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1.1 Abstract 

The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been 

implicated as a crucial component in both neurodegeneration and diabetes. However, the 

role of metabolic signalling pathways and the NLRP3 inflammasome in frontotemporal 

dementia remain largely elusive. We therefore investigated the effects of an NLRP3 inhibitor 

(MCC950) in a murine tau knock-in (PLB2TAU) model vs. wild-type (PLBWT) control mice. In 

male PLB2TAU mice (4 months at start of study), MCC950 treatment (20 mg/kg, for 12 weeks) 

improved insulin sensitivity and reduced circulating plasma insulin levels. Further molecular 

analysis suggested normalisation in insulin signalling pathways in both liver and muscle 

tissue. Treatment also resulted in improvements in inflammation and ER stress signalling, 

both peripherally and centrally, alongside a partial normalisation of phospho-tau levels.  

Overall, we provide evidence that MCC950 improved metabolic, inflammatory and 

frontotemporal dementia (FTD) relevant phenotypes in multiple tissues. NLRP3 inhibition 

may therefore offer a therapeutic approach to ameliorate FTD pathology.  

 

 

Keywords: transgenic, knock-in, diabetes, insulin, dementia, NLRP3, inflammasome, ER 

stress, UPR, Inflammation.  
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1.2 Introduction 

Dementia and type 2 diabetes mellitus (T2D) are two of the most prevalent conditions in the 

elderly. To date, there is increasing evidence supporting a link between metabolic 

dysfunction and neurodegenerative diseases such as Alzheimer’s disease (AD) and 

potentially also frontotemporal dementia (FTD) (Hull et al., 2019; Lauretti et al., 2017; 

Marciniak et al., 2017; Yarchoan et al., 2014). Inflammation, hyperglycaemia, insulin 

resistance and glucose intolerance have all been shown to contribute to the pathological 

process of both T2D and dementia, suggesting possible shared molecular and cellular 

pathways (Bello-Chavolla et al., 2019; Mushtaq et al., 2015; Strachan et al., 2008).  However, 

the precise mechanisms underlying this association remain unknown, especially with 

regards to tauopathies. 

Metabolic research in FTD/FTLD lacks behind the extensive work conducted in AD; larger 

epidemiological studies are still missing. Some reports identified elevated insulin levels, 

triglycerides and changes in glucose metabolism in FTD patients, but these studies are so far 

based on small cohorts only. Importantly, a recent study (Liou et al., 2019) concluded that 

dysregulated insulin signaling in degenerating brain regions mediate brain metabolic 

dysfunction and contribute to disease pathogenesis in FTD, akin to other types of dementia. 

The central nervous system (CNS) is recognised to have a continuous interplay with 

the innate and the adaptive immune systems, where resident microglia and immune cells 

play important roles. The innate immune system is activated through pattern recognition 

receptors such as the nucleotide-binding oligomerisation domain (NOD)-like receptors 

(NLRs). Activation of NLRs enables the formation and activation of inflammasome 

complexes (Broz and Dixit, 2016; Latz et al., 2013). Inflammasome activation is a crucial 
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signalling pathway in the maturation of two proinflammatory cytokines (interleukin 1β (IL-

1β) and IL-18) through cleavage of caspase-1 (Broz and Dixit, 2016; Latz et al., 2013). The 

NLRP3 inflammasome is the most extensively studied inflammasome and has been 

implicated as a central component in the development of diabetes and neurodegenerative 

diseases (Ising et al., 2019; Jiang et al., 2018; Rheinheimer et al., 2017). Neuroinflammatory 

pathways rely on the activation of the inflammasome and are crucial in neurodegeneration, 

with extensive evidence indicating that both IL-18 and IL-1β contribute to pathogenesis 

(Halle et al., 2008; Tan et al., 2013). Importantly, it has recently been demonstrated that 

activation of the NLRP3 inflammasome may drive tau pathology through regulation of tau 

kinases and phosphatases in FTD (Ising et al., 2019). The authors revealed that loss of NLRP3 

function reduced tau hyperphosphorylation and rescued spatial memory deficits present in 

a mouse model (Tau22). Further links between NLRP3 activation and neurodegeneration 

were indicated by the secretion of IL-1β through activation of the inflammasome by 

pathological tau (Španić et al., 2019; Stancu et al., 2019). In addition, inhibition of the NLRP3 

inflammasome was reported to decrease amyloid-beta (Aβ) levels in APP/PS1 mouse model 

(Heneka et al., 2013) and improve cognition in 3xTgAD mice (Daniels et al., 2016). Elevated 

levels of NLRP3 have also been observed in diabetic patients (Jiang et al., 2018; Lee et al., 

2013), and mice deficient in caspase-1 and NLRP3 were resistant to the high-fat diet-

induced obesity and protected from obesity-induced insulin resistance (Stienstra et al., 

2011). Moreover, exercise-mediated weight loss and caloric restriction significantly lowered 

expression levels of NLRP3 in adipose tissue, as well as improving sensitivity to insulin 

(Vandanmagsar et al., 2011). Collectively, this research suggests that targeting the NLRP3 

inflammasome may be an innovative therapeutic approach to target both neuronal 

inflammation and metabolic deficits in neurodegenerative disorders.  
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MCC950 (also known as CRID3, CP-456,773 and CAS 210826-40-7) is currently the most 

potent and selective small molecule inhibitor of the NLRP3 inflammasome. It binds to NLRP3 

and blocks NLRP3 ATPase activity, subsequently inhibiting inflammasome formation and 

activation (Coll et al., 2019; Tapia-Abellán et al., 2019). The pharmacokinetics of this 

compounds have been independently confirmed (Coll et al., 2015; Primiano et al., 2016), 

and it has been reported to display neuroprotective benefits in multiple disorders, including 

neurodegenerative diseases and diabetes (Dempsey et al., 2017; Fan et al., 2018; Fekete et 

al., 2019; Qi et al., 2018; Ward et al., 2019; Zhai et al., 2018). MCC950 reduced the 

accumulation Aβ and improved cognitive function in APP/PS1 mice, this was attributed to 

the inhibition of NLRP3 inflammasome activation and the reduction of Aβ accumulation 

through increased clearance (Dempsey et al., 2017). In agreement with this study, it was 

also reported that MCC950 reduced microglia reactivity, and memory impairments, and 

restored expression of inhibitory neuronal ligands in another AD model (APPNL-F/NL-

F)(Fekete et al., 2019). Additionally, MCC950 significantly improved insulin sensitivity in 

db/db mice, a common model of insulin resistance,  as well as reducing depression and 

anxiety-like behaviours and improving cognitive function (Zhai et al., 2018). 

Here, we investigated the effect of MCC950 in a novel murine knock-in model of 

FTD, PLB2TAU (Hull et al., 2019; Koss et al., 2016). These mice express a single copy of 

mutated hTau (2N4R TauP301L + R406W), which yields brain phospho-Tau pathology for an 

FTD-like phenotype as well as changes in insulin sensitivity, glucose homeostasis and 

inflammatory related markers (Hull et al., 2019). We provide evidence that MCC950 

improved insulin sensitivity, reduced circulating plasma insulin levels, and resulted in 

changes in ER stress signalling and insulin signalling, both peripherally and centrally. 

2. Materials & Methods   

2.1 Animals  

Four month old male PLBWT (n=23) and PLB2TAU (n=22) mice were generated as previously 

described (Koss et al., 2016). Of note, the PLBWT mice, which serve as controls for all PLB 
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lines, were originally created as littermates from the parental PLB1Double mice. All mice were 

maintained at Charles River UK on a C57BL6 background, and all lines are regularly crossed 

with unrelated C57BL6/J wildtype mice (Elite breeders from Charles River). All mice were 

housed and tested in accordance with UK Home Office, the EU directive 63/2010E and the 

Animal (Scientific Procedures) Act 1986. Mice were delivered to our facility at least 1 week 

before testing. Animals were housed in a climate–controlled holding room (20–21°C, 60–

65%, relative humidity) with ad libitum access to water and food with a 12-hour day/night 

cycle (lights on at 7am).   

2.2 MCC950 Treatment 

PLBWT and PLB2TAU were randomised and counterbalanced using a random number 

generator (www.random.org), into 2 experimental groups: PLBWT Vehicle (n=13), PLBWT 

MCC950 (n=10), PLB2TAU Vehicle (n=11) and PLB2TAU MCC950 (n=11). The experimenter was 

not blinded with regards to genotype and treatment conditions due to the requirement to 

immediately identify adverse effects of treatment. Vehicle (PBS) or MCC950 (20mg/kg in 

PBS, Coll et al., 2019) was administered by i.p injection once daily, five times a week for a 

total of 12 weeks (see supplementary figure 1). MCC950 once dissolved in PBS was stored at 

4 oC for no longer than a week. In vivo experiments were performed two weeks prior to 

treatment (baseline / pre-treatment), and during the last 7 weeks of the study.  

2.3 In Vivo characterisation  

2.3.1 Glucose, insulin, pyruvate tolerance tests & EchoMRI  

Glucose (GTT), insulin (ITT) and pyruvate (PTT) tolerance tests were carried out as described 

previously (Hull et al., 2019). Briefly, tail blood glucose was determined using an AlphaTRAK 

glucometer (Berkshire, UK). GTTs and ITTs were performed in 5 hour fasted mice, and PTTs 
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were performed in overnight fasted mice. Fasting blood glucose (time 0) were recorded, 

followed by i.p. injection of glucose, insulin or pyruvate: GTT: 2 mg/g body weight dose of 

glucose (20% w/v glucose), ITT: 0.75 IU/g body weight dose of human insulin (Humulin R; Eli 

Lilly), PTT: 2mg/g body weight dose of pyruvate (20% w/v pyruvate). Blood glucose levels 

were determined at 15, 30, 60 and 90 minutes post-injection. EchoMRI (EchoMRI, Houston, 

TX, USA) was used to assess body composition (adiposity and lean body mass) (Robinson et 

al., 2013).  

2.3.2 PhenoTyper home cage and RotaRod  

The PhenoTyper homecage observation system (Noldus, The Netherlands; Robinson et al., 

2013) was used to assess locomotor and circadian activity. Activity was recorded for 7 

consecutive days and data extracted in 1 hour or 10-minute time bins. The first 3 hours of 

recording served as habituation to a new environment. The mean hourly activity was 

calculated over 24 hours. The animals had ad libitum access to a weighted amount of water 

and food and the amount consumed was recorded. The RotaRod test was carried out as 

described previously (Hull et al., 2019). Briefly, automated four lane accelerating RotaRods 

(UgoBasile NG Rotarod 1.3.2R) were used to study motor learning and motor coordination. 

Testing occurred on 2 consecutive days with 4 trials per day (5-minute intervals) using an 

acceleration from 1-45 rpm over 300 seconds.    

2.4 Insulin ELISA  

Blood serum samples from 5 hour fasted mice were used to quantify insulin levels using an 

insulin ELISA (Merck Millipore, Cat No: EZRMI-13K). This assay was carried out following 

manufacturers’ instructions and absorbance measured at 450 nm and 590 nm using a BMG 

Labtech FLUOstar Omega plate reader (BMG Labtech, Germany). 
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2.5 Ex vivo molecular characterisation  

2.5.1 Blood plasma collection  

20 μl of blood was collected from the tail of 5-hour fast mice into a BD Microtainer SST Tube 

(BD Biosciences, CA, USA). Blood tubes were left to coagulate at room temperature (RT) for 

30 minutes and centrifuged at 7500 g for 15 minutes at 4 oC. Serum was aliquoted and 

stored at -80oC.  

2.5.2 Brain, muscle and liver tissue  

All mice were fasted for 5 hours and an i.p. injection of insulin (10 mU/g body weight) was 

administered. Mice were sacrificed by neck dislocation; liver, muscle and brain tissue snap-

frozen in liquid nitrogen and stored at -80 oC. Tissue was prepared as previously described 

(Hull et al., 2019). In short, muscle or liver tissue were homogenized in RIPA lysis buffer (10 

mM Tris-HCl, 150mM sodium chloride (NaCl), 0.1% SDS, 1% triton, 1% sodium deoxycholate, 

5 mM ethylenediaminetetraacetic acid (EDTA), 1 mM sodium fluoride (NaF), 1 mM sodium 

orthovanadate (Na3VO4): pH=7.4). Brain tissue (whole brain) was homogenized in NP40 lysis 

buffer (1 M HEPES, 5 M NaCl, 0.1 M EDTA 1%, NP-40 (Sigma, Dorset, UK): pH = 7.6). Both 

NP40 and RIPA buffer were supplemented with PhosSTOP (Roche) and complete protease 

inhibitor (Roche) tablets (1 tablet / 10 ml). Homogenates were centrifuged (14,000g, 4 oC, 

20 min) and supernatant collected and stored at −80 °C.  For detecWon of tau, heat stable 

fractions were isolated by further heating the supernatant from brain tissue at 90 °C for 10 

minutes before further centrifugation (14,000g, 4 oC, and 10 min) and the resulting 

supernatant collected. 

2.5.3 Protein analyses 
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Protein analyses were carried out as described by Hull et al (Hull et al., 2019). In brief, using 

a BCA protein assay (Sigma, Dorset, UK) sample protein concentration was adjusted to a 

final concentration of 3 µg/µl. Samples were prepared with lithium dodecyl sulphate (LDS, 

ThermoFisher Scientific, Paisley, UK), 15 mM dithiothreitol (DTT; Sigma) and NP40 or RIPA 

lysis buffer. Samples were heated for 10 minutes at 70 oC and separated on a pre-cast 

NuPage 4-12% sodium Bis-Tris electrophoresis gels. Electrophoresis was conducted for 45 

minutes at 200 V in MOPS buffer and transferred onto a nitrocellulose (0.45 µm pore size, 

Invitrogen, UK) membrane (NuPage transfer buffer in dH2O with 10% methanol) at 25V for 1 

hour. Tris-buffered saline with Tween (TBST) (0.05% Tween, 50 mM Trizma base, 150 mM 

NaCl) was used for washing (3 x 15 minutes). After transfer, membranes were blocked (5% 

milk powder in TBST) for 1 hour at RT. Subsequently, membranes were washed in TBST 

(3x10 mins) and incubated overnight at 4 oC in primary antibodies. Primary antibodies 

(Suppl. Table 1) were prepared using 5% BSA, 0.05% sodium azide and TBST.  The following 

day membranes were washed and incubated in appropriate secondary antibodies (Suppl. 

Table 1).  Western blots were visualised using freshly prepared enhanced chemiluminescent 

substrate (ECL; 0.015% hydrogen peroxide (H2O2), 30 µM coumeric acid in 1.25 mM 

luminol). Images were captured using a Vilber-Fusion chemiluminescence-imaging camera 

and Fusion Software (PEQLAB).  

2.5.4 Quantification   

Coomassie Blue was used as a protein loading control for Western blots as previously 

published (Plucinska et al., 2014). Densitometric analysis of 16-bit Western blots images was 

performed using ImageJ (NIH) software. Data for phospho-markers were first normalised to 
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total protein levels prior to expression relative to PLBWT controls; all other markers were 

normalised to total protein and expressed relative to PLBWT controls.  

 

 

2.5.5 Quantitative polymerase chain reaction (qPCR)  

Quantitative PCR was carried out as described previously (Hull et al., 2019). Briefly, total 

RNA was isolated from liver and cortical mouse tissue using TRIReagent (Ambion, 

Warrington, UK) according to the manufacturer’s protocol. 1 µg of total RNA were used to 

synthesize cDNA using the bioline cDNA synthesis kit (Bioline, London, UK). Target genes 

were amplified using GoTaq qPCR Master Mix (Promega, Southampton, UK), in a Roche 

LightCycler® 480 System (Roche diagnostics, Burgess Hill, UK). The geometric mean of three 

of the most stable reference genes were used to normalise data. Gene expression was 

calculated using the comparative Ct method (2−δδCt). A list of primer sequences for qPCR 

are listed in Suppl. Table 2. 

2.6 Statistical analysis   

Statistical analysis was performed using Prism (V6, Graph-Pad). Nonlinear regression 

analysis with one-phase decay was used for habituation data (Robinson et al., 2013). 

Statistical analysis was preformed using a Shapiro-Wilk normality test to confirm a normal 

distribution, followed by a two-way ANOVA with Bonferroni post-hoc tests or two-tailed 

Student’s t-tests, where appropriate (i.e. paired comparison). For all data, p<0.05 was 

considered reliable. 

3. Results  
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3.1 Body weights and metabolic phenotype 

Body weights, glucose, insulin and pyruvate intolerance were examined over the 12-week 

MCC950 treatment study in 8-month old male PLB2TAU mice and their age-matched PLBWT 

controls. PLB2TAU mice had lower body weights compared to WT controls (-12%, Fig 1a) (Hull 

et al., 2019), MCC950 did not affect body weight (Fig. 1a, b) or body adiposity (Fig. 1c) as 

indicated by EchoMRI data. We next assessed metabolic control in PLB2TAU mice, (Hull et al., 

2019), and found PLB2TAU mice to be glucose intolerant and insulin resistant (Fig. 1d, f, h). 

Furthermore, following MCC950 treatment no improvement in glucose or pyruvate 

tolerance was detected in either PLBWT and PLB2TAU mice at 8 month of age (Fig. 1d-e, h-i). 

Interestingly, ITT tests revealed that both PLBWT (p<0.01, F (1, 84) =10.09, Fig. 1f) and 

PLB2TAU mice (p<0.01, F (1, 82) =9.878) displayed an overall drug effect following treatment. 

However, PLBWT mice presented with a slight resistance to insulin following MCC950 

treatment, reaching significance at the 60-minute time point (p<0.05). In contrast, PLB2TAU 

mice exhibited a slight improvement in insulin tolerance compared to vehicle treated 

PLB2TAU mice, with the 30-minute time point reaching significance (p<0.05). Analysis of total 

glycaemic excursion revealed a significant increase in area under the curve following 

MCC950 treatment in PLBWT mice (+38%, p<0.05, Fig. 1g). PLB2TAU mice presented with an 

overall genotype effect (p<0.01, F (1, 38) =8.816), with a significant reduction in overall 

glucose production following MCC950 treatment (-26%, p<0.01, Fig. 1e). PLB2TAU mice have 

elevated basal insulin levels compared to age-matched controls (Hull et al., 2019) and 

following MCC950 treatment, a significant decrease in serum insulin levels were detected (-

38%, p<0.01, Fig. 1j), but no changes were found in PLBWT mice (+55%, p>0.05, Fig. 1j). 

3.2 Circadian activity, habituation and motor function  
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Motor coordination and motor learning tests using a RotaRod task following MCC950 

treatment in PLBWT and PLB2TAU mice at 8-month of age revealed that only PLBWT mice 

displayed motor learning across the eight trials, independently of treatment (+30%, p<0.05, 

F (1, 18) = 8.089, Fig. 2a&b). There was no significant improvement in motor learning in 

PLB2TAU mice in either treatment or vehicle group. As in a previous study (Hull et al., 2019), 

analysis of motor activity during the 3 hour habituation period to a novel environment, 

revealed a significant reduction in activity in vehicle treated PLB2TAU mice cf. controls (Fig. 

2c). Data were fitted to an exponential decay function which indicated a significant decline 

in the plateau of PLB2TAU mice and in the rate at which motor activity declined (K) in PLB2TAU 

mice compared to vehicle treated WT controls  was detected (p<0.01, F (1, 318) = 7.95, 

p<0.0001, F (1, 318) = 18.20, respectively). No differences were exhibited in PLBWT mice 

following MCC950 treatment cf. vehicle treated controls (Fig. 2d). Following MCC950 

treatment analysis of the motor activity plateau in PLB2TAU mice revealed a slight but 

significant increase cf vehicle (p<0.05, F (1, 335) = 5.351, Fig. 2e). The overall decline in 

motor activity in PLB2TAU mice was further confirmed based on the reduction in the mean 

hourly activity across 24 hours, however, no differences were detected in either genotype 

following MCC950 treatment relative to vehicle treated controls (Fig. 2f). 

3.3 Tau and inflammatory markers in the brain 

PLB2TAU mice express mutated human tau (hTauP301L + R406W) resulting in increased 

levels of phosphorylated tau at both CP-13 and PHF-1 epitopes at 6 months of age (Hull et 

al., 2019; Koss et al., 2016). We here first compared gene expression of mouse and human 

tau following MCC950 treatment using qPCR. Quantitative PCR analysis of mRNA isolated 

from brain tissue indicated that there were no changes in mouse tau expression following 
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treatment or indeed between genotypes at 8 months of age (Fig.3b). Analysis of human tau 

mRNA expression also confirmed stable tau expression following MCC950 treatment in 

PLB2TAU mice (Fig. 3c). Following this, we analysed protein levels of tau phosphorylation in 

brain tissue following MCC950 treatment in both PLBWT and PLB2TAU mice at 8 months of age 

(Fig. 3d-f). Total tau levels quantified by the AT-5 antibody (3 bands) were unaltered in both 

genotypes following treatment (Fig.3d). Subsequently, we investigated phospho-tau levels 

in the soluble protein fraction. We confirmed increased levels of phospho-tau pathology at 

the PHF1 epitope (Ser396/ Ser404) in PLB2TAU mice compared to WT controls, both in 

vehicle and MCC950 treated mice (+100%, p<0.0001, F (1, 40) = 24.85, Fig.3e). There was a 

slight reduction in PHF1 levels in MCC950 treated PLB2TAU mice, but this did not reach 

significance (p=0.1617). Similar changes in tau phosphorylation were observed for the CP-13 

epitope (Ser202), with increased levels of tau phosphorylation in vehicle treated PLB2TAU 

mice (+76%, p<0.01, F (1, 38) = 2.248, Fig. 3f), and again a minor, not significant reduction 

following treatment (p=0.436). However, it is noteworthy that the PLB2TAU treatment group 

no longer differed significantly from both WT controls and the WT MCC905 cohort (p>0.05), 

indicative of a normalisation and hence a beneficial effect of MCC905 on P-Tau levels in the 

transgenic mice. 

3.4 Insulin signalling in the brain and peripheral tissue  

Next, we investigated changes in insulin signalling in peripheral and brain tissue from PLBWT 

and PLB2TAU mice following MCC950 treatment by probing for markers of the insulin 

signalling pathway (Fig. 4e and Suppl. Table 3). Protein analysis in skeletal muscle, a 

principal site of glucose uptake, showed similar changes in vehicle treated PLB2TAU mice as 

reported previously (Hull et al., 2019). A significant increase in phosphorylated IRβ 
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(Tyr1162/1163, relative to total expression) was detected in vehicle treated PLB2TAU mice cf. 

WT control (+38%, p<0.01, F (1, 39) = 3.159, Fig. 4b). Following MCC950 treatment, a 

decrease was observed (-21%, p<0.05, F (1, 39) = 8.506, Fig.4a). Total expression of the 

downstream marker IRS1 was significantly reduced in vehicle treated PLB2TAU mice at 8 

months of age compared to vehicle treated PLBWT controls (-46%, p<0.01, F (1, 39) = 9.986); 

MCC950 treatment let to a normalisation of IRS1 protein expression (+79%, p<0.01, F (1, 39) 

= 7.774). Furthermore, protein levels of phosphorylated JNK were elevated in vehicle 

treated PLB2TAU mice (+44%, p<0.05), but remained unchanged, following MCC950 in both 

PLBWT and PLB2TAU (Fig.4b). Vehicle treated PLB2TAU mice had lower levels of phosphorylated 

AKT and phosphorylated ribosomal S6 compared to WT vehicle controls (-30%, p=0.056, -

33%, p=0.06, respectively), indicative of muscle insulin resistance. Following MCC950 

treatment, protein levels of phosphorylated ribosomal S6 were unchanged in PLBWT mice. A 

significant decrease of phosphorylated AKT compared to vehicle treated controls was also 

detected (-38%, p<0.05). Protein levels of phosphorylated AKT and phosphorylated 

ribosomal S6 were significantly elevated in PLB2TAU mice, indicating normalisation after 

treatment (+48%, p<0.05, +83%, p<0.05, respectively, Fig.4b). No change occurred in overall 

total levels for IRβ, JNK, AKT and ribosomal S6 (Suppl. Fig. 2).  

Analysis of insulin signalling in liver tissue following MCC950 treatment revealed no 

significant changes in expression of phosphorylated IRβ (Tyr 1163/1163) relative to total 

levels in both vehicle and MCC950 treatment groups (Fig.4c). IRS levels in PLBWT mice were 

unaffected by treatment. However, there was a trend for increased levels in PLB2TAU mice 

following MCC950 treatment (+31%, p=0.09), suggesting some normalisation of insulin 

signalling. Protein levels of phosphorylated AKT and phosphorylated ribosomal S6 were 

reduced in vehicle treated PLB2TAU mice compared to WT controls (~25%, p<0.05), both 
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markers were not significantly affected by MCC950 as such but were however no longer 

significantly decreased c.f. controls. Phosphorylated JNK was elevated in vehicle treated 

PLB2TAU mice (+38%, p=0.0239) while there was a trend for diminished phosphorylated JNK 

in PLB2TAU mice only following MCC950 treatment (-37%, p=0.0617). No change in overall 

total levels for IRβ, JNK, AKT and ribosomal S6 (Suppl. Fig. 2) in both PLBWT and PLB2TAU mice 

were detected.  

Next, we examined insulin signalling in whole-brain tissue (Fig. 4d). Protein levels of 

phosphorylated IRβ (relative to total expression) were elevated in vehicle treated PLB2TAU 

mice compared to WT controls (+46%, p<0.01). Levels of phosphorylated IRβ were 

unaffected by treatment. Total IRS1 remained unaffected by MCC950 treatment in both 

genotypes but an overall genotype effect was seen in PLB2TAU mice (-~30%, p<0.01, F (1, 40) 

= 9.382). In contrast to peripheral tissues, phosphorylated AKT (+29%, p<0.01) and 

ribosomal S6 (+38%, p<0.01) were elevated in vehicle control PLB2TAU mice, and this was not 

affected by treatment in either PLBWT and PLB2TAU mice. Analysis of phosphorylated JNK in 

brain tissue revealed a significant increase in vehicle treated PLB2TAU mice (+20%, p<0.05), 

but no effect of treatment was detected. Protein levels of total IRβ, JNK, AKT and ribosomal 

S6 (Suppl. Fig. 2) in PLBWT mice remained unaffected by MCC950 (Fig 4d).  

3.5 ER stress in liver and brain tissue 

ER stress, reported to be a molecular link between obesity and the development of T2D, as 

well as being prominent in dementia (Ozcan, 2004), was next investigated (see also Suppl. 

Table 5). In liver, the mRNA expression of the ER chaperone, BiP, was significantly elevated 

in vehicle treated PLB2TAU mice compared to PLBWT controls (+60%, p<0.0001, Fig. 5a), and 

significantly reduced by C950 treatment (-18%, p<0.05). There was no such change in PLBWT 
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mice. No significant alterations were detected in gene expression of eIF2α or CHOP, but an 

overall genotype effect in expression of IRE1α was seen in PLB2TAU mice compared to WT 

controls (mRNA +54%, p<0.01, F (1, 39) =9.629). The most robust difference detected in 

PLB2TAU mice vs. controls was a dramatic increase in ATF6 expression (+195%, p<0.0001). 

Here, MCC950 treatment trended towards a lowering of ATF6 levels in PLB2TAU mice, but not 

in PLBWT controls (-23%, p=0.08). Changes in ER stress were further confirmed at protein 

level (Fig. 5d): A significant increase in BiP for vehicle control PLB2TAU mice compared to WT 

controls (+72%, p<0.01) was detected, and BiP levels were significantly lowered following 

MCC950 treatment (-18%, p<0.05). Phosphorylated eIF2α (+58%, p<0.01, F (1, 39) =8.485) 

and phosphorylated IRE1α (+78%, p<0.0001, F (1, 39) =29.69) showed an overall genotype 

effect in PLB2TAU mice but no effect of treatment in either genotype (Fig. 5.d). 

Following this, we next determined alterations in ER stress markers at gene and 

protein level in brain tissue of PLBWT and PLB2TAU mice (Fig.5b, e). In cortical tissue, and in 

contrast to liver tissue, a reduction in brain BiP expression (-45%, p<0.01, Fig. 5b) as well as 

eIF2α was detected in vehicle treated PLB2TAU mice c.f. controls (-27%, p<0.05). No changes 

were found in PLBWT following treatment for eIF2α, but an overall treatment effect on 

mRNA expression of BiP was revealed, with an increased expression in both PLBWT (+18%, 

p<0.05, F (1, 39) =4.640) and PLB2TAU mice (+40%, p<0.05, F (1, 39) =4.640). Analysis of 

mRNA expression in CHOP and ATF6 suggested no significant changes in either genotype 

following treatment, but an overall treatment effect of MCC950 on IRE1α expression, with 

an increase in both PLBWT and PLB2TAU mice (+~20%, p<0.05, F (1, 39) =6.470).  

Western blot data confirmed changes in ER stress related markers (Fig. 5e), i.e. a 

reduction in BiP protein levels (-36%, p<0.01), phosphorylated eIF2α (-32%, p<0.01) and 
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phosphorylated IRE1α (-26%, p<0.05) in vehicle treated PLB2TAU mice compared to age-

matched WT controls. Here, an overall treatment effect was again detected for both 

phosphorylated IRE1α and BiP with increased protein levels in PLBWT and PLB2TAU mice 

compared to vehicle treated controls, yet no changes in phosphorylated eIF2α protein levels 

following treatment. It is of interest that MCC950 treatment had normalised levels of all ER 

stress markers to those of WT vehicle controls (P>0.05).  

Overall, the tissue-specific ER phenotype of PLB2TAU mice, and the normalisation of 

particularly BiP by MCC950, independent of the directional shift in liver and brain in vehicle 

PLB2TAU mice cf. WT, is intriguing.  

3.6 Inflammatory changes in the brain and peripheral tissue 

We next determined inflammatory markers in liver tissue of PLBWT and PLB2TAU mice 

following MCC950 treatment (Fig. 6, and Suppl.Table 4). The mRNA expression of NLRP3 was 

not affected per se by genotype or treatment (Fig. 6a), this was further confirmed at protein 

level (Fig.6d). A strong trend for increased expression of IL-18 was obtained in vehicle 

treated PLB2TAU mice compared to WT controls (+50%, p=0.06, Fig. 6a), but no treatment 

effect was detected in either group, though WT and transgenic IL-18 expression levels were 

identical post-treatment (p>0.05). An overall genotype effect of enhanced IL-1β expression 

was also detected in PLB2TAU mice (+17%, p<0.01, F (1, 39) = 7.736), but not affected by 

treatment in either genotype (Fig. 6a). TNFα, a priming signal for NLRP3, was strongly 

elevated in vehicle treated PLB2TAU mice compared to WT controls (+55%, p<0.01). 

Importantly, TNFα and NFκB mRNA expression displayed an overall treatment effect in both 

genotypes (TNFα : -20%, p<0.05, F (1, 39) = 5.773, NFκB: -31%, p<0.05, F (1, 39) = 5.130). At 

protein level, an overall treatment effect was also confirmed based on changes in pro-
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caspase 1 (F (1,33) = 13.84, Fig 6d), alongside an overall genotype effect (F (1,33)= 4.859) in 

PLB2TAU mice. Though no gross difference in caspase-1 p10 was found in liver tissue of 

PLB2TAU mice vs WT, a genotype x treatment interaction (p<0.05, F (1,29) = 5.546)) was seen 

for pro-IL1β, due to higher basal levels in transgenic mice, reduced in PLB2TAU mice but not 

WT controls post-treatment. Together, our data suggest heightened liver inflammation in 

PLB2TAU mice, which was partially normalised by MCC950 treatment.  

In the brain, a basal increase in inflammatory status of PLB2TAU mice was indicated by 

differences in gene expression (Fig. 6b), i.e. elevations in NLRP3 (+30%, p<0.05, F (1, 39) = 

5.422), TNFα (+29%, p<0.05, F (1, 39) = 5.953, Fig. 6b), and NFκB (+36%, p<0.05, F (1, 39) = 

7.103) expression in cortical tissue of PLB2TAU mice relative to WT controls. Though no gross 

effect of MCC950 was observed and mRNA expression of Interleukin 1β (IL-1β) remained 

unaffected, treatment effects were indicated by IL-18 expression, significantly elevated in 

vehicle treated PLB2TAU mice compared to WT controls (+36%, p<0.05), and trending to be 

reduced by MCC950 (-19%, p=0.07). Normalisation of IL-18 and NFκB expression post 

treatment was further confirmed as levels were equal to WT controls (p>0.05).  

At protein level, no difference in NLRP3 was found for brain tissue of PLB2TAU mice vs WT 

controls, and no effect of MCC950 treatment (Fig. 6e). Unfortunately, WB detection of 

caspase and IL-1 protein levels was not reliably possible in brain tissue homogenates (data 

not shown), likely due to tissue-and cell-type specific expression.  As NLRP3 activation in the 

brain may be specific to microglia activation (Deora et al., 2020), we thus analysed levels of 

activated microglia (IBA1). An overall significant reduction of IBA1 was identified in PLB2TAU 

mice compared to PLBWT (-30%, p<0.05, F (1, 26) = 4.743). Though there was no gross effect 

of treatment in either genotype, we obtained a genotype x treatment interaction (p=0.0255, 
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F (1,29) = 5.546) and Iba-1 levels normalised to WT levels (p>0.05). Conversely, higher GFAP 

levels indicated astrogliosis in PLB2TAU mice cf WT controls (+100%, p<0.0001, F (1, 26) = 

36.61), here, no effect of treatment was apparent in either genotype (Fig. 6e). 

 

 

 

4. Discussion 

In the present study, we investigated the effects of MCC950, a novel small-molecule 

NLRP3 inhibitor, in hTAU expressing PLB2TAU mice at 8 months of age, alongside age-

matched PLBWT controls. MCC950 has recently been investigated as a potential therapeutic 

agent to reverse AD and T2D-related pathologies. Due to the novelty of this treatment, the 

efficacy in FTD models remained unknown, though a recent report strongly implicated the 

NLRP3 inflammasome in tau pathology (Ising et al., 2019). Here, we report that MCC950 

treatment improved insulin sensitivity and reduced circulating plasma insulin levels in 

PLB2TAU mice. MCC950 also resulted in changes in central and peripheral insulin signalling, 

inflammatory markers and ER stress signalling, both peripherally and centrally while CNS 

phospho-Tau levels were partially normalised.  

It is important to note that MCC950 treatment did not inhibit the heightened levels 

of NLRP3 in brain or liver tissue of PLB2TAU mice, which is in accordance with previous 

reports (Kammoun et al., 2018). We suggested that although protein and mRNA expression 

of the receptor itself were unaltered in PLB2TAU mice, downstream pathways directly 

associated with the inflammasome were affected. As a NLRP3 inhibitor, total protein levels 
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of NLRP3 does not need to change due to MCC950 inhibition, instead, effects on 

downstream pathways are likely to be affected. Accordingly, in the brain both IL-1β and IL-

18, which are regulated by the NLRP3 inflammasome (Felderhoff-Mueser et al., 2005; 

Freeman and Ting, 2016) were reduced with treatment.  

As previously reported (Hull et al., 2019), PLB2TAU mice exhibit impaired glucose 

handling, increased hepatic gluconeogenesis and insulin resistance assumed as a result of 

neuronal expression of human mutated tau, disturbing insulin signalling and protein 

handling. MCC950 treatment did not affect body weight or body composition, and no gross 

changes were observed in behaviour, systemic glucose homeostasis or hepatic 

gluconeogenesis in PLB2TAU mice or PLBWT controls, which is consistent with the results from 

a previous study (Kammoun et al., 2018). However, treatment significantly improved insulin 

sensitivity and decreased serum insulin levels in PLB2TAU mice. This is in line with previous 

reports that MCC950 enhanced insulin sensitivity in db/db mice (Zhai et al., 2018). Zhai and 

colleagues hypothesised these effects may be linked to the inhibition of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) signalling. Insulin resistance is 

increasingly associated with systemic chronic inflammation induced by various pro-

inflammatory cytokines including, but not limited to, interleukin (IL) – 18,  IL-1β, tumour 

necrosis factor-α (TNF-α) and NFκB (Dandona et al., 2004, 1998; Mantzoros et al., 1997; Ofei 

et al., 1996). These inflammatory cytokines are released following the activation of the 

inflammasome, which recruits and activates cytokine signalling proteins, to ultimately 

inhibit insulin receptor signalling by serine phosphorylation of IRS1/2 diminishing 

downstream insulin signalling (Akash et al., 2013; Donath and Shoelson, 2011; Fève and 

Bastard, 2012; Kahn et al., 2006; Shoelson et al., 2006). In agreement with our observations, 

previous data have shown that inhibition of NFκB can improve insulin resistance in mouse 
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models of diabetes (Arkan et al., 2005; Baker et al., 2011; Yekollu et al., 2011; Zhang et al., 

2010), further confirming the role of NLRP3 inflammasome in metabolic regulation.   

Despite mounting evidence suggesting a relationship between neurodegenerative 

diseases and neuroinflammation, there is a scarcity of studies assessing inflammasome 

interventions in tauopathy mouse models of dementia. Modulating inflammation offers the 

possibility to investigate inflammatory components and evaluate how inflammatory 

mediators contribute to tau pathology. Recently, Ising and colleagues reported that 

inhibition of NLRP3 inflammasome through crossing of the established Tau22 mice with 

mice deficient in caspase 1 (Ising et al., 2019) resulted in a reduction of hippocampal tau 

phosphorylation, which was suggested to be a result of a reduction in key tau kinases and 

phosphatases such as protein phosphatase 2 (PP2A) (Ising et al., 2019). In contrast, our data 

showed that MCC950 was unable to alter tau gene expression and only partially normalised 

tau phosphorylation in brain tissue of PLB2TAU mice. With regards to pathological tau, 

particularly the PHF1 epitope showed a positive normalisation, which may suggest that 

either a longer treatment or higher concentration may be required to bring about more 

significant changes in tau pathology in PLB2TAU mice. Though the inhibition of the NLRP3 

inflammasome was not sufficient to fully correct changes in tau pathology (and other factors 

that may be driving the progression of the disease in this mouse model of FTD), our data are 

indicative of a positive overall impact on FTD pathology.   

Moreover, we detected alterations in insulin signalling in both peripheral and brain 

tissue in PLB2TAU mice following MCC950 treatment. In skeletal muscle (primary site of 

insulin resistance), PLB2TAU mice displayed elevated levels of IRS1, AKT and ribosomal S6 

following MCC950 treatment, signifying decreased insulin resistance and increased insulin 

sensitivity in skeletal muscle. This finding is consistent with other studies suggesting 
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improved insulin sensitivity in skeletal muscle following an anti-inflammatory treatment in a 

model of T2D (Dagdeviren et al., 2016; Hong et al., 2009). Hong et al. revealed that IL-10 

(anti-inflammatory cytokine) treatment protects against diet-induced insulin resistance in 

C57BL/6 mice. We therefore suggest that MCC950 can inhibit inflammation thus improving 

metabolic status and insulin sensitivity in skeletal muscle. The inhibition of TNFα could 

potentially restore impaired insulin signalling in the PLB2TAU mice by alleviating the 

inhibitory effects of JNK on IRS1 (de Alvaro et al., 2004; Gao et al., 2002; Yuan et al., 2001). 

This same inhibitory effect on JNK was also detected in liver and brain tissue of PLB2TAU 

mice. However, no overall gross improvement in blood glucose levels were found.  In 

neurodegenerative diseases such as FTD, ER stress can cause inflammatory reactions via 

activation of NFκB (Kaneko et al., 2003). Yet, there remains a gap in our knowledge 

regarding the cell-specific mechanisms by which ER stress mediates inflammation. Hu et al. 

found a link between ER stress and TNFα through NF-κB signalling. They revealed that 

inhibiting NFκB and TNFα signalling resulted in a reduction in ER stress-induced apoptosis 

(Hu et al., 2006).  

As previously reported (Hull et al., 2019), PLB2TAU mice present with a 

downregulation of ER stress-related markers in brain tissue compared to WT controls. 

Following MCC950 treatment, our data indicated a subtle upregulation of ER stress markers, 

BiP and IRE1α in brain tissue of PLB2TAU mice, suggesting that alleviating inflammation 

response could potentially repair the protective ER function. The changes in ER stress 

signalling in the brain do not necessarily follow the changes in peripheral tissue, and a 

number of tissue-specific ER stress pathways were clearly identified here (e.g. enhanced 

ATF6 expression in liver, reduced BiP, eIF2α and IRE-1α in brain). Elevated ER stress in 

peripheral tissues is increasingly acknowledged as an important mechanism in the 
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development of T2D, and plays a key role in insulin resistance (Ozcan, 2004). While 

alterations of specific ER related markers such as BiP and eIF2α were for example reported 

in a diabetic mouse model following the inhibition of the NLRP3 inflammasome (Lerner et 

al., 2012), such pathways were not explored in the Tau22 model (Ising et al., 2019). Our data 

would suggest that inflammasome and ER-targeting treatments may have to be tailored 

towards tissue-specific pathways to achieve greater efficacy.  

In summary, our data provided valuable insights into the role of NLRP3 and the 

efficacy of MCC950 in the treatment of FTD and T2D-related pathologies. Even though 

MCC950 did not normalise all aspects of the diabetic phenotype of PLB2TAU mice, we 

demonstrated a number of beneficial effects such as increased insulin sensitivity, reversal of 

skeletal muscle insulin resistance, reduction in various inflammatory markers, partial 

normalisation of phospho-tau levels and ER stress markers of PLB2TAU mice.  
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Figure and Table Legends 

Figure 1: Metabolic phenotypes of PLB
WT

 and PLB2
TAU

 mice following MCC950 treatment. A 

two-way ANOVA was performed for quantification of (A) Body weights over the 12-week 

treatment period and (B) change in body weight (in %). (C) Fat and lean body composition 

determined via EchoMRI. (D-E) Glucose tolerance tests (GTT) and quantification of area 

under the curve (AUC) for total glycaemic excursions. (F-G) Insulin tolerance tests (ITTs) and 

quantification of AUC. (H-I) Pyruvate tolerance tests (PTTs) and quantification of AUC. (J) 

Quantification of insulin levels in serum. PLB
WT

 (vehicle) n=5, PLB
WT

 (MCC950) n=5, PLB2
TAU

 

(vehicle) n=5 and PLB2
TAU

 (MCC950) n=5. Data are shown as scatter as well as means +/- 

SEM, significances are given as ****p<0.0001, ***p<0.001, **p<0.01 &*p<0.05. $: 

treatment effect in both PLB
WT

 and PLB2
TAU

 mice . N.S. = not significant. 

Figure 2: Behavioural phenotype of PLB
WT

 and PLB2
TAU

 mice during PhenoTyper home cage 

activity analysis and RotaRod task following MCC950 treatment. Two-way ANOVA was 

performed for quantification of (A) Latency to fall from RotaRod and (B) Motor learning (trial 

1 vs trial 8) during RotaRod task. (C-E) Nonlinear regression analysis (one-phase decay) of 

activity (distanced moved, cm / 10 mins) during the 3h habituation period in the PhenoTyper 

home cage. Results for the goodness of the fit as well as statistical comparison between 

groups for: initial novelty-induced exploration at time 0 (Y0), exploration during plateau 

phase (stable y-axis level) as well as the rate constant of decline (K, inverse of time constant 

tau) as a proxy for the speed of habituation are indicated within the graphs. (F) Average 

hourly activity over 24 hours. PLB
WT

 (vehicle) n=13, PLB
WT

 (MCC950) n=10, PLB2
TAU

 (vehicle) 

n=11 and PLB2
TAU

 (MCC950) n=11. Individual data points and means (+/- SEM) are 
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illustrated, significances are indicated as ***p<0.001, **p<0.01, *p<0.05. N.S. = not 

significant. 

Figure 3: Expression of phosphorylated tau in PLB
WT

 and PLB2
TAU

 mice following MCC950 or 

vehicle treatment. (A) Representative Western blots of phosphorylated tau in both PLB
WT

 

and PLB2
TAU

 male mice. (B) Quantification of mouse Tau expression via qPCR and (C, two-

way ANOVA) and human Tau (student’s t-tests since no hTau was detected in WT samples) 

expression in transgenic mice. (D) Quantification of total tau (AT5) protein levels. A two-way 

ANOVA was performed for quantification of (E) individual bands and total expression for 

PHF1 positive tau species (relative to total Tau) and (F) individual bands and total phospho-

tau (CP13) levels relative to total Tau. PLB
WT

 (vehicle) n=13, PLB
WT

 (MCC950) n=10, PLB2
TAU

 

(vehicle) n=11 and PLB2
TAU

 (MCC950) n=11. Data are shown as scatter (individual data 

points) as well as means +/- SEM, significances are indicated as ***p<0.001, **p<0.01 

&*p<0.05. N.S. = not significant. 

Figure 4: Insulin signalling in the brain and peripheral tissues in PLB
WT

 and PLB2
TAU

 mice 

following MCC950 or vehicle treatment. (A) Representative Western blots for insulin 

signalling markers in the muscle, liver and brain. Significances (two-way ANOVA) are given 

for (B) muscle, (C) liver and (D) brain. (E) Simplified schematic illustrating insulin signalling 

cascade investigated. All phospho markers are expressed relative to total expression. PLB
WT

 

(vehicle) n=13, PLB
WT

 (MCC950) n=10, PLB2
TAU

 (vehicle) n=11 and PLB2
TAU

 (MCC950) n=11. 

Individual data points are shown as well as means +/- SEM, significances are given as : # 

overall genotype effect, ***p<0.001, **p<0.01, *p<0.05. N.S. = not significant. 
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Figure 5: ER stress gene expression and protein levels in liver and brain tissue of PLB
WT

 and 

PLB2
TAU

 mice following MCC950 or vehicle treatment. Gene expression of ER stress related 

markers in (A) liver and (B) brain tissue. (C) Western blot examples of phosphorylated IRE1α, 

BiP, and phosphorylated eIF2α in liver and brain tissue. Two-way ANOVAs were performed 

for quantification of ER stress markers in (D) liver and (E) brain tissue. (F) Simplified ER stress 

signalling cascade, illustrating pathways probed here. All phospho markers are expressed 

relative to total expression. PLB
WT

 (vehicle) n=13, PLB
WT

 (MCC950) n=10, PLB2
TAU

 (vehicle) 

n=11 and PLB2
TAU

 (MCC950) n=11. # genotype effect, $ treatment effect, ****p<0.0001, 

**p<0.01, *p<0.05. 

Figure 6: Inflammatory gene expression and protein levels in liver and brain tissue of PLB
WT

 

and PLB2
TAU

 mice following MCC950 or vehicle treatment. Gene expression in inflammatory 

related markers in (A) liver and (B) brain. (C) Western blots of inflammatory markers in both 

liver and brain tissue. (D&E) Two-way ANOVA was performed for quantification of ER stress 

markers in liver and brain tissue. PLB
WT

 (vehicle) n=13, PLB
WT

 (MCC950) n=10, PLB2
TAU

 

(vehicle) n=11 and PLB2
TAU

 (MCC950) n=11. # genotype effect, $ treatment effect, **p<0.01, 

*p<0.05. 

Supplementary Table 1 Antibodies used for protein expression quantification, “p-“= 

phospho-specific 

Supplementary Table 2 List of primers used for qPCR analysis.  

Supplementary Table 3 Insulin signalling results summary table. 

Supplementary Table 4 Inflammation results summary table. 

Supplementary Table 5 ER stress results summary table. 
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Supplementary Figure 1 Schematic of study timeline for MCC950 and vehicle treatment in 

PLB2TAU and PLBWT controls. 

Supplementary Figure 2 Total protein levels in the brain vs periphery in PLB
WT

 and PLB2
TAU

 

mice following vehicle and MCC950 treatment. (A) Representative Western blots for insulin 

signalling and ER stress markers. Two-way ANOVAs were performed for quantification of 

total ER stress markers in the (B) liver and (C) brain. Quantification of insulin signalling 

markers in the (D) muscle (E) liver and (F) brain.  PLB
WT

 (vehicle) n=13, PLB
WT

 (MCC950) 

n=10, PLB2
TAU

 (vehicle) n=11 and PLB2
TAU

 (MCC950) n=11. N.S. = not significant.   

Supplementary Figure 3 Coomassie loading controls for all blots. 
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Highlights 

- The metabolic role of NLRP3 was investigated in a murine tauopathy model, PLB2Tau. 

- The inhibitor MCC950 improved glucose tolerance and insulin signalling.  

- Inflammation and ER stress was ameliorated in brain and liver. 

- In the brain, a partial normalisation of phospho-tau levels was detected.  

- MCC950 partially recovered metabolic, inflammatory and FTD-relevant phenotypes.  
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