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Abstract 

The synthesis and characterisation of two homologous series of non-symmetric dimers are reported, 

the 1-(4-methoxybiphenyl-4’-yl)-6-(4-alkylanilinebenzylidene-4’-oxy)hexanes (MeOB6O.m, m=1-10) 

and 1-(4-methoxybiphenyl-4’-yl)-6-(4-alkyloxyanilinebenzylidene-4’-oxy)hexanes (MeOB6O.Om, 

m=1-9). All ten members of the MeOB6O.m series exhibit the conventional nematic phase. At lower 

temperatures the members with m=1-7 formed the twist-bend nematic phase, whereas for m=8-10 

smectic behaviour replaced the twist-bend nematic, NTB, phase. All nine members of the 

MeOB6O.Om also show the conventional nematic phase and for m=1-3, a strongly monotropic NTB 

phase is also observed. The alkyloxy terminated dimers show the higher values of TNI and TNTBN. For 

both series, the values of TNI and TNTBN show a modest alternation and in the same sense as m is 

increased. These observations suggest that the spatial uniformity of molecular curvature is important 

in driving the formation of the NTB phase. The observation of smectic behaviour is attributed to the 

molecular inhomogeneity arising from the long terminal alkyl chain driving microphase separation. 

The transitional behaviour of these series is compared to those of the corresponding cyanobiphenyl-

based series and overarching observations discussed. 
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1.  Introduction 

The discovery of the twist-bend nematic phase, NTB, [1] and its subsequent verification [2, 3] 

triggered significant and global research interest. First predicted some thirty years earlier by Meyer 

[4] and later independently by Dozov [5], the NTB phase is fascinating for a number of reasons but 

perhaps most so for the observation of spontaneous chirality in a collection of achiral molecules. 

Indeed, the NTB phase provided the first example of spontaneous chiral symmetry breaking in a fluid 

with no spatial ordering. Dozov’s prediction of the NTB phase was underpinned by the assumption that 

bent molecules have a strong natural tendency to pack into bent structures [5]. However, pure uniform 

bend in space is not allowed, and must be accompanied by other local deformations of the director, 

namely, splay or twist. In the NTB phase, the directors form a helix and are tilted with respect to the 

helical axis. The formation of this structural chirality is spontaneous, and so an equal number of the 

degenerate left- and right-handed helices would be expected. The introduction of intrinsic molecular 

chirality lifts this degeneracy and the chiral NTB phase is observed [6]. 

The first assignment of the NTB phase was for the liquid crystal dimer, CB7CB [1]: 

 

Liquid crystal dimers consist of molecules containing two mesogenic units connected via a flexible 

alkyl spacer, and their transitional behaviour is strongly dependent on the length and parity of the 

spacer [7-9]. This dependence is attributed to how the spacer controls the average molecular shape. 

Specifically, if an even number of atoms connect the two mesogenic units then the long axes of these 

moieties are essentially parallel, and the molecule is linear. By contrast, for an odd number of 

connecting atoms, the mesogenic groups are inclined at some angle with respect to each other, and the 

molecule is bent. Thus, CB7CB is, on average, a bent molecule, and the observation of the NTB phase 

may be accounted for within the framework of Dozov’s prediction [5]. Indeed, the vast majority of 

twist-bend nematogens may be described as odd-membered liquid crystal dimers (see for example 

[10-28]) although other structures including hydrogen-bonded materials [29-33], higher oligomers 

[34-40], polymers [41] and semi-rigid bent-core materials [42] have also been shown to exhibit the 

NTB phase. In each of these classes of material, however, it is widely accepted that the stability of the 

NTB phase is strongly dependent on molecular shape, and specifically, molecular curvature. This view 

is in accord with predictions made using a generalised Maier-Saupe theory for which the nematic-

twist-bend nematic transition temperature is shown to be highly sensitive to the bend angle for V-

shaped molecules [43, 44]. These bent materials have been shown to have considerable application 

potential [39, 45-47]. 
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Dozov not only predicted that bent molecules may exhibit the NTB phase but also that they may show 

heliconical smectic phases [5]. We recently reported the discovery of these twist-bend smectic phases 

for odd-membered liquid crystal dimers [48, 49]. In order to begin to establish the relationship 

between molecular structure and the formation of these new twist-bend phases, we investigated the 

transitional behaviour of two series of non-symmetric liquid crystal dimers in which the length of a 

terminal chain was varied, the 1-(4-cyanobiphenyl-4’-yl)-6-(4-alkyloxyanilinebenzylidene-4’-

oxy)hexanes (CB6O.Om) [23], 

 

and the structurally similar 1-(4-cyanobiphenyl-4’-yl)-6-(4-alkylanilinebenzylidene-4’-oxy)hexanes 

(CB6O.m) [50], 

. 

For the CB6O.Om series, N and NTB phases were observed for all the homologues prepared (m=1-10) 

whereas smectic behaviour was seen only for m=3-5 [23]. All ten members of the CB6O.m (m=1-10) 

series also showed N and NTB phases but only the decyl homologue exhibits smectic behaviour [49, 

50]. To better understand the formation of smectic phases by bent non-symmetric dimers, we report 

here the synthesis and characterisation of the analogous materials but with a methoxy terminal 

substituent, the 1-(4-methoxybiphenyl-4’-yl)-6-(4-alkylanilinebenzylidene-4’-oxy)hexanes 

(MeOB6O.m), and 1-(4-methoxybiphenyl-4’-yl)-6-(4-alkyloxyanilinebenzylidene-4’-oxy)hexanes 

(MeOB6O.Om),  

 

A comparison of the properties of these four series will allow us to comment on the importance of the 

polarity of the terminal group in stabilising the NTB and smectic phases, and on the role played by the 

interaction between the unlike mesogenic groups in driving the formation of these phases. 
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2. Experimental 

2.1. Materials 

The synthetic routes used to obtain the MeOB6O.m and MeOB6O.Om series are shown in Scheme 1. 

Full synthetic descriptions and structural characterisation data for all the final products and their 

intermediates are given in the associated supplementary information. 

 

 

Scheme 1. The syntheses of the MeOB6O.m and MeOB6O.Om series. 

 

2.2. Thermal characterisation 

The phase behaviour of the compounds was studied by differential scanning calorimetry (DSC) using 

a Mettler-Toledo DSC820 fitted with an intracooler and calibrated using indium and zinc as 

standards. The thermograms were obtained during heating and cooling scans at 10ºC min
-1

, under a 

nitrogen atmosphere. All samples were measured in duplicate. Transition temperatures and associated 
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enthalpy changes were extracted from the second-heating trace, and those listed are an average for 

both samples measured. Phase assignments were made by polarised optical microscopy (POM), using 

an Olympus BH2 microscope equipped with a Linkam TMHS 600 heating stage.  

 

2.3 Molecular modelling 

The geometric parameters and electronic properties of the dimers were calculated using quantum 

mechanical density functional theory [51]. Geometric optimisation of the dimers with the spacer in 

the all-trans conformation was performed using Gaussian G09W at the B3LYP/6–31G(d) level of 

theory. The all-trans conformers were selected for reasons discussed in detail elsewhere [10]. 

Visualisation of space-filling models of the output post-optimisation was performed using QuteMol 

[52] and Gaussview 5 was used for the visualisation of electrostatic potential isosurfaces, ball-and-

stick models and dipole moments [53] 

 

3. Results and Discussion 

3.1. MeOB6O.m series 

The transitional properties of the MeOB6O.m series are listed in Table 1. All ten members exhibit a 

conventional nematic (N) phase identified on the basis of the observation of characteristic optical 

textures when viewed through the polarised light microscope. Specifically, schlieren textures were 

seen containing both types of point singularities and which flashed when subjected to mechanical 

stress, see Figure 1(a). The scaled values of the entropy change associated with the N-isotropic (I) 

transition are listed in Table 1 and are wholly consistent with this assignment [54, 55]. On cooling 

isolated droplets of the N phase seen for the homologues with m=1-7, the schlieren texture changed to 

give regions of parabolic defects in coexistence with rope-like features, see Figure 1(b). In addition, 

the transition was accompanied by the cessation of optical flickering associated with the directors in 

the conventional N phase. In a cell treated for planar alignment, on cooling, the homogenous nematic 

texture changed to the characteristic striped texture of the NTB phase, see Figure 2. On cooling the 

nematic phase seen for homologues with m=8-10, coexisting regions of focal conic fan and 

homeotropic textures developed suggesting the formation of a smectic A phase, see Figure 3. On 

further cooling, a schlieren texture containing two- and four-point brush defects developed from the 

homeotropically aligned regions, suggesting the formation of a tilted smectic phase (Figure 4). Two-

brush defects are characteristic of phases in which the mesogenic units are arranged in an anticlinic 

fashion, suggesting this is the SmCA phase. We cannot rule out the possibility, however, that this is an 

example of the heliconical SmCTB phase having a distorted clock structure such that the molecular 

orientations are not fully averaged over the helix and for which a schlieren texture containing two- 
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and four-point brush defects may be observed [48, 49]. The monotropic nature of these smectic 

phases prevents their characterisation using resonant X-ray diffraction, and thus the assignment of the 

lower temperature phase as a SmCA phase remans tentative. 

 

Table 1. Transitional properties of the MeOB6O.m series. (Cr, Crystal; SmC, Smectic C; SmA, 

Smectic A; NTB, Twist-Bend Nematic; N, Nematic; I, Isotropic.) 

m 

TCrI/˚C 

a
TCrN/˚C 

 

†
TSmCSmA/˚C 

†
TNTBN/˚C 

†b
TSmAN/˚

C 

TNI/˚C 

∆HCrI  

a
∆HCrN  

/ kJ mol
-1 

∆HNI   

/ kJ mol
-1

 

∆SNI/R 

1 129.6  79 119.8 54.58 0.82 0.25 

2 119.5
 

 68 109.7 47.34 0.52 0.16 

3 
a
113.5

 
 78 114.5 

a
46.02 0.61 0.19 

4 111.8  69 106.3 46.41 0.42 0.13 

5 113.1  78 110.3 46.44 0.47 0.15 

6 111.4  65 101.2 49.44 *-  

7 111.7  78 105.5 47.19 *-  

8 110.4 82 
b
89 102.1 52.54 *-  

9 109.9 84 
b
87 102.2 50.23 0.55 0.18 

10 108.6 87 
b
92 100.5 51.43 0.77 0.25 

*Exotherms associated with crystallisation and the N-I transition overlap. 

†
Temperatures measured using the polarised light microscope on cooling. 
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    (a)            (b) 

Figure 1. (a) Nematic schlieren (T=102˚C) and (b) parabolic defect twist-bend nematic texture 

(T=75˚C) seen for MeOB6O.1. 

 

 

 

 

 

 

         (a)     (b) 

Figure 2. (a) Homogeneous N texture (T=99˚C) and (b) striped NTB texture (T=74˚C) observed 

for MeOB6O.1 in a 3 micron cell treated for planar alignment. The stripes are parallel to the rubbing 

direction. 

 

 

Figure 3. Focal conic fan texture in coexistence with regions of homeotropic alignment of the 

SmA phase seen for MeOB6O.10 at (T = 90 ˚C). 
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      (a)        (b)          (c) 

Figure 4. (a) Nematic schlieren texture (T=95˚C), (b) the predominantly homeotropically 

aligned smectic A phase (T=87˚C) and (c) the schlieren texture of the smectic C phase (T=78˚C) 

obtained on cooling MeOB6O.9. 

 

In order to confirm that the smectic A phase observed for homologues with m=8-10 was not in fact 

the NTB phase, a binary phase diagram was constructed for mixtures of MeOB6O.9 and the 

extensively studied twist bend nematogen, CB7CB [1], see Figure 5. The mixtures were prepared by 

codissolving preweighed amounts of the dimers in dichloromethane. The solvent was allowed to 

slowly evaporate at room temperature, and the mixture dried under vacuum at 50 °C overnight. All 

the mixtures exhibited the conventional nematic phase and complete miscibility of the nematic phase 

was observed for all compositions. Mixtures containing 36 mol % and greater CB7CB exhibited the 

NTB phase, see Figure 6, whereas at lower concentrations SmA behaviour is seen and a discontinuity 

in the phase diagram is apparent. This confirms the smectic phase assignment on increasing m. 

 

 

Figure 5. Phase diagram constructed for binary mixtures of MeOB6O.9 and CB7CB. Triangles 

represent N-I transitions, squares NTB-N transitions and crosses SmA-N transitions. Melting points 

have been omitted for the sake of clarity. 
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Figure 6. The polygonal texture seen for the NTB phase of a binary mixture containing 64 mol% 

MeOB6O.9 and 36 mol% CB7CB (T = 72˚C). 

 

The dependence of the transition temperatures on the length of the terminal alkyl chain, m, for the 

MeOB6O.m series is shown in Figure 7. It is immediately apparent that, with the exception of 

MeOB6O.3, the MeOB6O.m series are all monotropic nematogens. The melting point falls initially on 

increasing m but tends towards a limiting value as m increases further. The nematic-isotropic 

transition temperature, TNI, tends to decrease on increasing m and superimposed on this is a modest 

alternation in which odd members show the higher values, and which attenuates on increasing m. This 

is characteristic behaviour for this class of material and may be attributed to the change in shape 

anisotropy on varying the parity of the terminal chain [56, 57]. Specifically, a methylene group added 

to an even-membered chain lies more or less parallel to the major molecular axis whereas if added to 

an odd-membered chain lies at an angle to this axis. Thus, a larger increase in the anisotropic shape of 

the molecule is evident on forming an odd-membered chain. The underlying decreasing trend in TNI 

may be accounted for by the dilution of the interactions between the mesogenic units on increasing 

the length of the terminal chain. The rather small change in TNI of less than 20 ˚C across the whole 

series is typical for a series of nematogens with values of TNI slightly above about 100˚C [57]. For 

series showing higher values of TNI, a more pronounced decrease is observed on increasing the 

terminal alkyl chain length arising from the dilution of the stronger interactions between the 

mesogenic units. By contrast, for nematogenic series with values of TNI lower than about 100˚C, there 

is an underlying increase in TNI on increasing chain length reflecting the enhanced molecular 

anisotropy associated with increasing the length of the chain. At around 100 ˚C these two effects are 

more or less balanced and a rather flat TNI line is observed as seen in Figure 7. The twist-bend 

nematic-nematic transition temperature, TNTBN, also exhibits an alternation on increasing m and in the 

same sense as that seen for TNI. Furthermore, TNTBN does not show the same underlying decreasing 

trend as TNI on increasing m such that increasing m stabilises the NTB relative to the N phase. This 



 11 

suggests that the effect of the terminal chain length on TNTBN may also be accounted for in terms of 

the change in molecular shape anisotropy on varying m. It is interesting to note, however, that the 

values of TNTBN for a given parity chain are rather insensitive to increases in chain length. This 

suggests that the dilution of the interactions between the cores arising from increasing chain length 

has a smaller effect on the predominantly shape driven NTB-N transition than on the N-I transition. It 

may appear counter intuitive, therefore, that the sense of the alternation seen for TNTBN and TNI is the 

same given that molecular curvature is widely held to be a prerequisite for the observation of the NTB 

phase. Thus, increasing the molecular shape anisotropy increasing TNI might be expected to reduce 

TNTBN and vice versa, so giving an alternation in the opposite sense. It has been shown, however, that 

for liquid crystal dimers a spatially uniform molecular curvature is required to promote the NTB phase 

such that the photoisomerization of a twist-bend azobenzene-based nematogen to the bent cis isomer 

destroys the NTB phase [58]. Similar observations have been made for the dependence of TNTBN and 

TNI for other liquid crystal dimer series [23, 50]. This suggests that odd-membered chains which 

greater enhance the anisometric shape of the molecule also maintain the spatial uniformity of the 

molecular curvature. Smectic behaviour emerges for the longest three members of the MeOB6O.m 

series and the NTB phase is extinguished. The emergence of smectic behaviour for long terminal 

chains is in accord with the general observation that for smectic phases to be observed in symmetric 

or non-symmetric dimers in which the mesogenic units do not show a specific favourable interaction, 

the combined lengths of the terminal chains has to exceed that of the flexible spacer [56, 59]. It has 

been suggested that the interaction between the terminal chains and spacer is an unfavourable one and 

must be offset by a specific favourable interaction between the unlike mesogenic units. If present, 

such an interaction drives the formation of an intercalated phase providing the combined lengths of 

the terminal chain is less than or comparable to the spacer length [60, 61]. Otherwise, a monolayer 

smectic phase is observed providing the combined length of the terminal chains exceeds that of the 

spacer, driven by the increased molecular inhomogeneity arising from the long terminal alkyl chain.  
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Figure 7. The dependence of the transition temperatures on the number of carbon atoms, m, in 

the terminal alkyl chain for the MeOB6O.m series. Empty circles indicate melting points, filled circles 

nematic-isotropic transition temperatures, filled squares twist-bend nematic-nematic transitions, filled 

diamonds smectic A-nematic transitions and filled triangles smectic C-smectic A transitions. 

 

The transitional properties of the MeOB6O.Om series are listed in Table 2. All nine members exhibit 

a monotropic, conventional nematic phase. In addition, for m=1-3 a strongly monotropic NTB phase is 

observed. Phases assignments were based on the observation of characteristic optical textures as 

described earlier. The dependence of the transition temperatures on the length of the terminal alkyl 

chain length m is shown in Figure 8, and it is apparent that the behaviour observed is similar to that 

seen in Figure 7 for the MeOB6O.m series. The larger decrease in TNI across the series may be 

attributed to the higher interaction strength parameters between the mesogenic units which is reflected 

in the higher values of TNI, and the more significant role of the chain in diluting these. We note that 

even members of this series now show the higher values of TNI and TNTBN because the oxygen atom 

must be considered part of the chain, and hence an even-membered carbon chain corresponds to an 

overall odd membered chain. The absence of either NTB or smectic behaviour on increasing m for the 

MeOB6O.Om series may be attributed to the higher melting points of this series and the difficulty 

associated with supercooling the monotropic nematic phases. 
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Table 2. Transitional properties of the MeOB6O.Om series. (Cr, Crystal; NTB, Twist-Bend 

Nematic; N, Nematic; I, Isotropic.) 

m TCrI/˚C 
†
TNTBN/˚C TNI/˚C 

∆HCrI  

/ kJ mol
-1 

∆HNI   

/ kJ mol
-1

 

∆SNI/R 

1 154.8 98 147.8 60.76 0.79 0.23 

2 152.1
 

106 151.4 57.27 0.86 0.24 

3 153.2
 

91 136.1 56.98 0.45 0.13 

4 149.7  139.3 59.43 0.45 0.13 

5 146.9  129.7 61.31 0.48 0.14 

6 144.9  129.6 63.99 - *- 

7 143.8  125.1 56.82 0.47 0.14 

8 142.5  125.3 64.98 0.56 0.17 

9 141.5  123.4 67.11 - *- 

*Exotherms associated with crystallisation obscured that associated with the N-I transition.  

†
Temperatures measured using the polarised light microscope on cooling. 
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Figure 8. The dependence of the transition temperatures on the number of carbon atoms, m, in 

the terminal alkyl chain the MeOB6O.Om series.  ⃝ indicates melting points, nematic-isotropic 

transition temperatures, and twist-bend nematic-nematic transitions. 

 

The melting points of the four series, MeOB6O.m, MeOB6O.Om, CB6O.m, and CB6O.Om, are 

compared in Figure 9. The MeOB6O.Om series shows the highest melting points for all values of m. 

The melting points of the MeOB6O.m dimers are higher than the corresponding members of the 

CB6O.m series except for the propyl homologues for which CB6O.3 has a marginally higher melting 

point than MeOB6O.3. For shorter terminal chains, the CB6O.Om dimers show the second highest 

melting points but these fall quickly as m is increased and for the higher values of m the melting 

points of the corresponding members of the CB6O.m, and CB6O.Om series are very similar and lower 

than those of the MeOB6O.m series. These data support the general observation that the methoxy 

group promotes higher melting points than a nitrile terminal group [62-64], and dimers having 

terminal alkoxy chains have higher melting points than the corresponding alkyl substituted materials 

[23, 50]. These trends may be attributed to the more efficient packing of the methoxy group and 

alkoxy chains compared to the nitrile and alkyl chains, respectively, and the enhanced polar 

interactions between alkoxy chains. 
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Figure 9. A comparison of the melting points as a function of the length of the terminal chain, 

p, for the MeOB6O.Om (filled circles), MeOB6O.m (empty circles), CB6O.Om (filled squares), and 

CB6O.m (empty squares) series. For the MeOB6O.m and CB6O.m series, p=m and for the 

MeOB6O.Om and CB6O.Om series, p=m+1. 

 

The nematic-isotropic transition temperatures, TNI, of the MeOB6O.Om and MeOB6O.m series are 

compared in Figure 10. The value of TNI for a given member of the MeOB6O.Om series is higher than 

that of the corresponding member of the MeOB6O.m series. These differences are greater for shorter 

chains; for example, TNI for MeOB6O.O1 is 38.1 ˚C higher than that of MeOB6O.2 whereas for the 

highest three values of m this difference has fallen to around 23 ˚C. The values of TNI for the 

CB6O.Om and CB6O.m series are also shown on Figure 10 and similar behaviour is observed such 

that TNI for a given member of the CB6O.Om series is higher than that of the corresponding member 

of the CB6O.m series. The differences in TNI are also similar; for example, TNI for CB6O.O1 is 35 ˚C 

higher than that of CB6O.2, and this difference falls to 25 ˚C when comparing the values of TNI for 

CB6O.O9 and CB6O.10. The increase in TNI on changing an alkyl to an alkyloxy chain may be 

attributed to the associated change in the average molecular shape. An alkyloxy chain lies more or 

less in the plane of the ring to which it is attached whereas an alkyl chain protrudes at an angle, see 

Figure 11. The greater shape anisotropy of the former accounts for the observed higher values of TNI. 

On increasing chain length, conformational averaging reduces this difference in shape and the 

differences in TNI between the corresponding alkyloxy and alkyl series become smaller. It is apparent 

that the cyanobiphenyl-based series show higher values of TNI than their methoxybiphenyl-based 

counterparts. For smaller values of m this difference is around 10 ˚C and falls to essentially 0 ˚C as m 
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is increased. This may be accounted for in terms of the change of shape arising from exchanging a 

nitrile for a methoxy group [10] and the tendency of cyanobiphenyl units to arrange themselves in an 

anti-parallel fashion so enhancing structural anisotropy [65]. The convergence of the values of TNI for 

the two alkyloxy and alkyl series as the length of the terminal chain increases, suggests that the 

difference in shape may be the more significant of these contributions given that this is reduced as the 

molecules become larger. 

 

Figure 10.  A comparison of the dependence of the nematic-isotropic transition temperatures, TNI, 

on the length of the terminal chain p for the MeOB6O.m (empty circles), MeOB6O.Om (filled 

circles), CB6O.m (empty squares) and CB6O.Om (filled squares) series. For the alkyl series p = m and 

for the alkoxy series p = m+1.  

 

Figure 11. The electrostatic potential isosurfaces (top), space filling (middle) and ball-and-stick 

models showing the molecular dipole moment (not to scale, bottom) of (a) MeOB6O.3 and (b) 

MeOB6O.O2. 
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Top:	electrosta c	poten al	isosurface,	middle:	space	filling	model	and	bo om:	
ball-and-s ck	model	with	total	dipole	arrows	(not	to	scale)	of	a)	MeOB6OI3,	and	
b)	MeOB6OIO2,	modelled	at	the	B3LYP/6-31G(d)	level	using	DFT.	

	
Top:	electrosta c	poten al	isosurface,	and	bo om:	ball-and-s ck	model	with	
total	dipole	arrows	(not	to	scale)	of	a),	3IOEt	and	b)	2OIOEt,	modelled	at	the	
B3LYP/6-31G(d)	level	using	DFT.	
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Figure 12 compares the dependence of the twist-bend nematic – nematic transition temperature, 

TNTBN, on the length of the terminal chain for the four series. Rather similar behaviour is seen as for 

TNI in Figure 10. For both sets of dimers, the alkyloxy series shows the higher values of TNTBN 

although the differences are smaller at around 10 ˚C and decrease with increasing m. Presumably a 

similar argument holds as described for the effects on TNI, and that the alkyloxy chain allows for a 

more spatially uniform molecular curvature facilitating the local packing of these bent molecules. 

Changing the terminal substituent from a nitrile to a methoxy group also effects TNTBN  in a similar 

fashion to TNI. Thus, for short terminal chains a reduction in TNTBN  of around 10 ˚C is observed and 

this difference becomes smaller as m is increased. Again, this suggests that the shapes of these dimers 

become more similar as m is increased, and that the molecular curvature is determined largely by the 

hexyloxy spacer. Molecular curvature plays a major role in determining the bend elastic constant that 

drives the formation of the NTB phase [66]. The difference in NTB between these particular series may 

be attributed, at least in part, to a specific favourable interaction between the cyanobiphenyl and 

benzylideneaniline moieties which is thought to play an important role in determining the phase 

behaviour of oligomers containing these units [23, 50, 67, 68]. The nature of this interaction is unclear 

but has been suggested to be an electrostatic quadrupolar interaction between fragments having 

quadrupoles of opposite signs [69]. It is clear that the electron distributions in the differing mesogenic 

units for the MeOB6O.Om and MeOB6O.m series are rather similar and a specific favourable 

interaction between would not be expected, although we note that the dipole moments of these 

systems are rather different see Figure 11. For the CB6O.Om and CB6O.m series the specific 

favourable interaction between the unlike mesogenic groups presumably provides an additional force 

for the formation of both the NTB and N phases. 
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Figure 12.  A comparison of the dependence of the twist-bend nematic-nematic transition 

temperatures, TNTBN, on the length of the terminal chain p for the MeOB6O.m (empty circles), 

MeOB6O.Om (filled circles), CB6O.m (empty squares) and CB6O.Om (filled squares) series. For the 

alkyl series p = m and for the alkoxy series p = m+1.  

 

Figure 13 compares the scaled entropies of transition associated with the nematic-isotropic transition, 

∆SNI/R, on the length of the terminal chain for all four series. All the values are small and consistent 

with those expected for an odd-membered liquid crystal dimer [70]. The differences between the 

values are rather small when compared to experimental error although it appears that the 

cyanobiphenyl-based series tend to show slightly higher values and this reinforces the view that the 

nitrile group enhances the structural anisotropy of these materials [71, 72]. 
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Figure 13. A comparison of the scaled entropy of transition associated with the nematic-

isotopric transition, ∆SNI/R, on the length of the terminal chain p for the MeOB6O.m (empty circles), 

MeOB6O.Om (filled circles), CB6O.m (empty squares) and CB6O.Om (filled squares) series. For the 

alkyl series p = m and for the alkoxy series p = m+1. 
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intercalated arrangement. The three longest members of the MeOB6O.m series exhibit a SmA phase 

whereas at the same temperature nematic or twist-bend nematic behaviour is seen for the 

corresponding homologues of the CB6O.Om and CB6O.m series. The monotropic nature of the 

smectic phases shown by these compounds precludes their study using X-ray diffraction but likely to 

have a monolayer arrangement [59]. The only direct comparison that is possible is between the 

transition temperatures of MeOB6O.10 and CB6O.10. The values of TNI are essentially identical 

whereas MeOB6O.10 shows SmC-SmA and SmA-N transitions at 78 and 92 ˚C, respectively, and 

CB6O.10 a Sm-NTB and NTBN transitions at 67 and 73 ˚C, respectively. The stronger tendency of 

MeOB6O.10 to exhibit smectic behaviour suggests that the increased molecular inhomogeneity 

promotes microphase separation driving the formation of a smectic phase. For CB6O.10 for which the 

molecular inhomogeneity would appear very similar, microphase separation is counteracted by the 

specific favourable interaction between the unlike mesogenic units that promotes mixing. 

Furthermore, the decyl terminal chain is too long to be accommodated within an intercalated smectic 

structure and hence nematic behaviour is observed to lower temperatures. 

 

4.  Conclusions 

The transitional properties of the MeOB6O.m and MeOB6O.Om series are broadly similar to those of 

the very few series already reported in the literature that exhibit the twist-bend nematic phase, and in 

which a terminal chain is varied in length. The data reported here allow us to begin to discuss what 

appear to be general patterns of behaviour. Thus, for both series the values of TNI and TNTBN show a 

modest alternation and in the same sense on increasing m. This counter-intuitive observation suggests 

that the spatial uniformity of molecular curvature is important in driving the formation of the NTB 

phase. Furthermore, increasing the terminal chain length, increases the ratio TNTBN/ TNI suggesting 

that the dilution of the interactions between the mesogenic units arising from increasing chain length 

has a relatively smaller effect on the predominantly shape driven NTB-N transition than on the N-I 

transition. In addition, dimers with alkyloxy terminal chains show higher values of both TNI and TNTBN 

than the corresponding alkyl substituted materials, and this may be attributed to the relative 

disposition of the chain with respect to the mesogenic moiety to which it is attached. These 

differences in transition temperatures become smaller as the chain length is increased. Again, this 

supports the view that the spatial uniformity of molecular curvature is important. Replacing a nitrile 

by a methoxy terminal group reduces both TNI and TNTBN, and again these reductions are smaller as the 

chain length is extended suggesting that they are associated with a change in molecular shape which is 

diluted as the molecule becomes larger. In these particular sets of materials the differences in 

transitional behaviour may be also be attributed, in part, to the specific favourable interaction between 

the cyanobiphenyl and benzylideneaniline moieties which are not present in the methoxybiphenyl-
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based dimers. This is particularly true when considering the occurrence of smectic behaviour. The 

thirty-nine dimers discussed here are all predominantly nematogens and this reflects the difficulty 

bent dimers experience in packing into layered smectic arrangements. Intermediate members of the 

CB6O.Om series exhibit an intercalated smectic phase driven by the interaction between the unlike 

mesogenic groups. By comparison, the longest members of the MeOB6O.m series shown an enhanced 

tendency to exhibit smectic behaviour attributed to the molecular inhomogeneity arising from the long 

terminal chain.  
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