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Abstract 

The advent of modern “omics” technologies (genomics, transcriptomics, proteomics, and 

metabolomics) are attributed to innovative breakthroughs in genome sequencing, 

bioinformatics, and analytic tools. An organism’s biological structure and function is the 

result of the concerted action of single cells in different tissues. Single cell genomics has 

emerged as a ground-breaking technology that has greatly enhanced our understanding of 

the complexity of gene expression at a microscopic resolution and holds the potential to 

revolutionize the way we characterize complex cell assemblies and study their spatial 

organization, dynamics, clonal distribution, pathways, function, and networking. 

Mammalian systems have benefitted immensely from these approaches to dissect complex 

systems such as cancer, immunological disorders, epigenetic controls of diseases and 

understanding of developmental biology. However, the applications of single-cell omics in 

plant research are just starting. The potential to decipher the fundamentals of 

developmental and functional biology of large and complex plant species at the single-cell 

resolution are now becoming important drivers of research. In this review, we present the 

status, challenges and potential of one important and most commonly used single-cell 

omics technique in plants, namely single cell transcriptomics. 

Key terms 

Single-cell omics, transcriptomics, scRNA-Seq, functional biology; development biology; 

plant; cytometry 
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Introduction 

Plants are known to be structurally flexible. Plants possess small, self-replicating chloroplast 

DNA molecules varying in size from 120 to 220 kb with highly conserved gene content 

across species [1]. Plant organ development is generally attributed to specific areas of 

growth, commonly known as ‘meristems’[2-4]. Meristems are located in the high growth 

activity regions of most plants and contain undifferentiated cells. These undifferentiated 

cells are solely responsible for development and functional trajectories [2, 3, 5]. Although 

cells arise from the same zygote, they proliferate and differentiate to multiple types and 

different organs. This cellular heterogeneity is a virtue in terms of responding to  different 

physiological stimuli affecting gene expression profiles, functionalities and developmental 

patterns [6]. Traditionally, spectrophotometry, low-throughput phenotyping and bulk 

genotyping methodologies have played an important role in improving our understanding of 

the development and functional biology of key traits governed by different tissue specific 

cells in plants. These methodologies have helped in generating important information such 

as genome size estimation, level of ploidy, and nuclear replication state [7-9].  

The fluorescence microscopy techniques such as fluorescence in situ hybridization 

(FISH) has opened the ways to study the conformation of chromosomes by which longer 

strands of DNA fit in a nucleus of size between 1-10 μm  in individual cells [10, 11]. 

However, the availability of limited number of fluorescent markers available to conduct this 

analysis and its low resolution even under the microscopes of good resolution has limited its 

potential. The biochemical genomic conformation capture techniques such as 3C and Hi-C 

mitigated the limitations of fluorescence microscopy techniques by enabling the genome 
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wide profiling of chromatin interactions based on the average analysis of cell populations 

[10, 12].  

Despite the promise of these methodologies, they lack the ability to identify the 

developmental trajectories and functionalities of certain ‘rare’ cellular types governing a 

plant’s key developmental and functional decisions. Hence, their masked effect by major 

cell types can result in an ambiguous and fragmented understanding of cell fate decision 

[13]. Moreover, these technologies lack the ability to decipher the heterogeneity among 

small cell populations.[14].  

Plant systems have unique cell models in different tissues and organs and these 

cellular models are highly specie specific too, hence different gene expression emerge from 

each of those models. For instance, germline cells, trichomes cells, fibre cells, root hair cells, 

floral cells and stomatal guard cells are all different from each other and exhibit different 

gene expression pattern [15]. Consequently, a bulk gene expression profile from one tissue 

would not provide a clear insight to the development decisions governing these and other 

key plant traits. This has warranted the development of new techniques which have the 

capability to accurately measure the genotypic and phenotypic profiles of single cells in 

particular tissues or organs. 

In the last two decades, it has become feasible to scan plant genomes at the DNA, 

RNA and protein expression levels of resolution via  technologies collectively referred to as 

multi-omics [16]. This revolution has impacted  the ways in which different plant 

populations are mined for high throughput genome wide association studies and select 

haplotypes for high resolution and stable genomic regions in order to select for desirable 

traits for breeding future crop varieties [17]. This rapid technological advancement has also 
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enabled researchers to study the biological processes responsible for development and the 

function of single cells. These single-cell analysis methodologies have also progressed to 

enable us to read and measure the genetic architecture and spatial organisation at a single-

cell scale. These single-cell omics (sc-Omics) techniques allow us to study the genome, 

transcriptome, proteome and metabolome of organisms at single-cell level using genomic 

readouts. The latter can be inherent segments of RNA and DNA molecules of interest or a 

small surrogate sequence known as ‘barcode’ to identify different cells. More specifically, 

sc-Omics allows us to measure cells at the DNA-level (scDNA-Seq) [18], RNA-level (scRNA-

Seq) [19], DNA conformation level (scATAC-Seq) [20] and protein-level (CITE-Seq [21], Abseq 

[22]). Different single-cell analysis techniques that have evolved under the umbrella of sc-

Omics [23-25] are mainly based on droplet-based infrastructure or well-based infrastructure 

to capture single cells into a single reaction chamber to then be individually sequenced. The 

former has more high-throughput cell capture capacity than the latter but yields lower 

sequencing depths of subject material [26, 27].  

The limitations posed by fluorescence microscopy techniques such as FISH were 

resolved by the single-cell transcriptomics techniques such as Spatial transcriptomics [28]. 

Spatial transcriptomics is another allied single-cell technique to study the gene expression 

among different cellular populations of a tissues [28]. This technique employs the tissue 

sections on the arrays with known probes or barcodes thus fixing the cells with different 

probes in order to help differentiate them for downstream gene expression analysis. The 

size limit of array probe is a major drawback of this technique where a large single cell could 

attach to more than one probe thus making it difficult to associate a certain gene expression 

profile to it [29]. Other methods of single-cell capture for downstream analysis include 

Fluorescence-activated cell-sorting (FACS), Magnetic-activated cell sorting (MACS), Laser 
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capture microdissection (LCM) and manual/automated cell picking [30-33]. The major 

drawbacks of these techniques as they are currently used include their dependence on 

already known fluorescence labelled markers or barcode printing in live cells prior to 

sorting, surface antigens or time-consuming cell picking under microscope. Hence, the high-

throughput single-cell capture by microfluidics or well-based infrastructure make them ideal 

techniques for single cell analysis [34]. The amplification-enabled readouts of individual cells 

provide extra edge to capture ‘minor’ cell types and analyse their genotypic profiles in 

greater details which can be further enhanced by combining with upstream isolation 

methods such as FACS. MACS, LCM. [34]. 

sc-Omics has opened ways to study the detailed genetic architecture of an organism 

at the single-cell level in detail. This information is then translated to infer an accurate 

understanding of genetic control of biological processes happening in an organism [35]. So 

far, mammalian systems have been well studied using sc-Omics approaches [36, 37], while 

plants lag behind mainly because the processing of tissue with cell walls has been a 

challenge for the application of single-cell technologies, often resulting in low capture rates 

[38]. A few successes have been achieved in successful protoplast isolations in plants such 

as moss, to load them on commercially available droplet-based platform such as 10x 

Genomics [39]. The relatively untapped plant systems have the potential to efficiently utilise 

the modern sc-Omics techniques to enhance our broader understanding of cellular-level 

plant development and functional trajectories [36]. Single-cell based omics, in particular 

single-cell transcriptomics has the capability to provide a detailed insight into cell responses 

to different environmental cues, such as biotic and abiotic stresses and provides the strong 

basis for understanding of genetic control of more complex traits [40, 41]. In this short 
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review, we cover the status of current use and potential of single-cell transcriptomics in 

regard to the development and functional biology of plants. 

Single-cell transcriptomics and plant development biology 

Like many other species, crops have evolved to very different states compared to their wild 

progenitors either through unintended selection or selected breeding to better fit in a range 

of environments [42]. During this process, the cell, being the basic unit of life, has also 

evolved to multicellular states in order to support plant development trajectories in 

response to different environmental stimuli [43].  

Most available single-cell studies in plants have utilised scRNA-Seq to identify different cell 

types. As is principally correct for sc-Omics, different barcodes (both synthetic and plant 

genome derived) are employed to tag and track cell differentiation along the course of 

development in plant systems [36]. These studies provided a proof of concept to identify 

intermediate differentiation cell states by providing a link to track cell cycle state from 

meristematic phase to a fully differentiated phase based on plant development trajectories 

[44].  

A recent single-cell transcriptomic study by Shulse et al. [45] involving ~4,000 root 

xylem cells identified several novel candidate marker genes which have no or very little 

information linked to their functional activity, highlighting the power of this technology. This 

study also revealed that genes with already well-established roles were a small subset of 

overall number of genes found while many new marker genes with unknown functionality 

were discovered. These findings not only challenged the previously thought genetic control 

of cellular pathways but also opened up the avenues to study the transcriptional role of 

newly found genes in root cells differentiation. The droplet-based cell profiling approach 
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used in this study was further extended to >12,000 root cells, which revealed the 

representation of all root tissues, their distinct developmental stages and specific marker 

genes associated with those cell populations [45].  

In another study by Turco et al. [46], a Drop-seq based isolation of single-cells from a 

bulk of ten plates with 200 roots per plate revealed a novel regulatory network of four 

targets controlled by a transcription factor called VASCULAR-RELATED NAC DOMAIN7 

(VND7), which has a well-established role in terminal differentiation of xylem cells. This 

study further revealed that two other xylem cell differentiation transcription factors, MYB46 

and MYB83, do not respond to VND7 in a switch like fashion as it was previously thought 

[46]. Furthermore, the cell coverage used in the study was comparable to the previously 

conducted microscopy-based analysis with an extra advantage of finding cellular quiescence 

centres, which were absent in earlier studies [46, 47]. This important finding not only 

cleared the ambiguity in the understanding of an important biological pathway but also 

provided an alternate pathway where VND7 was shown to work in a cycle by governing 

through four targets. In another study by Ryu et al. [48], a representation of all major tissues 

along with distinct and rare cell populations was found using ~10,000 Arabidopsis root 

protoplasts. The development trajectories of hair and non-hair root cells were identified 

from meristematic to completely differentiated state. A proof of concept for gene 

expression at the single-cell level was also presented in this study by conducting a 

comparative analysis on root epidermal mutants and wild type cells [48]. This is an 

significant addition towards the phase-2 of Plant Cell Atlas development which addresses 

building out the initial maps and networks [49].  
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The dynamics of gene expression in Arabidopsis root cells was studied by Jean-

Baptise et al. [50], where they analysed 3,121 cells and found 6,152 unique molecular 

identifiers (UMIs) on average per cell, which corresponded to 2,445 both known and novel 

genes per cell. These UMIs, which are random nucleotide sequences that tag individual 

mRNA molecules, discriminate between original mRNA molecules and those that arise from 

duplicate polymerase amplifications [51]. This study also found the transcription factors 

associated with early and late cell life states. Recently another study by Zhang et al. [52] 

involving ~15,000 Arabidopsis root cells showed that the cells could be distributed into 24 

distinct cell clusters, each with its own cluster-specific markers. The clusters were found to 

be involved in a wide range of functions from cell differentiation and hormone response to 

ion assimilation in root cells [52]. Similar studies on root phloem are missing yet, perhaps 

due to very low abundance of root phloem cells, hence difficult access to enough cDNA [43]. 

The aforementioned studies have employed single cells from root tissues to 

investigate key developmental processes in plants. This was important for trialling these 

modern single cell techniques in plants but their application to single cells from other tissue 

types in plants is also warranted as several key developmental decisions are being taken in 

plant organs other than roots and could better be studied using cells from those tissues and 

organs. A recent study by Nelms and Walbot [53] employed anther cells to investigate the 

previously poorly understood mechanisms of meiotic entry in plants. This study provided 

very useful insights about the change in gene expression at mid-leptotene stage and cell 

morphology just prior and at the start of meiosis in maize plants. The increase in gene 

expression related to membrane bound organelles and mitochondria and degradation of 

ribosomal templates suggests the preparation of switch towards functions encoded by 

haploid genome.  

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



10 
 

Single-cell transcriptomics and plant functional biology 

Single-cell studies in relation to plant functional mechanisms such as response to different 

environment stimuli are scarce and most single-cell studies to date have focused on cell 

differentiation. However, the fact that each cell also contains the foot print of whole 

organism in the nucleus also warrants its use for studying the biological functions happening 

in an organism [16]. This is especially important in relation to complex multigenic traits, 

which otherwise need a lot of time and resources for their accurate measurement at both 

genotypic and phenotypic levels. The examples of such traits include plant responses to 

various biotic and abiotic stresses where an interaction of more than one biological pathway 

is involved in enabling a plant to cope a certain stress.  

The study by Jean-Baptise et al. [50] also tried to deconvolute the dynamics of the 

functional control of plant traits at the single-cell level by studying the effect of heat stress 

on Arabidopsis seedlings. While assessing gene expression heterogeneity among different 

cell types, they found overall canonical heat shock gene expression while significant change 

in the expression of other genes such as root hair and non-hair controlling genes was also 

observed in response to heat stress[50]. The above mentioned study by Shulse et al. [45] 

also studied the functional response to environmental stimuli by applying with and without 

sucrose treatments on root development. They found that sucrose application does not 

substantially changes the cell identity but alter the cell proportion and gene expression in 

different tissue types. Another study by Hossain et al. [54] identified differentially 

methylated regions in soybean root hairs, which are single-cell extensions of roots, and 

multicellular stripped roots, under control and heat stress treatments. While both root hairs 

and multicellular stripped roots exhibited a hypomethylation pattern under heat stress, root 
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hairs were found to be more hypermethylated than multicellular stripped roots under 

control conditions.  

Another example illustrating the use of scRNA-Seq in the context of plant functional 

biology is the study by Gould et al. [55], where circadian rhythm activity was investigated at 

the single-cell level in Arabidopsis. This study employed confocal microscopy to study single-

cells tracked with the help of certain fluorescence markers. The results, which were based 

on spatial waves of gene expression of plant circadian clock, revealed the presence of 

multiple coordination points as opposed to the centralised clock present in mammals [55, 

56]. These robust, but desynchronised single-cell oscillations found in this study, suggest 

that a much more synchronised mechanism of circadian clock control in plants could be 

achieved by employing scRNA-seq on the same treatments. Such an approach could 

potentially uncover many rarer cell types and quiescent centres. 

The plant germlines also have enormous role in the functional biology of plants. 

Understanding the mechanism of pollination in plants provides a better control over pollen 

sterility and its appropriate use during various stages of research and trait improvement 

such as hybrid seed development [57]. In a recent attempt to combine fluorescence 

microscopy and single-cell transcriptomics on plant sperm cells, Misra et al. [58] found the 

expression of 1900 genes per cell compared to 7000 genes in a bulk of 50 single-cells. These 

results show the potential of utilising single-cell transcriptomic methodologies to produce 

high quality gene expression data from such low cell numbers for future targeted genomics 

[58]. The optimisation of threshold in algorithms to detect gene expression from such low 

number of cells improves the study of gene expression levels compared to bulk populations. 

Bioinformatics analysis of single-cell transcriptomics data 
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 In order to obtain important biological insights into experiments at the single-cell 

level, bioinformatics approaches must be employed to analyse the wide array of data types 

generated. To this end, over 600 scRNA-Seq bioinformatics tools have been developed; 

these include tools that have either been created solely for the purpose of scRNA-Seq data 

analysis or have been modified from existing bulk RNA-Seq analysis tools [59]. In an effort to 

make these resources more accessible to the scientific community, the Oshlack Lab [59] 

created an online database with a curated list of relevant software packages 

(https://www.scrna-tools.org/tools). Each package is categorised according to its function, 

contains a brief description of its intended use and a link to the source code is also provided. 

Several reasons have necessitated the creation of bioinformatics tools that can specifically 

handle scRNA-Seq data analysis from mammalian and plant systems alike, a major one being 

the amplification biases introduced into the minute amounts of starting cellular RNA 

material. If not handled properly, lowly-expressed transcripts may erroneously appear to be 

significantly expressed and incorrectly estimate cell-to-cell variability [60]. Another 

important source of technical noise is batch effects, which can be introduced when cells 

from one population are captured and sequenced separately from another population [60]. 

While careful experimental designs can mitigate these effects, unwanted sources of 

variation can remain in the data and must be removed using computational approaches. Yet 

another source of technical noise, which is specific to droplet-based scRNA-Seq data, is the 

presence of empty droplets, i.e. droplets that are devoid of cells but contain ambient RNA 

that have leaked from damaged cells [61]. While the resulting transcripts can still have UMIs 

assigned to their corresponding barcodes, their cellular identity is lost. Such transcripts must 

be filtered out from the data as they can lead to misleading biological conclusions. 

Additionally, the sparse nature of scRNA-Seq data means that resulting measurements can 
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harbour a large number of zeroes stemming from genes that have no mapped reads or no 

UMIs associated to them; this can occur due to technical reasons such as the scRNA-Seq 

platform or biological reasons such as low gene expression levels [62]. This explains why a 

sequencing coverage of 30X would be required in single-cell sequencing to achieve a 

genome coverage of at least 90%. In contrast, a sequencing depth of only 4X would be 

required at the bulk-level to achieve a similar coverage [36]. While existing scRNA-Seq 

bioinformatics tools have in-built statistical models that take into account the sparse nature 

of scRNA-Seq data, data imputation, i.e. the replacement of missing values with estimated 

values [63] may also be needed. Last but not least, cell-to-cell heterogeneity such as 

differences in cell size and cell cycle state can act as important confounding factors during 

cell type identification [64] and must be addressed during data analysis. 

Bioinformatics tools that have been designed to analyse mammalian single-cell data 

can also be used to analyse plant single-cell data, especially scRNA-Seq as demonstrated in 

several studies [45, 48, 50, 52]. A summary of these tools as well as an overview of a typical 

scRNA-Seq data analysis workflow in Table 1. and Figure 1., respectively. The first stage of 

any scRNA-Seq data analysis is to determine the expression of each gene in each cell. This is 

achieved via read alignment of the scRNA-Seq data against an appropriate reference. As 

with any type of Next-Generation Sequencing (NGS) data analysis, it is important to assess 

the quality of the raw data using FastQC [65] or similar tools prior to read alignment. 

Adapter sequences and low-quality bases must also be removed if present using tools such 

as Trimmomatic [66], TrimGalore [67] among others. Read alignment and gene 

quantification at the cellular level can then be performed using standalone tools such as 

CellRanger [68] and scPipe [69], or a combination of tools such as Hisat2 [70] and HTSeq 
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[71]. Once the gene-cell matrix is obtained, it can be further processed to address the 

biological question at hand, and there are several tools that are available for this purpose. 

A very popular tool for scRNA-Seq data analysis is Seurat [72]. This R package, which 

is available on the Comprehensive R Archive Network (CRAN) [https://cran.r-project.org/], 

employs machine learning techniques to identify positive and negative markers that define 

cell clusters based on gene expression values within these clusters. Seurat uses as input a 

gene-cell matrix and employs several quality control metrics such as unique gene counts 

and percentage of mitochondrial sequence present per cell to filter out low quality cells. 

Then, data normalisation, which is an important step to correct for the inherent noise and 

variability of scRNA-Seq datasets [73], is carried out. This is followed by the identification of 

highly variable genes, linear dimensional reduction of the data via Principal Component 

Analysis (PCA), unsupervised clustering of cells, identification of differentially expressed 

markers that define clusters and assignment of cell type identity to markers. Seurat also 

allows non-linear dimensional reduction via t-Distributed Stochastic Neighbor Embedding 

(tSNE) and Uniform Manifold Approximation and Projection (UMAP). These are valuable 

options for visualising and exploring scRNA-Seq datasets [74]. Additionally, the latest 

releases of Seurat (v2 and v3) an alignment procedure that allows the integration of scRNA-

seq datasets such that heterogeneous tissues across different conditions can be compared, 

and measurements produced by different protocols and research environments can be 

integrated [75, 76].  

Another important application of scRNA-Seq in the context of plant research is 

single-cell trajectory analysis. Plant cells are always changing from one functional state to 

another during development. Cells in different states express different sets of genes, and as 
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the cells move between states, they undergo transcriptional re-configuration where some 

genes are silenced, and others are newly activated [77]. While it is very difficult  to 

experimentally purify cells that belong to different transient stages via bioinformatics 

analysis [40, 77], a popular tool that has been designed for this purpose is Monocle [77]. 

This R package, which is available on Bioconductor [http://bioconductor.org/], uses a 

machine learning technique called reversed graph embedding to construct single-cell 

trajectories using pseudotime. In other words, Monocle learns the sequence of gene 

expression changes that each cell would undergo during any given biological process and 

places the cells at their proper positions on this learned trajectory. A simplistic Monocle 

workflow consists of three steps. First, the algorithm identifies genes that define a cell’s 

progress. These are genes whose expression levels change as a function of progress through 

the biological process being studied. Then, data dimensional reduction techniques such as 

tSNE are applied to the data. Lastly, the cells are ordered along their trajectories. The 

trajectories may also include branches that occur as a result of cells being subjected to gene 

expression programs underlying alternative cell fates. The latest version of Monocle (v3) not 

only supports the analysis of millions of cells at a time but also offers some new and 

powerful features. These include an optimised workflow for more accurate developmental 

trajectory analyses, and an updated statistical test to survey genes that have trajectory-

dependent expression. Monocle v3 also allows UMAP visualisation as well as a 3D interface 

to view trajectories and gene expression [https://cole-trapnell-lab.github.io/monocle3/]. 

Seurat and Monocle are well-suited for the analysis of plant scRNA-Seq data as 

demonstrated in several studies [45, 48, 50, 52], and the contribution of data visualisation in 

this regards cannot be overlooked. Both tools mentioned here use tSNE and UMAP as a 

means to visualise clusters in single-cell data. Recently, the application of an eFP (electronic 
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fluorescent pictographis)-Seq Browser to survey scRNA-Seq data has also been demonstrated 

[48]. The eFP-Seq Browser was originally designed to explore microarray data [78] and has 

since been applied to several bulk RNA-Seq studies of major crops such as wheat, maize, 

rice, potato, soybean, barley and tomato [http://bar.utoronto.ca/]. This tool shows the read 

depth coverage of candidate genes, coupled with eFP images that allow visual assessment 

of expression levels of these genes across samples. When applied to scRNA-Seq data, the 

user is able to see the expression levels of their gene of interest in 3 different modes: 

absolute, relative and compare. The ‘absolute’ mode compares the expression level of the 

candidate gene in each cell of various tissue types to the highest expression level that has 

been recorded for the same gene. The ‘relative’ mode shows the ratio of a cell’s expression 

level in different tissue types relative to an appropriate control. As for the ‘compare’ mode, 

it compares the expression levels of 2 genes across cells of different tissue types. An 

example of scRNA-Seq data visualisation via an eFP browser is available for the data 

presented by Ryu et al. [48]. To reiterate, this study assessed the expression levels of 

~10,000 Arabidopsis root protoplasts in all major tissues. 

  While all plant-related single-cell studies conducted to date have focused on the 

model plant species A. thaliana, they are also amenable to crop species. The identification 

of cell types that respond most strongly to abiotic stresses such as heat, drought, and 

nutrient starvation will allow us to genetically manipulate relevant cell types to generate 

stress-tolerant crops without pleiotropically affecting plant fitness and yield [50]. 

Additionally, a better understanding of the underlying biological processes will allow scRNA-

seq to be combined with important modalities such as CRISPR/Cas9-based genetic screens, 

for instance. CRISPR/Cas9 has been widely used to systematically characterise gene 

functions and if combined with scRNA-Seq will act as a powerful tool for the high-
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throughput dissection of gene functions by allowing sequential knockout of candidate genes 

and studying the resulting effects [36]. A potential application of such multimodal technique 

could be during the assessment of expression levels of plant regulatory factors that can 

initiate the formation of somatic embryos from plant tissue cultures to accelerate the 

breeding cycle [79].  

Future perspectives 

Sufficient numbers of viable cells are a prerequisite to conducting any single-cell based 

assay and obtaining accurate information. In order to run plant cells through a single-cell 

RNA-seq analysis, they must be stripped of their cell walls using a cocktail of enzymes and 

although this most likely affects the internal cell biology of the cells, the data to date 

suggests this may not prevent the recognition of different cells within a tissue [45]. Using 

Arabidopsis root tissue Shulse et al. [45] showed that single-cell RNA-Seq can be used to 

profile developmental processes and alterations induced by external factors. The future 

comparative studies will establish the boundaries of interpretation that may exist around 

the use of protoplasts to study plant tissues. However, the smooth and efficient isolation of 

viable plant single-cells remains a challenge. Optimisation of already available cell isolation 

techniques, especially the enzymatic treatment time to isolate protoplast from different 

origins, could however circumvent this problem. The applications of commercially available 

cell suspension protocols especially through 10x Genomics could be extended and modified 

for plant species other than Moss for even single-cell capture [39]. The optimisation of 

already available methods such as serial dilution, micro-manipulation, FACS and optical 

tweezers would further enhance our capability to isolate large number of viable individual 

cells [80-83]. The time and resource allocation for purpose are justified now more than ever 
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given the availability of such revolutionary techniques relying on presence of viable single-

cell.  

The in-depth bioinformatic analysis of single cells is dependent on the availability of 

large number of viable single cells. As mentioned above, single-cell genomics techniques 

require at least 30x sequencing depth compared to 4x bulk sequencing, thus increasing the 

sequencing costs substantially. To cope with the cost issues, 5´ or 3´ sequencing with UMI 

tagging was introduced [84, 85]. This, together with the application of bioinformatics tools 

which can handle the inherent noise and sparsity of scRNA-Seq data, as previously 

discussed, have been key to addressing the issues related to the accuracy of read 

assignment and PCR bias under shallow sequencing. However, allele-specific expression 

profiling still remains a challenge under shallow sequencing depths [86].The development of 

novel bioinformatics pipelines to process such datasets will open avenues for obtaining 

useful biological insights from single-cell data. Additionally, the decrease in sequencing 

costs, coupled with the increased throughput of sequencing data are likely to create a data 

deluge which will need to be handled efficiently. Existing and novel bioinformatics pipelines 

will need automation and adaptation to run in high-performance computing environments 

to significantly reduce the time required to undertake computationally intensive steps. 

Nonetheless, the large volumes of data to be analysed also offer the promise of uncovering 

many new aspects regarding the biology of many model and non-model plant species, and 

the application of unsupervised machine learning (ML) techniques in this regard will be of 

utmost importance [49]. Further, innovative ways of visualising plant single-cell data will 

also be required. For instance, the application of semantic zooming will increase the 

resolution at which images can be visualised, and this is bound to offer important insights at 

the cellular level [49]. Coupling scRNA-Seq data with such an imaging technique would allow 
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the more accurate spatial and temporal reconstruction of various cellular types and states in 

any tissue [87]. Single-cell Omics based data analysis uses many of the approaches applied 

in genomics data analysis and is learning from genomics field. SeqGeq ‘seek-geek’ by FlowJo 

or Seurat R package allows overlaying sequencing data onto the single cell sorted into a 

specific well and sequenced [88]. BD Abseq is another approach which enables the parallel 

detection of protein and mRNA in a single-cell and is yet to be utilised in plants to study cell 

surface protein expression along with cell specific mRNA expression profiles [89].  

The progress of all above-mentioned droplet- based single-cell approaches in plants 

has been impeded because of their large cell size. Majority of available sc-Omics studies on 

plants so far have focused on single-cells extracted from roots perhaps due to their size, 

which aligns with the available single-cell encapsulation and capture infrastructure [90]. The 

differentiated cell size from the majority of plant tissues is too big to meet the requirements 

of available droplet or well-based platforms, which have the capacity of fit a maximum of 50 

um cell size [91]. This warrants the development of plant specific chips and panels along 

with plant based unique barcodes to capture a wide range of plant cell types. The other 

major reason of extensive use of root cells in previous studies may be the availability of 

‘relatively’ small number and types of cells in the roots compared to other tissues [48], 

which makes them ideal to be used for proof of concept studies in plants. Moreover, major 

costs of single cell studies arise from the sequencing part of experiment, where a trade-off 

comes into play between number of cells per analysis and read depth per cell. Now that 

these single cell techniques have been successfully applied in plants at proof of concept 

level, deconvolution of key biological processes would warrant utilisation of single cells from 

tissues other than roots.  
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Challenges in finding the true developmental trajectories as cells are lost during 

tissue dissociation for cells isolation need to be considered as available bioinformatics 

approaches rely on development stage as dominant signals in single cell profiles [40]. The 

traditional flow cytometry’s prerequisite of prior knowledge of morphological and cellular 

markers could become handy here in order to resolve those developmental trajectories 

profile of different plant tissues and organs. Polyploidy is thought to induce bigger cell sizes 

to accommodate multiplying chromatin material or increase number of cells. Both could 

potentially pose issues in the single cell analysis [92]. Larger size of cells may require special 

infrastructure for different plant cell types to capture single cells in droplets or wells 

depending on the methods used. Larger numbers of cells required for the analyses of plant 

tissues als increase the costs of sequencing by increasing the threshold of sufficient number 

of cells to be captured to represent certain tissues or organs. Single nuclei analysis methods 

mainly in human and mouse have recently attained the attention of scientists to study the 

genome wide chromatin accessibility profiles in single-cells. These methods would open the 

ways to map different development and functional pathways with chromatin accessible 

regions. 

The portability and long read sequencing capability of nanopore embedding flow 

cytometry in existing nanopore infrastructure could potentially open the ways for plant 

single-cells sequencing of variety of cell types [93]. PacBio platforms especially the Real-

Time (SMRT) solutions are another option to capture and read variety of plant cells at 

single-cell resolution [94]. The calibration of reagent volumes used in the existing single-cell 

sequencing platforms, sample digestion artefacts and resultant debris clean up shall further 

enhance the quality of output data from single-cells originating from different plant tissues.  

Furthermore, the study of phloem cells differentiation and their role in plant developmental 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



21 
 

and functional biology still remains unanswered. The employment of sc-Omics techniques to 

study single cells from shoot apical meristems could further enhance our understanding of 

cell signalling among different tissue types along the lengths of whole plants.  

Finally, all published single-cell transcriptomic studies in plants thus far agreed on 

the fact that high-throughput scRNA-seq enables the identification and characterisation of 

rare cell types and quiescence centres present in a large heterogeneous cell population 

which were unknown or uncharacterised previously. We anticipate, based on the initial 

findings in plants published to date, that these technologies have immense potential to 

disrupt our traditional ways of studying hormone profiling, metabolomics, and protein-

interactions. This would be possible by complementation of different single-cell techniques 

such as single-cell RNA-seq, ATAC-seq, ChIPseq and DNA methylation protocols in plants in 

similar ways as this model has been successfully implemented in mammalian system [95-

98]. The challenge of demonstrating single-cell data in simple and informative ways could be 

converted into an opportunity by combining different data sets and algorithms to make a 

universal Plant Cell Atlas [49, 99] similar to Human Cell Atlas Project. 
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Figure legends and Table titles 

Table 1. List of bioinformatics tools used for scRNA-Seq data analysis.  

 

Figure 1. Overview of bioinformatics analysis of scRNA-Seq data. This includes read quality 

control, read alignment, transcript quantification of single cells, data normalisation, 

dimensional reduction and downstream applications such as gene marker identification and 

pseudotime analysis. Panels representing dimensional reduction (tSNE), gene marker 

identification and pseudotime analysis were taken from [100]. 
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Step Tool Main function Notes References 

Citations in 
plant scRNA-
Seq studies 

1 

FastQC 

Quality 
assessment of 
raw 
sequencing 
data    [64]   

2 

Trimmomatic Removal of 
low-quality 
bases and 
adapters from 
raw 
sequencing 
data 

   [65]   

TrimGalore   [66]   

3 

scPipe 

Alignment of 
sequencing 
data against a 
reference 
genome 
assembly 

scPipe processes scRNA-Seq data from UMI and 
non-UMI protocols. It also outputs a gene-cell 
matrix on which it performs quality control. Cell 
clustering and visualisation are also possible via 
an R shiny app.  [68]   

CellRanger 

CellRanger processes Chromium single cell 3' 
RNA-Seq data. It also performs clustering and 
gene expression analysis.  [67] [44, 47, 51] 

Hisat2    [69]   

STAR    [99] [44, 47]  

HTSeq    [70]   

4 

ascend 
Cell-matrix 
quality 
control: 
filtering, 
normalisation, 
dimensionality 
reduction, 
clustering and 
visualisation 

ascend processes Chromium, dropSeq and 
InDrop data.  https://github.com/powellgenomicslab/ascend   

dropEST 
dropEST processes droplet-based scRNA-Seq 
data.  [100]   

DropletUtils 
DropletUtils processes droplet-based scRNA-Seq 
data.  https://github.com/MarioniLab/DropletUtils   

Scanpy 
Scanpy is a highly-scablable Python program that 
can process up to 1 million cells.  [101]   

Scater    [102]   
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Seurat 

Seurat also has an alignment procedure that 
allows integration of scRNA-seq datasets so that 
heterogeneous tissues across different 
conditions can be compared, and measurements 
produced by different protocols and research 
environments can be integrated.  [71]  [47, 51] 

5 

ascend 

Downstream 
analyses 

Differential expression analysis.     

Seurat 
Differential expression analysis and marker gene 
discovery.  [71] [47, 51] 

Scanpy 
Differential expression analysis, trajectory 
inference and simulation of gene networks.  [101]   

Monocle 
Differential expression analysis and trajectory 
inference.  [76]  [44, 49, 51] 

RaceID Identification of rare cell types.  https://github.com/dgrun/RaceID   
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