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Serial dependence in a simulated 
clinical visual search task
Mauro Manassi  1,2*, Árni Kristjánsson3,4 & David Whitney1,5,6

In everyday life, we continuously search for and classify objects in the environment around us. This kind 
of visual search is extremely important when performed by radiologists in cancer image interpretation 
and officers in airport security screening. During these tasks, observers often examine large numbers 
of uncorrelated images (tumor x-rays, checkpoint x-rays, etc.) one after another. An underlying 
assumption of such tasks is that search and recognition are independent of our past experience. 
Here, we simulated a visual search task reminiscent of medical image search and found that shape 
classification performance was strongly impaired by recent visual experience, biasing classification 
errors 7% more towards the previous image content. This perceptual attraction exhibited the three 
main tuning characteristics of Continuity Fields: serial dependence extended over 12 seconds back in 
time (temporal tuning), it occurred only between similar tumor-like shapes (feature tuning), and only 
within a limited spatial region (spatial tuning). Taken together, these results demonstrate that serial 
dependence influences shape perception and occurs in visual search tasks. They also raise the possibility 
of a detrimental impact of serial dependence in clinical and practically relevant settings, such as medical 
image perception.

In everyday life, we continuously search for objects in the environment around us and classify them. We look for 
our wallet on a messy desk, for a friend in a crowd of people, or for a pair of socks in our room. Visual search can 
be literally life-saving in clinical and practically relevant settings. For example, in a medical screening setting, 
radiologists repeatedly search for signs of tumors in blurry radiological scan images, classifying them, judging 
their size, class, position and so on. Likewise, in airport security, transportation security officers need to identify 
prohibited items in carry-on luggage, in the midst of all possible kinds of personal belongings. The “human search 
engine” of radiologists and security officers is, like that of all humans, highly unreliable and fallible1,2; for example, 
more than 30–35% of mistakes in radiological screening are considered to reflect interpretation errors3–5.

An underlying assumption about visual search is that our current perceptual experience is independent of 
our previous perceptual experience. Recent results question this assumption, however. Our visual processing 
is characterized by serial dependencies, where what was seen previously influences (captures) what is seen and 
reported at this moment6. Serial dependencies occur for a variety of features and objects, including orientation6,7, 
position8,9, faces10,11, numerosity12–14 and other dimensions15. Such serial dependence is characterized by three 
types of selectivity. First, temporal tuning: serial dependence gradually decays over time6,9,10,16. Second, feature 
tuning: serial dependence occurs only between similar features, and not between dissimilar ones6,9,17. Third, spa-
tial tuning: serial dependence occurs only within a limited spatial region and it is strongest when previous and 
current objects are presented at the same location6,8,9,12,13.

Based on these results, it was recently proposed that perception occurs through Continuity Fields (6,10, see 
also18,19): temporally and spatially tuned operators that bias our percepts towards previous ones through serial 
dependence. Continuity fields were proposed to be a beneficial mechanism that promotes perceptual stability in 
our ever-changing visual environment6,7,10,20. Over time, retinal images constantly change because our eyes, head 
and body move; because of many sources of external and internal noise; and because of discontinuities introduced 
by eye blinks. By recycling previously perceived features and objects, serial dependence helps us to represent a 
continuous and stable world despite noise and change.

In the autocorrelated world we live in, it is useful for our visual system to trade accuracy for increased per-
ceptual stability. In artificially uncorrelated situations, however, serial dependencies can be detrimental for object 
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recognition. The visual search tasks performed by radiologists in cancer image interpretation and officers in 
airport security screening are two pertinent examples. During these kinds of visual search tasks, observers often 
examine large numbers of uncorrelated images (tumor x-rays, checkpoint x-rays, etc.) one after another. We 
hypothesized that because of serial dependence, visual search performance on any given current x-ray image 
will be biased towards the previous x-ray, systematically altering image interpretation. To preview our results, we 
simulated a medical screening setting and found that simulated tumor shape classification was strongly impaired 
by an observer’s past visual experience. Classification errors increased and were pulled towards the previous x-ray 
content.

Results
Experiment 1. In Experiment 1, we tested whether serial dependence influences recognition of visual stimuli 
in a classification task. In order to simulate the medical screening performed by radiologists, we created three 
objects with random shapes (simulated tumors A, B, and C) and generated 48 morph objects in between each pair 
(147 objects in total; Fig. 1A). On each trial, subjects viewed a random tumor-like object superimposed on a noisy 
background (simulated x-ray), followed by a mask of black and white pixels. Observers were asked to continu-
ously fixate a black dot and the random object was presented 15° away from fixation in the right peripheral field 
(Fig. 1B). Observers were then asked to classify the object as belonging to category A, B or C (simulated tumor 
classification task; 66% of the trials). If the fixation dot turned red after mask appearance, observers were asked to 
simply press the spacebar (control task; 33% of trials).

Object classification accuracy, defined as correspondence between stimulus category (−/+24 morph units 
around the prototype shape A/B/C) and response, was 75.6 ± 6.3% (N = 12). As a categorical measure of serial 
dependence, we investigated whether errors in object classification were biased more towards the object category 
on the previous trial compared to other previous object categories. We computed the percentage of mistakes 
towards the shape category in n-back trials, and normalized the index by subtracting 33.33% (chance percentage 
level) from each percentage index (see Fig. 2 for an in-depth explanation). We then bootstrapped each sub-
ject’s data with 5000 iterations and reported the mean bootstrapped percentage as a metric of serial dependence 
(Fig. 3A).

Observers misclassified the object on a current trial as the shape in 1-back trials 7% more often than other 
shape categories. The misclassification lasted up to 3 trials back (1-back: p < 0.01; 2-back: p < 0.01; 3-back: 
p < 0.01; 4-back: p = 0.21; Fig. 3A, left panel). Average response time (RT) across subjects was 730 ± 200 ms; the 
1-back object was presented on average ~4200 ms prior to the current trial object. The perceived object was there-
fore strongly attracted toward a random object seen more than 12 seconds prior, similar to the temporal tuning of 
serial dependence reported in the literature6,9,11,16,17,21.

In order to rule out a response bias, we analyzed the previous trials where observers gave an unrelated response 
(33% of the trials; control task) and the current trials where observers classified the object (66% of the trials; clas-
sification task). When observers were asked to withhold their classification responses in the previous trial, giving 
an unrelated “spacebar” response, serial dependence nevertheless occurred on the following trial (around 7%; 
Fig. 3A, right panel). In order to further control for unrelated biases and potential artifacts in our analysis that 
might manifest as spurious serial dependence22, we also computed serial dependence from future objects for 1, 
2 and 3 trials forward. As expected, object classification responses were not significantly biased towards future 

Figure 1. (A) We created three objects with random shapes (prototypes A-B-C, shown in a bigger size) and 
generated 48 morph objects in between each pair (147 objects in total). Each shape category was defined as the 
prototype A/B/C −/+24 morph units (49 morph units in total). (B) In Experiment 1, observers were asked to 
continuously fixate a black dot on the left part of the screen. On the right part of the screen, they were presented 
with an object hidden in noise, followed by a noise mask. Depending on the color of the fixation dot, they were 
then asked to classify the object as belonging to category A–C (black dot, 60% of the trials) or press the spacebar 
(red dot, 40% of the trials). After a 2000 ms inter-trial interval, the next trial started. (C) Experiment 2 was very 
similar to Experiment 1, except that there was no fixation dot (unconstrained free viewing), and the object was 
presented on each trial in a random location. On each trial, observers were asked to find the object on the screen 
(visual search task) and to classify the object (classification task) as belonging to category A–C.
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objects (1-forward: 0.41%, p = 0.45; 2-forward: −0.39%, p = 0.52; 3-forward: 0.21%, p = 0.42). This confirms that 
neither systematic response biases, nor artifacts can explain the serial dependence effect.

Serial dependence did not simply occur at the response level (i.e., between responses 1/2/3), but was tuned 
for object similarity between the current and previous stimulus. We calculated perceptual error as the shortest 
distance along the morph wheel between the response categories (corresponding to 1, 50 and 99 morph units) 
and target objects (1–147 morph units). Each subject’s error on the current trial was compared to the differ-
ence in object morphs between the current and previous trial (Fig. 3B). We first computed the moving aver-
age of the response error as a function of the relative morph difference and averaged across observers (Fig. 3B, 
green line). In order to quantify feature tuning, we then fit a derivative-of-von Mises distribution to each sub-
ject’s running average data (Fig. 3B, blue line). When measuring the peak-to-trough amplitude and width of the 
derivative-of-von Mises distribution, response error was maximally biased with an average peak of 2.06 morph 
units for a relative morph difference of ±20 morph units, and gradually decreased with increasing morph differ-
ence (Fig. 3B; feature tuning).

Taken together, our results show that object classification is strongly biased towards previously presented 
objects up to 12 seconds in the past. In a task that mimics situations where observers assess target characteristics 
and classify them, such as in a medical screening setting, we show that serial dependence can have a harmful effect 
on object recognition, by biasing classification errors towards the previous x-ray content. As our visual system 
strongly expects constancy from one moment to the next, it tends to make our perception inaccurate in uncorre-
lated situations where extremely fine discriminations and accurate object recognition are required, such as during 
radiological screening or x-ray screening at airports.

Experiment 2. It might be argued that in visual search, observers do not only have to identify and classify 
objects, but they must also scan the environment to find targets (for example, radiologists searching within x-ray 
images). For this reason, in Experiment 2 we randomized the position of the objects on each trial. Hence, observ-
ers were asked to first find the target1 and then classify it2. Our purpose was twofold. First, we aimed at mimicking 
the standard visual search tasks that radiologists typically perform on radiological scans; they are required to find 
tumors or tumor-like structures (if present) in several consecutive radiological scans, and to classify them (e.g., 
as malignant, benign, type, etc). Second, we investigated whether serial dependence in a visual search setting is 
affected by the spatial distance between current and previous objects, as shown by previous results6,8,9,12,13.

The procedure for Experiment 2 was identical to that of Experiment 1, except for the following changes. 
Observers’ fixation was unconstrained (free viewing). Object position was randomized on each trial within a 25° 
spatial window, and each object was further blurred (from 20 to 30 blur pixel radius). Observers were presented 

Figure 2. Temporal tuning analysis in Experiments 1 and 2. (A) We divided observers’ response frequency 
into a 3 × 3 matrix based on their responses 1/2/3 and the actual object category (A/B/C) on a current trial. (B) 
We then divided observers’ mistakes into three matrixes depending on whether the previous objects category 
was (A/B/C). First letter (in red) indicates morph category on the previous trial, second letter indicates morph 
category on the current trial (in green), and the number indicates classification response on a current trial (in 
green). Only mistakes were considered and hits were not taken into account (black squares on the diagonal 
line). (C) For a given response (1, for example), we summed mistakes when response and previous category 
were the same (AB1,AC1), and divided them by the sum of all the mistakes (AB1,AC1,BB1,BC1,CB1,CC1). 
This ratio yielded an index of serial dependence for a given responses (1 in this example). We then averaged the 
indexes across the three responses 1/2/3 and subtracted the chance baseline (33%).
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with an object in a random location, followed by a noise mask covering the entire screen. As in Experiment 1, they 
were asked on all trials to classify the object as belonging to category A/B/C (Fig. 1C).

Mean Accuracy was 65.7% ± 9.5% (N = 11). For each subject, we binned the trials into two groups based on 
the relative object location between current and previous trial: 0°–12.5° and 12.5°–25°. We then analyzed the 
influence of the previously presented object on a subsequent trial in these two groups of relative distances for 
1–4 trials back. For a relative distance between 0° and 12.5°, serial dependence occurred for 1 trial back, biasing 
classification responses up to 5% (1-back: p < 0.01; 2-back: p = 0.18; 3-back: p = 0.24; 4-back: p = 0.16; group 
bootstrapped distribution), whereas for a relative distance between 12.5° and 25°, no serial dependence occurred 
(1-back: p = 0.22; 2-back: p = 0.45; 3-back: p = 0.17 4-back: p = 0.77; group bootstrapped distribution). Serial 
dependence was weaker compared to Experiment 1, with 5% of errors towards previous object category (com-
pared to 7% in Experiment 1) and no effect for 2–3 trials back. This difference is strength may be due to the change 
in blur of the stimulus (see Method) or a shift from peripheral (Experiment 1) to foveal vision (Experiment 2), in 
accordance with evidence showing that serial dependence strongly depends on stimulus noise and attention6,13,20.

In order to further characterize the spatial tuning of the effect, we computed serial dependence between 
morph tumors at different locations within a two-dimensional rolling window, over the relative positions of the 
previous and current stimuli (Fig. 4B; see Methods section): serial dependence gradually decreased with increas-
ing relative spatial distance between the current and previous object. Taken together, our results show that serial 
dependence also occurs in a visual search setting reminiscent of a radiologist’s (visual search and classification), 
and that serial dependence strongly depends on the relative location of the target relative to the preceding ones.

Discussion
Visual search in a simulated medical screening paradigm is serially dependent; misclassifications were biased 
towards the object category in the previous trial by up to 7%. Serial dependence could therefore be a substan-
tial source of error in several critical visual search situations, like for example cancer image interpretation1 and 
screening at airport checkpoints23. Importantly, our results show that this source of errors is not unavoidable. 
Serial dependence did not indiscriminately occur across time, features, and space. It lasted up to 12 seconds 
(Figs. 3A and 4A), occurred only between similar objects (Fig. 4B) and within a spatial window of 10–12.5° 
(Fig. 4B).

Our results are not due to a mere response bias for three main reasons. First, serial dependence on a current 
trial occurred also when, in the previous trial, observers were asked to give a “spacebar” response completely 
unrelated to the stimulus (Control Task, Fig. 1B). Hence, a previous classification response (or a perceptual 

Figure 3. (A) We computed the percentage of errors towards the object category in the previous trial, 
normalized for the 33% chance level (chance baseline was confirmed by permuted null distribution). A 0% value 
indicates no bias from the previous object category, with a 33% chance of classifying the object as A/B/C. Higher 
and lower values than 0% indicate that a classification response was biased towards the previous object category 
(higher than 33%) or biased away (lower than 33%), respectively. For each observer we obtained a mean 
bootstrapped percentage by resampling the data with replacement 5000 times. Error bars are bootstrapped 95% 
confidence intervals, and p-value is based on the group bootstrapped distribution. Observers’ responses were 
strongly biased towards the previous object category up to 3 trials back (12 seconds back in time). Similar results 
were found when observers were asked to simply press the response bar in the 1-back trial, indicating that our 
results are not due to a response bias. (B) Response errors were computed as the distance between the response 
(corresponding to prototypes 1-A, 50-B or 99-C ) and current morph. Error plot as a function of the relative 
morph difference of the previous trial (1-back). The x-axis represents the difference between the previous and 
current object in morph units. The y-axis represents the error in the classification task (difference between 
response and object morph on current trial). The average error (green line) shows more negative response 
errors for a negative relative morph difference and more positive errors for a positive relative morph difference. 
Green shaded error bars indicate standard error across observers. The dark blue line indicates the average von 
Mises distribution across observers. Green shaded error bars indicate standard error across observers. Morph 
classification was attracted toward the morph seen on the previous trial. Importantly, it was tuned for similarity 
between previous and current morph (feature tuning).
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decision) per se is not necessary for serial dependence to occur. Second, serial dependence did not simply occur 
between responses (sequence 1/2/3) but it was specifically tuned to stimulus characteristics. It impacted classifi-
cation performance depending on object similarity on the current and previous trials, with a peak for an object 
morph difference of 20 morph units (Fig. 3B; feature tuning). Third, a response bias would indiscriminately occur 
across the entire visual field, but we showed in Experiment 2 that serial dependence is spatially tuned (Fig. 4) in 
accordance with previous results6,8,9,12,13.

Previous studies have investigated the impact of previous visual experience on visual search, but they mostly 
involved reaction time and eye movements measurements24,25. For example, search speed for a target is faster if 
previous and current targets share the same features26–33 or location27,34–38. Between-trial repetition of features and 
locations also improves recognition of briefly presented masked items39–41. Additionally, Chetverikov, Campana 
et Kristjánsson42,43 showed that observers can learn the shapes of distributions of items to be ignored if the dis-
tractors come from the same distribution on consecutive trials. Interestingly, eye movements are substantially 
influenced by memory for past fixation locations, although this was found in a detection task paradigm25.

Previous visual experience can determine image recognition also in the medical screening domain. 
Kompaniez et al.44 adapted normal observers for 60 seconds to image samples of dense or fatty tissue, and they 
asked them to judge the appearance of intermediate images in a texture matching task. Long exposure to dense 
images caused an intermediate image to appear more fatty (and vice versa), thus leading to a negative aftereffect. 
In a similar paradigm, adaptation to radiological images was also found to modulate RT45. Whereas these two 
results show that long adaptation to previous history (60 seconds) can affect recognition and discrimination away 
from the past, our current results show for the first time that a much shorter exposure (500 ms) can strongly 
bias object recognition and discrimination in a visual search task towards the past. Future research will have to 
determine under which specific conditions these two opposing biases in visual perception determine recognition 
performance.

Our results are in accordance with the idea of Continuity Fields, spatiotemporally tuned operators where 
similar features and objects are integrated over time6,7,10. Our serial dependence effects exhibited the three main 
defining criteria of Continuity Fields: temporal tuning, feature tuning, and spatial tuning. The main purpose of 
Continuity Fields is to favor object stability by merging similar information over time (see also 18, 19); they are 
therefore a beneficial mechanism in the autocorrelated world in which we live. Here, we show another side of the 
same coin: in non-correlated situations, such as visual search for tumors in radiological scans, Continuity Fields 
can be detrimental, impairing classification performance toward previous x-ray content.

Our results cannot clearly disentangle whether serial dependence occurs on a perceptual6,9,12,20,46,47 or deci-
sional/memory level8,17,48. According to the first account, serial dependence changes stimulus appearance, bias-
ing the current stimulus towards the previous one6,12,20, whereas under the second account serial dependence 
biases our internal decision or memory towards the previous one8,17,49. Nevertheless, our, results lean toward 

Figure 4. Stimuli and experimental procedures in Experiment 2 were the same as in Experiment 1, with the 
main difference that on each trial the tumor morph was presented at a random position. (A) We computed 
the percentage of errors towards the object category in the previous trial, normalized for the 33% chance level. 
Chance baseline was confirmed by a permuted null distribution. A 0% value indicates no bias from previous 
object category, with a 33% chance of classifying the object as (A–C). Higher and lower values than 0% indicate 
that classification response was biased towards the previous object category (higher than 33%) or biased away 
(lower than 33%), respectively. For each observer we obtained a mean bootstrapped percentage by resampling 
the data with replacement 5000 times. Error bars are bootstrapped 95% confidence intervals, and p-value is 
based on group bootstrapped distribution. For each subject, trials were divided into two groups based on the 
relative spatial distance between current and n-back trials (0–12.5° and 12.5°–25°). Observers’ responses were 
biased towards the previous object category up to 1 trial back, only when presented within a spatial window 
within 0 and 12.5° (dark bars). (B) This percentage of responses was computed between morph tumors at 
different locations within a two-dimensional rolling window over the relative positions of the previous and 
current stimuli. Color-coding shows the amplitude (in percentage) of biased responses computed at each 
window location. Observers’ responses were maximally biased toward previous stimuli in a relative spatial range 
of 10–12°.
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the perceptual hypothesis, because serial dependence is selective to the characteristics of the stimulus (featural 
tuning) and its location in the visual field (spatial tuning). In addition, even when observers do not withhold 
decisions on the previous trial (as in the control task condition; Fig. 3A), serial dependence still biased the next 
stimulus (as opposed to Pascucci et al.50). However, it must be mentioned that these accounts are not necessarily 
mutually exclusive. Different mechanisms may interact with one another on several levels49; decision and mem-
ory may change target appearance and the other way around. More importantly, independent of the underlying 
mechanism(s) of serial dependence, our results carry a much broader and more pragmatic message: that a con-
siderable percentage of errors in medical visual search may be due to sequential effects from previous perceptual 
experiences.

Previous research has shown that visual search in a clinical setting is determined by various factors. Attentional 
guidance plays a crucial role: by focusing their attention on spotting tumors in x-ray images, radiologists were 
shown to miss objects as salient as gorillas51–54. Different search strategies can be more effective than others: drill-
ing through 3D images in depth (drillers strategy) can be more accurate than scanning each image before moving 
to the next one (scanners strategy, 55). Target prevalence and distribution also play a crucial role in visual search; 
target misses strongly increase with decreasing target prevalence56–61.

Serial dependence may play an important role in all these factors. Serial dependence depends on attention6,12, 
and should particularly impair the tumor shapes radiologists are looking for, independently of the background 
image content. Regarding search strategy, drilling through 3D images should keep the image more autocorrelated 
across time, and hence the Continuity Field should have a beneficial impact in stabilizing our percept. Conversely, 
scanning random locations in each image before going to the next one will lead to potentially less autocorrelated 
information and the Continuity Field should have a detrimental effect, biasing perception towards previous parts 
of the same radiological scan. Consistent with this, radiologists make more mistakes with the scanning than the 
drilling strategy55. Regarding target prevalence, in our experiments each object category was equally likely to be 
presented on the screen (33%), but under certain visual search situations targets are extremely rare. For example, 
malignant tumors for radiologists or threats in carry-on luggage for transportation security officers are rarely 
encountered. When searching through several consecutive empty scans, serial dependencies should continuously 
bias our percept towards more frequent objects, making it even more difficult to recognize rare targets for what 
they actually are.

One concern could be that our stimuli were not realistic. Indeed, our stimuli and task were intentionally 
controlled for the sake of measuring potential sequential dependencies. Our stimulus and task, however, are 
reminiscent of those that radiologists routinely encounter. Radiologists are usually asked to look at radiological 
images1, search for tumors2, and classify them as malignant or benign depending on their shape and location3. 
Accordingly, we adapted standard serial dependence paradigms to mimic a noisy background1, a target simi-
lar to a tumor shape2 and a classification task3. Hence, we consider our results as “proof of concept” that serial 
dependence can detrimentally affect clinically and practically relevant visual search settings. Of course, whether 
any particular visual search task (e.g., mammography, cytology, etc) or individual subject group (radiologist, 
resident, ultrasound technician) suffers from serial dependence remains an open and important question for 
further investigation.

Future research is needed to show effects of serial dependence in actual radiological screening settings. 
First, having context-related stimuli is crucial. Future research will present sequences of actual x-ray with 
actual tumors, instead of simulated ones. Second, in our experiments the simulated tumor was presented for a 
relatively short duration (500 ms). Radiologists may fixate radiological scans for a much longer period before 
they make a decision. However, there is psychophysical evidence that radiologists are capable of extracting 
valuable information from an image at first glance, without lengthy examination of it62–67. Tumor recognition 
is well above chance with short duration stimuli, but it increases to nearly perfect with unlimited viewing. 
Accordingly, future research will test whether sequential effects also occur with longer x-ray presentations. Of 
course, as mentioned above, long exposure may lead to negative perceptual aftereffects, leading to opposing 
results44,45. Third, there are well-known target frequency effects on visual search59,61,68–72. In our experiments, 
each shape category was equally likely to appear on any trial (33%), whereas in radiological screening the 
chance of encountering a radiological scan with a tumor is very low, around 1–2%. Future research will test 
whether having a less frequent target will increase or decrease serial dependence. On one hand, having a rare 
target may lead to the well-known phenomenon of satisfaction of search, i.e. failure to detect subsequent 
abnormalities after identifying an initial one73–75. This phenomenon would work against serial dependence, 
thus leading to a “no tumor” response when the previous x-ray contained one. On the other hand, such a low 
tumor frequency means also higher exposure to non-tumor stimuli (e.g., benign masses, cysts, etc.), and may 
therefore boost serial dependence strength. That is, benign tumors and non-tumor structures could generate 
serial dependence as well.

In addition to the potential importance for clinically and practically relevant settings, our results also provide 
new insights into the mechanism(s) underlying serial dependence. They show that serial dependence can bias 
perceptual decisions for simple stimuli like shapes, thus making dissimilar shapes appear more similar than they 
actually are. This shows that serial dependence can occur with low-level6,76,77 and high-level stimuli10,13,78. In the 
recent literature, serial dependence has been assessed with three main task types: stimulus adjustment and match-
ing6,10,17, two-alternative forced choice tasks6,12,17, as well as rating scales and magnitude estimation15,79,80. Here, 
we show that serial dependence can also be investigated through a three-alternative forced-choice classification 
task, which has the advantage of not presenting any visual stimulus during the response. Finally, our results high-
light the importance of serial dependence in the domain of visual search81–83. They show that serial dependence 
can strongly bias subsequent search for items, but only if the items are similar and are presented within a limited 
temporal and spatial window.
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conclusion
Our results show 1) that visual search is serially dependent, and 2) that this occurs in a simulated clinically 
relevant setting; past experience can affect recognition, biasing classification errors towards previous simulated 
x-ray content. Serial dependence impairs classification performance within defined temporal, featural, and spatial 
boundaries in line with the defining characteristics of Continuity Fields. Importantly, the limits of these three 
types of tuning open the door to potential strategies which may mitigate their detrimental effects.

Method
All experimental procedures were approved by and conducted in accordance with the guidelines and regulations 
of the UC Berkeley Institutional Review Board. Participants were affiliates of UC Berkeley and provided informed 
consent in accordance with the IRB guidelines of the University of California at Berkeley. All participants had 
normal or corrected-to-normal vision, and were all naïve to the purpose of the experiment. Twelve subjects (6 
females; age = 20–31 years) participated in Experiment 1. Eleven subjects (7 females; age = 19–28 years) partic-
ipated in Experiment 2. Stimuli were generated on a Macintosh computer running Matlab PsychToolbox84 and 
presented on a gamma-corrected CRT Sony Multiscan G500 monitor. The refresh rate of the display was 100 Hz 
and the resolution 1024 × 768 pixels. Stimuli were viewed from a distance of 57 cm. Subjects used a keyboard for 
all responses (“1–3” keys for the classification task, and spacebar for the control task).

Stimuli. The stimuli consisted of dark-gray shapes based on 3 original prototype shapes (A/B/C; Fig. 1A). A 
set of 48 shape morphs was created between these prototypes, resulting in a morph continuum of 147 objects. 
Approximate width and height were 4°. Each object was blurred in Photoshop by using a gaussian blur filter. Blur 
pixel radius was 20 in Experiment 1 and 30 in Experiment 2. On each trial, a random object was inserted on a 
random brownian noise background (1/f2 spatial noise) with a 50% transparency level. The object embedded 
in the noisy background was presented for 500 ms, followed by a 1000 ms noise square mask (6° size) of black 
and white pixels (to reduce afterimages). Subjects were then asked to classify the object as belonging to category 
A/B/C by pressing 1/2/3 on the keyboard (classification task). After a 2000 ms delay, the next trial started. In a 
preliminary session, observers completed a practice block of 108 trials (Experiment 1) and 54 trials (Experiment 
2), where the three prototype stimuli were shown on the screen when observers were asked to make a response. In 
addition, observers were continuously familiarized with the three prototype stimuli by seeing them on the screen 
for 10 seconds at the beginning of each block.

Experiment 1. Observers were asked to continuously fixate a black dot (0.2° radius) and on each trial the 
objects were presented at 15° eccentricity in the right peripheral field. On 66% of the trials, the fixation dot was 
black and observers were asked to perform the classification task (Classification task). On 33% of the trials, the 
fixation dot turned red after the mask stimulus and observers were asked to simply press the spacebar (Control 
task). Observers performed 20 blocks of 54 trials each (Fig. 1B). Mean reaction time was 668 ± 15 ms in the 
Classification Task and 670 ± 9 ms in the Control Task.

Experiment 2. There were no fixation constraints and the location of the object was changed randomly from 
trial to trial within a spatial square window of 25°. On each trial, observers were asked to find the object within 
the noisy background and classify whether it belonged to category A, B, or C. Observers performed 10 blocks of 
108 trials each (Fig. 1C). Mean reaction time was 831 ± 346 ms.

Temporal tuning. As a measure of performance on the classification task, we computed the accuracy for 
each observer, defined as the correspondence between response 1/2/3 and morph category A/B/C. Trials were 
considered lapses and excluded if response times were longer than 5 seconds. On average, less than 5% of data 
was excluded. Observers were removed from the experiment if their overall classification accuracy was lower 
than 50% or higher than 85% (two observers removed). Even including these two observers in the analysis did 
not significantly change the overall pattern of results. If observers classified all objects more than 60% of the times 
with a specific category for the first 2 blocks, thus showing a strong bias towards a specific object or response, the 
experiment was immediately terminated (two observers removed).

As a measure of serial dependence, we computed the percentage of errors towards the previous object cat-
egory on an n-back trial (Fig. 3A). First, we computed the number of erroneous responses A/B/C given object 
categories A/B/C on an n-back trial. Second, for each response 1/2/3 we summed up the number of erroneous 
responses where previous object category and current response were the same, and divided it by the sum of erro-
neous responses for all previous object categories. The ratio was computed for each response 1/2/3. For example, 
the number of erroneous responses A when the previous Object Category was A was divided by the number of 
erroneous responses A when the previous Object Category was A + B + C. Third, we averaged the three obtained 
percentages across the three response categories 1–3 and subtracted the chance baseline 33.3% to normalize our 
index (Fig. 2).

The final index denotes by how much the categorical responses on a current trial are biased by the previous 
stimulus category. Positive values indicate a positive serial dependence, negative values indicate a repulsion, and 
zero indicates no bias. For each subject’s data, we generated confidence intervals by calculating a bootstrapped 
distribution of the model-fitting parameter values by resampling the data with replacement 5000 times. On 
each iteration, we recalculated the error percentage to obtain a bootstrapped percentage index for each subject. 
P-values were calculated by computing the proportion of percentages in each subject’s distribution (standard 
index – bootstrapped distribution) that were greater than or equal to zero. In order to empirically confirm the 
33.3% chancel level, we also generated a null distribution of percentage errors for each subject using a permuta-
tion analysis. We randomly shuffled the order of the previous n-back trial and recalculated the error percentage 
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for each iteration of the shuffled data. We ran this procedure for 5000 iterations. The average of the null distribu-
tion across observers was 33.32% (s.d. 0.07) in Experiment 1 and 33.33% (s.d. 0.04) in Experiment 2.

Feature tuning. Relative morph difference (x-axis) was computed as the difference in morph units between 
the previous and current object (previous object morph–current object morph). Response error (y-axis) was 
computed as the difference between the response in the classification task, corresponding to morph 1 (prototype 
A), 50 (prototype B) and 99 (prototype C), and the current morph (current response – current object morph). 
For each observer, we computed the running circular average within a 15 morph units window and averaged the 
moving averages across all observers (Fig. 3B). We quantified feature tuning by fitting a von Mises distribution 
to each subject’s running average data. Peak-to-trough amplitude of the von Mises distribution across observers 
was significantly higher than zero (average across observers 2.06 morph units, s.d. 0.97; t11 = 7.34, p < 0.01) for an 
average width of ±19 morph units.

Spatial tuning. In order to measure the spatial tuning of serial dependence, we binned trials according to 
the distance between the current and previous object locations (Fig. 4A). Distance between successive object 
locations was computed as:

− + − .xcurrent xprevious ycurrent yprevious( ) ( )2 2

We divided trials into two main groups: 0°–12.5° (Fig. 4A; dark bars), and 12.5°–25° (Fig. 4A; bright bars) for 
n-back trials. For each subject, we extracted the first 400 trials in both groups and computed the bootstrapped 
percentage of serial dependence within each group (5000 iterations; see Temporal tuning section).

We repeated the analysis using the two-dimensional spatial separation between successive trials (i.e., consider-
ing x distance and y distance separately; Fig. 4B). The rolling window was a circle with a starting radius of 8° that 
parametrically increased with increasing diagonal distance until 16° in order to collect a similar amount of data 
at each point. From each subject, we extracted the first 800 trials and collapsed all the data into a “super subject” 
(9600 trials in total). We then computed the bootstrapped percentage of serial dependence (1000 iterations) at 
each spatial separation between the current and previous trial. In Fig. 4B, a value of 0 on both axes (relative verti-
cal and relative horizontal distance) indicates that the objects were presented at the same location on the current 
and the previous trial. A value of 25° on both axes indicates that the objects were presented at 25°of horizontal and 
vertical distance on both the current and previous trial (35° of diagonal distance). In order to increase the number 
of available trials, we collapsed left-right and up-down quadrants into a unique quadrant.

Data availability
All relevant data are available from the authors.
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