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Abstract
Population density modulates a wide range of eco-evolutionary processes including inter- 
and intra-specific competition, fitness and population dynamics. In holometabolous insects, 
the larval stage is particularly susceptible to density-dependent effects because the larva is 
the resource-acquiring stage. Larval density-dependent effects can modulate the expression 
of life-history traits not only in the larval and adult stages but also downstream for popu-
lation dynamics and evolution. Better understanding the scope and generality of density-
dependent effects on life-history traits of current and future generations can provide useful 
knowledge for both theory and experiments in developmental ecology. Here, we review 
the literature on larval density-dependent effects on fitness of non-social holometabolous 
insects. First, we provide a functional definition of density to navigate the terminology in 
the literature. We then classify the biological levels upon which larval density-dependent 
effects can be observed followed by a review of the literature produced over the past dec-
ades across major non-social holometabolous groups. Next, we argue that host-microbe 
interactions are yet an overlooked biological level susceptible to density-dependent effects 
and propose a conceptual model to explain how density-dependent effects on host-microbe 
interactions can modulate density-dependent fitness curves. In summary, this review pro-
vides an integrative framework of density-dependent effects across biological levels which 
can be used to guide future research in the field of ecology and evolution.
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Introduction

Population density is a key factor affecting life-history trait expression and trade-offs 
(Mueller et  al. 1991). Individuals from low-density populations often display higher 
expression of fitness-related traits (e.g., higher fecundity, larger size) compared to individu-
als from high-density populations (Dey and Joshi 2018; Prasad and Joshi 2003). This is 
because high-density increases intraspecific competition which limits per capita resource 
acquisition (Klepsatel et al. 2018). On the other hand, social interactions may benefit indi-
viduals through cooperative feeding (Denno and Benrey 1997), predator defence (Brev-
iglieri and Romero 2019), or potentially by sharing beneficial microbial communities 
that are horizontally transmitted between individuals in the group (idea developed in this 
paper).

Early life conditions influence fitness traits and life-history trade-offs (Nijhout 2015; 
Stearns 1982). As a result, early life conditions can induce long-lasting effects on fitness 
and population dynamics, shaping populations’ evolutionary trajectories, species distribu-
tion range and extinction risks (Criscuolo et al. 2008; Lindström 1999; Monaghan 2008). 
In insects, population density at larval stage modulates resource availability during devel-
opment that can have both negative and positive effects on development and fitness (Apple-
baum and Heifetz 1999). In non-social holometabolous insects in particular, competition 
for resources at the larval stage is known to underpin changes in larval growth as well as 
adult morphology and fitness (Yang 2001). Adults have limited scope to compensate for 
poor developmental conditions later in life, particularly in traits such as body size because 
adults do not moult (Belles 2011). Therefore, the larval stage is paramount for resource 
acquisition, with density-dependent effects being particularly notable. Interestingly, popu-
lation density at the larval stage can lead to faster adaptation to novel resources through 
increased intraspecific competition (Bolnick 2001), a factor that can increase the ability 
of populations to adapt to changing environments as well as population range shifts (Law-
rence et al. 2012). Thus, the implications of density-dependent effects during development 
are many. Yet, we still do not have a deep understanding of the far-reaching effects of early 
life conditions on individual life-history traits (Lindström 1999). For instance, we still do 
not know whether responses to high population densities are conserved across taxa or to 
what extent population density during development has carry-over effects to adulthood and 
offspring that mediate eco-evolutionary processes. As a result, we lack a generalised under-
standing of density-dependent effects of larval stage on life-history traits expression, trade-
offs and population dynamics (Applebaum and Heifetz 1999). This is likely a product of 
(1) the lack of a functionally consistent definition of density and (2) the absence of a taxo-
nomically diverse perspective about density-dependent effects on life history. With the cur-
rent decline in insect biodiversity—where the most affected insect species are holometabo-
lous—gaining a better understanding of how different taxa respond to density-dependent 
conditions during development can provide important knowledge of species’ life-histories 
that might be useful for population forecasts and conservation (Kunin 2019; Rada et  al. 
2019; Wagner 2019; Welti et al. 2020).

Here, we reviewed the literature on the plastic and evolutionary effects of population 
density at larval stage on life-history trait expression in non-social holometabolous insects. 
First, we provide a functional definition of density aimed to standardise the terminology 
used in density-dependent studies—for our own reference while writing the review and 
also for future studies, where a functional definition of density will allow for compara-
tive analysis across taxa. Next, we identify the biological levels at which density-dependent 
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effects are manifested in non-social holometabolous insects and review the empirical evi-
dences underpinning density-dependent effects on the larvae (density-dependent immedi-
ate effects), adults (density-dependent delayed effects), as well as populations (density-
dependent ecological effects) and across generations (density-dependent evolutionary 
effects) (Agnew et al. 2000; Bhavanam and Trewick 2017; Couret et al. 2014; Creland et al. 
1986; Gimnig et al. 2002; Hawley 1985; Morimoto et al. 2019a; Morimoto et al. 2017a). 
We then discuss recent evidences that density-dependent effects could affect the interac-
tions between the host and its microbial community (density-dependent microbial interac-
tions) and conclude by proposing a conceptual model to explain how density-dependent 
host-microbial interactions can modulate the strength of density-dependent effects across 
biological levels. We focused on non-social holometabolous insects as sociality adds an 
additional layer of complexity that is beyond the scope of this review. Overall, this review 
aims to guide and stimulate future research within an integrated framework of insect devel-
opmental ecology [see also (Mueller 1997) for a historical review in the topic and (Apple-
baum and Heifetz 1999; Stiling 1988) for reviews of density-dependence in other contexts].

How did we define density?

The literature of density-dependent effects in holometabolous insects is a fruitful ground 
for terms referring to population density, including (but not limited to) ‘low and high den-
sity’ [e.g., (Henry et al. 2020; Ower and Juliano 2019)], ‘aggregation’ (Inouye and John-
son 2005; Morimoto et al. 2018), ‘crowding’ [e.g. (Lushchak et al. 2019; Morimoto et al. 
2019a)] and ‘overcrowding’ (Ikeshoji and Mullai 1970; Roberts 1998) (the authors are 
themselves guilty of contributing to such panacea of terms). All of these terms capture 
the idea that in one treatment or condition, there are more individuals per unit of resource 
compared with another treatment or condition. However, the multiplicity of terms pre-
cludes appropriate comparisons of effect sizes within and between taxa. Questions such 
as ‘is high density equivalent to crowding or overcrowding, or both?’ and ‘what is the dif-
ference between the levels of crowding across species (e.g., maggots vs. caterpillars)?’ are 
highly-species and context-dependent.

Ideally, the terminology should reflect changes in density relative to the natural history 
of a species [see also (Travis 2020) for an appeal to natural history] but this is not always 
possible. The terminology is important because the effects of density can vary greatly 
even with small differences in experimental design for the same species [see e.g., (Mueller 
et al. 1993; Roper et al. 1996)] and thus a ‘ruler’ can help estimate and compare density-
dependent effects and gain insights across taxa. In this Review, where we had to navigate 
through existing terminology, we opted to define density in a broad sense which allowed 
for general patterns of ‘low’ and ‘high’ density conditions across species to be derived 
(for consistency, we refer to different densities as low and high densities throughout the 
paper). In particular, we refer to low density treatments that include anything from one to 
few individuals whereas high density treatment includes large groups, aggregates and over-
crowded conditions (Fig. 1a). This coercion should be taken with caution, but this broad 
definition allowed us to draw general conclusions. Note that our functional terminology 
does not attempt to provide the solution for the issue of defining low versus high density 
for each species and context. Nonetheless, this definition could potentially be adopted more 
widely in studies of density-dependent effects in insects; terminology is certainly an area 
for further improvements in the field.
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Multiple biological levels of density‑dependent effects

Density-dependent effects are observed at multiple biological levels. Here, based on a 
previous framework (Mueller 1997), we classified these levels as (Fig. 1b):

1. Immediate density-dependent effects, which refers to density-dependent effects that occur 
at the same stage at which population density is sensed. For instance, density-dependent 
effects on larval traits in response to larval density.

2. Delayed density-dependent effects, which refers to effects at future life stages in the 
response to the developmental population density. For instance, density-dependent 
effects on adult traits in response to larval density.

3. Ecological density-dependent effects, which refer to the density-dependent effects at the 
population level as a result of immediate and delayed density-dependent effects. For 

(a)

(b)

Fig. 1  Density-dependent effects across biological levels. a A simple functional definition for the terminol-
ogy of density in insects. We considered low density studies that investigated single individuals (in but-
terflies) or small groups (in flies) and high density, studies that investigated large groups, crowding and 
overcrowding conditions. Note that low and high density are relative to each other and to the study species 
(i.e., low density in caterpillars is different from low density in maggots). This classification was necessary 
to conciliate the variety of terms used in density-dependent literature in ways that general insights could 
be obtained. We propose that, if this terminology is used more widely, crowding should reflect changes in 
density up to the point where the costs of density on life-history trait accelerates. For higher densities (over-
crowding; light grey shaded region), the expression of life-history traits is expected to reach a minimum 
viable level, after which life-history trait expression does not decrease due to selection (dark grey shaded 
region). b The biological levels of density-dependent effects
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instance, changes in social interactions between individuals of a population in response 
to density.

4. Evolutionary density-dependent effects, which refer to density-dependent adaptations 
and trans-generational effects, emerging from the combination of effects in previous 
biological levels. For instance, density-dependent effects on offspring traits in response 
to parents’ density.

At each biological level, the mechanisms underpinning the density-dependent effects 
likely vary. For example, immediate density-dependent effects are likely a result of resource 
acquisition and direct intraspecific competition, delayed density-dependent effects result of 
resource allocation trade-offs and plasticity, and evolutionary density-dependent effects is 
a combination of plasticity (within-generations) and evolutionary history (between gen-
erations). This classification allowed us to organise the evidence gathered here, provid-
ing a starting-point for interpreting density-dependent effects across taxa with appropriate 
speculation of the underlying mechanisms. Finally, we will define an additional biologi-
cal level, host-microbe interactions, subject to density-dependent effects (Fig.  1b). Note 
that this classification does not preclude the density-dependent effects of one level to influ-
ence another (e.g., density-dependent effects on individual reproduction affects population 
growth and vice versa), but it allows for the formulation of clear expectation of processes 
leading to density-dependent effects.

Density‑dependent effects on life‑history traits

Immediate and delayed density‑dependent effects

Immediate and delayed plastic responses to density determine individual fitness and are 
the roots of long-term density-dependent effects. In general, increasing larval density 
strengthen life-history trade-offs and lead to longer larval developmental time (but see sec-
tion on eco-evolutionary adaptations below), lower adult body mass and reproductive suc-
cess, as well as both larval and adult survival. For instance, in mosquitoes and flies, high 
larval density increases developmental time [flies: D. melanogaster and Ceratitis capi-
tata; (Diamantidis et  al. 2019; Henry et  al. 2018); mosquitoes: Ae. aegypti and A. gam-
biae; (Agnew et al. 2002; Couret et al. 2014; Gimnig et al. 2002; Muriu et al. 2013)]. In 
addition, high larval density also decreases larval and adult body mass and reproductive 
success [flies: D. melanogaster and B. tryoni (Diamantidis et  al. 2019; Morimoto et  al. 
2016, 2017a, 2019a); mosquitoes: Ae. aegypti, Ae. Albopictus, A. gambiae and Culex 
quinquefasciatus; (Agnew et al. 2000; Davis et al. 2016; Gimnig et al. 2002; Maciá 2017; 
Manorenjitha and Zairi 2012)] as well as larval and adult survival [flies: Drosophila wil-
listoni and C. capitata (Baldal et  al. 2005; Diamantidis et  al. 2019; Dukas et  al. 2001; 
Pearl et al. 1927); mosquitoes: Ae. aegypti, A. gambiae and C. quinquefasciatus (Agnew 
et  al. 2000, 2002; Jannat and Roitberg 2013)]. However, adult survival was not affected 
by larval density in Ae. albopictus or Ae. sierrensis (Hawley 1985; Reiskind and Louni-
bos 2009) and high larval density increases larval survival in experimental evolution D. 
melanogaster lines [e.g., (Shenoi et al. 2016a)] at the expense of energy efficiency (Mueller 
1990, 1997). High larval density also leads to an increase in adult lipid storage in D. mela-
nogaster (Zwaan et al. 1991)] but a decrease in adult lipid storage in B. tryoni (Morimoto 
et al. 2019a) even in sugar-rich diets (Nguyen et al. 2019). Moreover, high larval density 
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increases local temperature (Appleby and Credland 2007) and promotes a generalised 
stress response which can mediate individual’s thermotolerance (Henry et al. 2018). Given 
the ongoing environmental changes and the rapid decline in insect species worldwide (Wil-
son and Maclean 2011), it is appealing that population density could mediate the ability of 
populations to overcome extreme temperature shocks (Lushchak et al. 2019). Similar gen-
eral effects of larval density are observed in Hymenopterans (Kuno 1962; Milonas 2005; 
Taylor 1988) although more studies in parasitoids, which poses a more complex relation-
ship between developmental density and resource (e.g., host size), are needed.

Despite the general trends described above, some fly species benefit from high density 
via faster developmental pace. For instance, high larval density in some blowfly and fruit 
fly species can lead to benefits of group feeding that shortens developmental time [e.g., 
Calliphora vicina (Saunders and Bee 2013); Phormia regina (Green et al. 2002); B. tryoni 
(Morimoto et al. 2018). In blowflies in particular, shorter developmental time in high larval 
densities is likely an evolutionary response to the nutritional ecology of Calliphoridae spe-
cies which feed on carcass, an ephemeral resource attractive to many species. High larval 
density could signal to the larva that the resource is likely to become fully depleted in a 
shorter period of time due to intra- and inter-specific competition, thereby accelerating lar-
val development (Reis et al. 1999). Nonetheless, these species still respond to high larval 
densities by developing into smaller pupae and adults [C. vicina and C. vomitoria (Ireland 
and Turner 2006; Saunders et al. 1999)] and having lower adult reproductive success [C. 
vicina (Fantinou et al. 2008)].

In Coleoptera and Lepidoptera, the responses to larval density are less consistent across 
taxa with some species displaying positive and others negative responses to larval density. 
For example, some species respond to increased larval density by increasing the number 
of larval moults and delaying development [i.e., Lepidoptera: Pararge aegeria and Sesa-
mia nonagrioides (Fantinou et  al. 2008; Gibbs et  al. 2004); Coleoptera: Zophobas atra-
tus (Quennedey et  al. 1995)], other species maintain the same [Tenebrio molitor; (Con-
nat et  al. 1991; Weaver and McFarlane 1990)] or even display faster development with 
increasing larval densities [Lepidoptera: Bicyclus anynana (Bauerfeind and Fischer 2005) 
and Chiasma clathrata (Välimäki et  al. 2013)]. High larval densities can have negative 
[butterfly: Pieris napi (Kivelä and Välimäki 2008)] or positive effect on larval survival by 
increasing larval feeding efficiency [‘feeding facilitation’ (Nahrung et al. 2001)] and group 
anti-predatory defence [e.g., (Aukema and Raffa 2004)]. For instance, in burying beetles 
Nicrophorus vespilloides, a species where adults display parental care for the larvae, larval 
density facilitates feeding depending on the level of parental care. In the presence of paren-
tal care, there is a negative relationship between larval density and larval mass, likely due 
to increased larval competition. In the absence of parental care, there is a quadratic rela-
tionship, with larval mass being maximised at intermediate larval densities because groups 
of larvae could better penetrate the carcass upon which they were feeding (Schrader et al. 
2015). Feeding facilitation also increased larval survival in the butterfly Chlosyne lacinia 
(Clark and Faeth 1997). In the moth Hylesia nigricans, high larval density allow for groups 
to display longer anti-predatory responses when exposed to acoustic stimuli from preda-
tors (Breviglieri and Romero 2019), a behaviour that likely increase individual and group 
survival probabilities. In first instar larvae of the mountain pine beetle Dendroctonus pon-
derosae (Cole 1973) and the eucalypt-feeding beetle Chrysophtharta Agricola, high larval 
density also result in higher larval survival likely due to the combination of both feeding 
facilitation and anti-predatory responses (Nahrung et al. 2001).

Another way in which larval density can exert positive effects on Lepidoptera and 
Coleoptera larvae (and potentially in other insect orders) is by increasing immune function 
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(known as ‘density-dependent prophylaxis’) which increases resistance against parasites as 
well as bacterial and viral infections (Barnes and Siva-Jothy 2000; Cotter et al. 2004; Wil-
son and Cotter 2008; Wilson and Graham 2015) [but see (Piesk et al. 2013) for contrary 
evidence in P. napi]. Nonetheless, increasing larval density still lead to lower adult body 
mass survival in both Coleoptera and Lepidoptera [Lepidoptera: Elachista sp, Cnaphalo-
crocis medinalis, Plodia interpunctella, S. nonagrioides, Lymantria dispar, P. aegeria and 
Chiasma clathrata (Dai et al. 2019; Fantinou et al. 2008; Gage 1995; Gibbs et al. 2004; 
Lazarevic et al. 2004; Reilly and Hajek 2007; Välimäki et al. 2013); Coleoptera: Calloso-
bruchus maculatus, O. sulcatus and Gnathocerus cornutus (Clark et  al. 2011; Creland 
et al. 1986; Savvidou and Bell 1994; Smallegange and Tregenza 2008; Tsuda and Yoshida 
1985)]. These discrepancies likely emerge through the combination of species-specific 
responses to density as well as experimental design.

Density-dependence can be a signal to the level of competition individuals are likely 
to encounter in the future. Thus, immediate and delayed plastic responses to popula-
tion density are thought to represent ways through which individuals attempt to max-
imise fitness given the level of expected competition in the population. For instance, D. 
melanogaster males raised in high density evolve higher courtship rates (Shenoi et al. 
2016b) and invest relatively more in ejaculates relative to their body mass compared 
with males from low density larval environments (Wigby et al. 2016) although they do 
not increase the expression levels of seminal proteins (McGraw et al. 2007). These plas-
tic responses can be tailored to maximise fitness in habitats where population density 
is high and sperm competition is likely, although males from high larval density have 
lower fertilization success in general (Morimoto et al. 2016, 2017a). Males of the army-
worm Mythimna separata (aka Pseudaletia separata) from high larval have significantly 
more apyrene (non-fertilising) sperm than males from solitary larval environments, but 
with no differences in eupyrene (fertilising) sperm (He and Miyata 1997). While apyr-
ene sperm is not capable of fertilising eggs it may nonetheless affect egg fertilisation in 
sperm competitive contexts (Silberglied et al. 1984; Watanabe 2016). Similarly, in the 
gum-leaf skeletonizer moth Uraga lugens, males from high larval densities invest more 
in testis size but have relatively shorter wing and antenna length, revealing a trade-
off between investing in finding mates versus winning paternity (Johnson et al. 2017). 
Female antenna and wing sizes are density-independent or social-dependent, respec-
tively, which uncovers sex-specific responses to population density at the larval stage 
(Johnson et  al. 2017). In the moth P. interpunctella, males from high larval density 
emerge with relatively larger abdomens, testis, and with greater number of sperm when 
reared in high density conditions (Gage 1995), which can be interpreted as an adapta-
tion to higher sperm competition in high-density population (Gage 1995). Experimental 
evolution in P. interpunctella also revealed that males evolving in low (not high) larval 
density transfer overall more sperm and both sexes invest less in immunity (McNamara 
and Simmons 2017), contradicting the predictions of standard density-dependent theory 
and density-dependent prophylaxis (see above). Interestingly, high larval density com-
pounded with food shortage leads to plastic phenotypic adaptions in the adult of the 
flour moth Ephestia kuehniella whereby males have lower body weight but dispropor-
tionately longer wings which could facilitate migration (Bhavanam and Trewick 2017). 
Whether or not migratory individuals have higher fitness remains to be tested (Stamps 
2006). From a spatial perspective, high larval density in the caddisfly Cheumatopsyche 
sp. (Trichoptera) leads to homogenous distribution of individuals in space, where some 
individuals are displaced to the edge of the group in poor habitats (Glass and Bovb-
jerg 1969). Displaced individuals might experience poorer environments and emerge 
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as adults that are prone to dispersal, thereby influencing population range distribution 
(Dethier 1959) as well as generating spatial sorting of genotypes that can lead to spatial 
evolution (Shine et al. 2011) (Fig. 2a). This remains untested but is an important topic 
for future studies. Lastly, it is important to mention that low larval density is positively 
associated with direct development rather than diapause in the butterfly C. clathrata 
(Välimäki et al. 2013), suggesting that larval density can also modulate modes of devel-
opment. More studies are needed in this area.

(b)(a)

(d)(c)

Fig. 2  Population density, spatial sorting and density-dependent effects on host-microbe interactions. a 
High larval densities may displace individuals (and consequently, their genotypes) towards the periphery 
of the population. These individuals at the periphery might be more prone to migrate (either as a response 
to density per se or as a result of other factors [e.g., interactions between density and nutrition; see main 
text]. This can in theory contribute to population range expansion and spatial evolution. b Density-depend-
ent host-microbe interactions can generate the potential for accelerated or decelerated growth rates during 
larval development. As a result, maximum growth rate might be achieved faster or slower depending on the 
population density and the microbial community present in the environment. Changes in maximum growth 
rate are not displayed here but are nevertheless possible. c As microbes can serve as food, host-microbe 
interaction can modulate the rate of habitat degradation by population density. Scenarios where microbes 
increase (orange) or decrease (pink) environmental quality are shown. d At the population level, density-
dependent host-microbe interactions can mediate population growth rates. For example, population growth 
rates may increase in low (red) or high (turquoise) densities due to the sum of the density-dependent effects 
on host-microbe interactions at the individual level
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Ecological and evolutionary density‑dependent effects

Larval density-dependent effects can modulate how a species interact with itself (e.g., 
intraspecific competition) and with other species (e.g., predators, preys), or both [e.g., 
(Arditi et al. 2001; May et al. 1981) This will determine both the ecological significance 
of the species within the ecosystem (ecological density-dependent effects) as well as the 
evolutionary trajectory of the species over generations (evolutionary density-dependent 
effects) [e.g., (Cappuccino 1992; Hassell and May 1986; Liu et al. 2007).

Many insights into within-species ecological and evolutionary density-dependent 
effects emerged from studies in Drosophila (Mueller 1997). For instance, D. mela-
nogaster populations evolved at high larval densities displayed increased population 
growth rates, which is the opposite pattern observed for populations evolving at low 
densities that evolved reduced population growth rates. (Mueller and Ayala 1981; Muel-
ler et  al. 1991); this is evidence for the evolution of increased population carrying-
capacity at high population densities. In addition, D. melanogaster larval feeding rates 
(a measure of larval competitive ability), cannibalism, and ability to withstand toxic 
waste (i.e., ammonia and urea) also increase (although not for all species) in populations 
experiencing or evolving high larval densities [(Belloni et al. 2018; Borash et al. 1998; 
Borash and Shimada 2001; Vijendravarma et al. 2013); see also review in (Joshi et al. 
2001)], albeit creating a trade-off with larval energy efficiency (Joshi and Mueller 1996; 
Joshi et al. 2001; Mueller 1990). However, this trade-off is not necessarily observed in 
other Drosophila species (Nagarajan et al. 2016) suggesting that the natural history of 
species may lead to different responses to population density. Interestingly, even within 
a single cohort of individuals in a high-density population, density-dependent effects 
generate and maintain genetic polymorphism. This is because individuals that develop 
faster (early developers) have higher feeding rates but lower viability and tolerance to 
toxic waste compared with individuals that develop later (late developers) (Borash et al. 
1998). Furthermore, density-dependent selection also leads to differential allelic com-
position for a single locus foraging (for) gene, corroborating that high population den-
sity can maintain genetic polymorphism in populations (Sokolowski et al. 1997). Popu-
lation density at the larval stage also mediates plastic reproductive strategy responses at 
the population level which ultimately affects population survival and growth. For exam-
ple, D. melanogaster populations with individuals raised in high larval density have sig-
nificantly faster reproductive rates but lower survival than populations with individuals 
from low larval density or populations with mixed compositions (low and high larval 
density individuals) (Morimoto et al. 2016, 2017a). Such changes in reproductive rate 
also lead to changes in sexual selection and sexual conflict (Morimoto et  al. 2016, 
2017a) [see also (Prasad et  al. 2001)]. In addition, parental larval density can affect 
offspring body mass, opening up the potential for long-term trans-generational effects of 
larval density (Morimoto et al. 2017a).

Although relatively less common, studies in other species have allowed us to gain 
insights into both within- and between-species density-dependent effects of larval den-
sity. For instance, previous studies have shown that when density of larvae (prey) from 
the shield beetle Cassida rubiginosa increased, they were more likely a preferred target 
for the generalist paper wasp parasitoid Polistes dominulus, which showed a type III 
functional response to prey density (Schenk and Bacher 2002). Moreover, higher den-
sities of strawberry ground beetle Pterostichus melanarius larvae (predator) are more 
efficient at reducing biomass of two slug species (between-species density-dependent 
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effects), although higher larval density also resulted in higher cannibalism rates due to 
stronger intraspecific competition (within-species density-dependent effects) (Thomas 
et al. 2009). Together though, these findings demonstrate that larval density-dependent 
effects have long-lasting ecological and evolutionary consequences to populations, spe-
cies, and ecosystems.

Host‑microbe interactions as a missing factor

Based on the evidences provided above, one could ask: why do responses to high larval 
density vary greatly between insect populations, species and Orders? A definite answer 
to this question is difficult to answer due to the lack of empirical work across taxa. While 
part of this emerge from differences in experimental design, it is likely that some portion 
of this variation in responses to larval density are rooted in differences of developmental 
biology processes. For instance, while Diptera, Coleoptera and Lepidoptera larvae need 
to reach a threshold size (critical mass) for pupation, Diptera has a fixed number of larval 
instars while Coleoptera and Lepidoptera larvae possess flexibility on the number of larval 
instars that can precede metamorphosis (Belles 2020; Mirth et  al. 2005; Truman 2019). 
The last stages of Coleoptera and Lepidoptera larval development are particularly sensitive 
to nutrients, and commitment to metamorphosis can be adjusted based on environmental 
and nutritional conditions (Belles 2020; Truman 2019). The ecological factors that inter-
act with population density [e.g., temperature (Pétavy et al. 1997)] can also contribute to 
developmental plasticity. Despite this, many ecological factors have not yet been fully inte-
grated within the framework of density-dependent effects in developmental ecology. In the 
next section, we discuss recent evidence that shows that the relationship between individu-
als and microbes can promote developmental plasticity and enable individual development 
in challenging conditions. We then argue that host-microbe interactions can be an addi-
tional unit of density-dependent effects, which can mitigate or accentuate density-depend-
ent effects across all biological levels.

Interactions between host and microbes

Microbial communities can modulate the expression of life-history traits in insects via an 
intricate communication network involving the immune system (Newton et al. 2013) and 
which, as a result, affect the expression of traits not only related to the immune system 
(Genta et al. 2006; Gonzalez-Ceron et al. 2003) but also to metabolism and development 
(Ben-Yosef et  al. 2014, 2015; Morimoto et  al. 2019b; Warnecke et  al. 2007; Zhou et  al. 
2007). Microbial communities also help insect hosts overcome chemical defenses (Ben-
Yosef et al. 2015), acquire nutrients (Ben-Yosef et al. 2014; Bing et al. 2018; Sannino et al. 
2018), and serve as direct source of nutrients (Nguyen et al. 2019). Furthermore, microbes 
also interact with insect host to modulate adult oviposition behaviour (Jose et  al. 2019), 
foraging (Wong et al. 2017), reproductive success (Morimoto et al. 2017b) and potentially 
mate choice (Sharon et al. 2011) [but see (Leftwich et al. 2017)]. Microbes are therefore 
the ‘gatekeepers of organism fitness’ (Colombani and Andersen 2020).

Population density can influence host-microbe interactions directly, via horizontal 
transmission of strains through social interactions, or indirectly, by modulating the diver-
sity of strains present in a given population as well as the physico-chemical conditions 
of the substrate for microbial growth. For instance, increased larval density is associated 
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with accumulation of toxic compounds (i.e., urea, ammonia) excreted in the substrate 
which are known to modulate the microbial composition of the substrate [see e.g., (Henry 
et al. 2020)]. The underlying mechanisms remain unknown, but at higher larval densities, 
chemical changes (e.g., pH) likely favour the growth of some microbial strains over others 
(Gibson et al. 1988; Rousk et al. 2009; Russell and Dombrowski 1980). Moreover, micro-
bial strains might interact with each other via metabolites in order to promote growth of a 
cohort of strains which together, influence larva’s development and life history trait (Con-
suegra et al. 2020; Lesperance and Broderick 2020; Sommer and Newell 2019). Given that 
a large proportion of microbes are acquired from interactions between the host and the sur-
rounding environment, larval density might be important, yet an overlooked factor, in mod-
ulating host-microbe interactions (Broderick et al. 2004; Colman et al. 2012; Tang et al. 
2012; Vacchini et al. 2017; Yun et al. 2014; Zhang et al. 2018; Zhao et al. 2017). Below, 
we summarise the main consequences of host-microbe interactions (especially microbes 
in the gut) to insect life-history trait expression while discussing potential ways through 
which larval population density could influence these effects. Note that our goal was not 
to review the (gut) microbe literature as extensive reviews have been published elsewhere 
[e.g., (Bahrndorff et  al. 2016; Bordenstein and Theis 2015; Douglas 2009, 2015, 2019; 
Lesperance and Broderick 2020; Lewis and Lizé 2015)]. Instead, our aim is to demonstrate 
potential links between population density and (gut) microbe effects on fitness.

Density‑dependent effects on host‑microbe interactions and the modulation 
of fitness curves

Insects depend on their microbiome for successful development which opens up the 
possibility for density-dependent effects to modulate host-microbe interactions in ways 
that benefit (or harm) individuals. We therefore propose that host-microbe interaction 
is an additional biological level on its own right which is subjected to density-depend-
ent effects. For instance, the mosquitoes Ae. aegypti, A. gambiae and Georgecraigius 
atropalpus fail to complete larval development in the absence of commensal microbes 
(Coon et  al. 2014; Correa et  al. 2018). The developmental arrest is rescued upon re-
inoculation with the enterobacteria Escherichia coli into germ-free larvae (Coon et al. 
2014), suggesting that host-microbe interactions drive development. Similar effects 
were described in the mosquito C. quinquefasciatus where the presence of the phospho-
rus-rich bacterium Pseudomonas aeruginosa increases growth rate in phosphorous-poor 
diet (Peck and Walton 2006) although high concentration of the phosphorus-rich bac-
teria inhibited the development of another mosquito, Culex tarsalis, which highlights 
the species-specific interactions amongst host and microbes (Peck and Walton 2006). 
Studies in D. melanogaster also showed that some microbial strains can decrease larval 
survival and adult sizes due to toxic compounds and competition for nutrients (‘ani-
mal-microbe competition’) [see both (Trienens et  al. 2010; Wertheim et  al. 2002) for 
similar results]. Conversely, two microbes—Lactobacillus plantarum and Acetobacter 
pomorum—can rescue developmental time and larval growth in nutrient-deficient diets 
by acting on major hormonal signalling pathways (i.e., Insulin and TOR) (Shin et  al. 
2011; Storelli et al. 2011, 2018; Westfall et al. 2019). Interestingly, these microbes rely 
on metabolites from each other to grow and to provide developmental benefits to the 
host (Consuegra et al. 2020; Henriques et al. 2019; Sommer and Newell 2019). In par-
ticular, a recent study has revealed that the cross-feeding between L. plantarum and A. 
pomorum is mediated by lactate, amino acids, and vitamins (e.g., biotin) which together 
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promote microbial growth that stimulate the endocrine and metabolic systems of D. 
melanogaster larvae (Consuegra et al. 2020). These interactions are important because 
high larval density is known to decrease the availability of protein in the diet (Klepsatel 
et  al. 2018) and the cross-talk between microbes can buffer against nutritional stress. 
Also, microbial strains modulate adult reproductive success and offspring body mass in 
D. melanogaster (Morimoto et al. 2017b), corroborating the long-lasting effects of host-
microbe interaction. Together, these findings reveal a complex host-microbe relation-
ship that modulates host development and fitness.

Population density can modulate the microbial diversity in the substrate as well as 
in the population and facilitate the horizontal transmission of microbial strains between 
individuals due to increased levels of social interactions. In D. melanogaster larvae from 
high density conditions show a trend for elevated microbial richness (Henry et al. 2020). 
Likewise, the diet of high density larval conditions showed significantly higher micro-
bial richness and diversity compared to the diets of low density larval conditions (Henry 
et al. 2020). Microbial growth is also known to buffer against nutritional stress caused 
by high larval density, aiding the expression of life-history traits such as pupal weight, 
adult weight and to a smaller extent, lipid storage (Nguyen et al. 2019). Microbes can 
also be food supplements for the developing larvae and thus, an important way to modu-
late the strength of density-dependent effects (Augustinos et al. 2015; Drew et al. 1983; 
Kaznowski et al. 2005; Salem et al. 2014). Thus, microbial diversity, transmission, and 
host-microbe interactions are likely density-dependent.

In this study, we propose that the effects of density-dependence on host-microbe 
interactions can modulate the distribution of life history trait values, the shape of indi-
vidual’s fitness curves and ultimately, the opportunity for—and strength of—selection in 
populations. Using the framework proposed by (Edelaar and Bolnick 2019), we hereby 
describe a conceptual model of how density-dependent effects on microbe interactions 
can affect individual and population fitness. According to the framework in (Edelaar 
and Bolnick 2019), a non-stochastic Gaussian fitness curve Wij links trait and fitness 
whereby changes in individual fitness through time is given by

[reproduced integrally here from (Edelaar and Bolnick 2019) for clarity]. Wij refers to the 
fitness of an individual i in environment j. xij refers to the value of trait x of individual i in 
environment j, Xj is the optimum trait value for environment j, �j is inversely related to the 
strength of stabilizing selection in trait x in environment j and cj is the maximum achiev-
able fitness for environment j (Edelaar and Bolnick 2019). Below, we firstly explain the 
meaning of each of the terms according to (Edelaar and Bolnick 2019) followed by recent 
evidence which suggest that density-dependent effects can act upon each of the terms:

• �Wij

�xij

�xij

�t
 represents the change in individual fitness through time via temporal changes 

in individual’s trait value; it is subdivided into two components: constitutive growth 
(i.e., growth rate) and the interaction between the trait value and the environment 
(Edelaar and Bolnick 2019).

  Density-dependent effects on host-microbe interactions can affect individual’s 
growth rates by accelerating (or decelerating) individual’s nutrients uptake as well 
as influencing hosts’ metabolism (Fig. 2b) (Henriques et al. 2019; Jing et al. 2020; 

(1)
dWij

dt
=

�Wij

�xij

�xij

�t
+

�Wij

�Xj

�Xj

�t
+
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��j
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+
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Morimoto et  al. 2019b; Sommer and Newell 2019). Note that density-dependent 
effects on host-microbe interactions are likely time-dependent given that the individ-
ual, the environment and the microbes change over the developmental period of an 
individual, thereby influencing the nature of host-microbe interactions [e.g., (Chen 
et al. 2016; Johnston and Rolff 2015)].

• �Wij

�Xj

�Xj

�t
 represents the change in individual’s fitness through time via temporal changes 

in local environment optimum (e.g., social group, (micro)habitat quality) (Edelaar and 
Bolnick 2019).

  We hypothesise that density-dependent effects on host-microbe interactions can 
influence how individuals interact with conspecifics. One way this could occur is if 
density-dependent effects on host growth (see previous paragraph) affects phenotypic 
variation in the host (e.g., body size) (Crespi 1989). Another way in which density-
dependent effects on host-microbe interactions can modulate social networks is via 
uneven spatial distribution of phenotypes (+ microbes) as a result of foraging decisions 
and mate selection. Previous studies have shown that fruit fly larvae (and adults) pre-
fer to feed on diets that contain similar microbes as in their guts (Wong et al. 2017) 
while microbes also modulate locomotor activity in adults (Schretter et al. 2018). Pre-
vious studies have shown that population density can modulate eco-evolutionary pro-
cesses that influence social networks (Vander Wal and Webber 2019). Moreover, as 
discussed above, host-microbe interactions can affect how individuals forage (Wong 
et  al. 2017), move (Schou et  al. 2013; Schretter et  al. 2018) and mate (Sharon et  al. 
2011). Thus, population density can modulate the strength of mate choice and foraging 
choices, which in turn can generate higher or lower levels of assortativity (i.e., indi-
viduals interacting with similar or dissimilar individuals) in the social network, respec-
tively (Crespi 1989; Jiang et al. 2013). For example, low density populations can have 
low assortativity as individuals are required to interact (e.g., mate choice, foraging site) 
with conspecifics with similar and different microbial profiles. Conversely, high density 
populations can have high assortativity whereby individuals preferentially interact with 
conspecifics with similar microbial profile in ‘sub-networks’ within populations. The 
opposite prediction is also possible, namely high assortativity in low density due to 
the potential for more structured populations, although if this persists throughout the 
reproductive stage, this could incur an opportunity cost for individuals in low density 
populations (e.g., low mating encounter rate). Recent studies have shown that groups of 
adult Drosophila tend to display some level of aggregation and social interactions that 
are density-dependent, with social distancing determined by specific neuronal circuits 
activated by contact amongst individuals in the groups and cluster formation dependent 
upon olfactory cues (Jiang et al. 2020; Rooke et al. 2020). These evidences suggest that 
density-dependent effects can modulate how individuals respond to social cues, ulti-
mately affecting the propensity of individuals to form (dis)similar clusters within the 
social network structure.

• �Wij

��j

��j

�t
 represents the change in individuals’ fitness through time via the strength of sta-

bilising selection (Edelaar and Bolnick 2019).
  Theoretical and empirical work shows that strong stabilising selection eliminate 

genetic variability in the population [e.g., (Barton and Keightley 2002; Brooks et  al. 
2005; Hunt et al. 2007; Johnson and Barton 2005)]. Density-dependent host-microbe 
interactions can decrease frequency of extreme phenotypes by buffering against genetic 
variance of the host and negative ecological or nutritional conditions [see discussion 
above; (Ma et  al. 2019)]. This can modulate the opportunity for and potentially the 
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strength of -stabilising selection in a population; a possible consequence of this process 
is that genetic variability in a population might be partly maintained in the popula-
tion, as the frequencies of extreme phenotypes decrease due to the ‘buffering’ effects of 
host-microbe interactions.

• �Wij

�cj

�cj

�t
 represents the change in individual fitness through time via increasing overall 

environmental quality (Edelaar and Bolnick 2019).
  Density-dependent effect on host-microbe interactions can increase (or decrease) 

overall habitat quality via modulating availability of microbes as additional food source 
or competitors as well as the microbial diversity and horizontal transmission probabili-
ties [see e.g., (Nguyen et al. 2019; Trienens et al. 2010; Wertheim et al. 2002)]. In fact, 
larval density modulates microbial composition of the substrate. The environment itself 
can feedback and modulate the amount of microbes and the types of host-microbe inter-
actions during development (Zaada et  al. 2019). Therefore, density-dependent effects 
on host-microbe interactions mediate changes in habitat quality and consequently, its 
carrying capacity (Fig. 2c).

The sum of density-dependent effects on microbe-host interactions at the individual 
level can affect population fitness and the strength of natural selection. For instance, low 
density populations (e.g., populations near the distribution edge), where habitat may have 
lower quality, can benefit from density-dependent host-microbe interactions in ways that 
population growth curve increases even in low densities (i.e., ΔL , in Fig.  2d). Likewise, 
high-density populations (e.g., source population in a source-sink model) can mitigate the 
density-dependent negative effects of a reduction in nutrient per capita by sharing microbes 
that can support development in challenging conditions as well as using microbes as food. 
This may increase carrying capacity of the habitat and decelerate the decline in popula-
tion growth rates at higher densities ( ΔH in Fig.  2d). These population-level conceptual 
models assume that mothers lay eggs in the best resource for larval development (i.e., low 
mother–offspring conflict) and/or for beneficial microbial growth or transmit microbes 
vertically; these are somewhat realistic assumption and known to occur in insects [e.g., 
(García-Robledo and Horvitz 2012; Herren et  al. 2013)]. Verbal models can overlook 
assumption that are only identified in more rigorous mathematical formulations (Mueller 
1997). Thus, further theoretical and empirical work are needed to mathematically formal-
ise this conceptual model and understand its assumptions. This conceptual model shows 
that density-dependent effects on host-microbe interactions can underpin changes in tradi-
tional density-dependent effects on life history traits.

Conclusion

Density-dependent effects mediate life-history trait expression and trade-offs, affecting 
individual fitness and population dynamics (Mueller 1997). Here, we reviewed the evi-
dence of density-dependent effects of population density during development in holome-
tabolous insects. We provided a functional definition of density aimed at standardizing 
future studies and allowing for comparative research. We then discussed recent advances in 
our knowledge about the host-microbe interaction and suggest that the host-microbe inter-
action is an additional level upon which density-dependent effects can modulate individual 
fitness and eco-evolutionary processes acting on populations. We are still a long way from 
gaining comprehensive understanding of holometabolous insects’ developmental ecology. 
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A more taxonomically diverse exploration of the effects of larval density on life-history 
traits will allow us to better understand the plasticity in response to developmental condi-
tions and how this varies across habitats (e.g., aquatic vs. terrestrial larva).

Acknowledgements ATT was funded by MQ-VIED Joint Scholarship at Macquarie University. We would 
like to acknowledge two anonymous reviewers and the editor for useful comments on the early version of 
this manuscript and Prof N. Prasad for constructive comments during the manuscript revision.

Compliance with ethical standards 

Conflict of interest The authors declare no conflict of interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Agnew P, Haussy C, Michalakis Y (2000) Effects of density and larval competition on selected life history 
traits of Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 37:732–735

Agnew P, Hide M, Sidobre C, Michalakis Y (2002) A minimalist approach to the effects of density-depend-
ent competition on insect life-history traits. Ecol Entomol 27:396–402

Applebaum SW, Heifetz Y (1999) Density-dependent physiological phase in insects. Annu Rev Entomol 
44:317–341

Appleby JH, Credland PF (2007) The role of temperature and larval crowding in morph determination in a 
tropical beetle, Callosobruchus subinnotatus. J Insect Physiol 53:983–993

Arditi R, Tyutyunov Y, Morgulis A, Govorukhin V, Senina I (2001) Directed movement of predators and the 
emergence of density-dependence in predator–prey models. Theor Popul Biol 59:207–221

Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AMM, Cáceres C, Bourtzis K (2015) Exploita-
tion of the Medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter 
sp. in larval diet-based probiotic applications. PloS one 10:e0136459

Aukema BH, Raffa KF (2004) Does aggregation benefit bark beetles by diluting predation? Links between 
a group-colonisation strategy and the absence of emergent multiple predator effects. Ecol Entomol 
29:129–138

Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J (2016) The microbiome of animals: implications for 
conservation biology. Int J Genom 2016:5304028

Baldal E, van der Linde K, Van Alphen J, Brakefield P, Zwaan B (2005) The effects of larval density on 
adult life-history traits in three species of Drosophila. Mech Ageing Dev 126:407–416

Barnes AI, Siva-Jothy MT (2000) Density–dependent prophylaxis in the mealworm beetle Tenebrio molitor 
L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. 
Proc R Soc Lond Ser B Biol Sci 267:177–182

Barton NH, Keightley PD (2002) Understanding quantitative genetic variation. Nat Rev Genet 3:11–21
Bauerfeind SS, Fischer K (2005) Effects of food stress and density in different life stages on reproduction in 

a butterfly. Oikos 111:514–524
Belles X (2011) Origin and evolution of insect Metamorphosis. In: Encyclopedia of life sciences (ELS). 

John Wiley & Sons, Ltd, Chichester. https ://doi.org/10.1002/97804 70015 902.a0022 854
Belles X (2020) Insect metamorphosis: from natural history to regulation of development and evolution. 

Academic Press, Cambridge
Belloni V, Galeazzi A, Bernini G, Mandrioli M, Versace E, Haase A (2018) Evolutionary compromises to 

metabolic toxins: ammonia and urea tolerance in Drosophila suzukii and Drosophila melanogaster. 
Physiol Behav 191:146–154

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/9780470015902.a0022854


674 Evolutionary Ecology (2020) 34:659–680

1 3

Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2014) Symbiotic bacteria enable olive flies (Bactrocera 
oleae) to exploit intractable sources of nitrogen. J Evol Biol 27:2695–2705

Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2015) Symbiotic bacteria enable olive fly larvae to over-
come host defences. R Soc Open Sci 2:150170

Bhavanam S, Trewick S (2017) Effects of larval crowding and nutrient limitation on male phenotype, repro-
ductive investment and strategy in Ephestia kuehniella Zeller (Insecta: Lepidoptera). J Stored Prod 
Res 71:64–71

Bing XL, Gerlach J, Loeb G, Buchon N (2018) Nutrient-dependent impact of microbes on Drosophila 
suzukii development. MBio 9:e02199–02117

Bolnick DI (2001) Intraspecific competition favours niche width expansion in Drosophila melanogaster. 
Nature 410:463–466

Borash DJ, Shimada M (2001) Genetics of larval urea and ammonia tolerance and cross-tolerance in Dros-
ophila melanogaster. Heredity 86:658–667

Borash DJ, Gibbs AG, Joshi A, Mueller LD (1998) A genetic polymorphism maintained by natural selection 
in a temporally varying environment. Am Nat 151:148–156

Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and 
hologenomes. PLoS Biol 13:e1002226

Breviglieri CPB, Romero GQ (2019) Acoustic stimuli from predators trigger behavioural responses in 
aggregate caterpillars. Aust Ecol 44:880–890

Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the 
gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Micro-
biol 70:293–300

Brooks R, Hunt J, Blows MW, Smith MJ, Bussière LF, Jennions MD (2005) Experimental evidence for mul-
tivariate stabilizing sexual selection. Evolution 59:871–880

Cappuccino N (1992) Adjacent trophic-level effects on spatial density dependence in a herbivore—preda-
tor—parasitoid system. Ecol Entomol 17:105–108

Chen B, Teh B-S, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and activity of the gut micro-
biota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6:29505

Clark BR, Faeth SH (1997) The consequences of larval aggregation in the butterfly Chlosyne lacinia. Ecol 
Entomol 22:408–415

Clark KE, Hartley SE, Johnson SN (2011) Does mother know best? The preference–performance hypoth-
esis and parent–offspring conflict in aboveground–belowground herbivore life cycles. Ecol Entomol 
36:117–124

Cole WE (1973) Crowding effects among single-age larvae of the mountain pine beetle, Dendroctonus pon-
derosae (Coleoptera: Scolytidae). Environ Entomol 2:285–293

Colman DR, Toolson EC, Takacs-Vesbach C (2012) Do diet and taxonomy influence insect gut bacterial 
communities? Mol Ecol 21:5124–5137

Colombani J, Andersen DS (2020) The Drosophila gut: A gatekeeper and coordinator of organism fitness 
and physiology. Wiley Interdiscip Rev Dev Biol. 16:e378. https ://doi.org/10.1002/wdev.378

Connat JL, Delbecque JP, Glitho I, Delachambre J (1991) The onset of metamorphosis in Tenebrio 
molitor larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions. J Insect Physiol 
37:653–662

Consuegra J, Grenier T, Akherraz H, Rahioui I, Gervais H, da Silva P, Leulier F (2020) Metabolic coopera-
tion among commensal bacteria supports Drosophila juvenile growth under nutritional stress. bioRxiv 
2020.2005.2027.119370

Coon KL, Vogel KJ, Brown MR, Strand MR (2014) Mosquitoes rely on their gut microbiota for develop-
ment. Mol Ecol 23:2727–2739

Correa MA, Brackney DE, Steven B (2018) Axenic Aedes aegypti develop without live bacteria, but exhibit 
delayed development and reduced oviposition. bioRxiv, 264978

Cotter SC, Hails RS, Cory JS, Wilson K (2004) Density-dependent prophylaxis and condition-dependent 
immune function in Lepidopteran larvae: a multivariate approach. J Anim Ecol 73:283–293

Couret J, Dotson E, Benedict MQ (2014) Temperature, larval diet, and density effects on development rate 
and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9:e87468

Creland PF, Dick KM, Wright AW (1986) Relationships between larval density, adult size and egg produc-
tion in the cowpea seed beetle, Callosobruchus maculatus. Ecol Entomol 11:41–50

Crespi BJ (1989) Causes of assortative mating in arthropods. Anim Behav 38:980–1000
Criscuolo F, Monaghan P, Nasir L, Metcalfe NB (2008) Early nutrition and phenotypic development: ‘catch-

up’ growth leads to elevated metabolic rate in adulthood. Proc R Soc B Biol Sci 275:1565–1570
Dai X, Xu J, Guo Q, Lai S, Liu P, Fan J, Tang P (2019) Density effect and intraspecific competition in a 

leaf-mining moth on bamboo leaves. J For Res 30:689–697

https://doi.org/10.1002/wdev.378


675Evolutionary Ecology (2020) 34:659–680 

1 3

Davis TJ, Kline DL, Kaufman PE (2016) Assessment of Aedes albopictus (Skuse)(Diptera: Culicidae) 
clutch size in wild and laboratory populations. J Vector Ecol 41:11–17

Denno R, Benrey B (1997) Aggregation facilitates larval growth in the neotropical nymphalid butterfly 
Chlosyne janais. Ecol Entomol 22:133–141

Dethier VG (1959) Food-plant distribution and density and larval dispersal as factors affecting insect popu-
lations. Can Entomol 91:581–596

Dey S, Joshi A (2018) Two decades of drosophila population dynamics: modeling, experiments, and impli-
cations. In: Srinivasa Rao ASR, Rao CR (eds) Handbook of statistics. Elsevier, Amsterdam, pp 
275–312

Diamantidis AD, Ioannou CS, Nakas CT, Carey JR, Papadopoulos NT (2019) Differential response to larval 
crowding of a long- and a short-lived medfly biotype. J Evol Biol 00:1–13

Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47
Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev 

Entomol 60:17–34
Douglas AE (2019) Simple animal models for microbiome research. Nat Rev Microbiol 17:764–775
Drew RAI, Courtice AC, Teakle DS (1983) Bacteria as a natural source of food for adult fruit flies (Diptera: 

Tephritidae). Oecologia 60:279–284
Dukas R, Prokopy RJ, Duan JJ (2001) Effects of larval competition on survival and growth in Mediterra-

nean fruit flies. Ecol Entomol 26:587–593
Edelaar P, Bolnick DI (2019) Appreciating the multiple processes increasing individual or population fit-

ness. Trends Ecol Evol 34:435–446
Fantinou AA, Perdikis DC, Stamogiannis N (2008) Effect of larval crowding on the life history traits of 

Sesamia nonagrioides (Lepidoptera: Noctuidae). Eur J Entomol 105:625–630
Gage MJ (1995) Continuous variation in reproductive strategy as an adaptive response to population density 

in the moth Plodia interpunctella. Proc R Soc Lond Ser B Biol Sci 261:25–30
García-Robledo C, Horvitz CC (2012) Parent-offspring conflicts, “optimal bad motherhood” and the 

“mother knows best” principles in insect herbivores colonizing novel host plants. Ecol Evol 
2:1446–1457

Genta FA, Dillon RJ, Terra WR, Ferreira C (2006) Potential role for gut microbiota in cell wall digestion 
and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52:593–601

Gibbs M, Lace LA, Jones MJ, Moore AJ (2004) Intraspecific competition in the speckled wood butterfly 
Pararge aegeria: effect of rearing density and gender on larval life history. J Insect Sci 4:16

Gibson AM, Bratchell N, Roberts TA (1988) Predicting microbial growth: growth responses of salmonel-
lae in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int J Food 
Microbiol 6:155–178

Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED (2002) Density-dependent devel-
opment of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 
39:162–172

Glass LW, Bovbjerg RV (1969) Density and dispersion in laboratory populations of caddisfly larvae (Cheu-
matopsyche, Hydropsychidae). Ecology 50:1082–1084

Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE (2003) Bacteria in mid-
guts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med 
Entomol 40:371–374

Green P, Simmonds M, Blaney WM (2002) Diet nutriment and rearing density affect the growth of black 
blowfly larvae, Phormia regina (Meigen) (Diptera: Calliphoridae). Eur J Entomol 100:39–42

Hassell M, May R (1986) Generalist and specialist natural enemies in insect predator-prey interactions. J 
Anim Ecol 55:923–940

Hawley W (1985) The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemio-
logical consequences. J Anim Ecol 955–964

He Y, Miyata T (1997) Variations in sperm number in relation to larval crowding and spermatophore size in 
the armyworm, Pseudaletia separata. Ecol Entomol 22:41–46

Henriques SF, Serra L, Francisco AP, Carvalho-Santos Z, Baltazar C, Elias AP, Anjos M, Zhang T, Mad-
docks ODK, Ribeiro C (2019) Metabolic cross-feeding allows a gut microbial community to over-
come detrimental diets and alter host behaviour. bioRxiv 821892

Henry Y, Renault D, Colinet H (2018) Hormesis-like effect of mild larval crowding on thermotolerance in 
Drosophila flies. J Exp Biol 221:jeb169342

Henry Y, Tarapacki P, Colinet H (2020) Larval density affects phenotype and surrounding bacterial commu-
nity without altering gut microbiota in Drosophila melanogaster. FEMS Microbiol Ecol 96

Herren JK, Paredes JC, Schüpfer F, Lemaitre B (2013) Vertical transmission of a Drosophila endosymbiont 
via cooption of the yolk transport and internalization machinery. mBio 4:e00532–00512



676 Evolutionary Ecology (2020) 34:659–680

1 3

Hunt J, Blows MW, Zajitschek F, Jennions MD, Brooks R (2007) Reconciling strong stabilizing selection 
with the maintenance of genetic variation in a natural population of black field crickets (Teleogryllus 
commodus). Genetics 177:875–880

Ikeshoji T, Mullai MS (1970) Overcrowding factors of mosquito larvae. J Econ Entomol 63:90–96
Inouye BD, Johnson DM (2005) Larval aggregation affects feeding rate in Chlosyne poecile (Lepidoptera: 

Nymphalidae). Florida Entomologist 88:247–252
Ireland S, Turner B (2006) The effects of larval crowding and food type on the size and development of the 

blowfly, Calliphora vomitoria. For Sci Int 159:175–181
Jannat KN, Roitberg BD (2013) Effects of larval density and feeding rates on larval life history traits in 

Anopheles gambiae s.s. (Diptera: Culicidae). J Vector Ecol 38:120–126
Jiang Y, Bolnick DI, Kirkpatrick M (2013) Assortative mating in animals. Am Nat 181:E125–E138
Jiang L, Cheng Y, Gao S, Zhong Y, Ma C, Wang T, Zhu Y (2020) Emergence of social cluster by collec-

tive pairwise encounters in Drosophila. eLife 9:e51921
Jing T-Z, Qi F-H, Wang Z-Y (2020) Most dominant roles of insect gut bacteria: digestion, detoxification, 

or essential nutrient provision? Microbiome 8:38
Johnson T, Barton N (2005) Theoretical models of selection and mutation on quantitative traits. Philos 

Trans R Soc B Biol Sci 360:1411–1425
Johnson TL, Symonds MRE, Elgar MA (2017) Anticipatory flexibility: larval population density in 

moths determines male investment in antennae, wings and testes. Proc Royal Soc B Biol Sci 
284:20172087

Johnston PR, Rolff J (2015) Host and symbiont jointly control gut microbiota during complete metamor-
phosis. PLoS Pathog 11:e1005246

Jose PA, Ben-Yosef M, Jurkevitch E, Yuval B (2019) Symbiotic bacteria affect oviposition behavior in 
the olive fruit fly Bactrocera oleae. J Insect Physiol 117:103917

Joshi A, Mueller LD (1996) Density-dependent natural selection inDrosophila: trade-offs between larval 
food acquisition and utilization. Evol Ecol 10:463–474

Joshi A, Prasad N, Shakarad M (2001) K-selection, α-selection, effectiveness, and tolerance in competi-
tion: density-dependent selection revisited. J Genet 80:63–75

Kaznowski A, Szymas B, Jazdzinska E, Kazimierczak M, Paetz H, Mokracka J (2005) The effects of 
probiotic supplementation on the content of intestinal microflora and chemical composition of 
worker honey bees (Apis mellifera). J Apic Res 44:10–14

Kivelä SM, Välimäki P (2008) Competition between larvae in a butterfly Pieris napi and maintenance of 
different life-history strategies. J Anim Ecol 77:529–539

Klepsatel P, Prochazka E, Gáliková M (2018) Crowding of Drosophila larvae affects lifespan and other 
life-history traits via reduced availability of dietary yeast. Exp Gerontol 110:298–308

Kunin WE (2019) Robust evidence of declines in insect abundance and biodiversity. Nature 574:641–642
Kuno E (1962) The effect of population density on the reproduction of Trichogramma japonicum Ash-

mead (Hymenoptera: Trichogrammatidae). Popul Ecol 4:47–59
Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, Barraclough TG (2012) Species 

interactions alter evolutionary responses to a novel environment. PLoS Biol 10:e1001330
Lazarevic J, Peric-Mataruga V, Vlahovic M, Mrdakovic M, Cvetanovic D (2004) Effects of rearing 

density on larval growth and activity of digestive enzymes in Lymantria dispar L. (Lepidoptera: 
Lymantriidae). Folia Biol-krakow 52:105–112

Leftwich PT, Clarke NV, Hutchings MI, Chapman T (2017) Gut microbiomes and reproductive isolation 
in Drosophila. Proc Natl Acad Sci 114:12767–12772

Lesperance DNA, Broderick NA (2020) Microbiomes as modulators of Drosophila melanogaster home-
ostasis and disease. Curr Opin Insect Sci 39:84–90

Lewis Z, Lizé A (2015) Insect behaviour and the microbiome. Curr Opin Insect Sci 9:86–90
Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348
Liu W-C, Bonsall M, Godfray H (2007) The form of host density-dependence and the likelihood of host–

pathogen cycles in forest-insect systems. Theor Popul Biol 72:86–95
Lushchak OV, Karaman HS, Kozeretska IA, Koliada AK, Zabuga OG, Pisaruk AV, Koshel NM, 

Mechova LV, Inomistova MV, Khranovska NM, Vaiserman AM (2019) Larval crowding results in 
hormesis-like effects on longevity in Drosophila: timing of eclosion as a model. Biogerontology 
20:191–201

Ma D, Bou-Sleiman M, Joncour P, Indelicato C-E, Frochaux M, Braman V, Litovchenko M, Storelli G, 
Deplancke B, Leulier F (2019) Commensal gut bacteria buffer the impact of host genetic variants 
on Drosophila developmental traits under nutritional stress. iScience 19:436–447

Maciá A (2017) Effects of larval crowding on development time, survival and weight at metamorphosis 
in Aedes aegypti (Diptera: Culicidae). Rev de la Soc Entomol Argent 68:107–114



677Evolutionary Ecology (2020) 34:659–680 

1 3

Manorenjitha MS, Zairi J (2012) Nutrition and overcrowding effects on larval development and fecun-
dity of female Aedes albopictus (Skuse). Int J Life Sci Med Res 2:63–67

May R, Hassell M, Anderson R, Tonkyn D (1981) Density dependence in host-parasitoid models. J 
Anim Ecol 50:855–865

McGraw LA, Fiumera AC, Ramakrishnan M, Madhavarapu S, Clark AG, Wolfner MF (2007) Larval rearing 
environment affects several post-copulatory traits in Drosophila melanogaster. Biol Let 3:607–610

McNamara KB, Simmons LW (2017) Experimental evolution reveals differences between phenotypic 
and evolutionary responses to population density. J Evol Biol 30:1763–1771

Milonas PG (2005) Influence of initial egg density and host size on the development of the gregarious 
parasitoid Bracon hebetor on three different host species. Biocontrol 50:415

Mirth C, Truman JW, Riddiford LM (2005) The role of the prothoracic gland in determining critical 
weight for metamorphosis in Drosophila melanogaster. Curr Biol 15:1796–1807

Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos 
Trans R Soc B Biol Sci 363:1635–1645

Morimoto J, Pizzari T, Wigby S (2016) Developmental environment effects on sexual selection in male and 
female Drosophila melanogaster. PLoS ONE 11:e0154468

Morimoto J, Ponton F, Tychsen I, Cassar J, Wigby S (2017a) Interactions between the developmental and 
adult social environments mediate group dynamics and offspring traits in Drosophila melanogaster. 
Sci Rep 7:3574

Morimoto J, Simpson SJ, Ponton F (2017) Direct and trans-generational effects of male and female gut 
microbiota in Drosophila melanogaster. Biol Lett 13:20160966.

Morimoto J, Nguyen B, Tabrizi ST, Ponton F, Taylor P (2018) Social and nutritional factors shape larval 
aggregation, foraging, and body mass in a polyphagous fly. Sci Rep 8:14750

Morimoto J, Nguyen B, Dinh H, Than A, Taylor PW, Ponton F (2019a) Crowded developmental environ-
ment promotes adult sex-specific nutrient consumption in a polyphagous fly. Front Zool 16:4

Morimoto J, Nguyen B, Tabrizi ST, Lundbäck I, Taylor PW, Ponton F, Chapman TA (2019b) Commen-
sal microbiota modulates larval foraging behaviour, development rate and pupal production in Bac-
trocera tryoni. BMC Microbiol 19:286

Mueller LD (1990) Density-dependent natural selection does not increase efficiency. Evol Ecol 4:290–297
Mueller LD (1997) Theoretical and empirical examination of density-dependent selection. Annu Rev Ecol 

Syst 28:269–288
Mueller LD, Ayala FJ (1981) Trade-off between r-selection and K-selection in Drosophila populations. Proc 

Natl Acad Sci USA 78:1303–1305
Mueller LD, Guo PZ, Ayala FJ (1991) Density-dependent natural selection and trade-offs in life history 

traits. Science 253:433–435
Mueller L, Graves J Jr, Rose M (1993) Interactions between density-dependent and age-specific selection in 

Drosophila melanogaster. Funct Ecol 7:469
Muriu SM, Coulson T, Mbogo CM, Godfray HCJ (2013) Larval density dependence in Anopheles gambiae 

ss, the major African vector of malaria. J Anim Ecol 82:166
Nagarajan A, Natarajan SB, Jayaram M, Thammanna A, Chari S, Bose J, Jois SV, Joshi A (2016) Adap-

tation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval 
competitive ability without increased larval feeding rate. J Genet 95:411–425

Nahrung HF, Dunstan PK, Allen GR (2001) Larval gregariousness and neonate establishment of the 
eucalypt-feeding beetle Chrysophtharta agricola (Coleoptera: Chrysomelidae: Paropsini). Oikos 
94:358–364

Newton IL, Sheehan KB, Lee FJ, Horton MA, Hicks RD (2013) Invertebrate systems for hypothesis-driven 
microbiome research. Microb Sci Med 1:1–9

Nguyen B, Ponton F, Than A, Taylor PW, Chapman T, Morimoto J (2019) Interactions between ecological 
factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol 
Evol 9:6342–6352

Nijhout HF (2015) A developmental-physiological perspective on the development and evolution of pheno-
typic plasticity, vol 307. Conceptual change in biology, Springer. pp 147–173

Ower GD, Juliano SA (2019) Effects of larval density on a natural population of Culex restuans (Diptera: 
Culicidae): no evidence of compensatory mortality. Ecol Entomol 44:197–205

Pearl R, Miner JR, Parker SL (1927) Experimental studies on the duration of life. XI. Density of population 
and life duration in Drosophila. Am Nat 61:289–318

Peck GW, Walton WE (2006) Effect of bacterial quality and density on growth and whole body stoichiom-
etry of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae). J Med Entomol 43:25–33

Pétavy G, Morin J, Moreteau B, David J (1997) Growth temperature and phenotypic plasticity in two Dros-
ophila sibling species: probable adaptive changes in flight capacities. J Evol Biol 10:875–887



678 Evolutionary Ecology (2020) 34:659–680

1 3

Piesk M, Karl I, Franke K, Fischer K (2013) High larval density does not induce a prophylactic immune 
response in a butterfly. Ecol Entomol 38:346–354

Prasad NG, Joshi A (2003) What have two decades of laboratory life-history evolution studies on Dros-
ophila melanogaster taught us? J Genet 82:45–76

Prasad N, Shakarad M, Anitha D, Rajamani M, Joshi A (2001) Correlated responses to selection for 
faster development and early reproduction in Drosophila: the evolution of larval traits. Evolution 
55:1363–1372

Quennedey A, Aribi N, Everaerts C, Delbecque J-P (1995) Postembryonic development of Zophobas atratus 
Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hor-
mone analogue applications. J Insect Physiol 41:143–152

Rada S, Schweiger O, Harpke A, Kühn E, Kuras T, Settele J, Musche M (2019) Protected areas do not miti-
gate biodiversity declines: a case study on butterflies. Divers Distrib 25:217–224

Reilly JR, Hajek AE (2007) Density-dependent resistance of the gypsy moth Lymantria dispar to its nucleo-
polyhedrovirus, and the consequences for population dynamics. Oecologia 154:691–701

Reis SFS, Von Zuben CJ, Godoy WAC (1999) Larval aggregation and competition for food in experimental 
populations of Chrysomya putoria (Wied.) and Cochliomyia macellaria (F.) (Dipt., Calliphoridae). J 
Appl Entomol 123:485–489

Reiskind M, Lounibos L (2009) Effects of intraspecific larval competition on adult longevity in the mosqui-
toes Aedes aegypti and Aedes albopictus. Med Vet Entomol 23:62–68

Roberts D (1998) Overcrowding of Culex sitiens (Diptera: Culicidae) larvae: population regulation by 
chemical factors or mechanical interference. J Med Entomol 35:665–669

Rooke R, Rasool A, Schneider J, Levine JD (2020) Drosophila melanogaster behaviour changes in different 
social environments based on group size and density. Commun Biol 3:304

Roper C, Pignatelli P, Partridge L (1996) Evolutionary responses of Drosophila melanogaster life history to 
differences in larval density. J Evol Biol 9:609–622

Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest 
functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bac-
teria in continuous culture. Appl Environ Microbiol 39:604–610

Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M (2014) Vitamin supplementation by gut 
symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B Biol Sci 281:20141838

Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N (2018) The Drosophila melanogaster gut 
microbiota provisions thiamine to its host. MBio 9:e00155–00118

Saunders D, Bee A (2013) Effects of larval crowding on size and fecundity of the blow fly, Calliphora 
vicina (Diptera: Calliphoridae). EJE 92:615–622

Saunders DS, Wheeler I, Kerr A (1999) Survival and reproduction of small blow flies (Calliphora vicina; 
Diptera: Calliphoridae) produced in severely overcrowded short-day larval cultures. EJE 96:19–22

Savvidou N, Bell CH (1994) The effect of larval density, photoperiod and food change on the development 
of Gnatocerus cornutus (F.)(Coleoptera: Tenebrionidae). J Stored Prod Res 30:17–21

Schenk D, Bacher S (2002) Functional response of a generalist insect predator to one of its prey species in 
the field. J Anim Ecol 71:524–531

Schou TM, Faurby S, Kjaersgaar A, Pertoldi C, Loeschcke V, Hald B, Bahrndorff S (2013) Temperature and 
population density effects on locomotor activity of Musca domestica (Diptera: Muscidae). Environ 
entomol 42:1322–1328

Schrader M, Jarrett BJ, Kilner RM (2015) Parental care masks a density-dependent shift from cooperation to 
competition among burying beetle larvae. Evolution 69:1077–1084

Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK (2018) A gut microbial 
factor modulates locomotor behaviour in Drosophila. Nature 563:402–406

Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E (2011) Symbiotic bacteria are responsible for diet-
induced mating preference in Drosophila melanogaster, providing support for the hologenome con-
cept of evolution. Gut Microbes 2:190–192

Shenoi VN, Ali SZ, Prasad NG (2016a) Evolution of increased adult longevity in Drosophila melanogaster 
populations selected for adaptation to larval crowding. J Evol Biol 29:407–417

Shenoi VN, Banerjee SM, Guruswamy B, Sen S, Ali SZ, Prasad NG (2016b) Drosophila melanogaster 
males evolve increased courtship as a correlated response to larval crowding. Anim Behav 
120:183–193

Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila 
microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 
334:670–674



679Evolutionary Ecology (2020) 34:659–680 

1 3

Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space 
rather than through time. Proc Natl Acad Sci 108:5708–5711

Silberglied RE, Shepherd JG, Dickinson JL (1984) Eunuchs: the role of apyrene sperm in Lepidoptera? Am 
Nat 123:255–265

Smallegange IM, Tregenza T (2008) Local competition between foraging relatives: growth and survival of 
Bruchid beetle larvae. J insect Behav 21:375–386

Sokolowski MB, Pereira HS, Hughes K (1997) Evolution of foraging behavior in Drosophila by density-
dependent selection. Proc Natl Acad Sci 94:7373–7377

Sommer AJ, Newell PD (2019) Metabolic basis for mutualism between gut bacteria and its impact on the 
Drosophila melanogaster host. Appl Environ Microbiol 85:e01882–01818

Stamps JA (2006) The silver spoon effect and habitat selection by natal dispersers. Ecol Lett 9:1179–1185
Stearns S (1982) The role of development in the evolution of life histories. Evolution and development, vol 

22. Springer. pp 237–258.
Stiling P (1988) Density-dependent processes and key factors in insect populations. J Anim Ecol 

57:581–593
Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes 

Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient 
sensing. Cell Metab 14:403–414

Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, Matos R, Leulier F (2018) Dros-
ophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lacto-
bacillus plantarum. Cell Metab 27:362–377.e368

Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, 
Boland W (2012) Complexity and variability of gut commensal microbiota in polyphagous lepi-
dopteran larvae. PLoS ONE 7:e36978

Taylor AD (1988) Host effects on larval competition in the gregarious parasitoid Bracon hebetor. J Anim 
Ecol 57:163–172

Thomas R, Harwood J, Glen D, Symondson WOC (2009) Tracking predator density dependence and subter-
ranean predation by carabid larvae on slugs using monoclonal antibodies. Ecol Entomol 34:569–579

Travis J (2020) Where is natural history in ecological, evolutionary, and behavioral science? Am Soc 
Nat 196:1–8

Trienens M, Keller NP, Rohlfs M (2010) Fruit, flies and filamentous fungi–experimental analysis of 
animal–microbe competition using Drosophila melanogaster and Aspergillus mould as a model 
system. Oikos 119:1765–1775

Truman JW (2019) The evolution of insect metamorphosis. Curr Biol 29:R1252–R1268
Tsuda Y, Yoshida T (1985) Population biology of the broad-horned flour beetle, Gnathocerus cornutus 

(F.) II. Crowding effects of larvae on their survival and development. Res Popul Ecol 27:77–85
Vacchini V, Gonella E, Crotti E, Prosdocimi EM, Mazzetto F, Chouaia B, Callegari M, Mapelli F, Mandrioli 

M, Alma A (2017) Bacterial diversity shift determined by different diets in the gut of the spotted wing 
fly Drosophila suzukii is primarily reflected on acetic acid bacteria. Environ Microbiol Rep 9:91–103

Välimäki P, Kivelä SM, Mäenpää MI (2013) Temperature-and density-dependence of diapause induction 
and its life history correlates in the geometrid moth Chiasmia clathrata (Lepidoptera: Geometri-
dae). Evol Ecol 27:1217–1233

Vander Wal E, Webber QMR (2019) Density dependence and eco-evolutionary dynamics of animal 
social networks: a comment on Shizuka and Johnson. Behav Ecol 31:16–18

Vijendravarma RK, Narasimha S, Kawecki TJ (2013) Predatory cannibalism in Drosophila melanogaster 
larvae. Nat Commun 4:1–8

Wagner D (2019) Insect declines in the Anthropocene. Annu Rev Entomol 65:457–480
Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy 

AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, 
Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson 
EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, 
Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic 
and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560

Watanabe M (2016) Apyrene sperm as a key factor for sperm competition. Sperm Competition in But-
terflies. Ecological Research Monographs, vol 1. Springer Japan, Tokyo. pp 157–167

Weaver DK, McFarlane J (1990) The effect of larval density on growth and development of Tenebrio 
molitor. J Insect Physiol 36:531–536

Welti EAR, Roeder KA, de Beurs KM, Joern A, Kaspari M (2020) Nutrient dilution and climate cycles 
underlie declines in a dominant insect herbivore. Proc Natl Acad Sci 117:7271–7275



680 Evolutionary Ecology (2020) 34:659–680

1 3

Wertheim B, Marchais J, Vet LEM, Dicke M (2002) Allee effect in larval resource exploitation in Drosoph-
ila: an interaction among density of adults, larvae, and micro-organisms. Ecol Entomol 27:608–617

Westfall S, Lomis N, Prakash S (2019) Ferulic acid produced by Lactobacillus fermentum influences 
developmental growth through a dTOR-Mediated mechanism. Mol Biotechnol 61:1–11

Wigby S, Perry JC, Kim YH, Sirot LK (2016) Developmental environment mediates male seminal pro-
tein investment in Drosophila melanogaster. Funct Ecol 30:410–419

Wilson K, Cotter S (2008) Density-dependent prophylaxis in insects. In: Ananthakrishnan TN, Whitman 
TW (eds) Phenotypic plasticity of insects: mechanisms and consequences, vol 1. Science Publish-
ers, Enfield, UK. 381–420

Wilson K, Graham RI (2015) Transgenerational effects modulate density-dependent prophylactic resist-
ance to viral infection in a lepidopteran pest. Biol Let 11:20150012

Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other 
insects. J Insect Conserv 15:259–268

Wong AC, Wang QP, Morimoto J, Senior AM, Lihoreau M, Neely GG, Simpson SJ, Ponton F (2017) 
Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Dros-
ophila. Curr Biol 27:2397–2404.e2394

Yang AS (2001) Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holome-
tabolous insects. Evol Dev 3:59–72

Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, Yoon C, Nam Y-D, Kim Y-J, Choi J-H (2014) 
Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and 
phylogeny of host. Appl Environ Microbiol 80:5254–5264

Zaada DSY, Ben-Yosef M, Yuval B, Jurkevitch E (2019) The host fruit amplifies mutualistic interaction 
between Ceratitis capitata larvae and associated bacteria. BMC Biotechnol 19:92

Zhang Z, Jiao S, Li X, Li M (2018) Bacterial and fungal gut communities of Agrilus mali at different devel-
opmental stages and fed different diets. Sci Rep 8:15634

Zhao Y, Wang W, Zhu F, Wang X, Wang X, Lei C (2017) The gut microbiota in larvae of the housefly 
Musca domestica and their horizontal transfer through feeding. AMB Express 7:147

Zhou X, Smith JA, Oi FM, Koehler PG, Bennett GW, Scharf ME (2007) Correlation of cellulase gene 
expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 
395:29–39

Zwaan B, Bijlsma R, Hoekstra R (1991) On the developmental theory of ageing. I. Starvation resistance and 
longevity in Drosophila melanogaster in relation to pre-adult breeding conditions. Heredity 66:29

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Integrative developmental ecology: a review of density-dependent effects on life-history traits and host-microbe interactions in non-social holometabolous insects
	Abstract
	Introduction
	How did we define density?
	Multiple biological levels of density-dependent effects
	Density-dependent effects on life-history traits
	Immediate and delayed density-dependent effects
	Ecological and evolutionary density-dependent effects

	Host-microbe interactions as a missing factor
	Interactions between host and microbes
	Density-dependent effects on host-microbe interactions and the modulation of fitness curves

	Conclusion
	Acknowledgements 
	References




