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Abstract. Cephalopod populations exhibit high variability in life history characteristics, such as longevity and size-at-
age. The aim of this study was to understand how characteristics of a newly described ‘superbull’ male morph in
Doryteuthis gahi populations (Patagonian Shelf) arise andwhether there is a selective advantage. At the population level, it
is speculated that superbulls provide temporal and spatial connectivity, but individual benefit is less obvious. Age structure

and reproductive potential of males was investigated to determine whether superbulls could provide connectivity.
Environmental variables affecting size-at-age were explored to ascertain whether morphological differences were
primarily phenotypically driven. Superbulls from the autumn spawning cohort were significantly older than the residual

population, with added longevity potentially leading to spawning with the following cohort. A reduction in relative testis
weight was apparent in superbulls, but spermatophore production remained high. Generalised additive mixed models
indicated temperature, location and hatch year had significant effects on size-at-age. Weak correlations between warm

El Niño–Southern Oscillation phases and superbull abundance were found. The results suggest that superbulls provide
temporal connectivity and arise through phenotypic plasticity, likely providing connectivity as a side effect of body shape
and size rather than a genetically selected advantage.

Additional keywords: cephalopods, plasticity, population structure, reproduction, southwest Atlantic, statolith.

Received 2 August 2018, accepted 1 February 2019, published online 12 April 2019

Introduction

Many fish populations have a multigenerational structure that
provides a reserve of reproductive potential and genetic vari-
ability. With several year classes of reproductively viable adults

available, this risk-spreading strategy reduces the potential for
population collapse (O’Dor 1998). Conversely, most cephalo-
pods are characterised by an annual life cycle. With annual
recruitment depending solely on the success of a single genera-

tion, cephalopods are thought to compensate for a lack of tem-
poral risk spreading by producing genetically and phenotypically
diverse offspring that are able to survive in a heterogeneous

marine environment (Pierce and Guerra 1994; O’Dor 1998).

Although this is a group selectionist argument for phenotypic

plasticity, it is plausible if many populations exist and population
persistence depends on plasticity.

The Patagonian long-finned squid Doryteuthis gahi is abun-

dant around the Falkland Islands, where it is targeted by a
commercial trawl fishery (Arkhipkin et al. 2007). These squid
undergo spatial ontogenetic migrations from their shallow
inshore spawning and nursery grounds (depth ,5–50 m)

to offshore feeding grounds on the Falklands shelf (depth
,200–350 m; Arkhipkin et al. 2004). D. gahi is a small-sized
squid typically attaining 13–16-cm dorsal mantle length

(DML; Arkhipkin et al. 2007). Squid are targeted during two
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commercial fishing seasons, which correspond to the appear-
ance of the two spawning cohorts, namely the spring spawning

cohort (SSC) and the autumn spawning cohort (ASC), on their
shared feeding grounds (Patterson 1988; Hatfield et al. 1990;
Arkhipkin and Middleton 2003; Arkhipkin et al. 2007).

Most myopsid squid populations are characterised by the
presence of two size-dependent behavioural morphotypes of
mature males on spawning grounds (Hall and Hanlon 2002;

Hanlon et al. 2002; Wada et al. 2005; Shashar and Hanlon
2013): (1) large males, referred to as ‘bull’ males, have domi-
nant behaviour, forming mating pairs with females; and
(2) smaller subordinate individuals or ‘sneaker’ males that are

of similar size or smaller than females. The small size of
‘sneaker’ males facilitates a close approach to mating pairs,
where the ‘sneaker’ males then attempt to elicit extrapair

copulations (EPCs; Hanlon andMessenger 1998). Some authors
have pointed to evidence for the existence of more than two size
groups in males, for example Collins et al. (1999) for Loligo

forbesii, implying that plasticity in growth form extends beyond
the existence of two reproductive strategies in males. Anoma-
lously large males, much larger than the typical mature males,
have been found to occur in populations of several loliginid

squid (Mangold 1987; Pierce et al. 2013; Jones et al. 2019). A
recent study investigating the intrapopulation body shape varia-
tion ofD. gahi found that males exceeding 20–25 cmDMLhad a

significantly different body shape than the rest of the population
and were suggested to be a third ‘superbull’ morph (Jones et al.
2019). These superbullmales had a substantiallymore elongated

body, a heavier fin and a larger fin area than the rest of the
population.

Owing to the streamlined shape and large fins characteristic

of this morph, it is likely that these superbull males have
enhanced gliding abilities and are able to undertake longer
migrations than the rest of the population (Arkhipkin et al.

2015a). It was therefore hypothesised that these superbull males

extend their migratory routes, providing geographic connectiv-
ity by migrating between remote spawning areas (Jones et al.
2019). In other species, anomalously large individuals have

delayed maturation and an extended life cycle. For example, in
the eastern Pacific, temperature determines whether jumbo
squidDosidicus gigas have a 1-year life cycle (early maturation

and a small size) or a 1.5- to 2-year life cycle (delayed
maturation and a large size; Arkhipkin et al. 2015b). If this is
the case for D. gahi, these individuals may also potentially
maintain temporal connectivity by reproducing with the follow-

ing spawning cohort.
The intrinsic or extrinsic mechanisms driving the existence

of these superbull males are presently unknown and the hypoth-

esis that they provide geographical or temporal connectivity is
yet to be confirmed. Given that (spatial or temporal) connectiv-
ity is a population-level phenomenon, the existence of superbull

males might be explained by either a selective advantage at an
individual level (e.g. enhanced reproductive output relative to
smaller males, either through increased gamete holding capacity

or through increased success in conflicts with other males) or
selective pressure favouring phenotypic variability, the expres-
sion ofwhichmay be environmentally driven (O’Dor 1998). It is
plausible that populations with higher individual variability or

plasticity are more persistent. Several sources of evidence are

relevant to the existence of superbulls and the selective pres-
sures at work:

� evidence of enhanced swimming ability or longer life would
indicate the potential for providing spatial or temporal

connectivity
� evidence of superbulls mating with squid in distant locations

or with squid from the next generation would confirm that

connectivity is achieved
� evidence of enhanced reproductive output would confirm the

possibility of a direct selective advantage for superbulls, if

this characteristic is selected
� evidence of consistent genetic differences at one or more

locus, between superbulls and other males, would suggest the
superbull characteristics are heritable

� evidence that the occurrence of superbulls is environmentally
driven would provide circumstantial evidence against
heritability.

Considering that the superbulls exhibit a high degree of
interannual variation in abundance, it is likely that their occur-

rence is driven by extrinsic phenotypic variation rather than any
genetic influence. Small changes in environmental conditions
(most often temperature) and food availability are known to have

significant effects on life history characteristics such as longevity
and size-at-age in squid (Pecl et al. 2004). Variability of growth
inD. gahi has been largely attributed to variation in temperature

during early life stages, with squid hatched in summer (at higher
temperatures) being significantly larger than squid of the same
age hatched during the winter months (Hatfield 2000). Clearly
environmental influences have amarked effect on the population

characteristics of this species. Indeed, large-scale events such as
the propagation of the El Niño–Southern Oscillation (ENSO)
from the Pacific Ocean have been correlated with population

abundance in D. gahi (Waluda et al. 2004). The ENSO is
recognised as an important diver of sea surface temperature
(SST) variability in south-west Atlantic and Antarctic waters

(Trathan and Murphy 2003; Meredith et al. 2008; Baylis et al.
2012). However, the effects of large-scale events on the size-at-
age relationship have not yet been investigated.

The aim of this study was to quantify the reproductive output
and compare squid age between spawning cohorts and between
superbulls and smaller males to investigate the potential that
superbulls provide temporal or geographic connectivity. In

addition, the effect of extrinsic variables, predominantly tem-
perature and food availability, on the size-at-age relationship
was investigated to determine whether the appearance of

superbull males is phenotypically driven, the hypothesis being
that these males have experienced similar environmental con-
ditions that have resulted in their large size.We examined this in

two ways: (1) comparing size-at-age relationships across years
to see whether differences are environmentally driven; and
(2) relating the annual abundance of superbulls to large-scale

temperature anomalies.

Materials and methods

Biological sampling

An existing dataset representative of the squid populationwithin

the Falkland Islands interim conservation andmanagement zone
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(FICZ) and international waters north of the zone was extended
during this analysis to incorporate additional superbull males
(defined as those exceeding 25 cm DML; Fig. 1), which are a
rare component of the fishery catch. Data were sourced from

three different datasets from the Falkland Islands Fisheries
Department, as detailed below:

� Data source 1: random samples of aged male specimens
(n ¼ 7505) collected and frozen by scientific observers on
board commercial fishing vessels during the two commercial

fishing seasons (Season 1: March–May; Season 2: July–
October) and from two research cruises (the RV Dorada and
RV Castelo) between fishing seasons (between 1998 and

2007); measurements and statoliths were taken from fort-
nightly samples of ‘mixed’ squid (unsorted by size; Table 1)

� Data source 2: non-random aged samples including rare

superbull males exceeding 25 cm DML (n ¼ 162), collected
and frozen during 2014 and 2015, to ensure squid of a large
size were represented within the sample (Table 1)

� Data source 3: random length–frequency data (n ¼ 921 742)

from males collected daily by scientific observers during the

two commercial fishing seasons within the designated fishing

zone (the ‘Loligo box’; Fig. 1) between 1998 and 2017 for
construction of length–frequency graphs and distributional
maps to aid in data interpretation.

Frozen samples from Data sources 1 and 2 were thawed
overnight and processed in the Falkland Islands Fisheries

Department laboratory. Squid were measured (DML;�1 mm),
weighed (total bodyweight (BW);�1 g) and visually assessed
for sex and maturity stage according to a modified version of

Lipinski (1979), using a maturity scale ranging from 1 (imma-
ture) to 6 (spent). Statoliths were dissected from the cephalic
cartilage and stored in 96% ethanol. A subsample of aged males

(n¼ 386) collected between 1999 and 2007 had additional data
collected including mantle weight (MW), digestive gland
weight (DGW) and reproductive organ weights (i.e. testis
weight (TW), Needham’s complex weight (NCW) and the

reproductive systemweight, RW¼ TWþNCW). To determine
how the proportion of somatic weight allocated to different
organs changes relative to size, four indices were computed,

defined as:

i ¼ a

BW � a
� 100

where I is the gonadosomatic index (GSI), testis index (TWI),

Needham’s complex index (NCI) or digestive gland index (DGI)
and a is the corresponding organ weight (RW, TW, NCW or
DGW). Samples from Data source 3 were processed at sea and

were measured for DML (�5 mm) and visually assessed for
maturity stage.

Age estimation

One statolith per specimenwasmounted concave side up for age
analysis, then ground and polished on both sides using wet
waterproof grinding paper to expose the nucleus. The thin
transverse section produced was embedded in mounting

medium (Canada balsam, Merck KGaA, Darmstadt, Germany)
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Fig. 1. Sample locations within the Falkland Interim Management and

Conservation Zone (FICZ) and international waters. Samples were divided

into four areas (samples in close proximity to the ‘Loligo box’, the

commercial fishing region, are included in the area ‘Loligo’) for the area

variable in the generalised additivemixedmodels. The box delineated by the

dashed line in the inset indicates the study location relative to mainland

South America.

Table 1. Summary of samples collected by cohort from Data sources

1 and 2

There were two spawning cohorts: autumn (ASC) and spring (SSC). Data

show the mean (�s.e.m.) dorsal mantle length (DML) and the number of

samples collected (n) by year of collection

Year of

collection

ASC SSC

n DML (cm) n DML (cm)

1998 61 9.6� 0.4 4 14.0� 1.0

1999 893 13.9� 0.2 416 14.9� 0.2

2000 968 12.3� 0.1 901 12.4� 0.1

2001 388 13.3� 0.3 635 14.8� 0.2

2002 172 9.7� 0.2 480 13.3� 0.2

2003 239 16.5� 0.4 501 16.8� 0.2

2004 182 15.7� 0.5 338 16.4� 0.2

2005 415 16.1� 0.4 226 15.9� 0.3

2007 460 14.3� 0.3 226 14.3� 0.4

2014 41 25.0� 1.7 60 30.3� 1.1

2015 44 17.4� 0.8 17 18.8� 1.6
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and covered with a cover glass for observation. Statoliths were
read under the transmitted light of an Olympus BX51 compound

microscope (Olympus Corporation, Tokyo, Japan) at 400�
magnification, with a phase-contrast Nomarski effect used to
improve readability (Arkhipkin and Shcherbich 2012).

Statoliths were first read in the lateral dome from the natal
ring to the first prominent check. This check was followed into
the rostrum and read in the rostrum to the tip. Because the

‘one ring ¼ one day’ hypothesis has been validated in several
loliginid species, including Sepioteuthis lessoniana (Jackson
et al. 1993), Lolliguncula brevis (Jackson et al. 1997), Loligo
reynaudii (Lipinski et al. 1998), Loligo vulgaris (Villanueva

2000) and Loligo plei (Jackson and Forsythe 2002), total
increment number was assumed to represent postembryonic
age in days (from here onwards referred to as age). To minimise

counting errors, the total number of growth increments for each
specimen was taken as the mean of at least two counts. If the
difference between these counts exceeded 10%, a third count

was made. If the difference between the second and third
readings still exceeded 10%, the statolith was rejected from
further age analysis. For Data source 1, statolith ages were
intermittently verified by a second reader. For Data source 2, 6%

of age counts were verified by a second reader.

Environmental variables

SST data were extracted from the Integrated Global Ocean
Services System database (IGOSS nmc Reyn_SmithOIv2
monthly; http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.

nmc/.Reyn_SmithOIv2/.monthly/, accessed 20 February 2018)
to determine how average monthly SST affected the size-at-age
relationship (Reynolds et al. 2002). SST data were collected

between 53.5 and 45.58S and 63.5 and 56.58W to obtain average
monthly SST values for the whole sampling area.Meanmonthly
chlorophyll-a concentration (mg m�3) was extracted for the
same area from the European Union Copernicus marine service

information system and was used as a proxy for productivity at
month of hatching and the month following month of hatching
(to account for a lag between primary production and

zooplankton production). Data were derived from global
ocean colour satellite observations (L4_NRT_OBSERVA-
TIONS_009_033 and L4_REP_OBSERVATIONS_009_082)

at a resolution of 4� 4 km using SeaWiFS, MODIS-Aqua,
MERIS, VIIRSN and OLCI-S3A sensors (http://marine.
copernicus.eu, accessed 20 February 2018).

To assess whether the number of superbull males appearing in

the fishery was affected by broad-scale climate variability in
temperature, the southern oscillation index (SOI) was used. The
SOI is the standardised difference in surface pressure anomalies

between Tahiti in the Central Pacific (178330S, 1498370W) and
Darwin in Australia (128280S, 1308510E), with negative SOI
values indicating a warm phase of the ENSO. Yearly SOI

values were accessed on the Australian government Bureau of
Meteorology website (http://www.bom.gov.au/climate/current/
soihtm1.shtml, accessed 15 February 2018).

Statistical analysis

Reproductive indices were plotted against squid size (DML) and
fitted with local regression smoothers (locally estimated scat-

terplot smoothing (LOESS)) to visually assess reproductive

output, with DGI also plotted with LOESS to investigate
whether energy for gonad development was derived from stored

sources (most often sourced from the lipid-rich digestive gland)
or diet. Hatch date was determined by back-calculation of the
total number of increments from the date of capture. Based on

hatch date, each male was assigned to a spawning cohort. Squid
hatched between April and November were considered to
belong to the ASC and those hatching between December and

March were assigned to the SSC (Arkhipkin et al. 2013). Data
exploration was undertaken for aged samples following proce-
dures described by Zuur et al. (2010). Extreme outliers identi-
fied in bivariate scatterplots and Cleveland dotplots were

removed. Nine recorded values were considered implausible
(0.001% of the dataset) and were discarded before analysis. To
explore the potential that superbulls provide temporal connec-

tivity between cohorts, age was modelled by means of a gen-
eralised linear model (GLM)with a Gaussian distribution and an
identity link:

Ai ¼ b0 þ b1ðcohort1iÞ þ b2ðtype2iÞ þ b3ðcohort1i; type2iÞ þ ei

where ei , N(0,s2), Ai is the post-hatching age, in days, of

individual squid i, cohort is fitted as a categorical variable with
two levels (ASC and SSC) and type is fitted as a categorical
variable with two levels (superbull ($25 cm DML) and normal

(,25 cm DML)). The significance of an interaction term
between cohort and type was evaluated by comparing GLM
models with and without an interaction, using a Chi-squared

test. Onlymaturemale squid (Maturity stages 5 and 6) were used
in this analysis (n ¼ 3883). Effects from the GLM model were
exhibited using the package ‘effects’ (Fox 2003) in the R
environment (ver. 3.3.0, R Foundation for Statistical Comput-

ing, Vienna, Austria, see https://www.R-project.org/, accessed
25 July 2018).

Generalised additive models (GAMs) and generalised addi-

tive mixed models (GAMMs) with Gaussian distributions and
identity links were used to describe variation in squid size
(DML) in relation to environmental variables, using data from

all aged males that had complete sets of environmental data
(n¼ 7308). Severalmodelswere fitted, withAkaike information
criterion (AIC; Akaike 1973) and Akaike weights used in

conjunction with a forwards model selection procedure (based
on biological knowledge of the species and the objectives of the
study) to identify the optimal model (Wagenmakers and Farrell
2004). Examination of the residuals of the simplest model, using

DML as the response variable and age as the smoothed explan-
atory variable, suggested a transformation was necessary to
avoid violating the assumptions of normality and to reduce

heterogeneity. A Box–Cox transformation (Box and Cox 1964)
was applied to DML in all models, which improved residual fit,
defined as:

yli

yli � 1

li
; l 6¼ 0

ln y; l ¼ 0

8
<

:

where yi is the DML of an individual squid i and l is an
exponent between�5 and 5 that transforms the data to the best
approximation of a normal distribution curve. To incorporate
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dependency among observations found in the same level of
maturity, the addition of a random intercept for each maturity

stage (categorical; six levels) was investigated (i.e. aj, if squid
i is from maturity level j, where aj are assumed to be indepen-
dent and identically distributed (i.i.d.) random effects) (Wood

2008). Putative explanatory variables were as follows:
hatch_yr (year of hatch, categorical, 13 levels), col_year (year
of sample collection, categorical, 11 levels) age (days, contin-

uous), lon,lat (of collection, continuous), area (of collection,
spatial categorical data with four levels, see Fig. 1), SST (SST
duringmonth of hatching (8C), continuous), CHL (chlorophyll-
a during month of hatching (mg g�1), continuous) and CHLþ1

(chlorophyll-a during month after hatching (mg g�1), continu-
ous). Either hatch_yr or col_year was incorporated into the
model to account for interannual variation in size. Multipanel

scatter plots and variance inflation factors (VIF) indicated
strong collinearity between SST and CHL (Zuur et al. 2010).
Therefore, the covariates SST and CHL were included in

separate models. Smoothers for fixed variables were fitted
using thin plate regression splines (Wood 2003). To avoid
oversmoothing and to make the relationship between the
response and explanatory variable clearer and more interpret-

able, the number of degrees of freedom for the environmental
variables SST, CHL and CHLþ1 was restricted to 6. Model
assumptions were verified by plotting residuals against fitted

values and against all potential covariates (Zuur and Ieno
2016). The additions of certain fixed effects were verified by
applyingF-tests. All statistical modelling was performed in the

package ‘mgcv’ (Wood 2011) in R (R Foundation for Statisti-
cal Computing).

Cross-correlation analysis was used to determine the corre-

lation between SOI anomalies and absolute abundance of
superbull males. Absolute abundance was calculated by multi-
plying the number of superbulls found in Data source 3 in each
year by a catch factor. The catch factor divided the total annual

catch (obtained from fishery statistics reports; Falkland Islands
Government 2017) by the minimum total catch found for the
period 1998–2015 to improve the accuracy of interannual

comparisons.

Results

Reproductive v. somatic growth

BW, MW and DGW showed a consistent increase with
increasing DML (Fig. 2a–c). DGW showed more variability

than the other two weight variables. However, RW, which is the
sum of TW and NCW, reached an asymptote at 25–30 cm DML
and showed a high degree of variation (Fig. 2d). When the

constituents of RW were considered separately, TW started to
decline after 25–30 cm DML (Fig. 2e), whereas NCW consis-
tently increased with body size (Fig. 2f ).

Reproductive and digestive gland indices were calculated for
each individual (Fig. 3). Above 25 cm DML, the GSI dropped
markedly along with the TWI. There was a negative linear

relationship between DGI and squid size. The NCI increased
from,15 cm DML, reaching an asymptote at 23–25 cm DML.
This suggests that although the RW is increasing (Fig. 2d), less
energy is being directed into reproductive growth for individuals

exceeding 25 cm DML.

Age structure

The modal size of mature males was 14 cm DML, with a mean
size of 17.4 cm DML and a maximum size of 44.5 cm DML.

Of the 3883 mature-aged specimens, 427 individuals were
superbullmales exceeding 25 cmDML.Of these, therewere 234
superbull males assigned to the ASC and 193 assigned to the

SSC, showing a similar distribution of month of hatching
(Fig. 4a) to the rest of the male population (Fig. 4b). Peak
hatching for both superbulls and the main population was found

during December–January, with a second smaller hatching peak
during July–September in the main population and August–
October in the superbulls (despite peaks in hatch date, superbulls
were still a small proportion of the entire population during these

months). Hatching occurred almost all year round. Superbulls of
the SSC were only collected in 4 months, peaking from Sep-
tember–October and those of the ASC were found in 8 months,

with two main peaks in May and August. Maximum post-
hatching age in maleD. gahiwas estimated at 368 days (a 41 cm
DML superbull individual), the only individual exceeding 360

days. The GLM applied to the mature aged males indicated that
the SSC was significantly younger than the ASC (t ¼ �7.65,
P, 0.001) and that the superbull males were significantly older

than normal-sized males in both cohorts (t ¼ 22.87, P, 0.001;
Fig. 5). A likelihood ratio test indicated that the inclusion of an
interaction term significantly improved model fit (x2 ¼ 10 541,
P, 0.001). Superbull males found within the ASC were the

oldest with a predicted mean age of 286 days. Superbull males
had a larger variation in age than the normalmale morph (Fig. 5).

Environmental effects

The candidatemodels that explored the effects of environmental
variables on the size-at-age relationship are given in Table 2.
The inclusion of year of hatch (Model 2) rather than year of
collection (Model 1) lowered the AIC and significantly

improved model fit (d.f. ¼ 2.43, F ¼ 126.2, P, 0.001). To
remove the effect of maturity stage, a random intercept was
applied for each level of maturity, which also had a significant

positive effect on model fit (d.f. ¼ 3.82, F ¼ 65.1, P, 0.001
using the restricted maximum likelihood (REML) estimation;
see Fig. S1 of the Supplementary material). Although the

inclusion of all three environmental variables (SST inmonth-of-
hatch, chlorophyll-a in month of hatch and chlorophyll-a in
month after hatch) lowered theAIC, SST improvedmodel fit the
most, followed by chlorophyll-a in month of hatch (see Fig. S2

of the Supplementary material). We assessed the residuals of
Model 4 for spatial dependency and could not find any obvious
patterns in the residuals (see Fig. S3 of the Supplementary

material). However, we included spatial components at different
spatial scales, with AIC favouring the simpler spatial model,
separating the population into four broad regions (‘Loligo box’,

n¼ 5521; west, n¼ 844; north, n¼ 578; international, n¼ 365;
Fig. 1). Partial effects of the smooth from the more complex
Model 7, using longitude and latitude, suggested the largest

individuals were located in the north-west coastal waters of west
Falklands and, more generally, all inshore coastal regions
around the Falkland Islands (Fig. 6). Large individuals were also
located in western international waters in the partial effects, but

this could be an artefact resulting from the small sample size in
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this region. Based on raw distributional plots of superbull males

collected during the first and second fishing seasons, first-
season superbulls were often caught to the west of the Falkland
Islands (as suggested by the partial effects of Model 7), contrary

to normal-sized males of the first and second seasons, which
were caught within the ‘Loligo box’ region. Second-season
superbulls occurred more often to the north of the ‘Loligo box’
(for distributional plots, see Fig. S4–S7 of the Supplementary

material).
The most parsimonious model in Table 2 was Model 9, in

which the age effect had a smooth term that differed by area

(Fig. 7). Comparison of models with and without separate
smooths for the effect of age indicated that the inclusion of
separate smooths significantly improved the model (d.f.¼ 7.87,

F ¼ 13.5, P, 0.001). The shape of all the smoothers for the
effect of age demonstrated that squid of a larger size were older.
There appears to be a discontinuity in the age–length relation-

ship in the ‘Loligo box’ area at,200 and 300 days (Fig. 7b). To
the north of the zone, the shape of the smoother for the effect of
age was almost linear (Fig. 7c). As expected, error increased at

model extremes. Partial effects of area suggest that the ‘Loligo

box’ area has the largest individuals, whereas areas in the rest of
the conservation zone (north and west) have the smallest
individuals (Fig. 8a). The optimal fitted GAMM demonstrated

that SST (F ¼ 145.18, P, 0.001) had a significant negative
linear relationship with squid size, with error increasing with
SST (Fig. 8b). Within this model, the effect of SST became a
negative linear effect. Model validation indicated that no strong

residual patterns were evident (see Fig. S8 of the Supplementary
material).

Between-year differences

Annual SOI (Fig. 9a) was compared to the absolute abundance
of large males exceeding 25 cm DML to determine how broad-

scale environmental variation affects their presence in the
fishery, given that there is a high degree of interannual vari-
ability in population size distribution (Fig. 9b). It seems that the

appearance of superbull males coincides with negative SOI
anomalies (i.e. warm ENSO phases), contrary to the results of
the GAMM analysis, which found that squid achieve a larger
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size-at-age at higher temperatures during month of hatching.

However, cross-correlation analysis indicates that the correla-
tion between SOI and superbull absolute abundance is weak

(�0.37 with a lag of 1 year) and non-significant at the 5% level
(critical level ¼ �0.47).

Discussion

To fully understand the ecology of a species, many factors must

be taken into consideration. Population connectivity is usually
determined bymethods that can track an individual’s life history
throughout ontogeny, such as tagging (Gilly et al. 2006).

However, these techniques are difficult to implement on
loliginid squid, which are often too fragile for an external tag,
have a short post-capture survival time and are lacking a suitable

attachment site that does not inhibit their behaviour (Arkhipkin
2005). In this case, in order to obtain a complete picture of
ontogenetic movements, a toolbox approach is required, where
a range of independent techniques provides information at

different temporal scales that can be used to understand
connectivity (Sturrock et al. 2012). This can be achieved using
methods such as elemental analysis of statoliths (Jones et al.

2018) or genetic methods (Shaw et al. 2004), but can also be
achieved by analysing more basic information, such as size-
at-age data. This study has made several steps in advancing our

understanding of why superbull males exist within the D. gahi
population using a toolbox approach.

The streamlined shape and large fins characteristic of the

superbull morph are hypothesised to result in an extension of
their migratory routes, providing a population-level benefit by
connecting geographically separate subpopulations within
Falkland Islands waters (Arkhipkin et al. 2015a; Jones et al.

2019). In addition to this connectivity between remote spawning
areas, it is also possible that these squid provide temporal
connectivity between spawning cohorts. At present, the

mechanisms connecting the two cohorts are unresolved
(Arkhipkin et al. 2013). Genetic studies using allozymemarkers
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found no evidence of genetic differentiation among temporally
distinct samples, suggesting that squid from both cohorts belong
to a single interbreeding population (Carvalho and Pitcher 1989;

Shaw et al. 2004). Several mechanisms have been proposed to
allow for interbreeding between different seasonal cohorts,
including early maturation and mating of males with mature

females from the previous cohort, a wide variation in spawning
time resulting in overlap or an extended life cycle of more than 1

year for some individuals (Mesnil 1977; Boyle et al. 1995;
Arkhipkin et al. 2013). Therefore, superbulls were hypothesised
to have a life cycle exceeding 1 year (including the period of
embryogenesis), providing the population level benefit of

temporal connectivity (Jones et al. 2019). In order for a popula-
tion-level benefit to occur, these squid would have to be
reproductively viable. On an individual level, an enhanced

reproductive output compared with normal-sized individuals
may be a selective advantage. Alternatively, the existence of
superbulls may be a by-product of phenotypic plasticity, with no

specific individual selective advantage. The selective advantage
of plasticity would, of course, also occur at the population level,
but selection is also arguably plausible if populations with
(heritable) higher plasticity are more persistent over evolution-

ary time. This latter scenario is consistent with the fact that the
occurrence of superbulls is rare (Jones et al. 2019).

In the present study there was no evidence of enhanced

reproductive output in superbulls, but the data do suggest that
superbull males are reproductively able to maintain connectivity,
whether it is geographical or temporal. Results indicate some

trade-off between somatic and reproductive growth in those
exceeding 25 cm DML, with a reduction in TW relative to BW
(TWI) and with the NCW increasing synonymously with BW.

Although there is a trade-off, this should not inhibit the ability of
these superbull males to reproduce with females on spawning
grounds because NCW (responsible for spermatophore produc-
tion and accumulation) is maintained. Most likely, the relative

reduction in TW is due to increased weight of muscles in the
mantle and fins to maintain a streamlined shape. Energy for
production of reproductive organs appears to be derived fromdiet

rather than a stored energy source, given the gradual decline of the
DGI with size. An obvious drop would suggest that lipid deposits
within the digestive gland are being used as an energy source at

the onset of reproductive maturation (Guerra and Castro 1994;
Moltschaniwskyj and Semmens 2000).

As shown in previous growth papers (Arkhipkin and

Roa-Ureta 2005) and from the significant relationship between

Table 2. Models applied to Doryteuthis gahi size-at-age data for all males with complete sets of environmental data (n5 7308), numbered for easy

reference and with expressions included

The notation f1(agei):areai means that one smoother is used for each geographical area and the area is fitted as a mean term. DMLi
l, Box–Cox-transformed

dorsal mantle length (DML) of squid i; DMLij, squid i within maturity stage j (random effect); aj, random intercept for each maturity stage j and ei,N(0,s2);

col_yr, sample collection year; hatch_yr, hatch year; SST, sea surface temperature during month of hatching; lon,lat, longitude/latitude; CHL, chlorophyll-a

during month of hatching; CHLþ1, chlorophyll-a during month after hatching (CHLþ1);%DE, percentage deviance explained; AIC, Akaike’s information

criterion; AIC wt, Akaike weights

Model Expression d.f. %DE AIC DAIC AIC wt.

1 g{DMLi
l}¼ f1(agei)þ col_yriþ ei 16.3 68.2 �9601.5 11 588.9 ,0.001

2 g{DMLi
l}¼ f1(agei)þ hatch_yriþ ei 18.7 68.2 �9898.2 11 292.3 ,0.001

3 g{DMLij
l}¼ f1(agei)þ hatch_yriþ ajþ eij 23.4 76.4 �20 062.6 1127.8 ,0.001

4 g{DMLij
l}¼ f1(agei)þ f2(SSTi)þ hatch_yriþ ajþ eij 26 77.0 �20 301.6 888.9 ,0.001

5 g{DMLij
l}¼ f1(agei)þ f2(CHLi)þ hatch_yriþ ajþ eij 28.1 76.9 �20 144.5 1046 ,0.001

6 g{DMLij
l}¼ f1(agei)þ f2(CHLþ1i)þ hatch_yriþ ajþ eij 28 76.6 �20 122.5 1068 ,0.001

7 g{DMLij
l}¼ f1(agei)þ f2(SSTi)þ f3(loni,lati)þ hatch_yriþ ajþ eij 50.6 78.4 �20 944.1 246.4 ,0.001

8 g{DMLij
l}¼ f1(agei)þ f2(SSTi)þ areaiþ hatch_yriþ ajþ eij 29 77.3 �21 098.3 92.2 ,0.001

9 g{DMLij
l}¼ f1(agei):areaiþSSTiþ hatch_yriþ ajþ eij 35.3 77.6 �21 190.5 0 0.999
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age and DML in the GAMM results in this study, there is a

positive relationship between age and DML. Therefore, if a
proportion of the population had an extended lifespan, it would
be expected to be the largest animals, including superbull

males, which are at the extreme positive end of the size
distribution. In the present study, even after the inclusion of
non-random samples of the largest individuals, maximum post-

hatching age was estimated at 368 days, comparable to previ-
ous ageing studies (Hatfield 1991; Arkhipkin 1993). Results
from the GLM suggest that the oldest individuals within the
population are superbull males from the ASC, with a mean

post-hatching age of 286 days. There is a large contrast in mean
age between superbull males from the SSC and ASC and a
larger variation in age for superbulls compared with the rest of

the mature male population. Before hatching, embryo devel-
opment is estimated at 51–65 days in austral summer (SSC) and
125 days in the winter (ASC; Arkhipkin and Middleton 2003).

Inclusion of the long embryo development period suggests that
superbulls from this particular cohort may have a life cycle
exceeding 1 year. Mesnil (1977) proposed that squid hatched

from eggs laid early in the breeding season are capable of
reproduction and completion of their life cycle within 1 year.
Those arising from the latter part of one season may not be
reproductively competent in the next year, but live to breed at

the start of the following breeding season (i.e. delayed matura-

tion and an extended life cycle), and thus contribute towards
connectivity between spawning groups. This hypothesis is
consistent with the higher mean post-hatching ages of the

superbull males from the ASC, which are likely providing
temporal connectivity between spawning cohorts. Peak spawn-
ing for the ASC occurs fromMay to June, whereas for the SSC

peak spawning occurs from October to November (Arkhipkin
et al. 2007). The ASC extending their life cycle to breed with
individuals from the SSC is far more likely because the
difference in spawning time is smaller than if the SSC extended

their life cycle to breed with individuals from the ASC (a 2-
to 4-month gap rather than a 4- to 6-month gap). Sample
collection dates of superbulls from each cohort further confirm

this hypothesis. Peak collection for the SSC superbull samples
was September–October. The SSC remain on their offshore
feeding grounds until the end of October, when they rapidly

migrate inshore to spawn. The ASC move inshore to spawn
during March–May, with peak spawning during May–June
(Arkhipkin et al. 2013). Collection of superbulls from the

ASC peaked during both May and August, with superbull
males from this cohort present in samples for several months
of the year. The peak in collection during May coincides with
the migration of the ASC to their spawning grounds, whereas
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the peak during August, well beyond the migration and
spawning period for this cohort, provides further evidence that

some individuals may have an extended life cycle. The wide
variation in ages, wide distribution in hatching dates (also
found in Shaw et al. 2004) and the availability of superbulls in
samples during different times of the year suggest that there are

several pathways to achieving this superbull morph, either
through slow continuous growth and an extended life cycle or
fast growth and a normal life-span, which provides evidence

against heritability and instead favours the hypothesis that this
morph arises through phenotypic variation.

Variability in size at maturity and adult size in cephalopods

has largely been attributed to two main factors: temperature
and food availability (Pecl et al. 2004). The response to
extrinsic factors can be sex specific; a 5-year study on Sepio-

teuthis australis found that interannual differences in squid

size, condition, reproductive investment and possibly growth
rate were sex specific (Pecl et al. 2004). This is evident in the
D. gahi population, which shows the most pronounced size and

shape variability in themale population (Jones et al. 2019). The
partial effects of temperature in Model 9 suggested that there
was a significant linear negative relationship between SST

during month of hatching and DML. This is in contrast with the
findings of Hatfield (2000), who found that D. gahi hatched in
months with high mean monthly SST were significantly larger

than those hatched in winter months. A larger size-at-age for
individuals hatched in warmer conditions is evident in field

studies of other loliginid species (Moreno et al. 2007) and is
consistent with the Forsythe hypothesis, which suggests that

increased temperature during a squid’s early growth phasemay
result in accelerated growth and potentially a larger maximum
size (Forsythe 2004). However, a negative relationship was
found in the jumbo squid D. gigas (Arkhipkin et al. 2015b).

Low temperatures during early ontogeny are associated with
slow growth, delayed maturation and an extended life cycle,
resulting in a large size. This pattern was also found when

comparing broad spatial regions (equatorial, tropical and
subtropical) for the loliginid squid S. lessoniana (Jackson
and Moltschaniwskyj 2002). For D. gigas in Peruvian waters,

low temperatures resulted in a large size and a life cycle that
extended from 1 to 2 years (Arkhipkin et al. 2015b). In the
present study, large-scale temperature variability found weak
non-significant correlations between warm ENSO phases and

the abundance of superbulls when lagged by 1 year. Although
lower temperatures during month of hatching resulted in larger
individuals, higher temperatures during other periods of ontog-

eny (i.e. juvenile and adult stages) could result in accelerated
growth and perhaps a larger size.
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The inclusion of CHL as a smoother improved model fit
during the GAMM analysis, yet the effect of CHL was not as

significant as the inclusion of SST, especially with a 1-month lag.
The ‘Loligo box’, the fishing zone for the D. gahi trawl fishery,
is occupied primarily by waters associated with the northward-

flowing Falkland Current, consisting of sub-Antarctic superficial
water in the upper layer and Antarctic intermediate water in the
lower layer (Arkhipkin et al. 2004). Mixing of these waters with

inshore waters results in high productivity in the summer and
winter (Agnew2002). The persistentmacrozooplankton densities
mean thatD. gahi, which predominantly feeds onEuphausia spp.
and the pelagic amphipodThemisto gaudichaudii (excluding self-

cannibalism, which is most likely net feeding), is rarely food
limited (Guerra et al. 1991; Brickle et al. 2001).

There appeared to be a significant spatial effect, with the

largest individuals found in the ‘Loligo box’ for the optimal
model, which included broad-scale spatial variability. However,
for the model including a smoother of longitude and latitude,

partial effects indicated that large individualswere located to the
west of the Falkland Islands, which is more aligned with the raw
data. Uneven sample distribution is a limitation in this study,
with the majority of samples originating from the commercial

fishing area (‘Loligo box’). Despite this discrepancy, a spatial
effect is evident within both models, which are likely capturing
residual unexplained environmental variation (such as upwell-

ing effects or differences in temperature based on depth). The
age–length relationship also differed significantly between
areas. The ‘Loligo box’ in particular had discontinuity in the

age–length relationship, which means either that growth accel-
erates after a certain size or that two different growth trajectories
are present within the ‘Loligo box’ (potentially superbulls and

normal individuals). Different growth trajectories for different
morphs would be logical if observed differences were pheno-
typically driven.

In conclusion, the ecological role of superbulls within the

D. gahi population is still not fully understood; however,
superbulls from the ASC are likely to provide temporal connec-
tivity between cohorts. Without evidence of enhanced

swimming ability there is no direct way to confirm that these
individuals provide geographic connectivity. There was no
evidence of enhanced reproductive output in superbull males

(which would confer a selective advantage), but they are still
reproductively viable. Recently, spermatozoa from spermato-
phores of the loliginid squid L. reynaudii (Iwata et al. 2018) and
Heterololigo bleekeri (Iwata et al. 2015) have been found to be

dimorphic, associated with the two alternative ‘sneaker’ and
‘bull’ mating tactics. A useful future step to aid in understanding
whether and how the reproductive status of superbull males

differs relative to the rest of the male population would be to
analyse the morphology of spermatozoa from mature males of
different sizes. Although there may not be a reproductive

advantage in terms of the relative weight of reproductive organs,
sperm shape may be advantageous. Because temperature, area
and, to a lesser extent, food availability have significant effects

on the age–length relationship, it appears that the existence of
these large superbulls can be attributed to phenotypic variabil-
ity. Understanding why these superbull males exist may help us
to discern how this commercially important species is connected

on the Patagonian Shelf.
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