
R E S E A R CH A R T I C L E

Geomorphological response to system-scale river rehabilitation
II: Main-stem channel adjustments following reconnection
of an ephemeral tributary

Baptiste Marteau1,2 | Chris Gibbins1,3 | Damià Vericat4,5 | Ramon J. Batalla4,6,7

1Northern Rivers Institute (NRI), Geosciences,

University of Aberdeen, Scotland, UK

2Université de Lyon CNRS, UMR 5600 –
Environnement-Ville-Société (EVS), ENS Lyon,

Lyon, France

3School of Environmental and Geographical

Sciences, University of Nottingham Malaysia,

Semenyih, Malaysia

4Fluvial Dynamics Research Group (RIUS),

University of Lleida, Catalonia, Spain

5Forest Science and Technology Centre of

Catalonia (CTFC), Solsona, Catalonia, Spain

6Catalan Institute for Water Research (ICRA),

Girona, Catalonia, Spain

7Faculty of Forest Sciences and Natural

Resources, Universidad Austral de Chile,

Valdivia, Chile

Correspondence

Baptiste Marteau, Northern Rivers Institute

(NRI), Geosciences, University of Aberdeen,

Scotland, UK.

Email: baptiste.marteau@ens-lyon.fr

Funding information

Environmental Agency; United Utilities;

Environment Agency

Abstract

This paper describes changes in bed morpho-dynamics and topography in the River

Ehen, a regulated river in NW England (i.e., temperate climate) following a rehabilitation

project that reconnected a formerly diverted headwater sub-catchment back to its main-

stem. Sediment grain-size distributions in the Ehen changed subtly and in rather complex

ways following the reconnection. Changes were most evident in the riffle morphological

unit, where gravel-sized material accumulated in the first 2 years after the reconnection.

All morphological units initially experienced an addition of fine sediment (size <8 mm)

but by the end of the study the proportion of fine material in the bed matrix had ret-

urned to pre-reconnection levels. Topographic changes were evident in some units, with

net aggradation in the riffle and scour in the plane bed; there was no detectable change

in the pool. Albeit limited, there was evidence of an increase in bed mobility, with field

observations indicating that the new sediment is moving over the top of the largely static

existing pavement, rather than interacting with it. Despite numerous uncertainties

related mainly to the ephemeral nature of the tributary and, consequently, how much

sediment it would deliver, evidence suggests that the main project objective is being

met: there is a renewed supply of sediment now being delivered to the main-stem Ehen

at times and in quantities that are controlled by natural processes. Nevertheless, the river

is still best considered to be in an adjustment phase, so assessment of its long term

response to the reconnection requires continued monitoring.

K E YWORD S

bed mobility, geomorphological adjustments, grain size distribution, habitat, river Ehen, river
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1 | INTRODUCTION

Recognition of the problems caused by the disconnection of rivers

from their sediment sources has led to widespread river restoration or

rehabilitation efforts that include gravel augmentation, dam removal

and channel reconnection. Despite the prevalence of such efforts,

river rehabilitation projects that fail to reactivate connectivity path-

ways have limited potential for success (see Fuller & Death, 2018 and

references therein). The impacts of disconnectivity on river integrity

can be observed at various spatial scales (Brierley, Fryirs, &

Jain, 2006), and while they may not always be economically feasible,

the greatest potential for effective river rehabilitation lies in
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catchment-scale initiatives (Shields, Copeland, Klingeman, Doyle, &

Simon, 2003). Although this need for emphasis at the catchment scale

has now been recognized for some time (Hillman & Brierley, 2005),

the adaptive nature of objective-based river rehabilitation calls for a

wider reporting of all types of initiatives, especially given the uncer-

tain nature of river rehabilitation (Wheaton, Darby, & Sear, 2008).

When possible, reconnecting the affected river with its natural sed-

iment sources appears a more desirable long-term solution than peri-

odic artificial injections, as it allows material to be delivered at times

and in quantities that are controlled by natural processes. Dam removal,

for instance, recreates conditions in which both water and sediment

fluxes are restored (assuming that the upstream sources remain) (Foley

et al., 2017). Reconnecting previously diverted (disconnected) sub-

catchments also has the potential to change sediment transport dynam-

ics in the receiving system, as can be observed in confluence zones in

natural systems (Brierley et al., 2006). Benefits of such reconnection

may extend to improving other aspects of morpho-sedimentary condi-

tions affected by the disconnection of sediment sources, such as reduc-

ing the degree of armouring (Parker, Dhamotharan, & Stefan, 1982).

Thus, as the ongoing provision of material following reconnection is

likely to generate long-lasting geomorphological adjustments, this

approach is more sustainable than other practices. Indeed, one of the

issues of river rehabilitation lies in the uncertainties of success and the

potentially time-limited benefits (Brooks, Howell, Abbe, &

Arthington, 2006; Wheaton et al., 2010), especially when all the causes

of degradation are not removed (Hendry, Cragg-Hine, O'Grady,

Sambrook, & Stephen, 2003), or when projects are designed without a

long-term perspective (Alexander & Allan, 2007; Wohl, 2005). By

focussing on reinstatement of processes, rehabilitation projects that

involve reconnecting rivers to their sediment sources are also more

consistent with the ecosystem-based approach than those that simply

involve re-engineering or recreation of physical habitat.

The rehabilitation initiative in the River Ehen catchment aimed to

improve habitat for the endangered freshwater pearl mussel

(M. margaritifera L.) by reinstating fluvial processes through the

reconnection of a formerly diverted tributary. From its inception, the

initiative recognised that because of the lack of control over how sed-

iment would be supplied by this tributary, the outcome would be

uncertain and unpredictable. The River Ehen initiative therefore offers

a unique opportunity to study and report on geomorphological adjust-

ments in a main-stem river in response to tributary reconnection.

Initial monitoring of the Ehen (i.e., in the first 2 years post-

reconnection) demonstrated how the small increase in catchment size

(1.2%) stemming from the reconnection resulted in a 65% increase in

main-stem suspended sediment yield (Marteau, Batalla, Vericat, &

Gibbins, 2017). Other studies developed and applied methods to

assess changes in the newly reconnected channel (Marteau, Vericat,

Gibbins, Batalla, & Green, 2017) and the amount of material being

supplied to the Ehen (Marteau, Gibbins, Vericat, & Batalla, 2020). The

current paper focusses on assessing how this new situation affects

main-stem morpho-dynamics. The overarching goal of the paper is to

understand how this type of rehabilitation –that of reconnecting a

sub-catchment– influences fluvial processes and geomorphic condi-

tions in the main-stem Ehen. Specific objectives of the paper are:

(a) to quantify adjustments to main-stem bed material dynamics (parti-

cle mobility) and sedimentary conditions (bed grain-size distributions),

and (b) describe the nature and magnitude of topographic changes in

the main-stem channel. Observed changes are used as a basis for dis-

cussing adjustments to geomorphic processes and the potential

longer-term implications of the reconnection of the sub-catchment

for riverbed mobility and channel dynamics in the Ehen. The discus-

sion considers the lessons learnt from the tributary reconnection and

their relevance for river rehabilitation projects elsewhere.

2 | STUDY AREA

2.1 | General context

The Ehen is a 24.6 km long river flowing south-westwards from

Ennerdale Water (Figure 1(b)). Its entire catchment is 155.8 km2 and

comprises the River Liza (upstream from Ennerdale Water) and three

major downstream tributaries (Croasdale Beck, River Keekle, and Kirk

Beck). Flows in the Ehen are regulated by the (originally natural) lake

and its associated weir, although the effects are primarily concentrated

on high (reduced peak discharge) and very low flows (compensation

flow higher than natural minimum flows). Compensation flow, which is

released via a fish-pass, has varied over time (from 0.37 m3 s−1 up until

2012 and currently 0.92 m3 s−1). The Ehen is gauged by the Environ-

ment Agency at Bleach Green (550 m downstream from the lake out-

let). Long-term (1973–2016) mean daily discharge here is 2.70 m3 s−1,

with minimum and maximum daily discharges of 0.124 and 80.2 m3 s−1,

respectively. Ennerdale Water is an important local supply of drinking

water and actions were taken in the past to improve its storage capac-

ity. These included the construction of a 1.3-m high weir (in 1902) and

the diversion of Ben Gill (main headwater tributary of the Ehen) in the

1970s towards the lake. Further details of this initial diversion, along

with the reconnection of Ben Gill in 2014, are given by Marteau,

Vericat, et al. (2017) and Marteau, Batalla, Vericat, and Gibbins (2018).

The River Liza drains the higher parts of the catchment. However,

the lake acts as a sediment trap and very little sediment from the Liza

is transferred downstream (Quinlan, Gibbins, Batalla, & Vericat, 2015).

This, in addition to the disruption of the natural input of water and

sediment from Ben Gill (Figure 1), has resulted in the Ehen becoming

increasingly stable and sediment-starved. In their preliminary study,

Quinlan, Gibbins, Batalla, and Vericat (2015) and Quinlan (2014)

described the riverbed of the upper Ehen as highly stable, heavily

armoured, and immobile. The absence of topographic changes and

marginal bed mobility, even following high flows, led Marteau, Batalla,

et al. (2017) and Marteau, Vericat, et al. (2017) to describe the static

coarse surface layer as pavement (sensu Sutherland, 1987).

Due to the requirements of both adult and juvenile mussels, the

paved bed was considered limiting for mussel populations, especially

because of its impact on recruitment (Quinlan, Gibbins, Malcolm,

et al., 2015). Despite the flow regulation, the river has retained some

hydrologic dynamism and flashiness and so, as per Bunte and

Abt (2001), the pavement is more likely a result of sediment starvation

(downstream winnowing of fines without replacement from upstream)
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than a lack of competent flows. In such circumstances, restoring

catchment-scale connectivity to yield a dynamic provision of sediment

may help restore some habitat heterogeneity and potentially, in the

long run, contribute to the (partial) breakup of the of the pavement.

This provision formed the rationale for the reconnection of Ben Gill.

2.2 | Sediment inputs from Ben Gill

Analyses presented in Marteau et al. (2020) indicated that Ben Gill

provided a minimum volume of 200 m3 y−1 of bed material during the

study period, of which only approximately 24% was readily available

for transport in the Ehen. The tributary is capable of delivering a large

variety of sediment clasts, but only pebbles to fine cobbles are present

at the surface of the newly developed confluence bar (excluding fine

sediments), and thus readily available for transport in the Ehen.

According to field observations, most particles deposited in response

to the reconnection are smaller than 64 mm. Changes in bed material

fluxes from Ben Gill during the period September 2014 to October

2016 are fully described in Marteau et al. (2020).

3 | MATERIALS AND METHODS

This study builds on results from Quinlan (2014) and Quinlan, Gibbins,

Batalla, and Vericat (2015) who reported on the state of the River Ehen

prior to the reconnection. Post-reconnection bed stability and texture

are compared to these earlier studies. Changes in suspended sediment

transport and bed storage were also monitored and have been reported

elsewhere (Marteau et al., 2018; Marteau, Batalla, et al., 2017). The vol-

umes and characteristics of sediment delivered by Ben Gill following

the reconnection are described in detail by Marteau et al. (2020). Only

summary information on this source material is presented here, to pro-

vide a context for changes observed in the Ehen.

3.1 | Hydrological context

The gauging weir records discharge at 15-min intervals and these data

are used to characterize the hydrological regime of the Ehen during

the study period (July 2014 until October 2016; i.e., 2 months prior to

and 24 months following the reconnection). Mean daily discharges for

the 1974–2016 period are also used here for longer-term con-

textualisation of the study, including the assessment of discharge

recurrence intervals.

3.2 | Flow hydraulics: Modelling and stream power
data before and after reconnection

Key parameters to describe flow hydraulics were computed from

1D modelling using WinXSPro (Version 3.0, 2005, USDA Forest

F IGURE 1 Details of the study catchment and site. (a) Location of Ehen catchment within the United Kingdom. (b) The River Ehen and its
catchment. (c) Plan view and (d) orthophoto of study site. Morphological units are delimited in orange (c & d, see text). Bleach Green gauging
station is located 500 m downstream from the confluence [Colour figure can be viewed at wileyonlinelibrary.com]
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Service). For each morphological unit present within the study

reach, a hydraulic model was built with bed topography from the

topographic surveys, along with the sediment D84 from the particle

size surveys to determine roughness (Thorne & Zevenbergen

method as provided by the model, Hardy, Panja, & Mathias, 2005).

Results were validated with field observations on the day the sur-

veys were performed and flow data from the nearby gauging sta-

tion (see Figure 1). Modelling was repeated for each series of

surveys in each unit. The discharge-shear stress (Q-τ) relationship

was examined to compare flow hydraulics in relation to changes in

topography. Since topographic differences between successive

models did not prove significant (see results section), a single model

per morphological unit was used for all simulations of hydraulics

and bed mobility.

Model outputs were used to calculate discharge-related stream

power, using Bagnold's (1966) formula:

ω=
ρw �g �Q �S

w
ð1Þ

where ω is the unit stream power (W m−2), ρw is the density of

water (kg m−3), g is the gravitational acceleration (m s−2), Q is dis-

charge (m3 s−1), S is local slope (m m−1) and w is the channel width

at bankfull discharge (m). Once Q-ω relationships were defined, dis-

charge data were used to compute time series of ω at 15-min

intervals.

The relationship between maximum stream power recorded over

a given period (ωmax) and the size of mobilized particles (in b-axis) was

used to develop sediment mobility models for each morphological

unit. These relations yielded information on the minimum stream

power required to displace a given particle (i.e., critical stream power

ωci). Then, following Hassan and Zimmerman (Hassan &

Zimmermann, 2012), ωci was used to calculate total excess of stream

power during a given period (ωe):

ωe =
X

ω−ωcið Þ, whenω>ωci ð2Þ

Values of ωe were used to compare particle mobility before and

after reconnection [i.e., comparison of current data with those of

Quinlan, Gibbins, Batalla, and Vericat (2015)]. Direct comparison of

the distance moved by tracers in relation to flow strength (e.g., ωe)

was not possible given the differences in hydraulic conditions expe-

rienced by the tracers in the two studies. Instead, total displace-

ment of moved and recovered particles was divided by the total ωe

experienced by the tracers and plotted against their b-axis. This

provided an estimate of the distance travelled per unit of ωe for a

particle of a given size. The purpose here was to provide an insight

into gross changes in mobility of the bed following the

reconnection; due to the relatively simple models and data used,

speculation of the processes underpinning changes in mobility is

avoided.

3.3 | Assessment of sedimentary changes in
the Ehen

The assessment of sedimentary adjustments in the River Ehen down-

stream from the confluence of Ben Gill was based on changes in sur-

face grain-size distributions (GSD), bed mobility and channel

topography. Full details of these methods are provided below.

3.3.1 | Surface grain-size distributions

Bed surface texture was monitored in the Ehen using the pebble count

method to derive GSDs (Wolman, 1954), which involves measuring peb-

bles along their b-axis (Bunte & Abt, 2001) and classifying them follow-

ing the Wentworth scale. The lower limit of this technique is considered

to be 8 mm, although particles <8 mm were still picked and counted to

know their proportion. The three main morphological units present in

the study reach (see Figure 1c,d) were sampled independently on seven

occasions (Figure 2), with 200 particles collected in both the plane bed

and riffle on each occasion, and 300 in the pool. Data collected by Quin-

lan, Gibbins, Batalla, and Vericat (2015) in 2011–2012 in the same units

were used as a pre-reconnection reference (although only 100 particles

were measured per unit by these authors).

No attempt was made to sample subsurface material due to

(a) the absence of exposed gravel bars even during low flows, and

(b) the risks associated with underwater subsurface sampling and the

release of fine sediments, which are known to be present at rather

high levels (Marteau et al., 2018) and which on release may impact

freshwater pearl mussels.

3.3.2 | Bed surface mobility

The movement of bed particles was monitored using painted tracers.

Each morphological unit was seeded with 100 particles (collected

from Ben Gill and not directly from the Ehen in order to prevent the

disruption of the bed). Tracers of different colours (one colour per

unit) were placed in equally spaced lines of five to seven tracers, per-

pendicular to the flow, and spread over the entire unit. The sizes of

tracers seeded covered the whole range of particles found in the

respective units; tracers ranged between 8 and 181 mm (in b-axis) in

the plane bed and the pool, and between 8 and 256 mm in the riffle.

Tracers were seeded on July 31, 2014 and resurveyed on five occa-

sions (Figure 2). The study design was selected to match that of Quin-

lan, Gibbins, Batalla, and Vericat (2015). Their results, collected from

two resurveys under medium flows (return periods of 1.4 and

1.8 years), are used for comparison between pre- and post-

reconnection mobility conditions and to study potential changes in

mobility patterns. Particles that were not recovered were not included

in analyses. No systematic data on particle burial were collected,

although tracers were found under small gravel accumulations on

numerous occasions. The plane bed and riffle units were expected to

MARTEAU ET AL. 1475



be the most active (Quinlan, Gibbins, Batalla, & Vericat, 2015), and

since they are the closest to the confluence they were considered

adequate for assessment of changes in bed surface mobility following

the reconnection.

3.4 | Changes in bed topography

Bed topography was surveyed in each morphological unit across a

fixed control transect using an Acoustic Doppler Current Profiler

(ADCP) (StreamPro, Teletyne RD Instruments). An initial pre-

reconnection baseline survey was performed over the entire study

reach in July 2014, which showed that units possessed only minor

topographic variability, justifying the use of a single transect per unit.

Transects were located in the middle of each unit and surveyed on six

occasions post-reconnection (see Figure 2). Top, face and bottom of

bankside areas were surveyed with a Leica Viva GNSS differential rtk-

GPS on the first post-reconnection survey (T1), and only areas where

deposition would prevent access of the ADCP were re-surveyed. No

other changes to the banks were observed throughout the study.

On each occasion (December 2014, March 2015, July 2015, Jan

2016, May 2016 and July 2016, see Figure 2 and Table S1), transects

were resurveyed 2–4 times, with data used to determine the average

bed elevation at points and a measure of uncertainty (i.e., standard

deviation of bed elevations) at a spacing of 0.2 m (> D84 of coarsest

unit). Similar to the procedure used to determine the minimum level

of detection (minLoD) for successive Digital Elevation Models(DEMs,

see the application of this in Marteau et al., 2020), difference in

elevation (topographic change) was defined as certain only if change

was higher than the minLoD:

minLoD= t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDi

2 + SDi+1
2

q
ð3Þ

with SDi and SDi+1 the standard deviation of surveys i and i+1 respec-

tively (based on repeated surveys), and t = 1 (confidence

interval = 64%).

3.5 | Data analysis

3.5.1 | Flow hydraulics

To determine if topographic changes had an impact of flow hydraulics

(i.e., if a single 1D hydraulic modelling exercise was suitable for the

entire study period), changes in the Q-τ relationship over time were

assessed. To do so, the power-law regression of the Q-τ relationship

was tested for change over time using ANCOVA (Andrade & Estévez-

Pérez, 2014).

3.5.2 | Grain-size distributions

Differences in bed GSD were analysed using χ2-homogeneity test.

This test allows the comparison of entire distributions, rather than

simply testing for differences in summary statistics such as mean or

F IGURE 2 Hydrograph of the River Ehen (at Bleach Green gauging station), timing of flows in Ben Gill (grey bars) and frequency of the
different field surveys undertaken for the study period (arrows). The dashed vertical line shows the day of the reconnection [Colour figure can be
viewed at wileyonlinelibrary.com]
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median particle size. It performs well for sampled particle size distribu-

tions of arbitrary shape and is suitable for comparing distributions of

different size (Scheibelhofer, Besenhard, Piller, & Khinast, 2016).

3.5.3 | Bed mobility

Mobility models based on tracer and hydraulic data were expressed in

the form ωci=aDi
b. Bagnold's (1980) formulation of

ωci =0:0971 Dið Þ1:5 � log 1200d=Dið Þ ð4Þ

led Costa (1983) to model particle mobility from a power regression

of the form a�Di
b. Several authors have also applied regressions of this

form for different types of river (Ferguson, 2005; Petit, Gob,

Houbrechts, & Assani, 2005; Williams, 1983) and the same form of

equation was used in this study. In order to identify the minimum ω

required to entrain particles (i.e., critical stream power, ωci), the rela-

tionship between several particle size statistics (i.e., Dmax, Dmean, D84)

and ωmax, determined from the associated Qmax experienced prior to

the resurvey of tracers, was analysed.

Tracer data were further investigated using limiting response

(LR) regression models (Cade and Noon, Cade & Noon, 2003). LR

models allow for heterogeneity in values of Y across the range of the

X variable (something which would violate assumptions of standard,

central response regression modelling) while also allowing for a focus

on upper and lower limits of observed responses, in this instance of

particle mobility to flow characteristics (e.g., peak discharge, ωmax, ωe).

The nature of the scatter in the Ehen tracer data meant that central

response models were inappropriate. As well as negating this issue,

the LR models provided insights into the maximum response in dis-

tance travelled that could be expected for a given value of particle

size. The upper limit (T = 0.95) was modelled using Quantile Regres-

sion (QR); 95% of points sit below this modelled line. To describe the

general trend, QR was fitted to the T = 0.5. Different regression

models were tested, with the power relation y = eaxeb

(i.e., log10[y] = ax + b) providing the best fit for both levels of Τ (based

on AIC values). QR models were fitted separately to pre- and post-

reconnection data, allowing assessment of whether conditions have

changed. All statistical tests were performed in R (R Core

Team, 2017).

4 | RESULTS

4.1 | Hydrological regime

The hydrological regime of the Ehen reflects typical patterns for rivers

in the NW of England - it experiences low flows in the summer and

higher flows in the winter, with some high flow events observed inter-

mittently in late spring. Thus, despite the regulation by Ennerdale

Water and its associated weir, the Ehen's hydrological regime remains

relatively flashy and variable. Flows for the study period ranged from

0.31 m3 s−1 (11/02/2015) to 54.0 m3 s−1 (November 15, 2015). Mean

and median discharges (3.50 m3 s−1 and 1.99 m3 s−1, respectively) are

slightly higher than long-term respective values (2.72 m3 s−1 and

1.38 m3 s−1, 1974–2016). Flows in November and December 2015

were particularly high, with a maximum discharge of 54.0 m3 s−1 (esti-

mated return period of 30 years).

4.2 | Flow hydraulics

The Q-τ relationship for each morphological unit did not change sig-

nificantly over time (ANCOVA tests per unit, all p > .05). Thus, a single

model was created per unit. The overall Root Mean Square Error

(RMSE) of all modelled (Qmod) versus observed (Qobs) discharges was

0.41 m3 s−1. Given the stable nature of the riverbed, the negligible

changes observed in flow hydraulics, and because no topography data

were available for the 2011–2012 period of study, this model was

used for the pre-reconnection period as well.

Stream power (ω) associated with flow magnitude was calculated

using Equation (1); ω was highest in the plane bed and lowest in the

pool; ωmax calculated in the entire reach was 119 W m−2 and was

observed post-reconnection during the 30-year return-period flood of

2015 (S5 in Figure 2, Table 1). ωmax pre-reconnection was

48.2 W m−2, significantly lower than observed post-reconnection.

4.3 | Changes in the Ehen surface grain-size

The 7 GSD surveys indicated differences in sediment size between

the morphological units as well as differences in the nature and extent

of changes in each one following the reconnection (Figure 3a). No sig-

nificant difference was found between the GSD just prior to the

reconnection (G1) and that reported by Quinlan, Gibbins, Batalla, and

Vericat (2015) (χ2 test, p-values: plane bed = .35, riffle = .28,

pool = .24). The GSD of the pool did not change significantly following

the reconnection (i.e., no difference between G1 and any of the other

six surveys; Table 2). In the plane bed, only G2 was significantly differ-

ent from G1 (χ2, p < .05). The riffle was the morphological unit where

GSD was most variable over time, with G1 to G4 each significantly

different from their preceding sampling occasion. Here, successive

GSDs post-reconnection remained constantly different from G1,

suggesting an effect of Ben Gill that persisted for the whole study

period.

The change between G1 and G2 in the plane bed was towards an

overall flattening of the GSD, apart from the sediment class

90.5–181 mm (Figure 3(b)), in which frequency almost doubled. The

proportion of grains smaller than 11.3 mm also increased. In the riffle,

the proportion of particles between 8 and 22.6 mm generally

increased from G1 to G4 (Figure 3(c)). The proportion of coarse parti-

cles (>128 mm) did not change appreciably, but changes were

observed in the proportion of material between 22.6 and 128 mm.

The GSD at G4, from which successive GSDs were not significantly

different, showed a higher sorting than G1, with more of the finer
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TABLE 1 Summary table of discharge and hydraulics associated with tracers surveys in the River Ehen

Tracers survey

Stream power

Number of
flood
events

Discharge
Plane bed Riffle Pool

m3 s−1
Return period of Qmax ωmax ωmax ωmax

Qmean Qmax QSD Years W m−2 W m−2 W m−2

S1 2.52 7.21 1.64 0.5 15.9 11.4 6.0 8

S2 3.28 18.20 3.12 1.3 40.3 28.8 15.3 14

S3 4.42 27.80 3.95 3.1 61.5 44.0 23.3 17

S4 2.07 13.70 1.62 0.9 30.3 21.7 11.5 11

S5 4.53 54.00 5.46 30 119.1 85.5 45.3 26

F IGURE 3 Histograms of GSD per
morphological unit. (a) Average
distributions for the entire study period.
Changes on GSD fractions for the
(b) plane bed and (c) riffle morphologies.
Only GSD at sampling occasions that
were found to be statistically different
(χ2) are shown [Colour figure can be
viewed at wileyonlinelibrary.com]
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fraction (<22.6 mm) and less coarser material. Similarly, the percent-

age of particles <8 mm increased in all morphological units following

the reconnection and tended to decrease over time and return to

levels similar to pre-reconnection by G7.

4.4 | Particle mobility

4.4.1 | Distance travelled and particle size of
mobilized material

Of the 300 tracers seeded, 31% were recovered at the end of the

study (Table S2). The periods between the five resurveys

encompassed different peak flows (Figure 2), ranging between 7.2

and 54 m3 s−1. Recovery rates were very high for the first two surveys

(88–98%; annexe 1). Over the whole period, the pool showed the

highest recovery rates (100% at S1 to 43% at S5) while the riffle

showed the lowest rates (97% at S1 to 21% at S5). Recovery dropped

markedly when preceded by high flows. Only two surveys were car-

ried out by Quinlan, Gibbins, Batalla, and Vericat (2015) prior to the

reconnection, capturing movement associated with peak flows of

21.8 and 18.6 m3 s−1. Recovery rates were lower in their study for P1

(56%) but almost all of these were subsequently recovered (98%, P2).

The longest displacements (53.8 m, Figure 4a) of particles up to

150 mm were observed in the plane bed. However, as this corre-

sponds to the largest seeded particle (reflecting local GSDs), it is pos-

sible that larger material may also have been mobilized. The largest

particle moved was found in the riffle (235 mm, Figure 4b), which also

corresponds to the largest clast seeded. In the pool, smaller tracers

were displaced and distances were shorter (Figure 4c). In general the

largest displacements were observed in S5, when the highest peak

flow was observed (a 30-year return-period flood, Table S2).

TABLE 2 Results of the χ2 test of homogeneity used for the
comparison of bed texture

Plane bed G1 G2 G3 G4 G5 G6 G7

G1 - * ** NS NS NS NS

G2 - NS NS NS NS NS

G3 - NS * NS **

G4 - NS NS NS

G5 χ2 = 71.42, df = 48,

p = .0158

- NS *

G6 - NS

G7 -

Riffle G1 G2 G3 G4 G5 G6 G7

G1 - * * *** ** ** *

G2 - *** NS NS NS NS

G3 - ** *** *** **

G4 - NS NS NS

G5 χ2 = 75.45, df = 36,

p = 7.32e-05

- NS NS

G6 - NS

G7 -

Pool G1 G2 G3 G4 G5 G6 G7

G1 - NS NS NS NS NS

G2 -

G3 - NS NS NS NS

G4 - NS NS NS

G5 χ2 = 45.75 df = 40,

p = .2456

- NS NS

G6 - NS

G7 -

Note: ***p < .001, **p < .001, *p < .001.

Abbreviation: NS, Not significant.

F IGURE 4 Displacement (m) against the b-axis of all tracers
recovered for each survey (S1 to S5): (a) in the Plane Bed, (b) in the
Riffle and (c) in the Pool. See Table S2 for the hydraulic data
associated with each period [Colour figure can be viewed at
wileyonlinelibrary.com]
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Mobility of tracers in relation to the GSD of each unit shows that

most flow events (see Figure 2, Table 2 and Table S2) were generally

not able to mobilize particles coarser than the bed grain size distribu-

tion (Figure 5). The survey S3 had a maximum preceding discharge of

c. 28 m3 s−1 and was only capable of moving a distribution of particles

within the envelop of GSD for the lower range of sizes (8–22.6 mm)

in the plane bed (Figure 5a) and the riffle (Figure 5b). Only flows asso-

ciated with S5 (Qmax = 54 m3 s−1, 30-year flood) were able to mobilize

particles over a distribution coarser than respective unit GSDs. When

the pool data are excluded, patterns are different to those pre-

reconnection (surveys “p,” Figure 5). Mobility patterns in the plane

bed and riffle were rather similar to the ones observed for S3, with a

maximum discharge (27 m3 s−1) slightly higher than those recorded at

P1 and P2 (21.8 and 18.6 m3 s−1 respectively).

4.4.2 | Excess stream power and mobility

The maximum particle size mobilized in the plane bed and in the riffle

were the largest tracers seeded (Figure 4), restricting the use of Dmax

to understand particle mobility in the Ehen and yielding a rather weak

relationship with ωmax. Dmean offered the best fit but is of limited util-

ity to estimate ωci since it smooths the relationship and underesti-

mates the critical value. The choice was made to use the relationship

between D84 and ωmax for the analysis (Figure 6(a)), as used in previ-

ous studies (e.g., Petit et al., 2005).

The Ehen mobility model sits within other models found in the lit-

erature (Figure 6(b)). Using Equation (2), ωe was computed for each

survey period at 15-min intervals (Table S2). The flow data indicate

that ω did not reach ωci prior to S1 in any morphological unit. ωe was

also 0 in the pool during S4, which coincides with the very limited

movement observed in this unit during this period. Maximum ωe was

experienced during S5 throughout the entire reach, which can be

explained partly by the length of time between S4 and S5, but also by

the extended periods when ω was above ωci. ωe experienced during

the study by Quinlan, Gibbins, Batalla, and Vericat (2015) was rela-

tively high at P1 and lower at P2, and no episode where ωe = 0 was

observed then.

For both periods considered, the scatter in the points rep-

resenting the relationship between particle size of recovered tracers

and displacement (riffle and plane bed) relative to ωe showed a typical

LR form (Figure 7), with a stronger trend (steeper slope) for the upper

limit (T = 0.95) than the central trend (T = 0.5). The upper limit to dis-

placement fell sharply across the sediment size range. Note also the

high variability in displacement for small particles compared to large

ones (as was also observed in Figure 4). In general, for the same rela-

tive level of ωe, smaller particles were capable of travelling longer dis-

tances than larger ones.

The Τ = 0.95 model fits for both periods were significant

(p < .005) but the Τ = 0.5 fit was significant only for the post-

reconnection model. Analysis of model coefficients showed that the

upper limit of the responses differed significantly between the periods

(b coefficient: −3.23 pre-reconnection, −2.60 post-reconnection).

Thus, the upper limit of the response, which is the maximum potential

distance travelled by a particle, is now higher than it was under similar

ωe conditions before the reconnection. The relative positions of the

data points and fitted lines indicate that particle mobility in the riffle

and the plane bed has increased since the reconnection.

F IGURE 5 Grain size distribution of the mobilised tracers for

each survey (S1 to S5) and these from Quinlan, Gibbins, Batalla, and
Vericat (2015) and Quinlan, Gibbins, Malcolm, et al. (2015), P1 & P2:
(a) plane bed, (b) riffle and (c) pool. The bed grain size distribution
envelopes from the various GSDs surveys during the presents study
are shown as grey areas. No data were used for the pool from
Quinlan, Gibbins, Batalla, and Vericat (2015) (i.e. P1 & P2) [Colour
figure can be viewed at wileyonlinelibrary.com]
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4.5 | Topographic changes in the Ehen

There was no change in topography between the baseline survey and

survey T1. The pool experienced little topographic change compared

to the other morphological units (Figure 8). Overall topographic

changes in the plane bed were negative (i.e., net scour of almost

−5 m3), with the floods of winter 2015 playing a significant role in

generating an overall deepening of this unit. The riffle showed sedi-

mentation of around 13 m3, while the transitional area, only surveyed

for topography, experienced mostly erosion (c. 10 m3 in total). The

limited deposition of gravel that occurred in the plane bed between

T4 and T5 was insufficient to compensate for erosion at T4. Deposi-

tion happened in the riffle between T1 and T2 (c. 22 m3), with this

corresponding to the observed development of a gravel bar along the

right bank that is composed mostly of fine to coarse pebbles

(Figure S1). The large floods of winter 2015 (between T2 and T4) gen-

erated loss of material from the riffle. Further accumulation in this unit

happened between T4 and T5, and the erosion observed between T5

and T6 can be identified as a deepening of the channel along the bank

opposite to the gravel accumulation.

5 | DISCUSSION

5.1 | The Ehen rehabilitation initiative in context

The Ehen is a rare example not just of a basin-scale management ini-

tiative (i.e., reconnection of a whole sub-catchment, as opposed to

artificial gravel augmentation) but one that also includes detailed pre-

and post-project monitoring. Monitoring was particularly important in

the Ehen because of the sensitivity of the freshwater pearl mussel to

changes in geomorphic and sedimentary conditions and because of

the uncertainty surrounding the magnitude and nature of any changes

that might occur in response to the reconnection. Thus, monitoring

was needed not just to assess whether the project was achieving its

objectives but to ensure that no sudden and unforeseen changes

F IGURE 6 (a) Relationship between maximum stream power (ωmax) and D84 of grain size distribution. (b) Mobility model for this study (from
D84 data) compared to formulae found in the literature (Costa, 1983; Petit et al., 2005; Williams, 1983) [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 7 Particle displacement relative
to the excess stream power they experienced

(all successive surveys and morphological units
Plane Bed and Riffle merged together), in
relation to the b-axis of particles, in the River
Ehen, pre- (black dots) and post-reconnection
(grey dots). Note that the full and dashed lines
represent the 0.95 and 0.50 quantile
regression models, respectively
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resulted in the type of deterioration in benthic conditions that might

necessitate intervention to protect mussels.

The current paper compared pre-reconnection geomorphic condi-

tions (data collected over 3 years) to those in the first 2 years follow-

ing the reconnection of Ben Gill to the main-stem Ehen. Given the

potentially slow rate of environmental responses to management

interventions and changes in the pace of responses over time

(Charlton, 2008), there is a need to be cautious when evaluating the

changes observed in the Ehen to date; that is, it is important to be cir-

cumspect when discussing the “success” of the rehabilitation initiative

so early in its life.

Previous assessment of its former geomorphic character and

activity (United Utilities, 2012) resulted in the expectation that ren-

ewed geomorphic activity in the Ehen would be triggered in Ben Gill

as soon as the channel was offered the opportunity to recover its

dynamics. Nevertheless, the magnitude of change in Ben Gill and the

resulting development of a confluence bar (as discussed in Marteau

et al., 2020) have proven to be more pronounced than expected. The

following section discusses the key findings of the monitoring within

this context, and is followed by some consideration of changes over

longer timescales and responses to other management activity.

5.2 | A slow but visible recovery of sedimentary
activity

Following 40 years of flow regulation by the weir and the associated

diversion of Ben Gill, the Ehen displayed general signs typical of regu-

lated rivers, with simple channel geometry, no well-established

dynamic geomorphic features (i.e., no gravel bars) and with a wide and

uniformly armoured channel to a level that can be considered a pave-

ment (Church, 1995; Pitlick & Wilcock, 2001).

In the first 2 years following its reconnection, Ben Gill supplied

sediment to the Ehen at an estimated (minimum) rate of just over

180 m3 y−1 (Marteau et al., 2020). Even though the bar that has

formed at the confluence of the Ehen and Ben Gill since the

reconnection retains a large fraction of this sediment, part of the

material is carried downstream (approximately 45 m3 y−1 Marteau

et al., 2020). This sediment supply is a situation that the river has not

experienced for 40 years. Thus, the most fundamental objective of

the project has been achieved.

By the end of the study period the confluence bar was well devel-

oped, and over a distance of approximately 100 m (in the plane bed

unit) forced most of the flow to one side of the channel. This forcing

has probably contributed to increased hydraulic heterogeneity within

the reach, and it is probable that flow constriction applied by the con-

fluence bar forced most of the flow over a limited width of the plane

bed and generated higher velocities and shear stress, resulting in local

erosion. Bed texture changed directly after the reconnection (G2 &

G3), corresponding with some gravel deposition (T2 & T3), and chan-

ged again once all that material was washed away by the large floods

of winter 2015 (G5, at T4). This increase in hydraulic heterogeneity is

also responsible for the greatest mobility witnessed in the plane bed.

Indeed, longer step-length and higher displacement rates were

observed in the tracer data here than in the rest of the reach.

The riffle showed clear signs of deposition, mostly of fine to

coarse pebbles (i.e., 4 to 32 mm in b-axis) evident along the right

bank where a lateral bar developed (Figure S1). Deposition was

expected here as it retained attributes of an old, pre-existing bar fea-

ture. Development of this bar is compelling evidence of geomorphic

change, along with the general tendency of fining of the bed surface

material in the riffle. This section of channel showed a similar fre-

quency of larger particles being displaced compared to pre-

reconnection, although not over long distances. This is the

section where the coarsest particles were moved, though mean

travel distances were shorter than in the plane bed. Estimates of

mobility in the riffle were probably biassed by the low recovery rate

for smaller particles (i.e., no measurement of displacement). Numer-

ous tracers are likely to have been buried and trapped under the

newly formed lateral bar, hence the apparent lower displacements

(average step-length at highest peak flow = 5.5 m) and recovery rate

(final survey = 21%).

F IGURE 8 Extrapolated net
topographic changes in the upper River
Ehen, (only changes above the minimum
level of detection have been considered,
see methods). See Figure 1 for details on
the morphological units. Note that there
was no suitable topography data for T3 at
the riffle, therefore for T2-T3 and T3-T4,
the value of T2-T4 is divided between the

(Indicated with *) [Colour figure can be
viewed at wileyonlinelibrary.com]
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The pool showed very limited activity. Particle mobility was low

and overall changes in bed topography were null over the course of

the study. The bed here is particularly paved and regularly covered

with algae, factors which limit the interpretation of the topographic

changes observed here. No change in GSD was found in the pool

either, although field observations suggest that changes would be mis-

sed by the method used to sample GSD - local pockets of sand and

fine gravel were observed in the reach in areas of preferential deposi-

tion (e.g., behind boulders, along the banks) but were not captured by

the Wolman pebble count which only accounts for particles >8 mm.

5.3 | Changes remain limited but bode well for the
future

The field observations of new pockets of sand in the pool, together

with the fining trends identified in the riffle, support the hypothesis

that only the smaller fraction of the material supplied by Ben Gill is

transported downstream under the existing hydrological regime.

Nonetheless, prospects for the further improvement of habitat condi-

tions are good. Sediment exports from Ben Gill are not yet showing

signs of a decrease so an ongoing supply of coarse material is

expected. Although the sediments transported away from the conflu-

ence bar encompass only particles smaller than 64 mm, this repre-

sents the size fraction that was considered missing because of

40 years of sediment starvation, and critical for the establishment of

suitable recruitment habitat for pearl mussels. Sediments delivered by

Ben Gill are being pushed through the upper Ehen, with signs of

aggradation and fining slowly migrating downstream from the plane

bed (earliest signs of deposition) to the riffle (gravel bar growing

throughout the study), the entrance of the transitional area (recent

signs of break-up of the pavement) and soon reaching the pool (only

pockets of fine and coarse sand so far). As more sediment is delivered

to the river, at a pace and a frequency that is controlled by natural

(or at least restored) processes, the sediment wave will continue to

disperse downstream and help promote geomorphic and hydraulic

diversity. Another critical change that might further enhance this

dynamic is that the next phase of the Ehen rehabilitation work

involves removal of the weir. The primary goal of this is the further

re-naturalisation of the Ehen's flow regime, and it is hoped that this

will increase the conveyance of material supplied by Ben Gill.

Comparison of the relative size of mobilized particles to the sur-

face GSD confirmed the generally low mobility experienced in the

River Ehen, even after the reconnection, with only high magnitude

flood events (e.g., return period of 30 years) capable of entraining and

transporting particles that encompass the entire surface GSD. The

Ehen struggles to carry all the material supplied by Ben Gill, so

changes within the study reach remain limited. Thus, the scale of

change observed in Ben Gill is not yet matched with geomorphic

adjustments of similar amplitude in the Ehen. Nevertheless, particle

mobility has increased since the reconnection, with a lower amount of

energy now required to move particles of the same size. Tracer data

revealed that events of 1 to 2 year return period, such as experienced

at P1, P2 and S3 for example, are capable of setting particles of sizes

between 8 and 64 mm in motion (i.e., similar to particles found at the

surface of the confluence bar, D50 between 35 and 65 mm, as

described in Marteau et al., 2020). Moreover, although the

reconnection has not altered the hydrological regime of the river

(Marteau, Batalla, et al., 2017), it has increased bed mobility to a cer-

tain degree. These various pieces of evidence show that the Ehen is

capable of re-distributing part of the bed material provided by Ben Gill

and that, as discussed below (Section 5.4), this sediment so far moves

as a bedload carpet on top of the existing pavement, with only limited

interaction with the bed (apart from some local trapping of sand and

small to medium sized gravels). With particles of a given size now dis-

placed at lower energy, flow competence can be described as higher

thanks to the entrainment of loose material now available in larger

quantities.

5.4 | Predicting future directions based on results
from flume experiments

While many examples exist of restoration or rehabilitation initiatives

in both the scientific and grey literatures, these consist mainly of dam

removal (Doyle et al., 2005; Major et al., 2012; Orr & Stanley, 2006),

artificial gravel augmentation (e.g., Arnaud et al., 2017; Bunte, 2004;

Merz & Chan, 2005), or channel re-meandering (e.g., Lorenz, Jähnig, &

Hering, 2009; Pedersen, Kristensen, & Friberg, 2014; Rogiers,

Lermytte, de Bie, & Batelaan, 2011). Projects that involve rec-

onnecting sub-catchments remain scarce. Thus, one element of uncer-

tainty in the Ehen project concerned the limited evidence from

elsewhere that could be used to predict the likely outcomes of the

reconnection. A particular element of the uncertainty concerned the

fact that Ben Gill is ephemeral. Predicting and understanding geomor-

phic changes in, and the downstream effects of flows in such streams

is very difficult (Williams, 2005), as demonstrated by the complex rela-

tionship between flows in the main-stem and those in Ben Gill

(Marteau et al., 2018). Uncertainties surrounding Ben Gill are signifi-

cant because the timing and magnitude of flows here drive the evolu-

tion of the newly reconnected channel and in turn the delivery of

material to the Ehen, both fine (Marteau, Batalla, et al., 2017) and

coarse (Marteau et al., 2020).

Evidence from experimental studies may help understanding of

the process changes occurring following the reconnection. Flume

experiments have confirmed field observations that a reduction in

sediment supply can result in an increase in the D50 (Buffington &

Montgomery, 1999; Dietrich, Kirchner, Ikeda, & Iseya, 1989; Lisle,

Nelson, Pitlick, Madej, & Barkett, 2000) and in the surface layer

becoming immobile (Dietrich et al., 1989; Nelson et al., 2009). Con-

versely, the addition of material to an armoured channel tends to

increase bed surface mobility (Sklar et al., 2009; Venditti et al., 2010)

and decrease bed surface particle size (Sklar et al., 2009). Despite the

limited spatial (300 m-long reach) and temporal (2 years) extent of this
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study, the geomorphic adjustments observed in the Ehen are in line

with the conclusions of these studies. The renewed provision of

coarse material from Ben Gill has reactivated part of the lost geomor-

phic dynamism - material is being carried downstream and is starting

to affect particle mobility and bed texture. The dispersion of coarse

material is likely to be further enhanced once channel complexity is

significantly improved (e.g., Lisle, Cui, Parker, Pizzuto, & Dodd, 2001).

In the Ehen study reach, the riffle and a riffle-pool transitional

area immediately downstream are separated by a hydraulic jump (c.

0.5 m). This jump plays a role in trapping gravel in the riffle and gener-

ating higher velocities directly downstream from the jump. Early signs

of break-up of the pavement have been observed downstream from

this jump, with new sediment being deposited in its stead. In some

experimental studies, the injection of sediment resulted in the

mobilisation of part of the bed surface (e.g., Koll, Koll, &

Dittrich, 2010; Venditti et al., 2010). This raises the possibility that

reconnection of Ben Gill may further contribute to the break-up of

the pavement of the River Ehen as, over time, more and more sedi-

ment moves on top of it. This is evidence that the system has some

potential for (geomorphological) recovery, but also that this will only

be achieved if specific conditions are met, that is, increased morpho-

logical complexity (e.g., hydraulic jumps, flow constriction) and high

discharges (e.g., >25-year return period floods). In fact, most flume

studies reporting this process have been undertaken over a freshly

created armour layer, where the movement of particles is not

impeded by some biological activity (e.g., macroinvertebrates; John-

son, Reid, Rice, & Wood, 2009; biofilm; Piqué, Vericat, Sabater, &

Batalla, 2016) or imbrication and compactness (Houbrechts

et al., 2012), so there are limitations in the extent to which flume

studies can be used to understand potential adjustments in the Ehen.

Conditions for a partial mobilisation of the pavement will require more

time and/or more sediment and/or coarser particles which, because

mixed sediments tend move not by translating but rather by dispers-

ing (although the mode of the wave may seem to be translating, Lisle

et al., 2001; Sklar et al., 2009), may require longer than the timeframe

of this study to be realized.

One unexpected outcome of the reconnection that is potentially

of great significance for freshwater pearl mussels is the delivery of

large amounts of fine sediment (Marteau, Batalla, et al., 2017). Exces-

sive volumes of fine sediment are considered problematic for mussels

- they are rarely found in areas with dominant silt substrate (see

review by Quinlan, Gibbins, Malcolm, et al., 2015). No formalized

standards exist in the literature regarding the tolerance limits of mus-

sels to fine sediments, so no direct conclusion can be drawn about the

potential impacts on mussels of the increase in fine sediment storage

observed in the Ehen following the reconnection. The high suspended

loads observed so far since the reconnection may reduce over time

(as availability in the engineered channel in Ben Gill decreases), but

ongoing monitoring of fine sediment remains essential, with contin-

gency plans (e.g., temporary diversion and storage of water) already

considered if conditions become critical.

5.5 | Wider lessons and a call for objective-based
rehabilitation

The reactivation of sediment connectivity in the Ehen is likely to gen-

erate a series of geomorphic adjustment phases that, while being

intrinsically opposite, are akin to those outlined by Petts and

Gurnell (2005) in relation to dam closure. These phases run from an

accommodated regime state towards a new regime state, possibly

(and ideally) closer to the natural or pre-modified one. As the Ehen

moves from one state to another, the system will likely progress along

a so-called “relaxation path,” at a pace that will depend on the river

characteristics (e.g., energy availability and expenditure, sensitivity to

changes, hydrologic regime), the degree of alteration compared to its

(estimated) “natural” state (e.g., shift in river type, degree of armouring

and stabilisation) and the degree to which altered processes are being

restored. Similar observations have been made in the case of dam

removal. For dammed rivers, downstream channels experience a relax-

ation phase (adjusting to restored connectivity) overlapping with the

reaction phase (i.e., still being perturbed by additional sediment erod-

ing from the old reservoir) (Major et al., 2017). Although the first pulse

of sediment observed after the opening of Ben Gill was major, it was

much less than witnessed in rivers experiencing non-phased dam

removal. The rehabilitation of the River Ehen also differs from dam

removal in the fact that while sediment connectivity has been

restored, flow effects of reconnecting the ephemeral Ben Gill are lim-

ited (Marteau, Batalla, et al., 2017). In turn, the ecological effects of

reconnecting this tributary to the Ehen are very different to those

associated with reconnecting up and downstream areas by dam

removal.

Given that the reconnection has had no significant impact on flow

regime, the Ehen example could be compared to (repeated) gravel

augmentation. Such augmentation is now common-place in many

parts of the world, particularly downstream from dams (Habersack &

Piégay, 2008) and is increasingly implemented for geomorphic pur-

poses, that is, maintaining channel complexity, substrate quality and

habitat heterogeneity (Gaeuman, 2012). Nevertheless, significant dif-

ferences lie in the fact that in the Ehen the frequency, timing, volume

and sizes of material delivered are uncontrolled, and so more natural.

It also differs in that these inputs are sustained by ongoing erosion

and delivery process in the catchment rather than anthropogenic

agency. The effects expected from gravel addition (e.g., bed fining,

enhanced bed mobility) are most beneficial when they persist over a

long period of time and affect long sections of river channel

(Bunte, 2004; Harvey, McBain, Reiser, Rempel, & Sklar, 2005). Given

that particle size and excess shear stress (reflected in changes in

bedforms) adjust to both flow intensity and sediment supply

(Buffington & Montgomery, 1999), and since Ben Gill shows no sign

of reduction in its sedimentary activity as yet, geomorphological and

sedimentary adjustments in the upper Ehen are anticipated to con-

tinue, associated with competent events in both Ben Gill and the

Ehen, that are not always synchronized (Marteau et al., 2018).
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The overall approach adopted for the Ehen is one of adaptive

management. Much has been learnt from this project to date, particu-

larly in relation to the significance of seemingly small tributaries that

flow for only a small part of the year. Such a small sub-catchment

(0.55 km2 within a 156 km2 catchment) would fall outside of what

could be considered as a significant tributary (Benda, Andras, Miller, &

Bigelow, 2004; Rice, 2017) but its role is magnified by its location and

local context of its situation (e.g., Lisenby & Fryirs, 2017). The unex-

pected issue of increased fine sediment delivery in the Ehen has initi-

ated further studies, focussing on the Quaternary alluvial fan that the

lower section of Ben Gill cuts across. A study is being carried out to

better understand the subsurface composition of the fan (and hence

the amount of fine material potentially available for delivery to the

Ehen) and the factors that influence how frequently it flows. This

study, along with the ongoing monitoring of Ben Gill, will inform adap-

tation of the interventions in the Ehen to help ensure that, over longer

timescales than reported here, project goals are achieved.

6 | CONCLUSIONS

The work presented here is a rare example of objective-based river

rehabilitation designed to improve habitat by restoring catchment-

scale connectivity. It was designed to reinstate sediment dynamics in

an ecologically important river while limiting the need for invasive and

repeated intervention. The reconnected tributary exerts an important

control on coarse sediment supply and dynamics and has proven to be

an important source of fine material. Within the 2-year post-

reconnection period considered here as the adjustment phase, effects

of this renewed sedimentary activity in downstream reaches of the

Ehen remain limited to localized deposition (linked to the new supply

of sediment) and scour (caused by the 30-year flood) in morphological

units that are close to the confluence and where flow hydraulics are

most diverse. Flow competence has increased thanks to the newly

supplied sediment, and the bed shows some signs of increased mobil-

ity, with bedload (particularly the finer fraction) carried downstream

as a sediment carpet overpassing the stable paved layer of coarser

material. It is anticipated that over time, the continuous and uncon-

trolled supply of coarse sediment by Ben Gill disperses further down-

stream in the Ehen and interacts with the pavement; at this point the

river may be considered to be reaching its new (quasi)equilibrium

state. The river's mussel population might benefit from this rather

slow process, since this species can be sensitive to abrupt changes in

habitat and excessive disturbance of the riverbed. Further monitoring

of the speed, nature and spatial extent of geomorphic changes in the

Ehen, along with surveys of the mussel population, is necessary to

ensure that these early signs of improvement are turned into a long

term rehabilitation success story.
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