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Abstract

Accurate structural reliability assessment of floating wind turbine (FWT)
systems is a desideratum for achieving consistent optimal reliability levels
and cost-effective design. Such reliability assessment should consider rele-
vant system uncertainties—a nontrivial task. Formulation of the reliability
problem requires structural demand in form of load and load effect. Sup-
port structure loads are predicted with time-domain dynamic simulations.
This represents a challenge when thousands of such simulations are required
to capture the uncertainty associated with design variables. Finite element
analysis (FEA) is commonly used to evaluate load effects such as stresses,
strains etc. This can be computationally expensive if not prohibitive when
such evaluation is carried out for every time step. To tackle these issues,
a framework for expeditious load effect computation and robust reliability
analysis of FWT support structures under ultimate limit state design is pre-
sented. The framework employs linear elastic FEA and Kriging surrogate
models. The adequacy of Kriging as applied in this study is investigated
using high fidelity simulation data. The results highlight the importance of
incorporating the Kriging uncertainty in the formulation of the limit state
function. With the framework presented, FWT support structures can be
designed at consistent reliability levels leading to cost reductions.
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1. Introduction1

Since the industrial revolution, there has been an increasing demand for2

energy. This demand has mostly been met by energy from fossil fuels such as3

coal, oil and gas [1]. Only in recent decades that the clamour for green energy4

necessitated by the drive to tackle climate change has led to a steady growth5

of renewable energy capacity and output. Similarly, the interest in offshore6

wind as viable option for tapping into the rich wind resource available offshore7

has grown significantly in the past decade. Most of the current offshore wind8

turbine projects have fixed structures for their support. Monopile, jacket and9

tripod structures are the most widely used types of fixed support structures.10

These fixed structures are depth limited (usually < 50m water depth) [2].11

As the availability of shallow water sites rapidly declines, the need for float-12

ing systems better suited for deep water becomes inevitable. There exists a13

largely untapped market in deep water that is potentially a game changer.14

However, with floating concepts come additional costs mostly linked to the15

floating support structure [3]. Tapping into this market would therefor re-16

quire robust research and development of cost effective floating systems that17

would withstand environmental loads and accumulated damage throughout18

the service life of the turbine. The current framework contained in the widely19

used wind turbine design standards; IEC 61400-1 [4] and IEC 61400-3 [5],20

can at best be described as semi-probabilistic. The semi-probabilistic design21

approach uses partial safety factors to account for uncertainties in the de-22

sign. These partial safety factors most often lead to over-design with adverse23

cost implication. A probabilistic approach on the other hand explicitly ac-24

counts for uncertainties [6], leading to cost effective designs and more rational25

safety factors. The impediment herein is that such a design would require26

numerous evaluations of failure condition in the form of a limit state function27

(LSF). This implies prohibitive computational effort in assessing structural28

demands given dynamic analysis of these structures is performed in the time29

domain using aero-hydro-servo-elastic tools. To facilitate quick assessment of30

computationally-expensive-to-evaluate structural responses, surrogate mod-31

els have gained popularity. Authors such as [7–9] to mention a few, have32

carried out reliability-based analysis of wind turbines by employing surro-33

gate models. Morató et al. [7] carried out reliability analysis of a monopile34

supported wind turbine using Kriging surrogate models. In their study, en-35
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vironmental and loading uncertainty was accounted for. The evaluation of36

the Kriging model uncertainty was not covered neither were key modeling37

uncertainties included. In the reliability analysis performed in Ref. [8], only38

environmental uncertainties and the associated metamodel uncertainty was39

covered. Surrogate modeling in form of Gaussian process regression was also40

employed by Stieng and Muskulus [9] in the reliability-based design optimiza-41

tion of an offshore wind turbine (OWT) support structure. Yang et al. [10]42

demonstrated the use Kriging model for reliability-based optimization of a43

tripod sub-structure. Modeling uncertainties were neglected in their study as44

well. A substantial amount of the literature on OWT reliability-based analy-45

sis have focused on fixed foundation concepts [7–11]. The structural dynam-46

ics of FWTs are different from fixed concepts as floating systems are more47

compliant to environmental loads implying greater variability in structural48

loading. An approach that accounts for environmental, material, geometric49

and modeling uncertainties for FWT concepts is still lacking and represents50

a gap in knowledge this paper attempts to fill.51

In this study, Eurocode 1990 [12] is used to quantify the Kriging model52

uncertainty. The influence of including the Kriging uncertainty in the LSF53

on computed failure probability is investigated using 1000 Latin Hypercube54

Samples (LHS). This represents 6000 time-domain simulations given 6 re-55

alizations of wind and waves are used. Haid et al. [13] showed that when56

5-10 seeds (for 10-min long simulations) are used in ultimate load analysis57

of the OC3-Hywind spar, the average of the maximum most load channels58

converges to about 1% difference from the mean maximum when 36 seeds59

are used. The mooring tension was not among the structural responses in-60

vestigated by Haid et al. [13]. The ultimate limit state (ULS) design of61

mooring lines is usually based on the 50-year line tension [14]. In the present62

paper, these were calculated using 6 x 1-hr long simulations. Other relevant63

uncertainties are adopted from available literature [10, 15, 16]. To determine64

ULS design-drivers that produce the most extreme loads, load analysis was65

performed for the benchmark FWT—the 5MW wind turbine [17] mounted66

on the OC3-Hywind spar buoy [18]. Three design load cases (DLCs) from67

IEC 61400-3 [5] were analysed. DLC1.3 and 1.6a from the power production68

load cases and DLC6.1a from the parked/idling load cases. These DLCs are69

recommended by IEC 61400-3 [5] for support structure design and do not70

require load extrapolation. Authors such as [7, 10, 15] to mention a few,71

employed similar load cases for ULS reliability-based support structure de-72

sign. Additionally, in Ref. [19, 20], DLC1.3 was identified as the ULS design73
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driver for the OC3-Hywind FWT when the turbine is working under normal74

conditions. The aero-hydro-servo-elastic tool OpenFAST (formerly known75

as FAST [21]) developed at the National Renewable Energy Laboratories76

(NREL) is used for dynamic analysis. Support structure output channels77

from FAST are mainly sectional forces and moments as well as rotations and78

translations outputted as time series. For robust structural design, these79

loads are used to calculate stresses which in turn are used to compute failure80

criterion. The violation of such failure criterion is the basis for formulating81

LSFs used in optimization routines and reliability assessment. The evalua-82

tion of the LSF becomes computationally prohibitive if such evaluation is to83

be carried out for each simulation time step, the required number of DLCs84

and for different wind/wave seeds. Various approaches have been adopted by85

researchers to avoid such computationally expensive exercise. Young et al.86

[22] evaluated stress utilization in the optimization of a composite tower for87

a floating wind turbine (FWT) using the extreme loads from extreme event88

table generated from aero-hydro-servo-elastic simulations. This is however a89

conservative approach as in reality the extreme values of the loads are usually90

not contemporaneous. It is also worth mentioning the work by Muskulus [23]91

where the use of Pareto-optimal loads was proposed as a potential solution to92

this issue. Generally speaking, two approaches are common if the computa-93

tional cost of running finite element (FE) stress analysis for each time step is94

to be avoided: (1) the combination of univariate maxima which can be highly95

conservative or (2) the use of contemporaneous loads at a single time step96

which can lead to underestimation of the design stress as the ultimate stress97

might not result from the the combination of loads at the chosen time step.98

Some studies avoided the use of time-domain simulations outright, thereby99

neglecting the influence of the nonlinear behaviour of the couple wind tur-100

bine system [10, 24–26]. To address this issue, a methodology for expeditious101

evaluation of load effect of FWT support structure from time series output102

of aero-hydro-servo-elastic simulation is presented. The method leverages on103

the linearization of FE solution under linear elastic loading. The sensitivity of104

design loads to environmental, material and geometric uncertainties was also105

investigated. Velarde et al. [27] performed similar sensitivity analysis but106

for fatigue loads on an OWT installed on gravity based foundation. Finally107

we present reliability analysis, employing trained Kriging models and incor-108

porating relevant uncertainties. Given the huge computational requirement109

of our study, high performance computing infrastructure of the University of110

Aberdeen (named Maxwell) was used. This provided 200 job slots.111
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2. Framework for reliability analysis112

To achieve a robust design, it is pertinent to evaluate the structural in-113

tegrity of the components of the FWT support structure. This involves the114

computation of failure probability of structural components exposed to load-115

ing uncertainties. This uncertainty in loading emanates from the randomness116

of environmental conditions and non-linearities of the coupled wind turbine117

system. It is also crucial to include material and geometric uncertainties as118

well as physical and epistemic uncertainties. Epistemic uncertainties such as119

statistical, simulation and model uncertainties reflect the paucity of knowl-120

edge of the environment or system [16]. The reliability framework proposed121

in this paper accounts for the possible extreme realizations of uncertain pa-122

rameters the structure would encounter during its service life. Fig. 1 shows123

the schematic of the proposed framework. As shown in Fig. 1, load analysis124

is first performed to determine the set of turbine parameters that produce125

severest loading for each DLC. This set of parameters (Θ) include wind speed,126

sea state and wind/wave misalignment. For this work, we only consider un-127

certainties related to wind speed and sea state. Material and geometrical128

uncertainties denoted by (Ω) result in uncertainties in stiffness and by ex-129

tension contribute to uncertainty in structural responses. The thickness,130

density and Young’s modulus of the tower are treated as random variables131

in order to capture this uncertainty. From the distributions of the uncertain132

parameters described above (making up n = 1, 2, ...,m random variables),133

LHS is used to generate an experimental design comprising i = 1, 2, ..k sam-134

ple points. Aero-hydro-servo-elastic simulations is then carried out for each135

sample point, and where needed FE stress computation is performed to give136

the design load effect Y sim
i . Due to the computational cost of estimating137

Y sim
i , Kriging surrogate model is trained using the sample points and their138

corresponding responses. This allows for the load effect to be explicitly de-139

fined in terms of the primary input variables (Θ, Ω) with easy evaluation.140

Finally after the calibration and validation of the Kriging model, we develop141

and evaluate LSFs to obtain failure probabilities that account for associated142

system uncertainties X.143

3. Dynamic modeling and DLC simulation144

3.1. Description of floating wind turbine model145

For conciseness, only a brief description is given of the benchmark FWT;146

the 5MW wind turbine [17] mounted on the OC3-Hywind spar buoy [18]. The147
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Fig. 1. Schematic representation of reliability framework

spar buoy is a slender draft hull, with ballast in the lower part for stability.148

For station-keeping, catenary mooring system is adopted. Three catenary149

mooring lines are connected to the platform through a delta connection (the150

delta connection increases the yaw stiffness of the mooring) with an angle of151

120◦ between adjacent lines [18]. The mooring attachment at the fairleads is152

located at a radius of 5.2m from the OC3 platform centreline and a depth of153
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70m below still water level (SWL). A summary of the structural properties154

of the tower is given in Table 1.155

Table 1. Structural properties of OC3-Hywind tower

Tower base elevation above SWL 10m
Tower top elevation above SWL 87.6m
Integrated tower mass 249718kg
Tower base diameter | thickness 6.5m | 0.027m
Tower top diameter | thickness 3.87m | 0.019m
Tower effective density 8500kg/m3

Tower shear modulus | Young’s modulus 80.8GPa | 210GPa

156

The OC3 platform is designed for water depths ranging from 200m to 700m.157

For the sake of generic analysis, 320m is the assumed water depth for this158

work. An illustration of the OC3-Hywind is shown on the right of Fig. 2.159

3.2. Environmental conditions160

According to IEC 61400-3 [5], offshore wind turbine support structures161

are to be designed based on site-specific environmental conditions. For this162

study, the Statfjord site located in the Norwegian sector of the northern163

North sea is chosen as a representative site for the deployment of the FWT.164

The location of the site can be seen on the left of Fig. 2. The coordinates are165

61◦15′20′′N and 1◦51′14′′E. Although the water depth at this site is around166

150m, a water depth of 320m is assumed for the sake of a generic analysis. To167

account for the correlation between wind and waves during normal metocean168

conditions, the joint probabilistic model established by Johannessen et al.169

[28] for sites in the northern North sea is adopted. Johannessen et al. [28]170

established conditional distributions of wave height and peak period based171

on 1-hour averaged wind speed measurements covering the period 1973-1999.172

Water current data was not available, hence we assume a near-surface current173

profile with current velocities at SWL of 0.6m/s and 1.2m/s for normal and174

extreme current loads respectively. The 50-year wind speed at the hub height175

is taken as 41m/s while the 50-year wave height (Hs) and peak period (Tp)176

are assumed to be 8.52m and 12.45s respectively.177
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Fig. 2. Location of reference site (Courtesy: www.maps.google.com) [left]; Illustration of
OC3-Hywind Spar FWT [Right]

3.3. Design load case178

The design of an OWT is mostly based on a structural dynamics model179

that is robust enough to predict the design loads for all relevant combinations180

of external conditions and design situations, covering the most significant181

and probable conditions that an OWT may experience . This gives rise182

to an extensive list of DLCs for which simulating every possible scenario is183

computationally intensive. For this study, three DLCs from the ULS load184

set of IEC 61400-3 [5] are selected. Under the power production load cases,185

DLC1.3 and DLC1.6a are chosen. From parked/idling load cases, DLC6.1a186

is chosen. For DLC1.3, the wind regime is characterized by the Extreme187

Turbulence Model (ETM). An irregular Normal Sea State (NSS) model is188

used with wave height Hs conditioned on the mean wind speed Uw (measured189

10m above SWL). This accounts for the correlation between wind and waves190

during normal wind conditions. The conditional distribution of Hs for a given191

Uw presented by Johannessen et al. [28] is adopted. The expected value of192

Hs is obtained from Equation 1 and the peak period Tp is determined with193

Equation 2.194

Hs = βΓ

(
1

A
+ 1

)
(1)

Tp =
(
4.883 + 2.68H0.529

s

) [
1− 0.19

(
Uw − (1.764 + 3.426H0.78

s )

1.764 + 3.426H0.78
s

)]
(2)
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where the shape and scale parameters are given by A = 2 + 0.135Uw and195

β = 1.8 + 0.1Uw
1.322 respectively. Since hub height wind measurements are196

commonly used in wind turbine analysis, the variation of wind speed with197

height is estimated with the power law profile given in Equation 3.198

U(Z) = Uref

(
Z

ZRef

)α
(3)

where Z is height above SWL, U(Z) is the wind speed at height Z, Zref is199

the reference height above SWL at which wind measurement Uref is taken,200

and α is the wind shear or power law exponent. The mean wind speed Uw201

can be computed for any given hub height wind speed using Equation 3 and202

vice versa.203

DLC1.3 requires simulations for the range of wind speeds within the cut-in204

(Uin = 3m/s) and cut-out wind speed (Uout = 25m/s) range of the turbine205

i.e. 4m/s − 24m/s. In this section, a bin interval of 2m/s is used. The206

computed values of Uw using α = 0.14 as per IEC 61400-3 [4] guidelines and207

the corresponding sea states calculated with Equation 1 and 2 are presented208

in Table 2. The load cases in Table 2 have been grouped into 3 scenarios and209

the probability of occurrence (focc) of the wind speeds within the bounds of210

each group has been computed and normalized so that they add up to 1.211

Table 2. DLC1.3 metocean data

Scenario Uhub(10min) U10m(10min) U10m(1hr) Hs Tp focc

LC1

4 2.94 2.79 1.94 9.73
0.40696 4.41 4.19 2.19 9.76

8 5.88 5.59 2.47 9.83

LC2

10 7.35 6.98 2.77 9.93

0.4277
12 8.82 8.38 3.10 10.06
14 10.29 9.78 3.44 10.21
16 11.76 11.17 3.81 10.37

LC3

18 13.23 12.57 4.19 10.54

0.1654
20 14.70 13.96 4.58 10.72
22 16.17 15.36 4.99 10.91
24 17.64 16.76 5.42 11.11

212
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In Table 2, a conversion factor of 0.95 (i.e. the ratio between the 1-hr213

wind speed and 10-min average wind speed) is used [5]. This adjustment is214

necessary for simulations lasting 10-min as the 1-hr wind measurement need215

to be corrected to correspond to the 10-min simulation length. The wind216

condition is characterized by the extreme turbulence model (ETM). Wind217

and wave propagation are aligned for DLC1.3 simulations as depicted in Fig.218

3 with the effect of yaw misalignment ignored.219

Fig. 3. Bottom view illustration of OC3-Hywind FWT showing DLC1.3 wind/wave direc-
tion

DLC1.6a simulates loading resulting from wind conditions characterized220

by Normal Turbulence Model (NTM) over the power production wind bins221

in combination with severe sea state (SSS). For the sake of a generic analysis,222

the SSS is represented by the 50-year wave height (Hs50) and peak period223

(Tp) are assumed to be 8.52m and 12.45s.224

To replicate a situation where the turbine is shut down to prevent damage225

due to extreme wind and the rotor is left idling, DLC6.1a is simulated. The226

blades are feathered at 90◦ and all control systems are turned off. The idling227

scenario is chosen rather than a parked situation (where brakes are applied)228

as the later is mostly used for maintenance operations. Values corresponding229

to a recurrence period of 50-years for both wind and waves assumed to occur230

at the same time are used. The 50-year extreme wind speed at the hub231
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height is taken as 41m/s. The wind condition is the Extreme Wind Model232

(EWM) characterized by a turbulence intensity of 11%. For the sea state,233

the Extreme Sea State (ESS) which is taken as the 50-year wave height and234

peak period is used (Hs50 = 8.52m and Tp = 12.45s). The influence of wind-235

wave misalignment is simulated by applying the mean wind speed at a fixed236

direction of 0◦ while the incident wave direction is varied from 0◦ to 345◦237

with a bin interval of 15◦ amounting to 24 bins (see Fig. 4). The simulation

Fig. 4. Bottom view illustration of OC3-Hywind FWT showing DLC6.1a wind/wave
misalignment angles

238

length is 1-hr as per IEC 61400-3 [5]. To capture the stochasticity of the sea239

state, 6 realizations of wind and wave are used for all DLC simulations. A240

summary of the DLCs considered in this paper is given in Table 3.241

242

3.4. Fully coupled time-domain simulation243

To capture the nonlinear dynamic response of the coupled FWT sys-244

tem, the NREL aero-hydro-servo-elastic tool OpenFAST (formerly known as245

FAST [21]) is used. FAST relies on a combination of modal-dynamics and246

multibody-dynamics formulation [29]. The underlying theories employed by247

FAST are not within the scope of this work, readers can refer to Ref. [21, 29–248

31] for details. Each simulation starts with the generation of full-field tur-249

bulent wind with Turbsim [32] using Kaimal wind spectrum [4]. The JON-250

SWAP spectrum is used to model the irregular sea waves. The aerodynamic251
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Table 3. Summary of DLCs

DLC 1.3 DLC 1.6a DLC 6.1a
Wind model ETM NTM EWM
Wind speed Uin < Uhub < Uout Uin < Uhub < Uout Uhub = 41m/s
Wave Model NSS SSS ESS
Hs|Tp Table 2 8.52m|12.45s 8.52m|12.45s
Current model NCM NCM ECM
Current speed 0.6m/s 0.6m/s 1.2m/s
Misal 0◦ 0◦ 0◦ : 15◦ : 345◦

Sim.L 6× 10min 6× 1hr 6× 1hr
Misal: Wind/wave misalignment, Sim.L: Simulation length

loads are calculated with the classical quasi-steady blade element momentum252

(BEM) theory or the generalized dynamic wake (GDW) model. Wave kine-253

matics are computed using the linear Airy wave theory and the Morison’s254

equation is employed for computing the hydrodynamic loads on the platform.255

The equations of motion of the multi-bodied turbine system are solved using256

Kane’s dynamics [33]. FAST employs two main control systems in similitude257

with the style of the Garrad Hassan BLADED wind turbine code [34]. These258

are a generator-torque controller and a full-span rotor-collective blade pitch259

controller which are implemented as an external Dynamic Linked Library260

(DLL). A detailed description of the formulation of the FAST control system261

can be found in Ref. [29].262

3.5. Determination of design-driving wind bin263

To ascertain design-driving metocean conditions for the selected ULS load264

cases, several time domain simulations are carried out. For DLC1.3, 6 unique265

wind and wave realizations for the 11 wind bins in Table 2 are simulated. This266

amounts to a total of 66 time domain simulations each having a simulation267

length of 660s with the first 60s excluded to mitigate the influence of start-up268

transients. Only a few response channels are presented in Fig. 5 for the sake269

of brevity. These are the extreme values for 6 unique realizations per wind bin270

for the tower top longitudinal deflection (YawBrTDxt), tower base fore-aft271

shear force (TwrBsFxt), tower base fore-aft bending moment (TwrBsMyt),272

the platform surge (PtfmSurge), tension at the fairleads 2 (FAIRTEN2) and273

the clearance between the tip of blade 2 and the tower (B2N1Clrnc). In Fig.274

5, * represents the extreme value of each of the 6 wind/wave seed and the275
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dashed line represents the mean of values which is used as the design load.276

The tension at the fairleads of mooring line 2 and 3 (results for mooring line 3
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Fig. 5. DLC1.3 turbine responses plotted over wind speed bins

277

are not presented here) increases with the platform surge excursions. This is278

clearer by examining Fig. 3 which shows the arrangement of the mooring lines279

relative to the wind inflow and wave propagation direction. The clearance280

between the blade tip and the tower is most critical at the 12m/s wind bin.281

The blade-tip-to-tower clearance presented takes into account the local tower282

radius, it is however an approximate estimate as it assumes the turbine blade283

to be a line with no volume. The tower responses such as the deflections,284

shear forces and moments are most critical for the 8m/s, 14m/s and 22m/s285

wind bins within the environmental states of scenario 1, 2 and 3 respectively286

(these bins are also the drivers of maximum von Mises stresses presented287

in Section 4.2). The bin centres from this section (U∗bin) are used to train288

the Kriging models. To account for uncertainty introduced by using a bin289

interval of 2m/s, the trained Kriging models are subsequently used to select290

the “true” design driving wind bin (Ubin) to be used in the computation of291

failure probability—a finer bin interval of 0.1m/s is used (see Section 6.2.2).292

A total of 66 simulations were run for DLC1.6a, each lasting 3660s. Once293

again the first 60s is expunged from the response statistics. The results are294

presented in Fig. 6. From the response channels examined (including those295

not presented), most of the extreme events occur when the wind speed is296

around the rated wind speed of 11.4m/s. This is attributable to the influence297

of the action of the control system. It is clear that the design driving wind298

bin for the tower is the 12m/s wind bin. As with DLC1.3, the design driving299
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Fig. 6. DLC1.6a turbine responses plotted over wind speed bins

bin at this point for DLC1.6a (12m/s) is used for training the Kriging model300

which is subsequently used to select the “true” design driving wind bin (see301

Section 6.2.2).302

Presented in Fig. 7 are rose plots for responses covering DLC6.1a bins.303

A total of 24 × 6 simulations of 3660s long were carried out. The results304

presented are the mean values from 6 unique wind/wave realizations. The
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Fig. 7. Variation of load channels with wind-wave misalignment
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collinear and perpendicular wind/wave misalignment bins produced the most306

severe tower loads (see Fig. 7). This is reflective of the axisymmetric design307

of the spar. In terms of load effect like tower von Mises stress, it is not clear308

what bin would result in the most stresses in the tower. This is addressed in309

Section 4.2. The maximum tension at fairlead 2 occurs when the wind/wave310

misalignment is 120◦ while a misalignment of 240◦ causes maximum tension311

at the fairlead 3.312

4. Load effect computation from aero-hydro-servo-elastic simula-313

tion314

4.1. Finite Element structural stress analysis315

Structural stress analysis usually require finite element (FE) simulations.316

Given that the loading to be transferred to an FE model come in time series,317

evaluating the stress state using a yield criterion like von Mises stress at318

every time step imposes huge computational burden. To address this issue,319

the use of a linear relationship between applied loads and the nodal/element320

displacements, strains and stresses is investigated in this section.321

4.1.1. Finite Element model322

The tower is a vital structural member of the support structure. It links323

the Rotor-Nacelle-Assembly (RNA) to the platform. Stress analysis is per-324

formed using the FE solver, Abaqus. The tower is modelled with shell ele-325

ments since it can be classed as a thin-walled structural member. A fixed326

boundary condition is applied to the tower base. The tower experiences327

stresses due to deflections resulting from platform motions and imposed loads.328

The tower top forces and moments emanate from wind loading over the rotor,329

inertial forces from structural dynamics as well as the weight of the RNA.330

Along its span, inertial forces, the weight of the tower and distributed wind331

loading on the tower are eminent. FAST outputs 6 component loads at the332

tower top i.e. 3 forces in x, y, and z directions (TFx, TFy and TFz) and mo-333

ments about the x, y, and z axes (TMx TMy, and TMz). In the FE model,334

these 6 component loads are applied to the tower top nodes by means of a335

tie connection between a rigid nacelle base plate and the tower top nodes of336

the FE tower. The tower is partitioned into 10 sections for the application of337

appropriate loads acting over these sections. These comprises inertial forces338

of each section from the global structural dynamics, weight of each section339

and wind drag forces acting on each section. FAST can output lumped loads340
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at strain gauge locations along the tower. These strain gauge outputs are a341

summation of all loads acting above respective strain gauge locations. The342

contribution of each section n, equal to 1, 2, .., 10 (numbered from the tower343

top) are calculated with Equation 4.344

TwFn =


TwHtFn − TF for n = 1

TwHtFn − TwHtFn−1 for n = 2, 3, .., 9

TwrBsF − TwHtFn for n = 10

(4)

where TwFn is resultant forces acting only on section n, TwHtFn is the345

lumped loads summed up at strain gauge n, TF is the tower top forces and346

TwrBsF is the tower base forces. All forces have x, y and z components.347

These 3 component forces for each section are applied as body forces to348

corresponding sections in Abaqus (BFn = TwFn × Vn. Vn is the volume of349

tower section n). The tower top loads and sectional body forces (a total of 36350

load components) at each time step are written as load amplitude tables and351

applied to the Abaqus model. The time series of tower base reaction forces352

computed by Abaqus matches those computed by FAST. This is however353

computationally prohibitive given the large number of tower elements (5280354

elements). To speed up the computation, the method used by Wandji et al.355

[15] in the stress analysis of a universal joint for a combined monopile and356

spar-buoy floater concept is adopted and extended. The method is hinged on357

the principle of linear elasticity. Under the typical tower loading conditions,358

nodal displacements, element strains and stresses can be expressed as a linear359

combination of the applied FAST loads according to Equation 5.360
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R =
[
KR,1, KR,2, · · · , KR,36

]



TFxt0 TFxt0+∆t · · · TFxtmax

TFyt0 TFyt0+∆t · · · TFytmax

TFzt0 TFzt0+∆t · · · TFztmax

TMxt0 TMxt0+∆t · · · TMxtmax

TMyt0 TMyt0+∆t · · · TMytmax

TMzt0 TMzt0+∆t · · · TMztmax

BF1xt0 BF1xt0+∆t · · · BF1xtmax

BF1yt0 BF1yt0+∆t · · · BF1ytmax

BF1zt0 BF1zt0+∆t · · · BF1ztmax

...
... · · · ...

BF10xt0 BF10xt0+∆t · · · BF10xtmax

BF10yt0 BF10yt0+∆t · · · BF10ytmax

BF10zt0 BF10zt0+∆t · · · BF10ztmax


(5)

where:361

R = UT, εij(ij = 11, 22, 12), σij(ij = 11, 22, 12)362

UT = nodal translation363

εij(ij = 11, 22, 12) = strain components364

σij(ij = 11, 22, 12) = stress components365

t0, ∆t and tmax are the FAST time series start time, time-step and end time366

respectively. The coefficients KR,1, KR,2, · · · , KR,36 are obtained by running367

FE simulation in Abaqus for unit-load cases for each load input while other368

loads are set to zero. In other words the big matrix on the right of Equation369

5 becomes a 36× 36 diagonal matrix with all elements in the diagonal set as370

1, this is then used as load amplitude table in Abaqus simulation. For each371

node/element, the resulting R vector becomes the coefficients. Estimating372

the tower element stresses for any given FAST time series becomes a trivial373

matrix operation given by Equation 5. Under plane stress conditions (i.e.374

stress components σ3 = 0 and σ23 = σ31 = 0), the von Mises stress σv can375

then be computed using Equation 6.376

σv =
√
σ2

11 + σ11σ22 + σ2
22 + 3σ2

12 (6)

To validate the linearization described by Equation 5, a comparison be-377

tween the time series of the longitudinal and lateral tower top deflections378
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outputted by FAST and those computed using Equation 5 is presented in379

Fig. 8. The computed Normalized Root Mean Squared Error (NRMSE) was380

around 0.03 and -0.02 for longitudinal and lateral deflections respectively for381

600s time series. The 3-D FE tower model captures more modes and eigen-382

frequencies than the beam representation employed by FAST (four modes).383

Contribution from these modes would no doubt cause some disparity in the384

deflections of the different tower models. This level of agreement is a cogent385

pointer to the validity of the approach presented. A further comparison is386

made between the stresses obtained using computationally expensive Abaqus387

simulations and stresses obtained with Equation 5 for a single element in the388

tower base is shown in Fig. 10. The results show that the linearization gives389

values that closely match Abaqus results with NRMSE around 10−5. It takes390

only about 0.06s to evaluate a 600s long time series for tower top deflections391

and about 0.3s for the time series of maximum von Mises stress in the tower392

(Fig. 9a shows a time series of maximum von Mises stress in the tower). A393

stress contour plot of a single time step is shown in Fig. 9b, with local stress394

concentrations easily identifiable.
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Fig. 8. Displacement of tower top node

395

4.2. Ranking Design load cases based on load effect396

To rank the DLCs based on load effects, not just the load channels out-397

putted from FAST should be used but also computed load effect such as398

stresses in structural members. The stress state of the structural compo-399

nents is key in reliability analysis or optimization exercises. The load effect400
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Fig. 9. Tower von Mises stress
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Fig. 10. Comparison between Abaqus simulation and linearization of stress components

in terms of von Mises stress becomes trivial to evaluate for all DLC bins401

using the methodology presented in Section 4.1.1. The results are shown in402

Fig. 11a, 11b and 12 for DLC1.3, 1.6a and 6.1a respectively. This implies403

huge computational savings in estimating the stress state of structural mem-404

bers under linear elastic loading from time series of aero-hydro-servo-elastic405

simulations.406

From Fig. 12, it is clear that the extreme von Mises stress on the tower407

for DLC6.1a occurs when the wind and wave are collinear wih a 0◦ mis-408

alingnment. Combining the results from select load channels and stress eval-409
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Fig. 11. Tower von Mises stress plotted over wind bins
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Fig. 12. Variation of tower von Mises stress for DLC6.1a bins

uations for all the DLCs, ranking of the DLCs is presented in Fig. 13. The410

results presented in Fig. 13 are the maximum between the tower top displace-411

ments (TTDxy), tower base shear forces (TBFxyt) and tower base moments412

(TBMxyt) in x and y directions. Also presented are the extreme von Mises413

stress observed in the tower (TWR-VM), the maximum platform surge and414

pitch displacements as well as the maximum observed tension in all three415

fairleads. The minimum of the blade to tower clearance for all three blades416

is reported as BN1Cl. For ease of comparison, the results have been normal-417

ized by the maximum in all DLCs for each load channel except for BN1Cl418

where the values have been normalized by the minimum and then inverted.419
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Fig. 13. Ranking DLCs based on design responses

Most of the extreme responses occur with DLC1.6a conditions. This is420

due to the combined action of severe sea state, rotor dynamics and loads421

from the working of the turbine controllers. The maximum fairlead tension422

is observed for DLC6.1a as wind/wave misalignment was considered for this423

load case. For the blade-tip to tower clearance, DLC1.3 with ETM has the424

most critical value closely followed by DLC1.6a. It will suffice to posit that425

the DLC1.6a amounts to extreme loads for tower design out of the three load426

cases considered.427

5. Surrogate Modeling of Ultimate Loads428

The design of FWT support structures requires reliability analysis and429

optimization exercises. Thousands if not millions of evaluation of implicitly430

defined LSFs is needed. This no doubt can be computationally expensive if431

not prohibitive. A solution to this problem is the use of surrogate models or432

metamodels. Surrogate models are created by constructing a relationship be-433

tween a relatively few set of input variables and their corresponding responses434

(generated by running the original computationally expensive model). By so435

doing, the implicitly defined LSFs become explicitly defined in terms of the436

input variables.437
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5.1. Design Space and Input Domain438

To effectively capture the variability of the system using relatively few439

sample points, it is important that the design space has an efficient spatial440

spread of the distributions of the random variables used in building the sur-441

rogate models. To this end, LHS is employed. LHS works by dividing the442

subspace of each input variable xi; i = 1, 2, .., N into S disjoint subsets having443

equal probability Ωik, i = 1, 2, .., N , k = 1, 2, .., S. For each input variable,444

samples are drawn from the various strata according to: Xik = D−1
xi

(Uik),445

where Dxi(·) is the marginal cumulative distribution function (CDF) of vari-446

able xi, Uik are independent and identically uniformly distributed samples447

on
[
k−1
S
, k
S

]
. Finally permutation of the generated sample vectors is done to448

form the sample points [35]. Table 4 shows the random and deterministic449

variables used in this study.450

451

The sea state for DLC1.3 is not included in Table 4, as Hs and Tp are con-452

ditioned on the mean wind speed. This accounts for the correlation between453

mean wind speed and sea state as described in Section 3.3. For each sample454

point with a mean wind speed Uhub, the equivalent 1hr wind speed at 10m455

above SWL (U10m) is calculated, then the corresponding sea state character-456

ized by E [Hs|U10m] and E [Tp|U10m, Hs] are computed.457

5.2. Kriging metamodel458

Kriging is a statistical interpolation method based on Gaussian process459

modeling. It was originally introduced in the field of geostatistics by Math-460

eron [37]. Kriging has since been applied to various fields such as computer461

experiments [38], structural reliability problem [39] and is gaining popularity462

in many other fields. The Kriging methodology relies on linear weights that463

account for data closeness, redundancy and spatial continuity. These weights464

are unbiased and minimize the estimation variance, thus Kriging is commonly465

referred to as the best linear unbiased estimator. Kriging predicts the value466

of outputs Y (x) which are computationally expensive to evaluate using the467

sum of the weighted values of surrounding sample points x = x1...xk obtained468

from experiments or complex numerical simulations. The Kriging estimator469

is described by Equation 7.470

Y ∗(x) = βTf(x) + Z(x) (7)
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Table 4. Random and deterministic variables used for surrogate model training and reli-
ability analysis [10, 15, 16, 36]

Parameter Dist. Mean CoV
DLC1.3 wind speed, U∗hub(m/s) N 8, 14, 22 0.05
DLC1.6a Wind speed, U∗hub(m/s) N 12 0.05
DLC1.6a Seastate, H∗s (m) | T ∗p (s) N 8.52 | 12.45 0.05
DLC6.1a wind speed, U∗hub(m/s) N 41 0.05
DLC6.1a Seastate, H∗s (m) | T ∗p (s) N 8.52 | 12.45 0.05
Young’s modulus, E∗(GPa) N 210 0.05
Yield stress, Fy(MPa) LN 355 0.05
Mooring breaking load, BL(MN) LN 6.65 0.05
Tower density, ρ∗t (kg/m

3) N 8500 0.05
Tower base thickness, t∗t (m) N 0.027 0.03
Tower base outside diameter, D(m) 6.5
Yield model uncertainty, Xy LN 1 0.05
Kriging model, Xkrig LN 1 Table 5
Exposure (terrain), Xexp LN 1 0.10
Structural dynamics, Xdyn LN 1 0.05
Aerodynamic parameters, Xaero LN 1 0.10
Hydrodynamic parameters, Xhydro LN 1 0.10
Load effect computation, Xstr N 1 0.03
Dist.: Distribution; *: Variables for Kriging model; N: Normal;
LN: Lognormal; CoV: Coefficient of variation

where Y ∗(x) is the Kriging estimate. The first term in Equation 7 is the mean471

value or trend of the output consisting of N basis functions fi; i = 1, ..., N and472

corresponding regression coefficients βi; i = 1, ..., N . Given in Equation8 and473

9, are the trends for the ordinary Kriging and universal Kriging metamodels474

respectively. The simple Kriging is not covered for sake of brevity.475

βTf(x) = β0 (8)

βTf(x) =
N∑
t=0

βtft(x) (9)
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In the ordinary Kriging, the trend has a constant but unknown value.476

For universal Kriging, the trend is assumed to be a linear combination of477

arbitrary functions which can be linear, quadratic or any polynomial. The478

performance of ordinary, linear and quadratic Kriging is presented in Section479

5.3. The second term in Equation 7 represents the Gaussian process described480

by a zero mean, variance σ2 and covariance given by Equation 10.481

Cov(x, x′) = σ2R(x, x′, θ) (10)

where R represents the correlation function having associated hyper-482

parameters θ. The correlation function R describes the correlation between483

x and x′.484

The Kriging module contained in the framework for uncertainty quantifi-485

cation toolbox developed by UQLab [40], is used in this study. The toolbox486

provides options for optimization of Kriging hyper-parameters. Readers can487

refer to Ref. [40] for details. In order to select a suitable Kriging model, the488

set of hyper-parameters σ2, β and θ that maximizes the likelihood of obser-489

vations are estimated using maximum likelihood method for different trends.490

The choice of appropriate trend, correlation function and sample size is a491

key challenge in calibration of the Kriging model. A combinatorial method492

similar to those employed by Ref. [7] is adopted in this paper.493

5.3. Kriging calibration and sample size sensitivity494

Selecting the optimal combination of the trend and correlation function495

of a Kriging model can be quite a challenge. To address this challenge, a496

comparison is made between Ordinary Kriging and universal Kriging (lin-497

ear and quadratic trends) used in combination with Matérn-3/2, Matérn-5/2498

and exponential correlation functions. The sample points are obtained from499

DLC1.3 aero-hydro-servo-elastic simulations. For each combination, the best500

Kriging model is selected after 5 training iterations using the minimum ob-501

served NRMSE given by Equation 11 as the basis for selection and also for502

comparing model performance.503

NRMSE =

√
1
p

∑p
k=1 (Yk − Y ∗k )2

1
p

∑p
k=1 (Yk)

(11)
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where p is the number of validation or test points, Y and Y ∗ are the ac-504

tual values and Kriging predictions respectively. Apart from the trend and505

correlation function selected, the number of sample points used in training506

the Kriging model also have significant effect on the accuracy of the model507

predictions. Generally, it is the aim to achieve good predictions with min-508

imal samples as evaluation of large sample points can be computationally509

expensive if not prohibitive. A compromise between computational cost and510

prediction error has to be made even though increasing the number of sample511

points generally improves the accuracy of prediction.512

We use four sample sizes, M = [50, 100, 150, 200] to investigate Kriging513

sample size sensitivity and calibration of Kriging model. An additional 50514

samples is used as the validation set for model selection from 5 training re-515

cursions, while the generalization capability of the models is checked with516

an independent test set of 250 samples. For each sample point, 6 unique517

wind/wave random seeds is simulated, this gives a total of 4800 DLC1.3518

stochastic simulations. The design load is taken as the mean of the extreme519

values for the 6 wind/wave realizations, representing the outputs of the sim-520

ulations for each load channel. The variation of NRMSE computed for the521

test set of 250 sample points for various Kriging models ( 9 combinations of522

trend and correlation function) is presented in Fig. 14 for various response523

channels. The influence of sample size is also shown in Fig. 14. The results524

presented in Fig. 14 show that the choice of correlation function and trend is525

affected not only by the sample size but also by the response been modeled.526

For response (a) and (b), the linear trend with a Matérn-3/2 correlation func-527

tion performed better overall. This was closely followed by the linear trend528

with an exponential correlation function. For response (c), the quadratic529

trend with a Matérn-3/2 gave best results on average while the linear trend530

with an exponential function performed best considering response (d). It will531

suffice to say that selection of trend and correlation function is dependant on532

the nature of the data been modeled. Sample size also affects the accuracy533

of the Kriging model as seen in Fig. 14. The NRMSE generally reduces with534

larger sample size especially in response (a) and (b). Other factors such as535

the quality of the experimental design can influence the generalization ca-536

pability of the Kriging model. When the experimental design does not have537

a sufficient spread of the distribution, the generalization of the model can538

be effected irrespective of sample size. Possible improvements to LHS are539

contained in literature such as [41], and were not investigated in this paper.540

The same combinatorial approach is used for DLC1.6a and 6.1a (see Fig.541
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Fig. 14. DLC1.3 variation of NRMSE for (a) Maximum Von Mises stress in tower, (b)
Tower base fore-aft bending moment, (c) Maximum fairlead Tension and (d) Minimum
blade tip clearance.
O: Ordinary Kriging, L: Linear Trend, Q: Quadratic trend, M3-2: Matérn-3/2, M5-2:
Matérn-5/2, E : Exponential

15 and 16 respectively). These DLCs require 1hr long simulations making the542

evaluation of numerous experimental points computationally expensive. As543

such, only 100 sample points are used as training set while 50 sample points544

are used for validation and model selection. The results in Fig. 15 show that545

the linear trend with an exponential correlation function performed better546

in DLC1.6a responses except in response (c) where the linear trend and a547

Matérn-3/2 performed better. In Fig. 16 for DLC6.1a, the linear trend in548

combination with an exponential correlation function performed better for549

most of the responses considered except for response (a) where it was out550

performed by the linear trend with a Matérn-3/2 correlation function. We551

posit from these results that the selection of appropriate trend and correlation552

function depends not only on the DLC been modelled but also on the response553

channel and as such a combinatorial approach is recommended to select the554

appropriate parameters for a given response and DLC.555

5.4. Accuracy of Kriging Predictions556

Using the trained Kriging models, a one to one comparison between the557

Kriging predictions and the test data is presented in Fig. 17, 18 and 19. Also558
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Fig. 15. DLC1.6a variation of NRMSE with different trend and correlation functions for
(a) Maximum Von Mises stress in tower, (b) Tower base fore-aft bending moment, (c)
Maximum fairlead Tension and (d) Minimum blade tip clearance
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Fig. 16. DLC6.1a variation of NRMSE with different trend and correlation functions for
(a) Maximum Von Mises stress in tower, (b) Tower base fore-aft bending moment, (c)
Maximum fairlead Tension

included are the Coefficient of Determination (R2), computed according to559

Equation 12.560
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R2 = 1−
∑p

k=1 (Yk − Y ∗k )2∑p
k=1

(
Yk − 1

p

∑p
k=1 Yk

)2 (12)

The R-squared measures the closeness of the target data to the surrogate561

model predictions. For the considered responses, the Kriging model explains562

about 93% − 98.9% of the variability in the turbine responses considered563

for DLC1.3 as seen in Fig. 17. The predictions for DLC1.6a and 6.1a in564

Fig. 18 and 19 respectively, show R2 values ranging from 94.8% − 99.4%.565

This is a demonstration of the validity of a well calibrated Kriging model for566

predicting the responses of FWT substructure.567
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Fig. 17. DLC1.3 Kriging predictions Vs. Target values

5.5. Characterization of Kriging model’ uncertainty568

To estimate the uncertainty of the Kriging model, the procedure outlined569

in Annex D8.2.2 of Eurocode 1990 [12] is used. This approach was also570

employed in Ref. [8, 42]. For each load case, 50 sample points are employed571

for estimating the Kriging uncertainty. The turbine load is first represented572

by a probabilistic model given by Equation 13.573

L = bK · LK · ε (13)
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where LK is the Kriging prediction, bK is the Kriging model bias estimated574

using least squared method as given by Equation 14 and the error term εt575

for each test sample point is determined using Equation 15.576

bK =

∑50
t=1 (Lsim · LK)∑50

t=1 L
2
K

(14)

εt =
Lsim(t)

bK · LKrig(t)
(15)
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In Equation 15, Lsim are the responses obtained using computationally ex-577

pensive time-domain simulations and FE stress computation described in578

Section 4.1.1. The logarithm of the error εt and the mean error from the 50579

sample points are used to estimate the standard deviation of the residuals580

σK , represented by Equation 16 and the CoV of the Kriging model VK is581

computed with Equation 17.582

σK =

√√√√ 1

50− 1

50∑
t=1

(
ln(εt)−

[
1

50

50∑
t=1

ln(εt)

])2

(16)

VK =
√
eσ

2
K − 1 (17)

The Kriging model bias and coefficient of variation for the load sensors in-583

vestigated in this paper are presented in Table 5.584

Table 5. Kriging model uncertainty

TWR-VM TMy FT BCl

DLC1.3
Bias 1.001 1.001 1.000 1.000
CoV 0.004 0.004 0.001 0.005

DLC1.6a
Bias 1.002 1.002 1.000 1.001
CoV 0.006 0.007 0.001 0.011

DLC6.1a
Bias 1.001 1.002 1.001 —
CoV 0.005 0.006 0.002 —

585

The Kriging model uncertainties presented in Table 5 are subsequently in-586

corporated in the formulation of limit state functions and reliability analysis587

presented in Section 6.2.588

6. Sensitivity analysis and reliability assessment589

6.1. DLCs Sensitivity analysis590

To quantify the effect of the input random variables on the variance of591

the turbine responses under each DLC, global Sobol’ indices [43] are com-592

puted. To evaluate the Sobol indices, Monte Carlo (MC)-based estimation593
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is employed. Only a brief description is presented here, see Ref. [44] for594

copious details. First a matrix of size N × 2V of random samples are gen-595

erated from the distributions of the input variables, where N is the number596

of MC samples, and V is the number of input variables (V = 4 for DLC1.3597

and V = 6 for DLC1.6a and 6.1a). The N × 2V matrix is then split equally598

into two matrices, A and B each having N rows and S columns. For each599

input variable i; i = 1...V , a third matrix Ci is formed by taking all columns600

of B excluding the ith column which is taken from A. Using the trained601

Kriging model, the responses are computed for all the input values in the602

matrices A, B, and Ci as N ×1 vectors YA, YB and YCi
respectively for each603

variable i = 1...V . The total-effect Sobol index (STi) of each variable can be604

computed according to Equation 18.605

STi = 1−
1
N

∑N
j=1

(
Y

(j)
B Y

(j)
Ci

)
−
(

1
N

∑N
j=1 Y

(j)
A

)2

1
N

∑N
j=1

(
Y

(j)
A

)2

−
(

1
N

∑N
j=1 Y

(j)
A

)2 (18)

An MC sample size, N = 105 was used at a cost of N(V + 2), amounting606

to 6 × 105 evaluations. The total Sobol indices are reported in Fig. 20,607

21 and 22 for DLC1.3, 1.6a, and 6.1a respectively. The stiffness of the
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Fig. 20. DLC1.3 response sensitivity with respect to input random variables
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Fig. 21. DLC1.6a response sensitivity with respect to input random variables

TWR-VM TMy FT

Response channels

0

0.2

0.4

0.6

0.8

1

S
o
b
o
l 
in

d
ic

e
s

Hs

Tp

U

E

t
t

t

Fig. 22. DLC6.1a response sensitivity with respect to input random variables

tower characterized by E and tt has the most effect on the von Mises stress609

(TWR−VM) and moments (TMy) in the tower for DLC1.3. The wind speed610

U drives the fairlead tension (FT ) and blade-to-tower-clearance (BCl) for611

all DLCs considered. When the sea state is not conditioned on wind speed612

as is the case with DLC1.6a and DLC6.1a, the wave height Hs and the tower613

thickness (tt) had the most influence on the tower von Mises stress while614

Hs and U dominate the tower bending moment. These findings are very615
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insightful in the design stages as the designer can readily tell which variables616

have most influence on key support structure load channels.617

6.2. Reliability Analysis618

Structural reliability is assessed by estimating the probability of failure619

of the structure. The demands or solicitation (L) on the structure (i.e. load620

effects on the structure in the form of stresses, deflections, bending etc.)621

are compared to the capacity or resistance (R) of the structure e.g. ultimate622

bending stress, yield strength, shear capacity etc. Generally, structural safety623

requires that the resistance of the structure be greater than the solicitation624

i.e. R > L, with R ≤ L implying failure of the structure. The failure625

probability is represented by Equation 19.626

Pf = P [g(R,L) ≤ 0] (19)

where g(R,L) is the limit state function expressed in terms of the resis-627

tance random variable R and the load random variable L. Simulation methods628

can be used to evaluate Equation 19 by sampling from the probability distri-629

butions of the input variables and evaluating the LSF for each sample point.630

The failure probability is then computed by Equation 20.631

Pf =
Nf

N
(20)

where Nf is the number of limit state violations (i.e. g(R,L) ≤ 0) and N is632

the total number of samples. A widely used sampling technique is the Monte633

Carlo Simulation (MCS) which involves direct sample-based estimation of the634

failure probability. A major drawback of MCS is the increased computational635

cost for the estimation of low failure probabilities. Subset Simulation (SS)636

offers computationally efficient alternative to MCS (see Ref. [45]). For sake637

of brevity, details of this approach is not provided in this work. Readers638

can refer to Ref. [46] for details of implementation within UQLab’ reliability639

analysis toolbox. The total probability of failure due to a DLC, PT resulting640

from all the considered load cases in the DLC is computed according to641

Equation 21.642
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PT =
∑
L

Pf (L)focc(L) (21)

where Pf (L) is the failure probability computed for load case L and focc(L) is643

the probability of occurrence of the environmental conditions of load case L644

(see Table 2 for DLC1.3 values of focc(L)). For DLC1.6a and DLC6.1a only645

the severest load case is used for reliability analysis. The 50-year metocean646

parameters are treated as uncertain parameters with a mean value and CoV647

to account for uncertainties associated with extrapolation techniques (quanti-648

fying this uncertainty was not within the scope of this paper, hence values for649

this uncertainty are based on engineering judgement). The failure probabil-650

ities under DLC1.6a and DLC6.1a conditions are therefore calculated based651

on the 50-year responses computed using realizations of the 50-year metocean652

parameters. It is worth mentioning that in general, 50-year responses cal-653

culated using extrapolated metocean parameters lead to different load levels654

compared to those obtained by extrapolating responses with proper account655

of the long term distribution of the environmental parameters [5]. However,656

the approach adopted here is considered to suffice within the scope of this657

paper.658

6.2.1. Verification of Kriging for reliability analysis659

The aim of this part of our study is to examine the efficacy of Kriging660

in the estimation of failure probability of FWT support structures with a661

look at the influence of the Kriging uncertainty. Given the computational662

cost of evaluating each LSF, the variance reducing alternative to the MCS,663

LHS is employed to enable sampling the tails of the distributions with limited664

sample size. A sample size of 1000 sample points requiring 6000 time-domain665

simulations is used. The failure probability is evaluated for three formulations666

of LSF defined describing the maximum von Mises stress observed in the667

tower exceeding the yield stress represented by Equation 22 - 24.668

g1case1 = Fy − σsim (22)

g1case2 = Fy − bKrigσKrigXKrig (23)
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g1case3 = Fy − σKrig (24)

where Fy is the yield stress of the tower. The yield stress is the resistance669

variable treated as a random variable with mean value set to 235MPa and670

CoV of 0.05, modeled with a log-normal distribution. The structural demand671

is the maximum von Mises stress in the tower σsim computed directly from672

aero-hydro-servo-elastic simulations and linear elastic stress computation and673

σKrig computed using trained Kriging model. In Equation 23, bKrig is the674

Kriging model bias and XKrig represents realizations of a random variable675

with mean of 1 and the same CoV as the Kriging model. The 3 formulations676

of LSFs given by Equation 22 - 24 represents 3 cases for Pf evaluations.677

Considering the huge cost of evaluating 1000 sample points, only several re-678

alizations of Fy are generated and compared to the 1000 sample points of679

structural demand. For each case the input to the Kriging model remains680

unchanged. These are the 1000 sample points used in running the computa-681

tionally expensive simulations. The mean Pf computed for 1000:1000:10000682

realizations of 1000 samples of Fy are presented. The results are presented683

in Fig. 23.684
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Fig. 23. Failure Probabilities for case 1, 2 and 3

The Pf of case (1) which is the ideal case converges to ≈ 2.1× 10−4. The685

results show that including the Kriging model bias and uncertainty in the LSF686

formulation as in case (2) resulted to a better match with case (1) as opposed687
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to case (3) where these terms are not included. Incorporating the Kriging688

model bias and uncertainty into the LSF results in failure probabilities that689

are on average only 2.4% different from the true values as opposed to 12.1%690

when not incorporated. This shows that accurately quantifying and including691

the model uncertainties in the limit sate evaluation yields results close to692

reality.693

6.2.2. Estimation of failure probability for DLCs694

For each of the DLCs considered i.e. DLC1.3, 1.6a and 6.1a, the failure695

probability of the tower and mooring lines are evaluated using the trained696

Kriging models. The “true” mean wind speed, Ubin that produces maximum697

response of each load channel is first selected from Kriging response predic-698

tions of mean wind speed values [(U∗bin − 1) : 0.1m/s : (U∗bin + 1)], where699

U∗bin is the mean wind speed bin suggested in Section 3.5 using a bin interval700

of 2m/s. Some of the results are presented in Fig. 24 and 25. From Fig.701

24 and 25, it is evident that the recommenced wind bin steps of 2m/s do702

not necessarily give sufficient resolution that captures the true extremes of703

turbine responses. The 13.6m/s wind bin produced higher loads compared704

to the 14m/s suggested in Section 3.5, while the 11.5m/s wind bin which is705

very close to the rated wind speed of 11.4m/s produced the most extreme706

responses for DLC1.6a. To understand how the selection of wind bin af-707

fects structural failure computation, wind bins Ubin and U∗bin are used in the708

reliability analysis that follows.
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Fig. 24. DLC1.3 Wind speed bins

709

The LSFs considered for the tower are (1) G1: the tower von Mises stress710

exceeding yield limit described by Equation 25 and (2) G2: Simplified local711
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Fig. 25. DLC1.6a Wind speed bins.

buckling of the tower in similitude with that applied in the work by Sorenson712

et al. [16] (see Equation 26). The mooring line failure is governed by the LSF713

G3: the tension at the fairleads exceeding the minimum breaking strength714

of the mooring line given by Equation 27.715

G1 = FyXy − bKrigσKrigXKrigXdynXstrXexpXaeroXhydro (25)

G2 =
1

6

(
1− 0.84

D

tt

XyFy
E

)
(D3 − (D − 2tt)

3)XyFy

− bKrigMKrigXKrigXdynXstrXexpXaeroXhydro (26)

G3 = BL − bKrigTKrigXKrigXdynXstrXexpXaeroXhydro (27)

The values of the variables in Equation 25–27 are given in Table 4. The716

X terms are stochastic variables which capture the uncertainties associated717

with the system. Their distributions and parameters are consistent with Ref.718

[10, 15, 16, 36]. Uncertainty related to dynamic response modeling of the719

wind turbine which covers uncertainty in eigenfrequencies and damping ra-720

tios is modeled by Xdyn, Xstr models uncertainty related to the computation721

of load-effects, Xexp accounts for uncertainty associated with site assessment722

such as topography and terrain roughness. The use of quasi-steady BEM723
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theory and assessment of aerodynamic drag and lift coefficients introduces724

uncertainty which is modeled by Xaero while uncertainty related to the as-725

sessment of hydrodynamic drag and inertia coefficients is modeled by Xhydro.726

The Kriging model uncertainty is modeled by the random variable XKrig727

with bKrig as the Kriging model bias (computed in Section 5.5). Uncertain-728

ties in material and geometrical parameters also influence the design loads.729

These uncertainties are captured by the surrogate model and their influence730

quantified. In Equation 27, TKrig is the maximum tension at the fairleads731

computed by the Kriging model. The breaking load of the mooring chain BL732

is derived from the chain nominal diameter d = 90mm based on Equation 28733

given in DNVGL-OS-E302 [47] for an R3 chain grade. Note that the mooring734

diameter of 90mm is rather fictitious and has only been used here for sake735

of a generic analysis—more realistic values should be considered in order to736

relate the computed failure probabilities more rationally to the design life.737

BL = 0.0223d2(44− 0.08d) (28)

Using the reliability analysis toolbox UQLab [46], the probability of fail-738

ures based on the limit state functions given by Equation 25 – 26 are com-739

puted using MCS of 106 samples, while subset simulation is used to estimate740

the low failure probabilities for Equation 27 (readers can refer to Ref. [45]741

for details of this approach). For DLC1.3, failure probability is computed for742

three load cases (LC1, LC2 and LC3). Table 6 shows the calculated failure743

probabilities for the considered DLCs.744

745

The failure probabilities for load case LC1, LC2 and LC3 in Table 6 are746

reflective of the trend of the design driving loads plotted across wind bins747

with the most critical occurring with the LC2 scenario. Considering all three748

load cases under DLC1.3, the total probability of failure due to DLC1.3 is749

less than 7 × 10−4 for all LSFs. The mooring lines have Pf values less than750

10−16 for all DLCs. This is because the mooring system is designed to always751

have a catenary shape with a layed-down part before the anchorage which752

effectively limits the tension in the lines. Results in Table 6 for DLC1.3 and753

DLC6.1a show levels that are compatible with target probability of failure754

values of 2×10−4 – 10−3 used in the calibration of partial safety factors in the755
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Table 6. Probability of failure due to load cases.

DLC LSF
G1 G2 G3

1.3
LC1 4.2E-05 (2.9E-05*) 4.3E-05 (2.6E-05*) < 10−16

LC2 9.56E-04 (6.73E-04∗) 1.48E-03 (9.35E-04∗) < 10−16

LC3 1.31E-04 (1.01E-04∗) 1.54E-04 (9.7 E-05∗) < 10−16

LCT 4.476E-04 (3.16E-04∗) 6.76E-04 (4.26E-04∗) < 10−16

1.6a 4.61E-02 (4.43E-02*) 8.08E-02 (7.25E-02*) < 10−16

6.1a 2.2E-03 (1.94E-03**) 3.74E-03 (2.75E-03**) < 10−16

*: U∗bin is used, material and geometric uncertainties neglected
**: material and geometric uncertainties neglected, U∗bin not applicable
LCT : Combination of LC1, LC2 and LC3

IEC 61400-1 [4] and IEC 61400-3 [5] design standards (see Ref. [16, 36]). It756

is noted that the probabilities of failure for DLC1.6a are slightly away from757

the target values range. This is due to high loads produced by excitation758

from the 50-year sea state combined with action of controllers and rotor759

dynamics. Similar high loads are reported in Ref. [19, 20] as well. Improving760

the hydrodynamic damping of the system is one of the solutions proposed by761

Jonkman and Matha [20]. With such improvement, the probability of failure762

for DLC1.6a is expected to fall within the target value range.763

Neglecting the influence of material and geometric uncertainties on the764

controlling loads is usually common in studies on wind turbine reliability765

analysis. So also the use of 2m/s wind bin interval. Together, these can766

amount to as much as 39% reduction in failure probability (e.g. LC2). Al-767

though not included in the results presented, using 0.1m/s bin interval gave768

wind bin values that amounted to ≈ 19% and 18% increase in the total fail-769

ure probability for LSF G1 and G2 respectively. The inclusion of all the770

considered modeling uncertainties amounted to failure probabilities that are771

about 1012 times higher than those computed without taking modeling un-772

certainties into account. This is attributable to structural demands in terms773

of load effect been multiplied by factors as high as 2.3 (from the product of774

realizations of the X random variables), implying greater number of limit775

state violations. Evidently, modeling uncertainties significantly increase fail-776

ure probability of structural members and should not be neglected in the777

design process.778
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7. Conclusions779

A framework for robust reliability analysis of FWT support structures780

under ULS design for IEC 61400-3 [5] DLC1.3, 1.6a and 6.1a was presented.781

The first part of this work established design driving metocean conditions782

for the considered load cases and a ranking of DLCs based on selected re-783

sponse channels was presented. The power production DLC1.6a resulted in784

the most critical loads. This is attributable to the combined action of ro-785

tor dynamics, control system loads and severe sea state. Subsequently load786

effect computation in terms of structural stress evaluation was presented.787

The methodology adopted is hinged on linear elastic FEA. This lineariza-788

tion enabled the conversion of time series of lumped loads into stress time789

series—amounting to huge computational savings when time-domain simu-790

lations are imperative provided the structural loads are not expected to lead791

to non-linear deformation.792

After training the Kriging models, a validation of Kriging for estimating793

structural failure probability was presented. Using 6000 simulations, making794

up 1000 sample points, it was shown that correctly estimating and incorpo-795

rating the Kriging model bias and uncertainty into the LSF results in failure796

probabilities that are on average only 2.4% different from the true values as797

opposed to 12.1% when not incorporated.798

Finally, failure of the tower under yield and local buckling limit states799

is evaluated as well as failure of the mooring lines. By training the Kriging800

models around the most severe wind bin determined from load analysis us-801

ing 2m/s bin interval, a more accurate design driving wind bin is determined802

using 0.1m/s bin interval. This resulted to between 19% – 18% increase803

in computed failure probabilities for DLC1.3. When material and geomet-804

ric uncertainties are accounted for, together with selecting the “true” design805

driving wind bin, failure probability is reduced by up to 39% of values ob-806

tained when these uncertainties are neglected. The findings of this study807

show the influence of various uncertainties in the design of wind turbine808

support structures and the presented methodology for capturing these un-809

certainties would be highly beneficial when incorporated in reliability-based810

optimization schemes and partial safety factor calibration.811
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