications by 
84 users. Results show that data are concentrated around 
users’ daily life spaces, agreement among users is highest 
for urban and industry land cover, and user‐generated land 
cover classifications exhibit high agreement with an au‐
thoritative data set. However, we also observe low user 
retention rates and negative correlations between number 
of contributions and agreement rates with an authoritative 
land cover product. We recommend that future work con‐
sider not only game play, but also how motivational aspects 
influence behavior and data quality. We conclude that LBGs 
are suitable tools for generating cost‐efficient in‐situ land 
cover classifications.

1  | INTRODUC TION

Land cover products derived from remote sensing data are increasingly important in the analysis of diverse pro‐
cesses in the earth system (Congalton, Gu, Yadav, Thenkabail, & Ozdogan, 2014), ranging from monitoring bio‐
diversity (Turner et al., 2003) and tropical deforestation detection (Achard et al., 2002) to gauging the extent 
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of urban sprawl (Sahana, Hong, & Sajjad, 2018). They are thus crucial in policy‐ and decision‐making processes 
(Foody et al., 2013; Lambin et al., 2001; Sexton et al., 2015). However, between‐product variability is often high 
when comparing different land cover products at given locations on the Earth's surface (See et al., 2013; Sexton 
et al., 2015). Seemingly trivial questions such as “How much forest is there?” metamorphose into complex dis‐
cussions on data quality, sensors, semantics and underlying biases (Burenhult et al., 2017; Côte, Wartmann, & 
Purves, 2018; Sexton et al., 2015). Omnipresent in such discussions is the need for appropriate ways of assessing 
the quality of land cover products. Quality assessment is most often based on a gold standard validation data set, 
often in the form of an independently labeled data set. Such gold standards (or ground truth) typically take one of 
two forms. Ex‐situ assessments of land cover classifications (cf. Fritz et al., 2009; See et al., 2013) are performed 
remotely, typically by independent assessors who label pixels using satellite imagery and an underlying classifica‐
tion schema. For in‐situ assessments assessors visit defined points in a landscape and assign them to a land cover 
classification (cf. Bayas et al., 2016).

Ground truth data, in the form of either labeled images or in‐situ measurements, are therefore a crucial input 
part of the process of validating land cover products (See et al., 2013). In‐situ data are traditionally collected by 
experts or trained persons; however, these are associated with financial restrictions. For example, a maximum of 
10% of the budget for the “Coordination of Information on the Environment” (CORINE) land cover product was 
set aside for ground truth surveys (European Environment Agency, 1994). This financial restriction leads to a major 
issue in land cover product validation: the scarcity of high‐quality in‐situ ground truth data for validating remotely 
sensed land cover products.

One possible approach to this challenge is to generate data sets for the validation of land cover products using 
citizen science and crowdsourcing. User‐generated content (UGC), such as volunteered geographic information 
(VGI), has gained traction in validation and calibration efforts and has been identified as a potential source of 
ground truth data (Foody & Boyd, 2012; Fritz et al., 2009; Goodchild, 2007; See et al., 2013). The growth of in‐
terest in research focusing on the use of VGI to generate data sets for land cover product validation is partially 
due to advances in internet and mobile technologies, allowing users to easily contribute and share geographic in‐
formation on handheld devices. However, even though technological advances have provided scientists with new 
accessible tools for data generation, how to motivate users to contribute data remains an issue (Crall et al., 2017). 
Gamification has been identified as one approach to motivating users to contribute to scientific crowdsourcing 
efforts (Bubalo, Zanten, & Verburg, 2019; Fritz, See, & Brovelli, 2017; Hamari & Sarsa, 2014).

Gamification has been applied to a number of research endeavors (cf. Hamari & Sarsa, 2014), with various proj‐
ects incorporating one to many game elements. However, we argue that simply adding arbitrary game elements 
(e.g., a single rankings page or a simple reputation system) to a crowdsourcing approach does not necessarily make 
using the application fun or enjoyable. Game elements should be carefully chosen and combined through an un‐
derlying narrative to create an entertaining experience.

Location‐based games (LBGs) are of particular interest in this respect. Users visit real‐world locations to con‐
tribute geographic information, making LBGs especially interesting for in‐situ data collection. LBGs also allow 
game elements to be implemented to increase user motivation for specific collection tasks or contributions at 
specific locations. LBGs are usually played on a handheld, location‐enabled device, acting as a bridge between a 
virtual game world and the physical world. A prime example of a widely known LBG is Pokémon GO, where players 
capture virtual monsters and compete over specific virtual locations while moving through the real world (Colley 
et al., 2017). Since these games allow specific interactions with a virtual game world depending on criteria based 
on real‐world location, changing position becomes an integral part of game play. These underlying game mechan‐
ics can be used to collect data from users by harnessing the users’ ability to sense their immediate surroundings 
(cf. Celino, 2015; Wang & Ben‐Arie, 1996), thus allowing in‐situ data generation. Various authors have argued that 
LBGs have considerable potential for collecting geographic data (Celino et al., 2012; Matyas, Kiefer, & Schlieder, 
2012; Winter et al., 2011). However, user retention has been identified as a key issue in citizen science efforts in 
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general (cf. Crall et al., 2017), and a rapid decline in active users after an initial period of interest has been observed 
in LBGs (cf. Andone, Blaszkiewicz, Böhmer, & Markowetz, 2017).

A number of questions arise regarding the viability of LBGs to generate in‐situ land cover data. Firstly, how can 
such a game be designed and implemented, such that players are motivated to contribute? Secondly, what intrinsic 
characteristics do the data thus collected have, and how are these influenced by the behaviors of the game's play‐
ers? Finally, how are the data collected comparable with an authoritative land cover product, and are they likely to 
be of use as high‐quality in‐situ data for land cover validation?

2  | REL ATED WORK

In this section we present related work from four key areas. First, we explore the current state of the art in efforts 
to validate land cover data, focusing on approaches using some form of crowdsourcing. Second, we introduce 
aspects of user motivation in crowdsourcing efforts. We then explore key aspects of LBGs, highlighting gamifica‐
tion elements that go beyond rankings of user contributions. Finally, we briefly discuss user characteristics and 
behaviors in the general context of user‐generated content.

2.1 | Land cover product validation

Land cover validation revolves around comparing existing land cover products with ground truth data based on 
either ex‐situ image analysis or in‐situ land cover assessment.

Foody (2002) summarizes four historical stages of land cover assessment and validation. Perhaps the most 
commonly accepted method for comparing data sets is using a confusion matrix (Foody, 2002), where the re‐
ported land cover classes of each pixel from two different data sets are compared, allowing various metrics to 
be computed (Ji & Niu, 2014). Where one product is of a known higher quality (a gold standard) these metrics 
describe the quality of a second product; however, lack of gold standard data is a major limitation in land cover 
product validation efforts. In‐situ ground truth data are commonly generated by paid and trained (semi‐)experts 
as in the Land Use/Cover Area Frame Survey (LUCAS; Bayas et al., 2016), but the cost of ground truth surveys 
and the accessibility of crucial locations are often considered major constraints (Bayas et  al., 2016; European 
Environment Agency, 1994; Foody, 2002).

One potential alternative source of ground truth data, which has been the subject of considerable attention 
in the scientific community, is UGC, or VGI. A large body of work has explored the use of data sources such as 
OpenStreetMap and Flickr to extract land cover data (e.g., Fonte & Martinho, 2017; Jeawak, Jones, & Schockaert, 
2017). While these approaches relied on existing data as a form of passive crowdsourcing, our focus lies in the use 
of ground truth data collected through active crowdsourcing. Such approaches can effectively be divided into two 
broad groups, focusing on either ex‐situ or in‐situ land cover validation efforts.

Ex‐situ approaches use crowdsourcing platforms and task users with labeling imagery, often based around a 
particular land cover product. For instance, Geo‐Wiki (Fritz et al., 2009; See et al., 2013) was developed specifically 
to crowdsource data for land cover validation. See et al. (2013) concluded that the overall quality of data was rel‐
atively high and that differences between experts and non‐experts exist but vary depending on land cover class 
and throughout the test period. In‐situ approaches seek to motivate contributors to visit locations and generate 
data in the field. For example, FotoQuest Austria successfully generated data in over 1,699 unique locations, in‐
corporating a simplified LUCAS protocol and engaging non‐expert users by offering prizes to top‐scoring players 
(Bayas et al., 2016).

An important question with respect to such approaches is the quality of non‐expert contributions, and in 
particular the number of non‐expert user contributions per unique location needed to ensure high quality. Haklay, 
Basiouka, Antoniou, and Ather (2010) show the validity of Linus's law in OpenStreetMap and discuss its validity 



     |  1011BAER et al.

for VGI in general. The basis for Linus's law is the assumption that the quality of user contributions increases with 
the quantity of contributions (Haklay et  al., 2010). However, Maisonneuve and Chopard (2012) state that the 
overall accuracy and variability of user contributions seem to stabilize at five volunteers, meaning allocating more 
volunteers to a task only increases resource use while not affecting quality. Haklay et al. (2010) also found the 
first five contributions to have the largest impact on data quality. Goodchild and Li (2012) argue that in practice, 
Linus's law applies to prominent and easily identifiable geographic facts rather than less‐known or niche features.

2.2 | User motivation

A major issue in crowdsourcing is motivating users to make constructive contributions (Brabham, 2012; Coleman, 
Georgiadou, & Labonte, 2009; Fritz et al., 2017; Wright, Underhill, Keene, & Knight, 2015). Several motivators 
for participation have been identified, including developing a certain skill (Brabham, 2012), social interactions 
(Wright et al., 2015), contributing to scientific endeavors (Cox et al., 2018), and engaging in an enjoyable activity 
(Brabham, 2012). A more extensive list of motivators for users contributing geographic information was compiled 
by Coleman et al. (2009) through analyzing relevant literature. The authors mention eight key motivators, includ‐
ing altruism, professional or personal interest, intellectual stimulation, protection or enhancement of a personal 
investment, social reward, enhanced personal reputation, outlet for creative and independent self‐expression, 
and finally pride of place. Budhathoki and Haythornthwaite (2013) investigate motivation at a finer‐grained level, 
analyzing 22 motivational factors in OpenStreetMap (cf. Gómez‐Barrón, Manso‐Callejo, Alcarria, & Iturrioz, 2016). 
The authors found altruism, perceived importance of a project goal, instrumentality of local knowledge, and fun 
to be the main motivators. Interestingly, fun appears to be one of the most important aspects of user motivation 
in the findings of Budhathoki and Haythornthwaite (2013) which is not reflected in the former list of motivators 
(Coleman et al., 2009). In the context of land cover product research, Fritz et al. (2009) have suggested making the 
participation in land cover validation efforts more desirable by incorporating elements used in computer games 
such as competition and entertainment.

2.3 | Location‐based gaming

Recent rapid developments in performance and features of handheld devices with integrated global positioning 
system (GPS) capabilities have led to a surge in popularity of LBGs, perhaps best illustrated by the wave of popu‐
larity of the LBG Pokémon GO (Colley et al., 2017). An increasing number of researchers are harnessing this interest 
in LBGs and using them as data collection tools (Bayas et al., 2016; Celino, 2015; Davidovic & Stoimenov, 2013; 
Matyas, 2007; Yanenko & Schlieder, 2014). LBGs are based on only allowing interactions with a virtual (game) 
environment when specific real‐world locations are visited. Games aimed at collecting geographic information 
can be distinguished based on various characteristics: (a) the structure of the game field (Matyas, 2007; Matyas 
et al., 2012); (b) the duration of a game; (c) the presence or absence of a narrative or storyline; and (d) whether the 
game is team‐based or not (cf. Avouris & Yiannoutsou, 2012). There is general agreement that LBGs are viable not 
only as (geospatial) data acquisition tools (Matyas, 2007; Yanenko & Schlieder, 2014), but also for data verification 
and curation purposes (Celino, 2015; Yanenko & Schlieder, 2014). Celino (2015, p. 9) concludes that using LBGs 
“can bring effective tools for geospatial data curation by exploiting the physical presence of the contributors in 
the environment.”

Game play in the real world typically also involves immersion in some form of linked virtual world (e.g., the 
monsters in Pokémon GO). Gradinar, Huck, Coulton, Lochrie, and Tsekleves (2015) argue that overemphasizing 
virtual immersion elements can draw a user's attention away from the physical environment. This in return re‐
duces the users’ ability to perceive and reflect on their surroundings, which is an important aspect of in‐situ data 
generation. Underlying game mechanics and design features must therefore be carefully implemented to balance 
immersion between the virtual game world and the physical world (Gradinar et al., 2015; Lei & Coulton, 2011).
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Many games use virtual reward systems as a key motivational mechanism to ensure player satisfaction and 
thus increase the time users invest in playing a game (King, Delfabbro, & Griffiths, 2010). Virtual rewards can be 
seen as a proxy for the time and effort a player has invested in a given task in a game and are often comparable and 
communicable with other players (Hoe, Goh, Pa, Pe‐Than, & Lee, 2017). Relatedness, or the desire of users to feel 
connected with and interact with other users, has been argued to increase users’ intrinsic motivation (Deci & Ryan, 
2000; Hoe et al., 2017). Motivational elements in an LBG may thus not only correlate to perceived enjoyment, but 
also influence user behavior.

Individual user behaviors in LBGs can in return result in different spatial contribution patterns. The literature 
suggests two main behavioral types: users primarily playing LBGs while traveling (Bell et al., 2006; Zhang, Lee, 
Radhakrishnan, & Balan, 2015), leading to route‐like contribution patterns, and users significantly adjusting their 
route to play Colley et al. (2017), potentially leading to spatially coherent contribution patterns.

Despite these advantages of LBGs, current implementations often have weak narratives and have not yet fully 
explored the potential of gamification as a motivational element. Given the surge of interest in crowdsourcing land 
cover data, we set out to investigate the potential of an LBG with strong game play and narrative elements as a 
source of ground truth data for land cover validation.

2.4 | Data quality and user characteristics

Crowdsourcing data commonly leads to a more or less diverse base of contributing users with varying character‐
istics and collection behaviors. Coleman et al. (2009) give an overview of users who contribute to volunteered 
geospatial data sets and discuss characteristics of their contributions. The authors summarize five categories of 
contributors: “neophytes” (e.g., interested users with time and a certain level of willingness to contribute but with 
no formal background); “interested amateurs” (e.g., interested users with limited background knowledge); “ex‐
pert amateurs” (e.g., interested non‐professional users with broad background knowledge); “expert professionals” 
(e.g., professional users with extensive background knowledge); “expert authority” (users who are recognized as 
experts in an area). In addition, users contributing to a crowdsourcing effort were characterized more broadly by 
their humanity as distinguishable from automated systems, the frequency, type and degree of their contributions, 
the quality and veracity of their contributions, and their reputation in the context of contributions .

Flanagin and Metzger (2008) dissect the terms “accuracy,” “credibility,” “trust,” and “quality” in the domain 
of VGI and point out that contributions in crowdsourced projects must be assessed regarding their reliability. 
Bordogna, Carrara, Criscuolo, Pepe, and Rampini (2016) analyze different volunteer contribution behaviors and 
also conclude that the quality of the resulting data is heavily influenced by the underlying characteristics of con‐
tributing users. Comber, Mooney, Purves, Rocchini, and Walz (2016) analyzed contributions to Geo‐Wiki, spe‐
cifically focusing on the contributed land cover classifications based on the nationality of contributing users and 
found differences in the labeling of land cover classes.

All of these issues emphasize the importance of exploring not only the properties of the data contributed in 
crowdsourcing, but also the properties and influence of the participants themselves.

2.5 | Research gaps

Reviewing the presented literature highlights important research gaps which must be addressed and existing 
research which can be built upon. Gamification has enjoyed increasing attention in scientific research, especially 
in crowdsourcing and citizen science approaches. However, most efforts incorporate single arbitrary game ele‐
ments calling for the implementation and analysis of a coherent LBG, including competition, progression, an un‐
derlying narrative, and entertaining game play. Games have been suggested as having the potential to motivate 
non‐experts to participate in improving land cover products; however, research on using LBGs to generate in‐situ 
land cover data is limited and needs further exploration. Especially questions of how to motivate users need to 
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be addressed in the context of LBGs as scientific data generation tools. Further, research analyzing UGC from an 
LBG focusing on between‐user agreement rates and agreement rates between users and an authoritative data 
set is limited.

3  | METHODS AND IMPLEMENTATION

In this section we describe the key steps we took in implementing the LBG StarBorn for Switzerland and analyz‐
ing the generated data. We describe how the game was implemented, focusing on the introduction and iterative 
development of elements designed to motivate game players, and discuss the recruitment and retention of a com‐
munity of game players. We highlight key methods for analyzing user characteristics and contributions. Finally, 
we present methods used to compare the in‐situ land cover classifications generated through StarBorn with an 
authoritative land cover product.

3.1 | Key game play and implemented game elements

Game elements are the fundamental building blocks of any game and are chosen or omitted depending on in‐
tended game play (Aldemir, Celik, & Kaplan, 2018). A game designer can therefore use game elements to guide 
users through various stages of a game, foster motivation, and tailor user experience.

Users interested in playing StarBorn (Figure 1a) were first encouraged to read a back story portraying op‐
posing extraterrestrial teams (Blue Dwarves versus Red Giants) in a struggle for world dominance, serving as the 
underlying theme of the game. Users signed up for the game and were prompted to submit limited demographic 
information (age and gender). We did not collect information about the academic level or occupation of the par‐
ticipants to make the sign‐up process as easy as possible while retaining some basic demographic information. 
Following email confirmation, users were invited to create an avatar, a self‐designed icon representing the game 
player (Figure 1b) as a means of identity building and motivation (cf. King et al., 2010). Users then affiliated them‐
selves with one of the two teams, purposefully implemented as a competitive element (opposing teams) as well 
as a collaborative element (common goals within teams) to increase user motivation (cf. Söbke, Hauge, & Andreea 
Stefan, 2017). This further stimulated interest and introduced users to the competitive elements of the game. We 
did not explicitly mention land cover data collection as being the main aim of StarBorn, but did inform users that 
contributed data would be used in a research context.

The implemented LBG encouraged users to conquer virtual game areas corresponding to fixed real‐world 
extents of 200×200 m in Switzerland through continuous real‐time game play (Figure 1c). Conquering real‐world 
extents in a virtual game world was the main activity of the implemented LBG. To further encourage users to visit 
and conquer as many tiles as possible, users were rewarded with different titles (short texts indicating a player has 
earned a certain achievement) and badges (small images with increasing rarity corresponding to the mentioned 
titles) depending on their number of contributions (cf. Hamari, 2017; Hoe et al., 2017). In addition, a rankings page 
was implemented showing a ranked list of users by the number of respective contributions. All interactions re‐
lated to conquering an area required the users’ real‐world position to be within the virtual game‐tile. Conquering 
an area for their team thus required users to physically visit a location and select one or more land cover classes 
represented by a title and an icon (Figure 1d) from a predefined list of classes based on CORINE land cover data 
(European Environment Agency, 1994). Table 1 shows the CORINE land cover class titles and their respective 
abbreviations used in the remainder of this article. CORINE does not clearly distinguish between land cover—“bio‐
physical attributes of the earth's surface” (Lambin et al., 2001, p. 262)—and land use—“human purpose or intent 
applied to these attributes” (Lambin et al., 2001, p. 262). The classification scheme we implemented thus incorpo‐
rated both land cover (e.g., urban, forest) and land use (e.g., industry, pasture) classes. For simplicity, we will refer 
to all classes as land cover classes in the remainder of this paper.
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Conquering a location was rewarded with in‐game resources (e.g., “stardust”). In‐game resources could be 
spent on in‐game items, including various defensive structures, which could be built onto game‐tiles belonging to 
one's own team, making it more difficult for the other team to take over a conquered area. We were interested 
in analyzing between‐user agreement rates by comparing consecutive classifications of the same area and thus 
implemented an attack and reconquer feature. For instance, players from the Red Giants could take over game‐tiles 
held by the Blue Dwarves by attacking the game‐tile's defensive structures and recapturing the respective tile 
by resubmitting the perceived land cover classes. This resulted in tiles being classified multiple times and thus 
consecutive agreement rates could be analyzed. However, given the added needed effort of first attacking an 

F I G U R E  1   Screenshots of game play showing (a) the homepage where users could login and register, view 
the current rankings page and read the back story of the game; (b) the character creation page where users 
could create their individual avatar; (c) the main game map window showing the user's location as a marker, the 
surrounding game‐tiles colored by team affiliation and, finally; and (d) the capture screen where users report on 
one or more perceived land cover classes to capture a game‐tile

TA B L E  1   Table of land cover class abbreviations as used in this article and their respective CORINE titles

Land cover class abbreviation CORINE land cover class title

urban Urban fabric

industry Industrial, commercial, and transport units

forest Forests

arable Arable land

pasture Pastures

greenarea Artificial, non‐agricultural vegetated areas

shrub Scrub and/or herbaceous vegetation associations

water Inland waters

noveg Open spaces with little or no vegetation

agriculture Heterogeneous agricultural areas

permacrop Permanent crops

wetland Inland wetlands

mine Mine, dump and construction sites
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area when reconquering an enemy area, users were implicitly directed towards conquering areas not yet classi‐
fied. These features were implemented to ensure a large spatial coverage while allowing a subset of tiles to have 
multiple captures. All major user decisions are summarized in Figure 2.

3.2 | Infrastructure decisions

The defined goal of StarBorn was to generate land cover data from users by exploiting their ability to sense 
their immediate surroundings (Celino, 2015; Wang & Ben‐Arie, 1996). Therefore, we implemented the game as 
a browser‐based web application, using modern browsers’ built‐in location capabilities (accessing GPS) and only 
allowing users to contribute land cover classifications of their immediate real‐world surroundings. The virtual 
game field comprised a raster of game‐tiles, stored using a national equal‐area projection coordinate system for 
Switzerland and covering the whole area of Switzerland. A raster cell resolution of 200×200 m was chosen based 
on four criteria. First, the tiles were large enough that players could conquer relatively large areas and to encour‐
age competition to reconquer tiles. Second, moving within the game was rapid on foot, encouraging players to 
capture more than one tile in relatively rapid succession. Third, this resolution is of the same order of magnitude 
as the data we wished to compare (CORINE with a resolution of 100 m). However, we judge 100 m to be too fine a 
resolution for our first criterion, and thus settled on a compromise of 200 m. Finally, the chosen resolution allows 
public access to most tiles, minimizing potential access issues in a Swiss context.

3.3 | Pilot study and iterative game design

Before members of the public were allowed to play the game, a selected group were invited to test it and give 
feedback on their user experience. Key improvements and new game elements were introduced based on the 
feedback of test users. With respect to competition, improvements were implemented including introducing a 
rankings page to foster competition and motivate players to contribute more data as a means of increasing their 
ranking (Hoe et al., 2017) and introducing player progression elements such as experience points and a nonlinear 
level system to increase user satisfaction (King et al., 2010; Wang & Sun, 2011). To increase the spatial coverage 
of contributions we added a treasure hunt system to motivate users to contribute data in remote areas (Bell et al., 
2006; Colley et al., 2017; Foody, 2002). Further improvements included reducing the number of obtainable re‐
sources from six to two to reduce complexity (Iyengar & Lepper, 2000). Special in‐game events were introduced 

F I G U R E  2   Flowchart of main user decisions during game play
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at specific times with higher rewards received for capturing tiles or greater damage inflicted on opposing players 
so as to motivate users to continue playing (Cantallops & Sicilia, 2016).

3.4 | User recruitment

Motivating new users to join and play a game is paramount to its success. In particular, competitive elements of a 
game (in our case used to ensure that we could collect multiple observations of land cover for the same location) 
rely upon game play and a sufficient number of players. It is generally agreed that content creator–consumer or 
consumer–consumer interactions can create a sense of connectedness and can facilitate peer feedback, with a 
positive impact on user motivation (cf. Brabham, 2012).

We recruited our first users by word of mouth. These were mostly friends, family and students at various 
higher education institutions in Switzerland. In a second step, we used social media platforms for recruitment. 
StarBorn was mostly promoted in large online community groups revolving around similar LBGs on Google+. We 
also created a Google+ community to interact with interested users and give the users a platform to exchange 
ideas, report bugs and get information about upcoming in‐game events.

3.5 | Analyzing spatial patterns of user behaviors

Since previous work has identified typical patterns of behavior in both citizen science projects generally (Haklay, 
2013; Tulloch & Szabo, 2012) and LBGs specifically (e.g., Lund, Lochrie, & Coulton, 2010) we initially visualized 
patterns of individual users’ behaviors to explore whether behavioral patterns were visible. However, unlike Lund 
et al. (2010), we did not focus on temporal contribution patterns, but identified three spatial behavioral charac‐
teristic patterns:

•	 route‐based play, where it appeared that players were taking part in the game while traveling, with linear pat‐
terns, often following public transport routes;

•	 area‐based play, where players appeared to aim to capture a large number of tiles within a given spatial extent; 
and

•	 random play, where a small number of more or less randomly located tiles were captured.

To distinguish between these behaviors we used the DBScan algorithm to cluster data based on a specified search 
radius (ɛ) and the number of neighbors needed (minPts) (cf. Ester, Kriegel, Sander, & Xu, 1996). Route‐based play was 
identified by using a large radius and a small number of neighbors (effectively identifying long, thin clusters) and 
area‐based play behaviors by using a smaller radius with more neighbors (identifying compact clusters of coherent 
spatial extents). We identified parameter values of ɛ=500 m and minPts=10 as being most appropriate for area‐based 
play, and ɛ=900 m and minPts=3 for route‐based play, with all other user contributions being classified as random 
behavior (in practice, these were typically players who only classified a small number of tiles). We categorized all users 
according to their predominant user behavior. To compare behaviors we tested for correlations of the number of con‐
tributions of each land cover class using Spearman's rank correlation test and plotted the number of classifications of 
each land cover class for area and route behaviors.

3.6 | Agreement rates of users classifying the same location

Uncertainty is an influential characteristic of user‐generated data, but how can we better quantify the uncertainty 
in our data set? One obvious approach is to compare classifications of different users for the same game‐tile and 
thus measure between‐subject agreement. We analyzed the agreement rates of consecutive classifications of 
each game‐tile, and explored variation in agreement rates as a function of both how often a tile was classified, 
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and the classes to which a tile was allocated. By exploring consecutive agreement rates of the same tile, we can 
explore whether, for example, land cover classes or user behavior influence uncertainty.

We first explored relative agreement between consecutive classifications for the same tile submitted by mul‐
tiple users. We created a subset containing only tiles classified by at least two users. For each tile we ordered 
contributions according to the submission time‐stamp. We assessed agreement rate for a game‐tile by comparing 
every classification a user submitted with the consecutive classification. Land cover classes reported in both 
classifications counted as agreements and land cover classes only present in one of the two contributions as dis‐
agreements. The agreement rate for consecutive contributions is calculated as the number of agreements divided 
by the sum of all land cover classes submitted for a tile.

We hypothesized that a positive correlation exists between the number of classifications and the correspond‐
ing agreement rates of consecutive classifications; in other words, the more a location is classified, the more 
agreement we expect between users. This assumption is based on the applicability of Linus's law in user‐gener‐
ated spatial data, as suggested by Haklay et al. (2010). To explore this hypothesis we generated box‐and‐whisker 
plots of agreement rates compared to the number of classifications and calculated Spearman's rank correlation 
values between mentioned agreement rates and number of classifications.

3.7 | Comparing user‐generated land cover classifications with an authoritative land 
cover data set

We compared data collected with StarBorn with CORINE classifications to explore agreement between the two 
data sets. In doing so we implicitly assume that CORINE is of sufficient quality to tell us something about the 
quality of the data we collected, but at the same time we expect to identify patterns of disagreement which might 
help us better understand uncertainties or disagreements between CORINE and other real‐world applications.

In this analysis we analyzed all tiles irrespective of the number of users who had classified them. We first 
calculated the overall agreement rate using all game‐tiles with one or more reported land cover classifications. 
We defined agreement where any of the user reported land cover classes for a tile (e.g., forest, industry, water) cor‐
responded to the land cover reported in the authoritative data set (e.g., industry). We further calculated average 
agreement rates dependent on the behavioral group of the contributing users to shed light on potential accuracy 
differences between the different behaviors.

In a second step, we created a confusion matrix using only hard user‐generated land cover classifications 
(tiles where only a single land cover class was reported by users). We calculated measures of precision and recall 
following Fawcett (2006):

where TP denotes true positives, FP false positives, and FN false negatives.
Furthermore, we calculated the F‐score (the harmonic mean of precision and recall) (cf. Fawcett, 2006) as:

An F‐score of 1 consequently indicates complete agreement between the user‐generated land cover classifications 
and the authoritative land cover data set, while an F‐score of 0 indicates no agreement. We first calculated the F‐score 
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for each individual land cover class and then compared the F‐score with the number of user‐generated classifications 
of the respective land cover class.

Finally, we calculated the overall agreement rate, defined as the sum of the diagonal of the confusion matrix 
divided by the total number of contributions (cf. Brovelli, Molinari, Hussein, Chen, & Li, 2015). To identify poten‐
tial differences depending on hypothesized user behaviors, the overall agreement rate of hard classifications was 
additionally calculated again for area and route contribution behavior groups.

4  | RESULTS AND INTERPRETATION

In this section we present results with respect to the data collected during the approximately 3 months that 
StarBorn was live. In doing so, we first briefly summarize the number and variety of land cover tiles contributed by 
players, before exploring reported user demographics. We then present the nature of contributions as a function 
of different patterns of user behavior. Finally, we analyze agreement of consecutive classifications of same loca‐
tions and agreement rates between the user‐generated land cover classifications and an authoritative data set.

4.1 | User contributions

From the game going live (November 9, 2016) until promotion was stopped and data were analyzed (February 23, 
2017), players classified a total of 13,319 tiles distributed across 11,364 unique locations. Given the resolution 
of 200×200 m, this corresponds to a total classified tile area of 533 km2. The majority of tiles were classified as 
containing urban (n=8,010) or industry (n=7,724) land cover classes. This is unsurprising and reflects spontane‐
ous game play in locations where players are most likely to find themselves. The next most frequent classifica‐
tions were of pasture (n=2,716), forest (n=2,418), arable (n=2,221), shrub (n=1,631), water (n=1,166) and greenarea 
(n=1,065). In total 28,633 land cover classes were reported, giving an average of 2.15 land cover classes reported 
per captured tile.

Our game design aimed to encourage multiple users to classify the same tile (by, for example, attacking and (re)
capturing tiles). However, of the total of 11,364 game‐tiles captured, only around 10% (936 tiles) were captured 
multiple times. These results highlight users’ desire to conquer “empty” tiles, potentially due to the additional ef‐
fort needed to recapture areas belonging to the enemy team. Figure 3 shows for an area around the city of Zurich 
the pattern of contributions and their frequency where players were most active. Notable are the linear patterns 
of regularly captured tiles, often associated with transport corridors.

4.2 | User demographics

In the period during which the game was online, 138 users registered, of whom 84 captured at least one tile. The 
rate of registering users can be divided into three distinct periods: beta‐testing, live with promotion and live with‐
out promotion. Figure 4 highlights the total number of registered users over time and thus the rate of player reg‐
istration. During the open beta period the game was shared among a small, select audience to test server stability 
and ease of use and a correspondingly small uptake is visible. Between November 9, 2016 and December 8, 2016 
a considerable increase in users can be observed. In this period, the game was actively shared and promoted. In 
the promotion period, the game was also advertised in various lectures. After December 8, 2016, the game was no 
longer actively promoted and a rapid decline in the number of new players registering is observed. These curves 
point to the importance of promotion in building an active and large community of players.

We collected basic demographic information about age and gender. However, although players were required 
to register, these data should be treated with care. For example, user‐reported years of birth were mostly between 
1987 and 2003 (min = 1954; max = 2016; mean = 1989), reflecting a largely student population, but spiked in 2000 
(the default value). Gender distribution of active players was heavily biased towards males: 62 players reported 



     |  1019BAER et al.

being male, 16 female, and 6 chose not to report gender. We observed a slightly higher average number of con‐
tributions from reported female users, with highest average number of contributions coming from those who did 
not report gender (mean = 360.4; median = 350, n=6), followed by females (mean = 163.8; median = 55.5; n=16) 
and males (mean = 142.3; median = 29.5; n=62).

F I G U R E  3   Tile capture count around the city of Zurich

F I G U R E  4   Total number of registered users and captured game‐tiles over the extent of the game period. Two 
vertical lines indicate key transitional moments
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4.3 | User behaviors

We analyzed users not only with regard to their individual demographic characteristics but also according to their 
in‐game behavior. Users belonging to the random behavior class (n=25) captured a negligible number of tiles (51) 
and we do not report on their behavior in detail. Fifteen users were classified as belonging to the area behavior 
class and captured 3,987 tiles in total, while the largest subgroup belonged to the route class (n=44) and captured 
9,281 tiles in total. Players classified as exhibiting area behavior captured statistically significantly more tiles on 
average (mean = 265.8, median = 156) than those playing with route‐type behaviors (mean = 210.9, median = 67; 
Wilcoxon rank test W=216.5, p<.05). The large difference between the median and the mean indicates that the 
results are particularly influenced by outliers (e.g., single users contributing considerably more data than others). 
Although individual players belonging to the area class contributed more tiles, the larger number of players play‐
ing with route behavior contributed overall more tiles (cf. Figure 5). This observation gave rise to the question 
whether user behavior influences the types of land cover contributed.

We found a strong correlation between the number of contributions for each land cover class between the 
area and route behavior groups (Pearson test r = 0.97, p < 0.01). In Figure 6 we plot the resulting fit, with 95% 
confidence intervals to identity outliers with respect to this correlation. Three land cover classes lie outside these 
confidence intervals: urban and greenarea are associated more than expected with area behavior and pasture more 
than expected with route behavior. Since two of these classes are ranked first and third overall by frequency, the 
influence of behavior on their categorization is potentially of importance.

4.4 | Location‐specific agreement rates between users

Given the relatively short time‐span of data collection (approximately 3 months), no explicit temporal analysis 
was conducted. We did, however, implicitly include temporal aspects in our analyses by investigating consecutive 
classifications where classifications are ordered by time of contribution and by analyzing correlations with user 
contribution counts which are a proxy for the time respective users spent playing the game.

We analyzed user agreement rates for game‐tiles consecutively captured by different users and identified a 
total of 936 tiles with multiple classifications. Taking all reported land cover types into account, the overall con‐
secutive agreement rate was 42.2%.

When analyzing the number of tiles according to the number of classifications by different users, we observe a 
highly skewed distribution towards many tiles having few classifications, which is common for crowdsourced data 
(Stewart, Lubensky, & Huerta, 2010). This typical skewed distribution, along with visual inspection of Figure 3, 
shows that the distribution of game‐tiles with multiple classifications is highly heterogeneous and spatially clus‐
tered. This begs the question whether or not users agree more on the reported land cover classes in areas with 
many contributions. The box‐and‐whisker plots comparing classification counts with agreement rates (Figure 7) 
show increasing agreement rates in consecutive classifications with increasing number of classifications. The 

F I G U R E  5   Count of reported land cover classes by user behavior
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correlation between the number of classifications and agreement rates of consecutive classifications is statisti‐
cally significant both for the median (Spearman rank test ρ = 0.67, p < 0.01) and mean (Spearman rank test ρ = 0.73, 
p < 0.01) agreement rates. We argue this result indicates the validity of Linus's law in our data set of user‐gen‐
erated land cover classifications, as more classifications correlate with higher agreement rates among users. In 
addition, we interpret this result as an effect of the fact that game‐tiles with many classifications are likely to be 
easily accessible and therefore also more familiar (e.g., urban locations).

4.5 | Agreements between user classifications and CORINE classes

We are interested whether user‐generated land cover classifications show potential to be used in land cover 
product validation efforts. We therefore compared our user‐generated data set with an authoritative data set (the 
CORINE 2012 land cover product) to reveal key characteristics, uncertainties and differences between the two 
data sets. Users contributed a total of 13,319 classifications, of which 10,157 (76.3%) classifications showed an 
agreement between the authoritative land cover data set in one user‐reported class. We identified noteworthy 
differences between the agreement rates of behavioral groups of users with the authoritative land cover data set. 
We found agreement rates of 82.3% for area‐based user contributions (agreement in 3,282 out of 3,987 tiles) and 
73.7% for route‐based user contributions (agreement in 6,836 out of 9,281 tiles) between the authoritative data 
set and the user‐generated data set. This implies that area‐based contributors were either playing the game more 
seriously than route‐based users, or that area‐based players played the game in areas where the land cover class 
was easy to identify (e.g., urban, greenarea).

As we found a statistically significant correlation between the number of times an area was classified (by dif‐
ferent users) and the between‐user agreement rates, we were especially interested to see if the agreement rate 
with CORINE classes also correlated with the number of contributions. We found a statistically significant nega‐
tive correlation between the number of classifications of a user and their respective overall agreement rate with 

F I G U R E  6   Comparison between total number of contributed classifications per land cover class for area and 
route behaviors. Trend‐line and smoothing: method = l m, level = 0.95

F I G U R E  7   Box‐and‐whisker plots of between‐user agreement rates versus classification count
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the authoritative land cover data set (ρ = −0.34, p < 0.01). In other words, users with a lower number of contribu‐
tions have (somewhat) higher agreement rates with the authoritative data. We interpret this result as demonstrat‐
ing that, contrary to some arguments, in‐game performance does not increase with experience. Users with more 
contributions may be classifying tiles quickly to maximize in‐game performance, making their contributions poten‐
tially less accurate (since there is no penalty to game play associated with disagreeing land cover classifications).

4.6 | Confusion matrix between user classifications and CORINE classes

In this subsection we report the results for the confusion matrix between land cover classifications from users 
of StarBorn and the CORINE data set. The confusion matrix only includes classifications where a single class was 
reported, constituting 3,704 tiles (compared to 13,319 total classified tiles).

The confusion matrix in Figure 8 sheds light on major disagreements between individual land cover classes. 
The results show, for example, that 64.6% (n=106) of tiles classified as being pasture in the user‐generated data set 

F I G U R E  8   Absolute confusion matrix showing the number of confusions between individual land cover 
classes of the UGC and the authoritative data set. The diagonal shows agreements between StarBorn and 
CORINE (dark gray, at least 20% of user‐generated data; light gray, at least 10% of user‐generated data)
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were classified as arable in the authoritative land cover product. Other major confusions include noveg with shrub 
(56.7%, n=17), industry with urban (33.6%, n=287) and pasture with shrub (12.8%, n=21). The results arguably show 
that similar land cover concepts seem to have a major negative influence on overall agreement rates and imply that 
land cover pairs showing high confusion rates are also hard to differentiate semantically.

The confusion matrix shows an overall accuracy of 68.6%. The rather high overall agreement rate can be at‐
tributed to high agreement rates between user‐generated land cover classifications and the authoritative data set 
in land cover classes which were reported frequently. These were urban (F = 0.8289), industry (F = 0.5412), arable 
(F = 0.5224) and forest (F = 0.7503). Regarding different user behavior groups, we found an agreement rate of 
74.6% in the area behavior group and 64.5% in the route behavior group.

5  | DISCUSSION

In the introduction we set out three research questions which we wished to address, relating to: the design and 
implementation of LBGs; the characteristics of game players, including the influence of different behavioral char‐
acteristics on the data collected; and comparison with an authoritative data set. In the this section we briefly 
return to each of these questions, setting out the strengths and limitations of our approach, and comparing it with 
previous work.

Key to our implementation was going beyond the state of the art in many attempts at gamification in GIScience, 
and focusing on developing an LBG to motivate players to contribute land cover data. What sets our game apart 
form previous attempts is the incorporation of a fantasy‐based narrative as an underlying story (cf. Kenny & 
Gunter, 2007), along with a multitude of game elements. We argue that simply having a rankings page does not 
suffice for an application to be deemed an enjoyable game. We thus made a special effort to surpass many LBGs 
implemented in GIScience by including a myriad of game elements focusing on entertainment and competition 
such as an underlying narrative, team‐based play, a rankings page and an attack‐and‐reconquer feature. Many 
implementation decisions with respect to game play were made in response to feedback from active users. These 
included (during the beta‐testing phase) performance improvements of database queries to improve responsive‐
ness of the game, the implementation of new features to increase user motivation (e.g., level and experience 
points systems) and introducing new game elements (e.g., treasure hunt system). These improvements crucially 
not only increased game playability and enjoyment, but also, according to individual user feedback, fostered a 
sense of community and thus increased individual motivation and overall contributions (cf. Crall et al., 2017; Hoe 
et al., 2017). Beyond the implementation of the game itself, promotion focused on use of existing contacts and 
networks, and, unlike other similar work, we did not use, for example, media channels (cf. Bayas et al., 2016). 
However, we note that the number of contributions generated was comparable, providing an indication of the 
importance of well‐targeted campaigns, rather than blanket efforts in the media (cf. Crall et al., 2017).

The total number of user contributions over time showed a characteristic sigmoid curve, with the rate of new 
user contributions decreasing significantly towards the end of the collection period. This decline in interest is also 
observed in highly popular commercial LBGs including Pokémon GO (cf. Andone et al., 2017). Long‐term low re‐
tention rates suggest that after a short period of initial engagement, users are not sufficiently motivated and lose 
interest. Since user retention has been identified as key for successful crowdsourcing or citizen science campaigns 
(Crall et al., 2017), approaches to retaining users are important and resources should be allocated accordingly.

Analyses of Geo‐Wiki, the crowdsourced land cover validation project, for example, show a rapid increase in 
user contributions towards the end of the data collection phase (See et al., 2013), arguably due to users with the 
most points at the end of the data collection period having a chance to win Amazon vouchers or paper co‐author‐
ships (See et al., 2013). This suggests that incorporating some form of reward for high‐contributing users at fixed 
moments in time could increase competition and ultimately user retention. Another strategy suggested is active 
and continuous community engagement, including regular updates on social media platforms, communicating 
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project progress, acknowledging contributions, and incorporating user feedback (e.g., incorporating user re‐
quests), while taking care not to overburden users (Crall et al., 2017).

As is typical in many crowdsourcing efforts, we found both an age and gender bias in our data. Gender bias may 
demonstrate some gender‐specific affinity towards gaming in general (Willemse, Waller, & Süss, 2016). Whether 
the predominantly young players illustrate a similar affinity to video games or an effect of our promotion efforts is 
unclear, but it is important to note that these biases are likely to influence properties of the data collected. In terms 
of user‐specific influence on the data generated, we also investigated the contributing users’ behaviors. The group 
who appeared to play along routes captured some 70% of all tiles and likely consists primarily of those playing as 
a secondary activity while engaged in other activities such as traveling or commuting (cf. Bell et al., 2006; Zhang 
et al., 2015). Traveling using forms of heightened mobility (e.g., car, bus, train) can increase the users’ in‐game 
performance if not addressed through game mechanics, as a larger in‐game area can be covered compared to 
walking. This hypothesis corresponds to the assumptions of Bell et al., who analyzed user behavior in another 
LBG, stating: “Journeys may have been good times to play, as players naturally move through different locations” 
(Bell et al., 2006, p. 422). This appears to have been the case in StarBorn, as such players contributed more tiles 
in total. Players exhibiting area contribution patterns were most likely playing the game as their primary activity. 
These users appear to have moved around to maximize in‐game performance and contribute areas of coherent 
extent. Colley et al. (2017) and Bell et al. (2006) both reported users actively and substantially changing their route 
between given locations in order to play an LBG. Users belonging to the area behavioral group showed an overall 
higher average number of contributions and a lower spread in average contributions per land cover class per user. 
This can be interpreted as a more consistent data‐contributing behavior. We suggest that identifying such types 
of game play is important when considering ways to incentivize players. Those playing the game as a secondary 
activity while traveling are unlikely to take different routes or be motivated to visit locations off the beaten track. 
This points to the most important weaknesses of our approach: although we collected a large volume of data, it 
is spatially heterogeneous and concentrated in areas which our players were likely to visit during their daily lives. 
Finding ways to motivate players to visit other locations through the game narrative is important if we wish to 
collect notably more non‐urban tiles. Two diversification approaches (treasure hunt system, in‐game events) were 
implemented, but the effects on contribution behavior were not explicitly analyzed. A potential further approach 
might be to emphasize the importance of visiting new or unusual places by adding an element of discovery to game 
play, similar to that documented in GeoCaching (O’Hara, 2008). However, a number of tiles are difficult or impos‐
sible to reach for most individuals (e.g., on cliffs, in lakes, dense forests) (cf. Bayas et al., 2016). Even though areas 
with limited access can contain interesting and often neglected information, crowdsourced data‐generation ef‐
forts must not encourage dangerous or illegal behavior, further biasing results towards easily accessible locations.

Our results show large variations in the general agreement rates of consecutive classifications within individ‐
ual tile locations as well as in the different land cover classes. The results also highlight the heterogeneity of users 
in terms of agreement rates. Interestingly, we found a statistically significant negative correlation between the 
number of contributions of a user and the overall agreement rate of the respective user with the authoritative 
data set. These findings seem to contradict the findings of See et al. (2013) who state that non‐expert users tend 
to improve at a land cover classification task the longer they participate. Our findings could thus be an important 
characteristic specifically of data generated by an LBG. We believe that this highlights one of the biggest potential 
weaknesses of using an LBG to generate data: users with unusually large contributions may be interested only in 
increasing in‐game performance and thus neglect the quality of the underlying classification task. In other words, 
users with a large number of classifications were arguably more interested in entertainment and virtual rewards 
than in contributing high‐quality data. In addition, we argue that new users were potentially more careful in clas‐
sifying a given extent since they were not yet aware of the lack of in‐game repercussions from random classifi‐
cations. This links to questions of immersion and arguably shows a shift towards virtual world immersion on the 
continuum (physical world–virtual world) of immersion. Users making less contributions show higher agreement 
rates, suggesting a more balanced immersion in both the physical world (e.g., when capturing an area and thus 



     |  1025BAER et al.

contributing in‐situ data) and the virtual world. This suggests that even though the implemented LBG successfully 
immersed players in the physical world as well as the virtual world, it may not have been successful in maintaining 
a balance on the immersion continuum.

We were able to identify statistically significant positive correlations between classification counts of individ‐
ual tiles and between‐user agreement rates. This suggests the validity of Linus's law in the user‐generated data set 
and highlights the desirability of multiple classifications of the same geographic extents from different users when 
generating in‐situ land cover data to achieve optimal quality.

We identify potential uncertainties in the user‐generated as well as the authoritative data set using a confusion 
matrix. Our confusion matrices comparing StarBorn land cover classifications with CORINE showed that overall 
agreement was relatively high, but only for very common land cover classes. Mismatches between CORINE and 
StarBorn were common and often showed clear patterns, for example in the classification of tiles as pasture in 
StarBorn and arable in CORINE. This observation has been made before; for instance, Comber et al. (2016, p. 
16) state that “it is important to consider and test for potential variations in the way that landscape features are 
labelled and conceptualised by different groups of contributors when analysing crowdsourced data.” The data col‐
lected in StarBorn are thus not directly applicable as ground truth for CORINE, but rather illustrate how CORINE 
classes were interpreted on the ground by untrained observers. We argue that this has two important implications 
for those seeking to use crowdsourced data as an alternative to expensive, ground truth campaigns. First, if we 
wish to collect a gold standard, training and definitions with respect to the schema in use are necessary. However, 
such training does not fit well within the game‐playing environment. Second, LBGs allow us to collect data that 
contribute to our understanding of how humans describe and partition land cover. Arguably, by comparing to 
authoritative data, we identify potential areas of semantic disagreement, which may in turn have implications 
for ways in which these authoritative data are used. We therefore suggest that such data may not, at least in the 
first instance, be best used in validation, but rather to consider whether existing products and definitions reflect 
common understandings of land cover (Egenhofer & Mark, 1995).

6  | CONCLUSIONS AND FURTHER WORK

In this article we demonstrated how an LBG can effectively be used to collect land cover data. Through the use 
of carefully implemented game elements, players can be motivated to provide land cover classifications of prede‐
fined spatial extents. Understanding patterns of contribution and factors influencing these are a first step towards 
collecting and analyzing crowdsourced land cover data. Although the usual caveats of crowdsourcing apply to 
LBGs, we believe imaginatively implemented, well‐designed LBGs can complement and extend other existing 
efforts in crowdsourcing, and importantly can generate rich in‐situ data. We particularly highlight that a game im‐
plies more than a rankings page and that an underlying narrative can be a useful element to guide user experience 
and foster motivation. In future work we intend to explore not only how LBGs can be used in validation efforts for 
land cover data, but also how they can be used to source natural language descriptions of landscape which might 
play a role in better understanding how land cover is perceived by non‐experts.
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