
Introducing Routing Uncertainty
in Capsule Networks

Fabio De Sousa Ribeiro∇ Georgios Leontidis† Stefanos Kollias∇

∇ Machine Learning Group
University of Lincoln, UK

{fdesousaribeiro,skollias}@lincoln.ac.uk

† Department of Computing Science
University of Aberdeen, UK

georgios.leontidis@abdn.ac.uk

Abstract

Rather than performing inefficient local iterative routing between adjacent capsule
layers, we propose an alternative global view based on representing the inherent un-
certainty in part-object assignment. In our formulation, the local routing iterations
are replaced with variational inference of part-object connections in a probabilistic
capsule network, leading to a significant speedup without sacrificing performance.
In this way, global context is also considered when routing capsules by introducing
global latent variables that have direct influence on the objective function, and
are updated discriminatively in accordance with the minimum description length
(MDL) principle. We focus on enhancing capsule network properties, and perform a
thorough evaluation on pose-aware tasks, observing improvements in performance
over previous approaches whilst being more computationally efficient.

1 Introduction

Although capsule networks (CapsNets) have taken on a few different forms since their inception [1,
2, 3, 4], they are generally built upon the following core assumptions and premises:

(i) Capturing equivariance w.r.t. viewpoints in neural activities, and invariance in the weights;
(ii) High-dimensional coincidences are effective feature detectors;

(iii) Viewpoint changes have nonlinear effects on pixels, but linear effects on object relationships;
(iv) Object parts belong to a single object, and each location contains at most a single object.

In theory, a perfect instantiation of the above premises could yield more sample efficient models, that
leverage robust representations to better generalise to unseen cases. Unlike current methods, humans
can extrapolate object appearance to novel viewpoints after a single observation. Evidence suggests
that this is because we impose coordinate frames on objects [5, 6]. Capsules imitate this concept by
representing neural activities as poses of objects w.r.t. a coordinate frame imposed by an observer,
and attempt to disentangle salient features of objects into their composing parts. This is reminiscent
of inverse graphics [7], but is not explicitly enforced in capsule formulations since the learned pose
matrices are not constrained to interpretable geometric forms. Another argument for CapsNets, is one
that views capsules as an extension to the very successful inductive biases already present in CNNs,
by wiring in some additional complexity to deal with viewpoint changes. One of the desired effects is
to align the learned representations with those perceptually consistent with humans, which would also
make adversarial examples less effective [8]. The additional complexity comes from replacing scalar
neurons with vector valued neural activities, along with a high-dimensional coincidence filtering
algorithm to detect capsule level features, known as capsule routing [2, 3]. This procedure is typically
iterative, local and inefficient which has prompted further research on the topic [9, 10, 11, 12, 13].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

1.1 Motivation & Contribution

Weaknesses of Capsule Networks. The memory bottleneck incurred by vector valued activations
in addition to the iterative nature of capsule routing algorithms results in inefficient models. They are
also prone to underfitting or overfitting if the number of routing iterations isn’t properly set [2, 3].
To address the above weaknesses one may decide to naively replace the iterative nature of capsule
routing with some faster alternative. However, to stay true to the premises of CapsNets, we argue that
the four following points are of paramount importance for the research community to consider, when
proposing algorithmic variants of CapsNets or capsule routing going forward:

(i) Whether viewpoint-invariance and affine transformation robustness properties are retained;
(ii) Changes in assumptions about part-object relationships are made explicit;

(iii) Whether capsules are still activated based on high-dimensional coincidences;
(iv) How do we handle the intrinsic uncertainty in assembling parts into objects.

Changes in the core assumptions of CapsNets aren’t always made clear in recent literature, but emerge
incidentally via the proposed modifications. This leads to ambiguities regarding what qualifies as a
capsule network, which can make comparisons between methods more difficult and hinder progress.
In this paper, we focus on the core premises of capsule networks, and on enhancing their advantages
over CNNs: viewpoint-invariance, and affine transformation robustness whilst being more efficient.

Contribution. Rather than performing local iterative routing between adjacent capsule layers which
is inefficient, we propose an alternative global view based on representing the inherent uncertainty
in part-object relationships, by approximating a posterior distribution over part-object connections.
Sources of uncertainty in assembling objects via a composition of parts can arise from numerous
sources, such as: (i) feature occlusions due to observed viewpoints; (ii) sensory noise in captured
data; (iii) object symmetries for which poses may be ambiguous such as spherical objects/parts.

In our formulation, the local routing iterations are replaced with variational inference of part-object
connections in a probabilistic capsule network, leading to a significant speedup (Figure 4). In this way,
we encourage global context to be taken into account when routing information, by introducing global
latent variables which have direct influence on the objective function, and are updated discriminatively
in accordance with the minimum description length (MDL) principle [14, 15]. Our experiments
demonstrate that local iterative routing can be replaced by variational posterior inference of part-
object connections in a global context setting, allowing the model to leverage the inherent uncertainty
in assembling objects as a composition of parts to improve performance on pose-aware tasks.

2 Background: Capsule Networks

Capsules. A capsule c is a set of neurons c = {a,M}. Each capsule is composed of either a vector
m ∈ Rd or matrix M ∈ R

√
d×
√
d of neurons, and an activation probability a. A single capsule

is wired to represent a single entity, and its vector/matrix may learn to encode its pose w.r.t the
coordinate frame imposed by an observer. The activation a simply represents an entity’s presence.
A capsule network is composed of two or more capsule layers, with multiple capsules N in each
layer. Capsule routing takes place between adjacent capsule layers, i.e. Ni capsules in a lower layer
`i are routed to Nj capsules in a higher layer `j , which can be seen as a form of cluster finding.
Contextually, capsules in `i are referred to as parts of objects (datapoints), and capsules in `j are
objects (clusters). Each part capsule uses its relationship to the viewer (pose), to posit a vote for what
the pose of the object it is part of should be. To achieve this, part capsule poses Mi are multiplied
with trainable viewpoint-invariant, affine transformation weight matrices:

Vj|i =
{
Mi ·Wij | ∀ci ∈ `i , ∀cj ∈ `j

}
, Wij ∈ R

√
d×
√
d. (1)

where Vj|i denotes the ith part capsule vote for the jth object capsule pose, and Wij are the weights,

Inducing Nonlinearity. Capsule poses M are not directly activated via nonlinear mappings but are
compositions of affine/projective linear transformations, that increase in complexity as we traverse
through the network. Nonlinearity is induced by the choice of routing algorithm [2, 3], and the vote
agreement measure used in calculating the activation probability aj for each capsule cj ∈ `j .

2

Figure 1: Our inference procedure in a given capsule layer (Left). Small example of part-object
connections in convolutional voting for k = 2, drawn randomly from Dirichlet distributions (Right).

3 Uncertainty in Capsule Routing

Let D denote a set of data given as m pairs {xi, yi}mi=1, where xi ∈ Rd denotes a datapoint, and
yi ∈ {1, . . . ,K} its corresponding label. Let z denote some latent variables associated with our
observations (x,y), that capture underlying structure in our data D and help govern its distribution.

3.1 Defining Part-Object Connections

Dense & Convolutional Voting. In dense capsule voting, all part capsules are connected to all
object capsules in the layer above. That is, each part capsule ci ∈ `i votes Nj times, therefore each
object capsule cj ∈ `j receives Ni votes. The part-object connections are then z`i,`j ∈ RNi×Nj .
Alternatively, in a convolutional capsule layer with kernel size k and stride s, the number of object
capsules that each part capsule ci can vote for Ni→j , is bounded above and below by

0 ≤ Ni→j ≤ tj ×
⌈
k

s

⌉2
, and z

(i)
`i,`j
∈ RNi→j ∀ci ∈ `i, (2)

where d·e denotes the ceiling function, and tj denotes the number of output object capsule types,
which are analogous to output channels in CNNs. Importantly, part capsules on the edge of feature
maps vote for fewer objects than those in the middle (Figure 1), a fact which is very often overlooked
in capsule research, leading to improper normalisation over objects and competition between capsules.

Stochastic Variational Inference. To represent our uncertainty about part-object relationships in
a CapsNet, we look to approximate the (intractable) posterior distribution p(z|D) over part-object
connections z, with a chosen parameterised distribution qφ(z|D) ≈ p(z|D) via variational inference
(VI). In general, qφ(z|D) is optimised by updating the parameters φ such that the Kullback-Leibler
(KL) divergence DKL(qφ(z|D) || p(z|D)) is minimised [15, 16, 17]. Next, we discuss and consider
the inference of qφ(z|D) under two main modelling paradigms: generative and discriminative.

Generative. Under generative frameworks, a set of local latent variables z in models of the form
pθ(x, z) = pθ(x|z)p(z) are often employed, such as in the variational autoencoder (VAE) [18].
Specifically, latent variables z = {zi}mi=1 are inferred for each x = {xi}mi=1, and maximum
likelihood (ML) or maximum a posteriori (MAP) inference is performed on global parameters. The
model is fit by maximising the Evidence Lower BOund (ELBO) on the marginal log-likelihood

log p(x) ≥
m∑

i=1

−DKL(qφ(zi|xi) || p(zi)) + Eqφ(zi|xi)[log pθ(xi|zi)] , Llocal(φ,θ). (3)

Discriminative. Under the discriminative framework, global latent variables z are often utilised
and are shared among datapoints {xi}mi=1, for instance when inferring the posterior on the weights of
a neural network (NN) [15, 17, 19]. The bound is on the conditional marginal log-likelihood

log p(y|x) ≥
m∑

i=1

− 1

m
DKL(qφ(z) || p(z)) + Eqφ(z)[log p(yi|xi, z)] , Lglobal(φ) (4)

To facilitate comparisons with the majority of research on CapsNets, we focus on the development
and evaluation of our method in a discriminative setting. Formally, we are interested in estimating
the conditional likelihood p(y|x, z) =∏m

i=1 p(yi|xi, z) using probabilistic capsule network models.

3

3.2 Posterior Inference of Part-Object Connections

Inference & Model Assumptions. Using stochastic VI tools, we intend to find the best approxima-
tion q?φ(z) that minimisesDKL(qφ(z) || p(z|D,W)), where z are global latent part-object connection
variables, and W are viewpoint-invariant transformation parameters, in a CapsNet with L layers.
We place a prior p(z(i)) over each part capsule’s ci ∈ ` connections to the objects they vote for
cj ∈ `+ 1, and make the following factorised independence assumptions across capsule layers:

z(i) = (z1, z2, . . . , zNi→j) ∼ p(z(i)) ∀ci ∈ `i, p(z) =

L−1∏

`=1

Ni∏

i=1

p(z
(i)
`). (5)

We then make a variational approximation qφ(z`,`+1) to the posterior on part-object connection
variables between adjacent capsule layers ` and ` + 1, for all capsule layers in the network. Our
model’s likelihood p(D|z,W), and mean-field variational family qφ(z) are given by

p(D|z,W) =

m∏

i=1

p(yi|xi, z,W), qφ(z) =

L−1∏

`=1

Ni∏

i=1

qφ(z
(i)
`,`+1). (6)

The model is defined hierarchically where the object capsules in ` are the parts of `+ 1, and so forth.

Free Energy Objective. The model is fit end-to-end by maximising the following lower bound on
the conditional marginal log-likelihood log p(y|x), which approximates its description length:

L(y|x;φ) , −
L−1∑

`=1

DKL(qφ(z`,`+1) || p(z`)) +
m∑

i=1

Eqφ(z)[log p(yi|xi, z,W)]. (7)

In the general case, we perform variational inference on the part-object connection latent variables z,
and ML/MAP inference on W. We find this to work well enough in practice, whilst significantly
reducing the number of parameters needed and assumptions made, which is especially important in
CapsNets given that efficiency is a major concern. Nonetheless, for full posterior learning, we can
make one further mean-field assumption by: qφ,θ(z,W) = qφ(z)qθ(W), where qθ(W) is Gaussian
and factorises similarly across layers, including any convolutional layers preceding the capsule layers.

3.3 Choosing Priors: Reflecting Part-Object Assumptions

Logistic-Normal. Recall from Eq. (2) that each part capsule ci votes for Ni→j objects, we can
introduce randomness in their part-object connections via a Gaussian-Softmax parameterisation:

softmax(z(i))j =
exp(zj)∑Ni→j

k exp(zk)
, zj ∼ N (0, 1) for j = 1, 2, . . . , Ni→j , (8)

with all components zj sampled independently from standard Gaussian priors. The approximate
posterior then takes the form: qφ(z(i)) = N (z(i) | µ(i),σ(i)) ∀ci ∈ `i. To obtain stochastic
gradients of the lower bound w.r.t. the parameters φ, we can parameterise samples from qφ(z

(i))

by: z(i) = f(ε, φ) where f(·) is differentiable and ε ∼ N (0, I), using the (local) reparameterisation
trick [18, 20]. These priors are generally attractive since reparameterising Gaussian samples is straight
forward, and they have been shown to work well in other settings such as topic models [21, 22].

Dirichlet. Alternatively, multi-modality over categorical events is better captured by the Dirichlet
distribution [23]. We can also reduce the number of parameters as we only need to infer π(i) rather
than {µ(i),σ(i)} for each part capsule ci, which is especially important in CapsNets, as explained in
Section 1.1, since efficiency is a major concern. Our Dirichlet priors over z are defined as

z(i) = (z1, z2 . . . , zNi→j
) ∼ Dir(π

(i)
0), π

(i)
0 = (π1, π2, . . . , πNi→j

), (9)

where π
(i)
0 are the prior concentration parameters for ci, and the approximate posterior is then also

Dirichlet distributed: qφ(z(i)) = Dir(π(i)) ∀ci ∈ `i. In practice, we draw Dirichlet samples via
independent standard Gamma distributions over each part-object connection:

γ(i) =
{
γj
}Ni→j

j=1
, γj ∼ Gamma(πj , 1), (10)

4

zj =
γj∑Ni→j

k γ
(i)
k

, then z(i) = (z1, z2, . . . , zNi→j
) ∼ Dir(π

(i)
0). (11)

This parameterisation enables significantly more efficient normalisation over objects, using a 2D
transposed convolution with an identity filter to collect variable length vectors z(i), when using
convolutional voting. Unlike the Gaussian, the Gamma and Dirichlet distributions are not directly
amenable to the reparameterisation trick [18, 24], so we obtain approximate pathwise gradients via the
optimal mass transport (OMT) method [25]. Alternatively, we could obtain implicitly reparameterised
gradients as in [26]. Both are readily available in PyTorch and Tensorflow respectively [27, 28].

3.4 Routing & Activating Capsules

Algorithm 1 Capsule Layer with Routing Uncertainty. Returns updated object capsules cj =
{aj ,Mj} ∈ ` + 1, given part capsules ci = {ai,Mi} ∈ `. Performs ML/MAP inference of
transformation weights W, and variational inference of latent part-object connection variables z.

1: function CONVCAPS2D (ai, Mi) . input capsules from previous layer

2: Initialise Affine Weights: Wij ∈ R
√
d×
√
d ∀i∀j

3: Set Dirichlet priors: π(i)
0 ∈ RNi→j ∀ci ∈ `

4: Vj|i ← VOTE (Mi, Wij) # Eq.(1) . capsules ci vote for poses of capsules cj
5: z`,`+1 ←SAMPLE qφ(·) (ai, π

(i)
0) # Eqs.(10–12) . sample z(i) ∀ci from approximate posterior

6: aj ,Mj ← ROUTE (z`,`+1, Vj|i) # Eqs.(12,13) . aggregate votes and activate capsules ∀cj
7: return cj = {aj ,Mj} . output capsules to next layer

Global Routing. Following from Eq. (1), part capsules ci ∈ ` cast votes Vj|i for object capsules
cj ∈ `+ 1, in all layers. During training we fit multivariate gaussians Mj ∼ N (µj ,σj), on each
object’s d dimensional poses, and sample part-object connections from the approximate posterior:

z(i) ∼ qφ(z`,`+1) ∀ci ∈ `, µj =

∑
i z

(i)
`,`+1Vj|i

∑
i z

(i)
`,`+1

, σj =

∑
i z

(i)
`,`+1(Vj|i − µj)

2

∑
i z

(i)
`,`+1

. (12)

The latent variables z(i) can act as soft assignments depending on our choice of prior, and one could
interpret the training procedure as approximating the true posterior q?φ(z|D) ≈ p(z|D,W) over all
layers under the global minimum description length objective in Eq. (7), rather than local (iterative)
inference of z in the E-step of EM routing [3] between all adjacent capsule layers. Alternatively, if
for instance we let our priors on z(i) be Beta distributed over each part-object connection, and omit
the normalisation over objects, we can allow each part to route information to multiple objects at
once. If one normalises over parts rather than objects, then routing closely resembles attention [29].

Agreement & Activation. To measure vote agreement for each object capsule, we compute the av-
erage negative entropy of its pose: −H(Mj) , −d−1H

[
N (Mj | µj ,σj)

]
. Averaging yields a scale

invariant measure w.r.t. the number of pose parameters d. Agreement is weighted by the support for
each object capsule, which is the amount of data received from its parts: −H(Mj)

∑
i z

(i)
`,`+1. Next,

consider a Binomially distributed random variable Sj ∼ B(Ni, N−1j), describing the assignment of
Ni parts to Nj objects with probability N−1j . The expected amount of data each object receives in
a given layer is then E(Sj). We can use this value to normalise and offset the entropy term, which
automatically scales logits according to the number of capsules in each layer:

aj ,
−ηjH(Mj)− E(Sj)

E(Sj)
= − ηj

E(Sj)
H(Mj)− 1, ηj ,

∑

i

z
(i)
`,`+1, (13)

aj is then activated using the logistic function. In simple terms, if the uncertainty among votes is
high — i.e. low negative entropy and poor agreement — assigning more data to capsule j decreases
its activation. Alternatively, if the uncertainty among votes is low — i.e. high negative entropy and
good agreement — assigning more data to capsule j increases its activation significantly. Activating
capsules in this way simply encourages the model to meet the agreement and support activation
criteria implicitly, but does not enforce them explicitly via learned β thresholds as in EM routing [3].

5

Table 1: Comparing viewpoint-invariance on SmallNORB. Performances are matched on familiar
viewpoints, before testing on novel. Results from 3 random seeds on architectures {f0, t1, t2, t3, t4}.

Method Azimuth (Acc. %) Elevation (Acc. %) # Param
(Viewpoints) Atrain Atest Etrain Etest
Baseline CNN [3] 96.3 80.0 95.7 82.2 4.2M
CNN (AvgPool) [12] 91.5 78.2 94.3 82.28 0.15M
Our EM-Routing 96.29±0.02 87.1±0.42 95.71±0.02 87.9±0.39 0.17M

SR-Caps [12] 92.38 80.14 94.04 84.09 0.75M
STAR-Caps [11] 96.3 86.3 - - 0.32M
EM-Routing [3] 96.3 86.5 95.7 87.7 0.31M
VB-Routing [13] 96.29 88.6 95.68 88.4 0.17M

{32, 8, 8, 8, 5} 96.3±0.03 89.12±0.7 95.68±0.04 89.64±0.49 0.06M
{64, 8, 16, 16, 5} 96.3±0.02 91.06±0.31 95.7±0.02 91.01±0.26 0.14M
{64, 16, 16, 16, 5} 96.29±0.03 91.41±0.46 95.7±0.03 91.36±0.4 0.22M
{128, 16, 32, 32, 5} 96.3±0.02 91.85±0.42 95.71±0.03 92.03±0.21 0.58M

Capsule L2 Norm. Alternatively, we can activate capsules by computing the Frobenius norm of
the mean votes for object poses ||µj ||F , then squashing it to a sensible (0, 1) range [2]. This encodes
agreement in the norm of the poses and offers a considerable speedup at a performance cost.

4 Experiments

In this study, we focus on demonstrating that our method enhances capsule properties and outperforms
previous approaches on challenging pose-aware tasks used in CapsNet literature (Sections 4.1, 4.2
and 4.4), whilst being more computationally efficient (see Figure 4 for runtime comparisons).1

Network Architecture. To ensure fair and direct comparisons with previous work, we use identical
CapsNets to EM routing [3]. A single 5 × 5 Conv layer with f0 filters and stride 2 precedes four
capsule layers. The PrimaryCaps layer transforms f0 feature maps into t1 capsule types, each
having H ×W number of capsules with 4× 4 poses. Next, two 3× 3 ConvCaps layers with t2 and
t3 output capsule types, using strides 2 and 1. The last ConvCaps layer outputs t4 class capsules, and
shares weights across spatial dimensions [3]. Let {fo, t1, t2, t3, t4} denote the complete architecture.
In all experiments, we use Adam [30] with default parameters and a batch size of 128 for training.

Priors. To show our method works well in the general case, we set the priors to be as uninformative
as possible for all the benchmark results presented, i.e. flat Dirichlet: p(z(i)) ∼ Dir(1Ni→j

) ∀ci ∈
`, ∀`. These priors explicitly assume that each part capsule ci is equally likely to belong to any object
it votes for, with any level of certainty. Nonetheless, we conducted experiments to test sensitivity
to the choice of prior, as presented in Figure 4. We observe tighter bounds for priors with central
peaks, meaning that sampled part-object connections are closer to uniform over objects. Although
tighter bounds are not always better [31], this suggests that parts prefer to spread their vote amongst
multiple objects in CapsNets, which is reminiscent of Dropout’s effect on NN weights [32].

Inference. In all benchmark results, we perform a deterministic inference at test time with-
out sampling z, by using the posterior means z? = E[q?φ(z`,`+1)] ∀`, to compute predictions
y? = argmaxy p(y|x, z?,W). Alternatively, we can draw T Monte Carlo samples of part-object
connections from the approximate posterior, and calculate the predictive entropy:

H(ŷ|x, z,W) = −
K∑

k=1

ŷk log ŷk, ŷ ≈ 1

T

T∑

t=1

p(y|x, zt,W), zt ∼ q?φ(z|D). (14)

Under full posterior learning: qφ,θ(z,W), the pose transformation matrices W are also sampled.
Although the model is partially Bayesian, we observe predictive entropies on out-of-distribution
dataset samples (AffNIST, FashionMNIST) to be consistent with model uncertainty representation as
shown in Figure 3. We also observe entropic predictions on more challenging SmallNORB viewpoints
as we vary azimuth, whilst holding the lowest/highest elevation viewpoints fixed (see Figure 2).

6

0 2 4 30 32 34 6 8 10 12 14 16 18 20 22 24 26 28
azimuth (×10)

1.0

1.2

1.4

H
(ŷ
|x
,z
,W

) Atrain Atest

Elevation Fixed: (0)

0 2 4 30 32 34 6 8 10 12 14 16 18 20 22 24 26 28
azimuth (×10)

1.0

1.2

1.4

H
(ŷ
|x
,z
,W

) Atrain Atest

Elevation Fixed: (8)

Figure 2: (Top row) Predictive entropies when varying azimuth viewpoints whilst holding low-
est/highest elevations fixed on SmallNORB. Obtained with 10 MC samples using {32, 8, 8, 8, 5}.
(Bottom row) Example posterior parameters π? from two random penultimate layer capsules of
networks trained under different Dirichlet priors π0, simplex corners represent SVHN digit classes.

4.1 Generalisation to Novel Viewpoints

Table 2: SmallNORB test error (%),
results from 3 random seeds.

Method SmallNORB

Error (%) # Param

Baseline CNN [3] 5.2 4.2M
Our CNN 5.6±0.12 2.4M
Our ResNet-20 2.7±0.11 0.27M
Our EM-Routing 1.9±0.15 0.17M

Dynamic [2] 2.7 8.2M
FRMS [9] 2.6 1.2M
FREM [9] 2.2 1.2M
STAR-Caps [11] 1.8 0.25M
EM-Routing [3] 1.8 0.31M
VB-Routing [13] 1.6 0.17M

{32, 8, 8, 8, 5} 2.2±0.08 0.06M
{64, 16, 16, 16, 5} 1.5±0.10 0.22M
{64, 8, 16, 16, 5} 1.4±0.09 0.14M

Viewpoint-Invariance. SmallNORB [33] consists of
grey-level stereo 96 × 96 images of 5 objects: each given
at 18 different azimuths (0-340), 9 elevations and 6 lighting
conditions, with 24,300 training and test set examples. As
in [3], we standardise the images and resize them to 48 ×
48. During training we take 32× 32 random crops, and cen-
tre crops at test time. We train on training set images with
azimuths: Atrain = {300, 320, 340, 0, 20, 40}, denoted as
familiar viewpoints, and test on test set images containing
novel azimuths: Atest = {60, 80, . . . , 280}. Similarly, for
the elevation viewpoints we train on Etrain = {30, 35, 40},
and test on Etest = {45, 50, . . . , 70}. As reported in Ta-
ble 1, we observed notable performance improvements in
viewpoint-invariance over previous CapsNets, and signifi-
cant improvements over CNNs. Additional results on the
standard SmallNORB train/test splits are found in Table 2.

4.2 Affine Transformation Robustness

Table 3: MNIST to AffNIST generalisa-
tion error (%). (†) unsupervised learning.

Method MNIST AffNIST

Test Error (%)

Baseline CNN [3] 0.8 14.1
BCN [34] 2.5 8.4

Dynamic [2] 0.77 21
G-Caps [35] 1.58 10.1
Sparse-Caps[36] 1.0† 9.9
SCAE [4]† 1.5 7.79
EM-Routing [3] 0.8 6.9
Aff-Caps [37] 0.77 6.79

{32, 8, 8, 8, 10} 0.8±0.01 5.02±0.28
{64, 8, 16, 16, 10} 0.79±0.01 4.17±0.3
{64, 16, 16, 16, 10} 0.78±0.02 3.88±0.34
{128, 16, 32, 32, 10} 0.8±0.02 3.46±0.19
{128, 16, 32, 32, 10} 0.28±0.01 2.31±0.03

Out-of-Distribution Generalisation. In this study
we demonstrate our model’s robustness to affine transfor-
mations using the AffNIST dataset. AffNIST consists of
MNIST images which have been uniquely transformed
by 32 random affine transformations per image. Train-
ing is performed on the MNIST training set, and we test
generalisation performance on the AffNIST test set con-
taining 320,000 examples. AffNIST images are 40×40
so for training we pad MNIST images, randomly placing
the digits on 40×40 black backgrounds as in works we
compare to [2, 13]. Our models were never trained on
AffNIST, and no further data augmentation was used.
As shown in Table 3, we observed performance improve-
ments over previous CapsNets, and significantly so over
CNNs. Increasing the number of capsules used in our
method also leads to better generalisation performance.

1Code available at: https://github.com/fabio-deep/Routing-Uncertainty-CapsNet

7

https://github.com/fabio-deep/Routing-Uncertainty-CapsNet

0.75 1.00 1.25 1.50 1.75 2.00 2.25
predictive H(ŷ|x, z,W)

MNIST (Train)

MNIST (Test)

0.75 1.00 1.25 1.50 1.75 2.00 2.25
predictive H(ŷ|x, z,W)

MNIST (Test)

AffNIST (Test)

0.75 1.00 1.25 1.50 1.75 2.00 2.25
predictive H(ŷ|x, z,W)

MNIST (Test)

FashionMNIST (Test)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
predictive H(ŷ|x, z,W)

NORB (Atrain)

NORB (Atest)

Figure 3: Histograms of predictive entropies on in- and out-of-distribution test examples. Results
obtained with 10 MC samples from q?φ(z|D) using our {64, 8, 16, 16, 10} model.

0 2 4 6 8
iteration (×104)

−5

−4

−3

−2

−1

E
L

B
O

×102 Dirichlet Priors (π0)

0.5

1

5

10

15

103 104 105

iteration (log10)

0

1

2

3

D
K

L
(q
φ

(z
)
||
p(

z)
)

×102 Complexity Cost

0.0

0.5

1.0

1.5

2.0

w
ei

gh
t

β penalty

Atrain Atest Etrain Etest

viewpoints

5.0

7.5

10.0

12.5

er
ro

r
(%

)

Effect of Agreement Measure

L2 Norm : ||µj||F
Entropy : −H[N (Mj|µj,σj)]

Ours1 Ours2 IDP[9] SR[10] VB[12] DR[2] EM[3]

method

30

60

90

it
er

at
io

ns
/s

97.3

59.2

17.9
13.2 16.1

11.0 9.8

36.4

22.5

11.3
6.8 5.6 5.4 4.1

1L2 Norm

2Entropy

Runtime Comparisons

training

inference

Figure 4: Effect of symmetric Dirichlet priors on the tightness of the ELBO over 3 runs on SVHN
10K, and complexity cost (KL) with β weight penalty throughout training (Left). Comparing capsule
activation methods on SmallNORB viewpoint performance, and runtimes (CIFAR-10) of 5 open
source routing methods ran on 2 Titan Xp GPUs, using the same {128, 16, 16, 16, 10} model (Right).

4.3 Limited Training Data Regime

Table 4: Comparing SVHN test error (%) with
limited training data, from 3 random seed runs.

Method SVHN # Param

(#Train) 10K 20K

ResNet-18 [38] 9.83 7.90 2.7M
ResNet-34 [38] 8.73 7.05 5.2M
Our CNN 9.4±0.25 7.7±0.21 2.4M

ResNet-18 (STN) 9.10 7.17 2.8M
(ETN) 7.81 6.37

ResNet-34 (STN) 8.60 6.91 5.3M
(ETN) 7.72 5.98

{32, 8, 8, 8, 10} 7.7±0.05 6.5±0.04 0.06M
{64, 16, 16, 16, 10} 7.5±0.21 5.9±0.26 0.22M
{64, 8, 16, 16, 10} 7.0±0.15 5.9±0.11 0.15M

Sample Efficiency. Rather than artificially ap-
plying perturbations, we leverage the natural range
of geometric variation in the SVHN dataset [39] to
verify robustness and generalisation performance
on real data. We follow the experimental setup of
Equivariant Transformers [38], and train models
with random 10K and 20K subsets of the original
training set of 73,257 examples, and evaluate on
the test set (26,032). As shown in Table 4, our Cap-
sNets are quite sample efficient in the limited train-
ing data regime, offering modest improvements
over STN/ETN baselines in [38], and significantly
so over CNNs. Sample efficiency is critical in real
world tasks where data is limited. Interestingly,
we observe smaller improvements over baselines
as more training data is used, suggesting that model choice is less important given enough data.

4.4 Performance Under Feature Occlusion

Table 5: Comparing MultiMNIST test error and
exact match ratio (MR) error. (†) dagger denotes
results from using DiverseMultiMNIST.

Method MultiMNIST # Param

(Test) Error (%) MR (%)

Baseline CNN [2] 8.01 - 24.6M
Baseline CNN [10]† - 15.2 19.6M

Dynamic [2] 5.2 - 8.2M
IDP-Attention [10]† - 8.83 42M
Aff-Caps [37] 4.51 - 8.2M

{64, 8, 16, 16, 10} 3.3±0.07 7.2±0.21 0.15M
{128, 16, 16, 16, 10} 2.4±0.11 4.7±0.18 0.23M
{128, 16, 32, 32, 10} 1.8±0.09 3.4±0.17 0.58M

Overlapping Digits. In this study we empiri-
cally demonstrate that our method is resilient un-
der feature occlusions (which is a source of uncer-
tainty). To that end, we replicated the experiment
setup in [2], and trained our shallow models on the
MultiMNIST dataset by generating occluded digit
pairs on the fly. Digit pairs are formed by shift-
ing each MNIST digit by up to 4 pixels in each
direction, then adding them together. No further
data augmentation was used. Our models were
trained/validated on 60M overlapping digit pairs,
and tested on 10M. Table 5 reports both lower test
error and exact match ratio (MR) error compared
to previous work. See Figure 5 for illustrations.

8

Figure 5: Explanatory heat maps of predictions by our models trained on SmallNORB (Left) and
MultiMNIST (Right). Obtained by upsampling the posterior means of the part-object connections z?
in the class capsule layer, up to the input size: yielding attention-like explanations of predictions.

5 Related Work & Conclusion

Variational Inference. Our work lies at the intersection of CapsNets and variational Bayesian
learning. Variational Inference (VI) has its roots in statistical physics [40, 41], leading to seminal
work in the early-1990s [15] which offered a MDL [14] perspective on VI in NNs. VI was later
formalised more generally in a series of important works [42, 43, 44, 16]. More recently, practical
strategies for calculating biased/unbiased Monte Carlo gradients of variational objectives in deep
NNs have been proposed [17, 19], which are complemented by ideas from deep generative modelling
such as the reparameterisation trick [18, 24]. NNs with Dropout [32] have also been interpreted as
being approximately Bayesian [45, 46], and are widely used to estimate uncertainty [47, 48, 49, 50].

Capsule Networks. Initial work on capsules began with the transforming autoencoder [1]. Other
successful variants have since then been proposed, notably: Dynamic routing [2], EM routing [3],
and stacked capsule autoencoders (SCAE) [4], all of which achieved state-of-the-art performance in
pose-aware tasks. Much follow-up work focuses on algorithmic variants of local routing or in scaling
up CapsNets: VB routing [13], KDE [9], Spectral [51], Subspace-Caps [52, 53]. Other interesting
works improve on the equivariance properties of CapsNets directly using Group theory [35, 54],
which is on the contrary to our approach, as we do not impose any specific equivariance restrictions
into the model. Geometric approaches have also been explored by [55, 56, 57], extending CapsNets
to work with point clouds and in 3D. Related work on probabilistic interpretations of CapsNets is
limited, with the notable exception of [58] which considers a fully generative perspective of SCAE [4]
that is unsupervised, in contrast to the discriminative probabilistic model with capsule structure
presented in this paper. Our work builds primarily on both local EM/VB routing [3, 13]–to which
we provide a global alternative view using VI tools–and other recent non-iterative routing methods:
Attention routing [59], STAR-Caps [11], Self-Routing [12], and Inverted Dot-Product routing [10].
Modifications in some of the latter methods have led to ambiguities regarding what qualifies as a
CapsNet, as opposed to CNNs with attention. As explained in Section 1.1, this occurs whenever
the fundamental premises of CapsNets are implicitly or explicitly altered, and their properties are
not carefully verified or retained. With that in mind, we demonstrate empirically that our proposed
end-to-end probabilistic approach leads to performance enhancements in benchmark pose-aware
tasks commonly used in CapsNet literature, whilst being more computationally efficient.

5.1 Conclusion

In this paper we propose to replace inefficient local iterative routing with variational inference of
a posterior on part-object connections in a probabilistic capsule network, leading to a significant
speedup (Figure 4). In this way, we encourage global context to be taken into account when routing
information, by introducing global latent variables which have direct influence on the objective
function, and are updated discriminatively in accordance with the minimum description length
principle. To facilitate comparisons, we developed our method in a discriminative setting, and
performed a thorough evaluation on pose-aware tasks, demonstrating enhanced capsule properties
over previous iterative and non-iterative routing methods. We believe further exploration of CapsNets
as deep latent variable models (DLVMs) [24, 60, 61], to be a promising future research direction.

9

Broader Impact

With the advent of Deep Learning, the computational requirements in the field have increased
significantly due to the ever increasing scale of our models. The environmental impact of training or
deploying such models is therefore at an all time high. This raises concerns regarding the sustainability
of our current practices, as the technologies we help develop are slowly integrated into all areas of
society. Although it is important to continue on this path of discovery, we feel that an important
shift towards efficiency is sorely needed. Concretely, the development of smaller scale models
which are more robust and sample efficient, could significantly reduce the environmental impact of
our technology with small sacrifices in performance. In general, we believe this can be achieved
by introducing richer inductive priors into our models, which in turn require fewer examples to
learn from, i.e. leading to increased sample efficiency. With that in mind, Capsule Networks have
previously shown to possess superior generalisation properties than conventional CNNs in certain
tasks, and in our work we enhance these properties further whilst being more computationally efficient
than previous iterative routing methods. We also demonstrated competitive performances on sample
efficiency tasks, which have broad applicability to limited data domains such as medical. When these
properties are enhanced even further, they have the potential to make a significant positive impact on
our societies by increasing the sustainability and efficiency of our machine learning models.

Acknowledgments and Disclosure of Funding

We would like to gratefully acknowledge the support of NVIDIA Corporation with the donation of
GPUs used for this research. We also thank Francesco Caliva and Lewis Smith for fruitful discussions.

References
[1] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In

International conference on artificial neural networks, pages 44–51. Springer, 2011.

[2] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pages 3856–3866, 2017.

[3] Geoffrey Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. In 6th
international conference on learning representations, ICLR, pages 1–15, 2018.

[4] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E Hinton. Stacked capsule au-
toencoders. In Advances in Neural Information Processing Systems, pages 15486–15496,
2019.

[5] I. Rock. Orientation and form. Academic Press, 1973.

[6] Geoffrey Hinton. Some demonstrations of the effects of structural descriptions in mental
imagery. Cognitive Science, 3(3):231–250, 1979.

[7] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolu-
tional inverse graphics network. In Advances in neural information processing systems, pages
2539–2547, 2015.

[8] Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, and Geoffrey Hinton.
Detecting and diagnosing adversarial images with class-conditional capsule reconstructions. In
International Conference on Learning Representations, 2020.

[9] Suofei Zhang, Quan Zhou, and Xiaofu Wu. Fast dynamic routing based on weighted kernel
density estimation. In International Symposium on Artificial Intelligence and Robotics, pages
301–309. Springer, 2018.

[10] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Capsules with
inverted dot-product attention routing. In International Conference on Learning Representations,
2020.

10

[11] Karim Ahmed and Lorenzo Torresani. Star-caps: Capsule networks with straight-through
attentive routing. In Advances in Neural Information Processing Systems, pages 9098–9107,
2019.

[12] Taeyoung Hahn, Myeongjang Pyeon, and Gunhee Kim. Self-routing capsule networks. In
Advances in Neural Information Processing Systems 32, pages 7658–7667. Curran Associates,
Inc., 2019.

[13] Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos Kollias. Capsule routing via
variational bayes. In AAAI Conference on Artificial Intelligence, 2020.

[14] Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[15] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13, 1993.

[16] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[17] Alex Graves. Practical variational inference for neural networks. In Advances in neural
information processing systems, pages 2348–2356, 2011.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[20] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparam-
eterization trick. In Advances in neural information processing systems, pages 2575–2583,
2015.

[21] David Blei and John Lafferty. Correlated topic models. Advances in neural information
processing systems, 18:147, 2006.

[22] Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models.
arXiv preprint arXiv:1703.01488, 2017.

[23] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[24] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[25] Martin Jankowiak and Fritz Obermeyer. Pathwise derivatives beyond the reparameterization
trick. arXiv preprint arXiv:1806.01851, 2018.

[26] Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients.
In Advances in Neural Information Processing Systems, pages 441–452, 2018.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035, 2019.

[28] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, 2016.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

11

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maximilian Igl, Frank
Wood, and Yee Whye Teh. Tighter variational bounds are not necessarily better. arXiv preprint
arXiv:1802.04537, 2018.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[33] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages
II–104. IEEE, 2004.

[34] Simyung Chang, John Yang, SeongUk Park, and Nojun Kwak. Broadcasting convolutional net-
work for visual relational reasoning. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 754–769, 2018.

[35] Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski. Group equivariant capsule networks.
In Advances in Neural Information Processing Systems, pages 8844–8853, 2018.

[36] David Rawlinson, Abdelrahman Ahmed, and Gideon Kowadlo. Sparse unsupervised capsules
generalize better. arXiv preprint arXiv:1804.06094, 2018.

[37] Jindong Gu and Volker Tresp. Improving the robustness of capsule networks to image affine
transformations. arXiv preprint arXiv:1911.07968, 2019.

[38] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks. In
International Conference on Machine Learning, pages 6086–6095, 2019.

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[40] Carsten Peterson. A mean field theory learning algorithm for neural networks. Complex systems,
1:995–1019, 1987.

[41] G. Parisi. Statistical Field Theory. Basic Books, 1988.

[42] Lawrence K Saul and Michael I Jordan. Exploiting tractable substructures in intractable
networks. In Advances in neural information processing systems, pages 486–492, 1996.

[43] Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief
networks. Journal of artificial intelligence research, 4:61–76, 1996.

[44] Tommi Sakari Jaakkola. Variational methods for inference and estimation in graphical models.
PhD thesis, Massachusetts Institute of Technology, 1997.

[45] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059,
2016.

[46] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Advances in neural information
processing systems, pages 3581–3590, 2017.

[47] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint
arXiv:1511.02680, 2015.

[48] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image
data. arXiv preprint arXiv:1703.02910, 2017.

12

[49] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in neural information processing systems, pages 5574–5584,
2017.

[50] Fabio De Sousa Ribeiro, Francesco Calivá, Mark Swainson, Kjartan Gudmundsson, Geor-
gios Leontidis, and Stefanos Kollias. Deep bayesian self-training. Neural Computing and
Applications, pages 1–17, 2019.

[51] Mohammad Taha Bahadori. Spectral capsule networks. ICLR Workshop, 2018.

[52] Marzieh Edraki, Nazanin Rahnavard, and Mubarak Shah. Subspace capsule network. arXiv
preprint arXiv:2002.02924, 2020.

[53] Liheng Zhang, Marzieh Edraki, and Guo-Jun Qi. Cappronet: Deep feature learning via
orthogonal projections onto capsule subspaces. In Advances in Neural Information Processing
Systems, pages 5814–5823, 2018.

[54] Sai Raam Venkataraman, S. Balasubramanian, and R. Raghunatha Sarma. Building deep
equivariant capsule networks. In International Conference on Learning Representations, 2020.

[55] Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Geometric capsule autoencoders for
3d point clouds. arXiv preprint arXiv:1912.03310, 2019.

[56] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1009–1018, 2019.

[57] Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti, Leonidas Guibas, and
Federico Tombari. Quaternion equivariant capsule networks for 3d point clouds, 2020.

[58] Lewis Smith, Lisa Schut, Yarin Gal, and Mark van der Wilk. Capsule networks–a probabilistic
perspective. arXiv preprint arXiv:2004.03553, 2020.

[59] Jaewoong Choi, Hyun Seo, Suii Im, and Myungjoo Kang. Attention routing between capsules.
In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages
0–0, 2019.

[60] Rajesh Ranganath, Linpeng Tang, Laurent Charlin, and David Blei. Deep exponential families.
In Artificial Intelligence and Statistics, pages 762–771, 2015.

[61] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Advances in neural information processing systems, pages
3738–3746, 2016.

13

	Introduction
	Motivation & Contribution

	Background: Capsule Networks
	Uncertainty in Capsule Routing
	Defining Part-Object Connections
	Posterior Inference of Part-Object Connections
	Choosing Priors: Reflecting Part-Object Assumptions
	Routing & Activating Capsules

	Experiments
	Generalisation to Novel Viewpoints
	Affine Transformation Robustness
	Limited Training Data Regime
	Performance Under Feature Occlusion

	Related Work & Conclusion
	Conclusion

