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Abstract
This paper investigates the application of the co-rotational method to solve geometrically nonlinear topology optimization
problems. The main benefit of this approach is that the tangent stiffness matrix is naturally positive definite, which
avoids some numerical issues encountered when using other approaches. Three different methods for constructing the
tangent stiffness matrix are investigated: a simplified method, where the linear elastic stiffness matrix is simply rotated;
the consistent method, where the tangent stiffness is derived by differentiating residual forces by displacements; and a
symmetrized method, where the consistent tangent stiffness is approximated by a symmetric matrix. The co-rotational
method is implemented for 2D plane quadrilateral elements and 3-node shell elements. Matlab code is given in the
appendix to modify an existing, freely available, density-based topology optimization code so it can solve 2D problems
with geometric nonlinear analysis using the co-rotational method. The approach is used to solve four benchmark problems
from the literature, including optimizing for stiffness, compliant mechanism design, and a plate problem. The solutions
are comparable with those obtained with other methods, demonstrating the potential of the co-rotational method as an
alternative approach for geometrically nonlinear topology optimization. However, there are differences between the methods
in terms of implementation effort, computational cost, final design, and objective value. In summary, schemes involving the
symmetrized tangent stiffness did not outperform the other schemes. For problems where the optimal design has relatively
small displacements, then the simplified method is suitable. Otherwise, it is recommended to use the consistent method, as
it is the most accurate.

Keywords Nonlinear geometry · Topology optimization · Co-rotational method · Compliant mechanism

1 Introduction

Research into structural topology optimization consider-
ing nonlinear geometry goes back to Jog (1996), who
included its effect when optimizing for thermoelastic prop-
erties. Since then, there has been increasing interest in
geometrically nonlinear topology optimization, due to the
observation that, for some problems, the nonlinear and lin-
ear responses of a structure are significantly different. Thus,
the optimal design can also be significantly different if
nonlinear modeling is used instead of linear modeling.
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Several authors have investigated the effect of nonlinear
geometry on the optimal design of stiff structures, for
example Buhl et al. (2000), Bruns and Tortorelli (2001),
and Gea and Luo (2001). This research showed that when
nonlinear geometric effects are considered, solutions can
be dependent on the applied load magnitude and direction
(e.g., up versus down). This was particularly noticeable
for structures where the solution using linear geometry
could exhibit snap-through behavior when analyzed using
nonlinear geometry. Noting this, topology optimization
methods have been proposed to design structures that have
a specific snap-through behavior (for applications such
as bi-stable switches) which obviously require nonlinear
geometric modeling (Bruns et al. 2002; Bruns and Sigmund
2004).

Compliant mechanism design is another key motivation
for considering nonlinear geometry, as the aim is often
to achieve some relatively large motion at specific points,
such as maximizing the output displacement. Several
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authors have shown that designs obtained using geometric
nonlinearity are again different from those obtained using
linear assumptions and that when linear solutions are
analyzed using nonlinear geometry, their performance can
be significantly worse than predicted by linear geometric
modeling (Bruns and Tortorelli 2001; Pedersen et al. 2001).

Other applications of nonlinear geometric topology opti-
mization include accurately modeling instabilities (instead
of using a linear buckling analysis) (Kemmler et al. 2005;
Lindgaard and Dahl 2013), maximizing the natural fre-
quency of geometrically nonlinear structures (Yoon 2010),
nonlinear material stiffness in a multi-scale optimization
problem (Nakshatrala et al. 2013), maximizing the energy
absorption of cellular materials (Carstensen et al. 2016), and
the design of a bi-stable cardiovascular stent (James and
Waisman 2016). Thus, there are a wide range of applications
for nonlinear geometric topology optimization.

Most methods that consider nonlinear geometry in
topology optimization (including all those mentioned
above) use either an updated or total Lagrangian approach
with nonlinear strain measures. Some approaches are only
suitable for small strain problems (but with potentially
large displacements or rotations), such as using Green’s
strain, e.g., Buhl et al. (2000), Kemmler et al. (2005),
Luo and Tong (2008), and Lindgaard and Dahl (2013).
Other methods employ hyperelastic material models for
problems with potentially large elastic strains, e.g., Lahuerta
et al. (2013), Wang et al. (2014), and Gomes and Senne
(2014). However, it has been observed that approaches
based on nonlinear strain measures may fail to converge to
the nonlinear equilibrium because the tangent stiffness can
become indefinite or negative definite due to large strains in
the void (low-density) region (Jog 1996; Buhl et al. 2000;
Bruns and Tortorelli 2001). This is primarily an issue for
density-based topology optimization methods, although it
affects any method that employs an ersatz material approach
with low-density void elements, such as the parameterized
level-set method (Luo and Tong 2008).

Several techniques have been proposed to address the
convergence issue caused by low-density elements. Buhl
et al. (2000) suggest removing nodes completely surrounded
by void elements from the equilibrium convergence
criterion, which was effective for their problems. A
simple idea is to just remove void elements from
the analysis. However, in density-based methods, this
prevents void elements from becoming solid again. Thus,
Bruns and Tortorelli (2003) created a strategy to remove
and reintroduce elements. Alternatively, Jung and Gea
(2004) exclude void elements from the analysis, but
enable their reintroduction using a sensitivity filter. A
similar strategy is employed by Cho and Kwak (2006)
when using a mesh-free analysis method and a density
point parameterization. Yoon and Kim (2005) used an

element connectivity parameterization scheme to avoid
issues with low-density elements, where all elements
remain solid and the variables are stiffness values of
zero length links that connect elements. When optimizing
plate structures, Boroomand and Barekatein (2009) used a
modified stiffness interpolation function when the density
is below a threshold, essentially stiffening void and
near void elements. Kawamoto (2009) investigated using
the Levenberg-Marquardt method to solve for nonlinear
equilibrium, instead of the more commonly used Newton-
Raphson method. It was shown that this can avoid
convergence issues with low-density elements, although its
success depends on the choice and update of a heuristic
parameter. A strain energy-based convergence criterion was
used by He et al. (2014), instead of the usual displacement,
or force-based criteria, which avoided convergence issues
in their problems. Lahuerta et al. (2013) used a polyconvex
hyperelastic material model and relaxed the element density
variable update, depending on a measure of element
distortion. Also, when using a hyperelastic material model,
Wang et al. (2014) suggested using an energy interpolation
scheme to penalize intermediate densities, without causing
convergence problems in low-density elements.

All the above methods use nonlinear strain measures
and an updated, or total Lagrangian, formulation for
nonlinear geometric analysis. In contrast, there is far fewer
research using the co-rotational method, which is the main
alternative for modeling small strain geometric nonlinearity
(i.e., potentially large displacement or rotation). The co-
rotational method splits the displacements computed in
the global coordinate system into rigid body and straining
parts (Belytschko and Hsieh 1973; Rankin and Nour-Omid
1988). The internal forces are then computed using only the
straining part. Pajot and Maute (2006) presented sensitivity
analysis for a consistent co-rotational method and applied
it to several problems, including topology optimization
of a compliant mechanism. One motivation for using the
co-rotational method is that it can reduce implementation
effort, as existing code for linear elements can be reused
and implementation of kinematically nonlinear element
formulations is not required (Pajot and Maute 2006).
Another potential benefit is that convergence issues with
low-density elements are naturally avoided because internal
forces are computed using a linear, small strain assumption.
However, despite these benefits, there have been few
applications of the co-rotational method for geometrically
nonlinear topology optimization problems. The author
could only find one other example of it being applied to
the thickness optimization of an aeroelastic flapping shell
(Stanford and Beran 2013).

Perhaps one reason for the lack of co-rotational topology
optimization methods is that the implementation for the
consistent method is not straightforward. The consistent
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co-rotational method defines the tangent stiffness matrix
as the variation of internal forces with respect to the
displacement and rotational degrees of freedom in the global
coordinate system. In the method presented by Pajot and
Maute (2006), the consistent tangent stiffness matrix is the
sum of up to five matrices, some of which are unsymmetric.
An unsymmetric tangent stiffness matrix increases storage
requirements and solution time compared with a symmetric
matrix. However, Pajot and Maute (2006) suggest using
a symmetrized matrix to avoid implementing schemes for
unsymmetric matrices, as the approximate (symmetric)
tangent stiffness does not prevent the method from reaching
equilibrium. Furthermore, part of the consistent tangent
stiffness matrix is dependent on the element type and must
be derived for each new element.

To avoid some of the difficulties in implementing a
consistent co-rotational method, a simplified method can
be used, where element tangent stiffness matrices are
defined from the element rigid body rotation and linear
elastic matrix. Thus, once element rigid body motions are
computed, the tangent stiffness matrix is easily obtained
and is naturally symmetric. As mentioned above, the use
of an approximate (symmetric) tangent stiffness does not
necessarily prevent the co-rotational method from reaching
equilibrium. However, as sensitivities with respect to design
variables often require the tangent stiffness (i.e., when
solving the adjoint), Pajot and Maute (2006) recommend at
least using a consistent matrix for sensitivity computation to
obtain accurate values.

The aim of this paper is to investigate the use
of the co-rotational method for density-based topology
optimization. As discussed above, there are three methods
for constructing the tangent stiffness matrix: the simplified
method (simple), consistent, and symmetrized-consistent
method (symmetric). This gives rise to six potential co-
rotational schemes for topology optimization, which are
summarized in Table 1.

The simple method requires least implementation effort
and each evaluation of the tangent stiffness is cheaper
(compared with the symmetric and consistent methods).

Table 1 Summary of investigated co-rotational schemes

No. Method name Tangent stiffness

Equilibrium Adjoint

1 Simple Simple Simple

2 Simp-Sym Simple Symmetric

3 Simp-Con Simple Consistent

4 Symmetric Symmetric Symmetric

5 Sym-Con Symmetric Consistent

6 Consistent Consistent Consistent

However, the sensitivities are only approximate, which
could lead to more optimization iterations, convergence
issues, or poor solutions for some problems. This may be
improved by using a more accurate tangent stiffness for
the adjoint solve only (e.g., the Simp-Sym or Simp-Con
methods) at increased implementation effort and higher
computational cost when constructing the tangent stiffness
for the adjoint solve. The consistent matrix is unsymmetric,
which leads to more computational cost in solving linear
equations, compared with the the simple and symmetrized
methods, which have symmetric matrices. Thus, these
six schemes are different in terms of implementation
effort, computational cost, and potentially the quality
of the solution (i.e., objective function value). These
aspects are investigated in this paper using benchmark
problems from the literature that are chosen because it has
been demonstrated that geometric nonlinearity significantly
influences the optimal design (compared with linear
modeling).

Note that this study uses a linear elastic material model.
For problems where the effect of large or nonlinear strains
(e.g., hyperelastic or elastic-plastic material models) is
important, then these models can be combined with the
co-rotational method by simply evaluating strains after
rigid body motion has been eliminated from the element
displacement vector (Cook et al. 2002).

The paper is organized as follows. Section 2 introduces
the co-rotational method for two types of element: a 4-
node 2D element and a 3-node 3D shell element. Section 3
details the density-based topology optimization method
used, optimization problems considered, and sensitivity
analysis. Section 4 presents the results for four benchmark
problems from the literature, followed by the conclusions
in Section 5. In Appendix A, 116 lines of Matlab code
are presented that can be used to modify the 88-line
density-based topology optimization code, developed by
Andreassen et al. (2011), so that it can solve geometrically
nonlinear problems using the co-rotational method.

2 Co-rotational formulation

The principle of the co-rotational method is to split
displacements computed in the global coordinate system
into rigid body and straining parts. This can be done at
the element, or integration point, level. In this paper, a co-
rotational method is implemented at the element level for
two types of element: a 2D quadrilateral (without rotational
dof) and a three-node shell (with rotational dof). In both
cases, the rigid body movement and rotation are determined
by assigning a local coordinate system to each element,
which moves with the element during deformation, as
shown in Fig. 1. The rotation of the local coordinate system
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Fig. 1 Overview of co-rotational method coordinate systems

from undeformed to deformed state is described using a
rotation matrix, Re. Once the rotation matrix for an element
is determined, the simplified element tangent stiffness
matrix is computed by rotating the element stiffness matrix
computed in the global coordinate system:

KT ,e = RT
e KeRe (1)

where Ke is the element stiffness matrix in the global
coordinate system, andKT ,e is the element tangent stiffness
matrix which is assembled into the global matrix in the usual
manner for finite element methods. Note that this matrix
is not consistent, as it is not obtained by differentiating
the internal forces with respect to global displacements.
The derivation of the consistent tangent stiffness is element
dependent and explained below.

It is also useful to introduce notation for the different
coordinate systems used in the formulation: x refers to
the global coordinate system, x̂ refers to the element local
coordinate system in the undeformed state, and x̃ refers to
the element local coordinate system in the deformed state
(see Fig. 1).

2.1 2D quadrilateral elements

The rotation matrix for 2D quadrilateral elements is
constructed using the bisector method (Izzuddin 2005),
which computes axis vectors for the local undeformed
coordinate system from the nodal coordinates in the global
system as:

e31 = (x3 − x1, y3 − y1), ē31 = e31/||e31||2
e42 = (x4 − x2, y4 − y2), ē42 = e42/||e42||2
ex = ē31 − ē42, ēx = ex/||ex ||2
ey = ē31 + ē42, ēy = ey/||ey ||2

(2)

where (xi, yi) are undeformed nodal coordinates in the
global system. The vectors, ēx and ēy , are then rows in

the 4 × 4 rotation matrix, R̂e, that transforms from the
global to the undeformed local system. To compute the
rotation matrix, R̃e, that transforms from global to deformed
element coordinate system, the same equations are used
(2), but the undeformed nodal coordinates are replaced with
the deformed ones (in the global system). The rotation
matrix required in (1) transforms from the local element
undeformed system to the local deformed system, which
can be computed by first rotating from element undeformed
to global and then from the global to element deformed
system:

Re = R̃eR̂T
e (3)

This matrix is then expanded to a 16 × 16 block diagonal
matrix to complete the matrix multiplication required by
(1). Note that if the undeformed coordinate system is the
same as the global system, then: R̂e = I and Re = R̃e.
This simplification is used in the Matlab implementation
included in Appendix A, as the analysis mesh is a regular
grid aligned to the global coordinate system.

To solve the nonlinear equilibrium equation, the internal
element forces are also required, so that the global residual
force vector can be computed. In the co-rotational method,
internal element forces are computed from the straining part
of the displacement vector in the deformed local coordinate
system. These forces are then transformed back to the global
system using the already computed rotation matrix:

fint,e = RT
e Keũe (4)

where fint,e is the element internal force vector in the global
coordinate system and ũe is a vector of the straining part of
the local element displacement vector:

ũe = Rex̃e − xe (5)

where x̃e and xe are vectors of the nodal coordinates in
the global system for the deformed and undeformed states,
respectively. The global internal force vector is assembled
by summing the elemental vectors in the normal manner.
Thus, we can see that the simplified tangent stiffness matrix,
defined in (1), is not consistent with the internal force
defined in (4) because it ignores the variation of the rotation
matrixRe with respect to displacements in the global system
u, although this does not necessarily prevent the method
from obtaining equilibrium (Pajot and Maute 2006). The
consistent tangent stiffness matrix is defined as:

KT ,e = dfint,e
due

=
[
dRe

due

]T

Keũe + RT
e Ke

dũe

due

(6)

Now, using (5) and assuming Ke is symmetric, after some
manipulation, this can be written as:

KT ,e = RT
e KeRe + [Me + MT

e ]x̃e − Nexe (7)
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where the matrices Me and Ne are defined as:

Ne =
[
dRe

due

]T

Ke , Me = NeRe (8)

The derivative dRe

due
can be efficiently obtained using

directional derivatives. The full equations are complex and
omitted here for brevity. However, they are included in the
Matlab code in Appendix A. Note that the first term of
the consistent tangent stiffness in (7) is the same as the
simplified tangent stiffness in (1). Thus, the last two terms
in (7) can be viewed as modifying the simplified version,
by including the dependence of the rotation matrix on the
global displacement vector.

Note that when computing nodal coordinates in (5), it is
good practice to center the coordinate system somewhere
within the element. This helps avoid rounding error
issues, especially when the structural dimensions are much
larger than displacements. For the Matlab implementation
included in Appendix A, the coordinate system is always
centered on the first node.

2.2 Three-node shell elements

The procedure used for computing the rotation matrix for a
three-node shell element starts by defining the local x-axis
vector (in the global system) as pointing from node 1 to
node 2:

ex = (x2 − x1, y2 − y1, z2 − z1), ēx = ex/||ex ||2 (9)

Then, the local z-axis vector is defined as being normal
to the plane and the y-axis vector is perpendicular to
the already computed local x- and z-axes. The details
are omitted for brevity, although care must be taken to
ensure the sign convention of the axis vectors is consistent;
otherwise, the element normal could erroneously change
sign, resulting in errors. The axis vectors are then rows
in the 3 × 3 matrix, R̂e, that transforms from the global
to the undeformed local system. The rotation matrix, R̃e,
that transforms from global to deformed local element
coordinate system is obtained in the same way, except
the deformed nodal coordinates are used instead of the
undeformed ones (in the global system).

The method follows the same procedure as detailed for
the 2D quadrilateral elements above. The rotation matrix R
is computed using (3), simplified tangent stiffness matrix
by (1), and internal forces by (4). However, for elements
with rotational dof, an additional procedure is required to
compute the straining part for the rotational dof. This is not
trivial, as compound rotations in 3D are non-communicative
(i.e., the result depends on the order that rotations are

applied). A common tool to deal with this issue is to use the
incremental rotation matrix (Argyris 1982):

Q(β) = I + sin(β)

β
S(β) + 1

2

sin(β/2)

(β/2)

2

S(β)2 (10)

where β is a vector of rotational dof for a single node and β
and S(β) are defined by:

β = (β2
x + β2

y + β2
z)

0.5 (11)

S(β) =
⎡
⎣ 0 −βz βy

βz 0 −βx

−βy βx 0

⎤
⎦ (12)

where βx is the rotation about the x-axis, etc.
The problem is to find nodal rotational dof, β̄, that

removes the rigid body rotation identified by the element
rotation matrix, Re. This can be found by solving:

Q̃(β̃) = RT
e Q(β) (13)

where β is a vector of rotational dof at a node in the
global coordinate system and β̃ is the local rotational dof
for the node with respect to the rigid body rotation of
element e. This is solved using quaternions and an algorithm
presented by Spurrier (1978). The method to compute β̃
from Q̃ follows that of Crisfield (1990) and is detailed in
Appendix B.

Once β̃ is obtained for each node in the element, and the
straining parts of the translational dof are computed using
(5), then the element residual force vector is computed using
(4) (which will contain both forces and moments).

The consistent tangent stiffness matrix for the shell
element is more complex than the 2D quadrilateral due
to the rotational degrees of freedom. It can be obtained
analytically, e.g., by using the projector method (Pajot
and Maute 2006), which is the preferred method for
computational efficiency, but requires more implementation
effort. In this paper, a simpler method (in terms of
implementation) is used, where the consistent tangent
stiffness is built using finite differences on the element
internal force vector.

2.3 Nonlinear FEA

The co-rotational method introduces nonlinearity in the
finite element (FE) equilibrium equation because the
stiffness depends nonlinearly on the deformed state (1).
In this paper, the nonlinear equilibrium equation is solved
using the Newton-Raphson method:

KT (un)Δun = fres(un) = fext − fint(un) (14)

2361



P. D. Dunning

where KT (un) is the global tangent stiffness matrix,
which depends on the displacement vector un (where n

is the current Newton-Raphson iteration), fres(un), fext,
and fint(un) are the residual, external, and internal force
vectors, respectively. Note that in this paper the external
force is assumed independent of the displacements. The
displacement increment, Δun, is obtained by solving (14)
and then used to update the guess for the displacement
vector (in the global coordinate system):

un+1 = un + Δun (15)

The displacement vector is iteratively updated using (14)
and (15) until a convergence criterion is met. Several
convergence criteria can be used, such as force-based,
displacement-based, and energy-based. In the Matlab
implementation included in Appendix A, a simple force-
based criterion is used, where the maximum residual force
must be much smaller than the external applied forces:

ferr(u) = ||fres(u)||∞ / ||fext||2 < ε (16)

where ε is a small value (5 × 10−6 is used in this paper,
unless otherwise stated).

The Newton-Raphson method may sometimes start to
diverge. Thus, two schemes are used to help stabilize
convergence. The first scheme is an under-relaxation,
where, if the measure used for the convergence criterion
increases, ferr(un+1) > ferr(un), then the displacement
increment is reduced:

un+1 = un + γΔun (17)

where 0 < γ < 1 is a relaxation factor. Initially, γ = 0.25,
but if ferr is still increasing, then γ is further reduced by
a factor of 0.25. This continues until either ferr (un+1) <

ferr(u), or γ < 0.01. If the second condition is true, then
a second scheme is activated, where the load increment
is reduced by a factor of 0.25 and an attempt is made to
converge at a lower load level. Note that the initial load
increment is set to 1. If the load increment is reduced to
less than 0.01, then it is assumed a local limit point has
been reached because the maximum residual force increases
with a small change in the displacement (in the direction
of the tangent stiffness). When this occurs, then the load
is increased to the maximum level and one final attempt is
made to converge (so the optimizer cannot take advantage
of a design with a lower applied load). If this fails, then
no special treatment is used in this paper and the Newton-
Raphson iterations are simply stopped. Objective function,
constraint values, and sensitivities are then computed using
the displacement vector that corresponds to the lowest
force residual (i.e., the displacement vector from the final
Newton-Raphson iteration). This is not generally a robust

way to deal with limit points, as the optimizer may take
advantage of the equilibrium equation not being satisfied.
However, limit points do not occur for most problems
studied in this paper and for all problems, the final solution
is feasible, i.e., the nonlinear equilibrium equation is
satisfied. The full Newton-Raphson algorithm is detailed in
the Matlab code in Appendix A.

3 Topology optimization

This section describes the topology optimization formula-
tion, problems studied, and sensitivity analysis when using
the co-rotational method.

3.1 Modified SIMP and filtering

The modified SIMP (Simple Isotropic Material with
Penalization) method is used, which assigns a constant
pseudo-density to each element: χ̄e ∈ [0, 1]. Young’s
modulus for an element, Ee(χ̄e), is then:

Ee(χ̄e) = Emin + χ̄
p
e (E0 − Emin) (18)

where E0 is Young’s modulus of the material, Emin is
a small value to prevent the stiffness matrix becoming
singular (Emin = 10−9E0), and p is the penalization factor,
where the typical value of p = 3 is used in this paper. Note
that the co-rotational method does not use nonlinear strain
measures, so the linear, small strain formulation is used to
create element stiffness matrices.

A density filter (Bruns and Tortorelli 2001; Bourdin
2001) is used to avoid the well-known problems of
checkerboard patterns and mesh-dependent solutions. The
idea is to introduce a second set of pseudo-density values
for each element, χe ∈ [0, 1], that are filtered using a linear
hat filter to obtain the physical densities used in (18):

χ̄e =
∑

i∈Ni,e
Hi,eχi∑

i∈Ni,e
Hi,e

(19)

where Ni,e is the set of elements i where the distance
between the center of element i and center of element e,
d(e, i), is less than the filter radius rmin. Hi,e is a weight
factor, defined as:

Hi,e = max(0, rmin − d(e, i)) (20)

The second set of pseudo-density values χ are then the
design variables. However, as χ has no physical meaning,
solutions are plotted for the filtered, physical densities, χ̄ .

2362



On the co-rotational method for geometrically nonlinear topology optimization

3.2 Optimization problems

Three problem are considered in this paper. The first is the
classic minimization of compliance problem, subject to an
upper limit on material volume:

min
χ

C = fText · u
s.t. V (χ) ≤ V ∗

fint(χ,u) = fext
0 ≤ χ ≤ 1

(21)

where V (χ) is the volume ratio, defined as:

V (χ) =
∑

Ne
χ̄e(χ)Ve∑
Ne

Ve

(22)

where Ne is the set of elements in the design domain and
Ve is the volume of element e. For geometrically nonlinear
analysis, problem (21) is also called the minimization of end
compliance, as it considers only the stiffness when the full
load is applied.

For nonlinear problems, the minimization of complimen-
tary work is often used as the objective, as it considers the
stiffness of the structure over the full range of loading. Com-
plimentary work is the integral of work as load is increased
from zero to full. It is usually evaluated by discretizing over
n equal load steps Δfext:

min
χ

CW ≈ ΔfText

[
n−1∑
i=1

ui (fext,i ) + 1
2un(fext,n)

]

s.t. V (χ) ≤ V ∗
fint,i (χ,ui ) = fext,i
0 ≤ χ ≤ 1

(23)

where fext,i = i × Δfext. In this paper, n = 10 is used; so,
Δfext = 0.1fext.

The third problem considered is the design of a compliant
mechanism that maximizes the displacement for a specific
degree of freedom, uout for given external input force, and
constraints on compliance (or end compliance) and volume.

max
χ

uout = zT · u
s.t. V (χ) ≤ V ∗

fText · u ≤ C∗
fint(χ,u) = fext
0 ≤ χ ≤ 1

(24)

where z is a vector with only one nonzero value indicating
the degree of freedom and direction (sign) for which the
displacement should be maximized.

If geometrically nonlinear analysis is used, then the
equilibrium condition in problems (21), (23), and (24) is
solved using the co-rotational method with the Newton-
Raphson method, as detailed in Section 2. For linear

problems, equilibrium is obtained directly by solving the
following linear equation:

fint(χ,u) = K(χ)u = fext (25)

where K is the global linear elastic stiffness matrix.

3.3 Sensitivity analysis

Derivatives are required to use a gradient-based optimizer
to efficiently solve the optimization problems introduced in
the previous section. The derivatives when linear geometric
analysis is used are well-known and omitted for brevity, but
can be found in various publications, e.g., Sigmund (2007)
and Andreassen et al. (2011). Thus, this section presents the
sensitivity analysis for the end compliance, complimentary
work, and output displacement functions, when nonlinear
geometry is modeled using the co-rotational method.

Derivatives of end compliance, with respect to physical
element constant pseudo-density values, χ̃i are obtained
using the adjoint method:

L = fText · u − λT [fint(χ,u) − fext] (26)

where λ are the adjoint variables. Differentiating with
respect to a physical pseudo-density values gives:

dL

dχ̃e

= fText ·
∂u
∂χ̃e

− λT

[
∂fint
∂χ̃e

+ ∂fint
∂u

∂u
∂χ̃e

]
(27)

The resulting adjoint equation is then:

[
∂fint
∂u

]T

λ = KT
T (u)λ = fext (28)

where the definition of the tangent stiffness matrix,
KT (u) = [∂fint/∂u], has been used, and KT (u) is
conveniently obtained at the end of the Newton-Raphson
equilibrium iterations.

Note that the tangent stiffness used in the simplified
method, (1), is not consistent with the internal forces. Thus,
using the simplified tangent stiffness matrix in (28) results
in some error in the solution of adjoint variables, leading to
inaccurate sensitivities. This is also true if the symmetrized
consistent tangent stiffness matrix is used to solve the
adjoint, although perhaps the error is lower, compared
with the simplified method. This is investigated using the
numerical examples in Section 4.

After solving (28) for λ, the derivative of the end
compliance is then:

dC

dχ̃e

= −λT · ∂fint
∂χ̃e

(29)
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When using the co-rotational method for geometrically
nonlinear analysis, the derivative of the internal forces with
respect to the element physical pseudo-density is found by
differentiating (4):

∂fint
∂χ̃e

= RT
e

∂Ke

∂χ̃e

ũe (30)

From the modified SIMP (18), this can be written as:

∂fint
∂χ̃e

= pχ̃
p−1
e

(
1 − Emin

E0

)
fint,e(u) (31)

The same method is used to obtain derivatives for output
displacement for the compliant mechanism problem (24):

duout

dχ̃e

= −γ T · ∂fint
∂χ̃e

(32)

where ∂fint/∂χ̃e is obtained from (31) and γ are the
adjoint variables, obtained by solving the following adjoint
equation:

KT
T (u)γ = z (33)

Complimentary work (23) can be formulated as the
weighted sum of end compliance values at different load
levels. Thus, the sensitivity is obtained by simple extension
of (30) to be the weighted sum of sensitivity for different
load levels. Note that a separate adjoint is required for each
load level, as the tangent stiffness matrix depends on the
deformed state.

Finally, the chain rule is used to obtain derivatives with
respect to the design variables χ . For example:

dC

dχe

=
∑

i∈Ni,e

(
dC

dχ̃i

dχ̃i

dχe

)
(34)

where the dχ̃i/dχe term is obtained by differentiating the
filtering function (19). For more details, see Andreassen
et al. (2011).

4 Numerical examples

All optimization problems are solved using the Method
of Moving Asymptotes (MMA) (Svanberg 2002), as
implemented in the package NLopt (Johnson 2018). The
convergence criterion used for all examples is the relative
change in objective function to be less than 10−5.

It was found that, in general, better solutions (in terms of
objective function) are obtained when the problem is scaled
before sending information to the optimizer. Compliance,
complimentary work, and displacement functions are scaled
such that the mean of the absolute sensitivity values in

Fig. 2 2D examples: a cantilever beam, b double-clamped beam (with
possible snap-though behavior), c compliant inverter mechanism (top
half)

the first optimization iteration is 1. The volume fraction
function is scaled by multiplying by the number of elements.

Figure 2 shows the 2D problems used in this study,
which were all previously studied by others in the context of
geometrically nonlinear topology optimization (Buhl et al.
2000; Pedersen et al. 2001).

4.1 2D cantilever

The first example is a long cantilever beam (aspect ratio
4) with a tip load applied at the center of the right edge
(Fig. 2a), as previously studied by Buhl et al. (2000) and
others. The material has a Young’s modulus of 3 GPa,
Poisson’s ratio 0.4, and the domain thickness is 0.1 m. The
end compliance of the beam is minimized, subject to a
volume constraint equal to 50% of the design domain (21)
and the force is 144 kN. The domain is discretized with
120 × 30 square plane stress elements. The filter radius in
(20) is set to 2 element edge lengths.

The solutions obtained using all six methods are shown
in Fig. 3, with objective function values, number of
optimization iterations, and number of linear solves shown
in Table 2. Firstly, Fig. 3 shows that all methods, except the
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Fig. 3 Cantilever solutions, obtained using a simple, b Simp-Sym, c
Simp-Con, d symmetric, e Sym-Con, and f consistent methods

simple method, obtain very similar solutions, which are also
very similar to the solution obtained by Buhl et al. (2000).
The objective values for these five solutions are within about
1% (Table 2). The solution obtained using the simplified
method does not have the characteristic degenerate strut
connected to the loading point. There is also a thin diagonal
member made from intermediate material near the right-
hand side. On investigation, the lower right-hand member
(attached to the thin member) is close to buckling, and
when the optimizer tries to remove the thin member, the
end compliance increases as the attached member starts
to buckle. The increase in objective value activates a
line search built into the optimizer, resulting in the thin
member being retained in the solution. Thus, it does not
appear to be a problem with the simplified method itself,
but caused by a sudden change in stiffness due to an
instability. For example, if the same problem is solved with
a slightly different setup, e.g., using a larger filter radius,
or employing a continuation scheme, then a solution can be
obtained without the thin member.

Convergence for the first 100 iterations is shown in
Fig. 4 for all six methods, after which there is little
change in objective value and convergence is generally
smooth. However, there are some oscillations near the start,
particularly for the Simp-Sym and Simp-Con methods.
This is caused by the optimizer updating to a design that
either contains a limit point or where equilibrium is near

Table 2 Cantilever data

Method Iterations C (kNm) No. of solves

Simple 90 27.37 3165

Simp-Sym 292 27.08 67,926

Simp-Con 263 26.94 69,132

Symmetric 312 26.77 8793

Sym-Con 385 26.78 10,853

Consistent 221 26.81 6584

Fig. 4 Cantilever convergence

a limit point and convergence to equilibrium fails. Further
investigation suggests that the simplified tangent stiffness
sometimes has difficultly obtaining equilibrium near a limit
point. Notice that the symmetric and Sym-Con methods
do not have such oscillations. However, in all cases, the
chosen optimizer is able to recover from a failed equilibrium
convergence, helped by the in-built line search feature,
although this may not be the case if the failed convergence
resulted in an artificially improved objective value.

To compare computational cost, the number of linear
solves is used as a proxy in Table 2 because exact timing
is influenced by many factors, such as hardware, imple-
mentation, efficiency of library functions, and complier.
However, the simplified tangent stiffness requires fewer
computations to assemble, compared with the consistent
method, and solution of the linear equation using an unsym-
metric matrix takes longer than if a symmetric matrix is
used. Thus, the relative computational cost of each method
should also be compared. For the Matlab implementation
shown in Appendix A, the times for one linear solve are
approximately 0.75 s, 4.45 s, and 4.51 s when using the
simple, symmetrized, and consistent tangent stiffness matri-
ces, respectively (Matlab R2018a, running on a 2.4 GHz
Intel Core 2 Duo). This includes the time to evaluate the
residual, assemble the global tangent stiffness matrix, and
solve the resulting linear equation. Note that, for this exam-
ple, the solve time is dominated by the assembly of the
tangent stiffness matrix. There was some effort at opti-
mizing this function, but further efficiency gains may be
possible. For example, the blockdiag function is called
several times, but could be replaced by a more efficient
implementation. However, for the current implementation,
the simple method is approximately 6 times faster per solve
than the other two methods.

From Table 2, by far the most efficient method is
the simple method, as it requires the least number of
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solves and the tangent stiffness is quickest to assemble.
However, the use of the simplified tangent stiffness when
solving the adjoint leads to some error in the sensitivities
and a notably different solution, compared with the other
methods. Despite inaccurate sensitivities, a reasonable
solution is still obtained with smooth convergence and only
a 2% penalty in objective function. Considering the other
methods, Table 2 shows that the Simp-Sym and Simp-
Con methods use approximately 10 times the number of
solves compared with the consistent method, which is
partly due to the extra optimization iterations required to
reach the solution. Thus, the next best method, in terms of
computational cost (for this example and implementation),
is the consistent method, which also obtains an objective
value within 0.2% of the best solution.

In summary, for this example (and implementation),
the consistent method produces the best overall result, as
it found a good solution (close to the best in terms of
objective) with lowest computational cost (compared to the
other methods that found similar solutions). However, the
simple method is also an option, as it is the most efficient
and easiest to implement, but still finds a reasonable
solution, with only a 2% penalty in objective value
(compared with the best solution). Methods involving
the symmetrized consistent matrix did not provide any
significant advantage over using the actual consistent
matrix, as the computational cost is dominated by the
assembly of the global tangent stiffness matrix, which is the
same for both methods.

4.2 Double-clamped beam

The next example is a double-clamped beam, with a point
load applied at the center of the top edge (Fig. 2b), as
previously studied by Buhl et al. (2000). The material has
a Young’s modulus of 3 GPa, Poisson’s ratio 0.4, and
the domain thickness is 0.1 m. The end compliance is
minimized, subject to a volume constraint equal to 10% of
the design domain, (21). The domain is discretized with
240 × 80 square plane stress elements and the filter radius
is equal to 2 times the element edge length. Previous studies
of this problem have shown that it usually progresses slowly
toward the optimum. Thus, the convergence tolerance is
reduced to 10−10, or a maximum of 1500 iterations.

The solutions using all six methods are very similar
(Fig. 5), with only some minor differences in geometry,
leading to a 4% variance in objective value (Table 3).
The solutions are also very similar to that found by
Buhl et al. (2000), with a difference in the two small
struts at the clamped edges. The end compliance is higher
than that found by Buhl et al. (2000). However, in this
study, a density filter is used that results in inefficient

Fig. 5 Double-clamped beam solutions, obtained using a simple, b
Simp-Sym, c Simp-Con, d symmetric, e Sym-Con, and f consistent
methods

intermediate densities around the boundary, whereas the
previous study used a sensitivity filter that resulted in almost
no intermediate densities in the solution. If the co-rotational
schemes presented in this paper are used with a topology
optimization method that produces solutions with almost no
intermediate densities, then a similar end compliance value
to Buhl et al. (2000) is obtained and the topology is almost
identical to that shown in Fig. 5.

This example shows that the simplified method can
obtain a similar solution as the consistent method. This
can be explained, as the displacement of the optimum
design is not large, so the error in the tangent stiffness and
sensitivities when using the simplified method is small. The
effect of nonlinear geometry in this example is that it helps
the optimizer avoid a solution with snap-though instability,
which is obtained if linear modeling is used (Buhl et al.
2000).

Figure 6 shows that all methods converge smoothly and
monotonically for this example. The simple, Simp-Sym,
and Simp-Con methods have almost identical convergence
curves and the convergence rate is initially quicker than the
other three methods.

The computational times for one linear solve are
approximately 6.7 s, 26.9 s, and 27.9 s when using
the simple, symmetrized, and consistent tangent stiffness
matrices, respectively. So, again, computational time is
dominated by the assembly of the tangent stiffness matrix.

Table 3 Double-clamped beam data

Method Iterations C (kNm) No. of solves

Simple 1195 15.28 18,879

Simp-Sym 1500 15.22 24,178

Simp-Con 1383 15.23 22,124

Symmetric 1500 15.83 8007

Sym-Con 1444 15.42 6763

Consistent 1500 15.50 7388
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Fig. 6 Double-clamped beam convergence

From Table 3, the simple method requires approximately 2.5
to 2.7 times the number of linear solves, compared with the
symmetric, Sym-Con, and consistent methods. However,
the cost per solve is about 4 times less. So, the most efficient
method is the simplified method, which also produces good
optimal solutions and is perhaps the best option for this
example.

4.3 Compliant mechanism

Another motivation for including nonlinear geometric
effects in topology optimization is the design of compliant
mechanisms, as the objective is often to achieve large
displacement. The inverter mechanism problem (Fig. 2c) is
solved to maximize displacement at the output node in the
opposite direction to the applied force, (24). This problem
was also studied by Pedersen et al. (2001) using a total
Lagrangian approach.

The input force is 0.5 mN and the end compliance
constraint is C∗ = 2.5 × 10−9 Nm (this can also be
stated as a constraint on the input displacement of 5 μm,
as the input force is prescribed) and the volume constraint
is equal to 10% of the design domain. The Young’s
modulus is 180 GPa, Poisson’s ratio 0.22, output stiffness
kout = 2 N/m, and domain thickness 7 μm. The domain is
discretized with 90 × 45 square plane stress elements and
the filter radius is equal to 2 element edge lengths. Note that
only the top half of the inverter is modeled.

For this example, it is found that a continuation method
is required to obtain reasonable solutions with a clear, near
solid-void, topology. The problem is initially solved with
p = 3 in (18), then p is increased by 0.25 and the problem
solved again, using the current solution as the initial guess.
This is repeated until p = 6. When p < 6, the maximum
number of optimization iterations is set to 50 and less strict

Fig. 7 Inverter mechanism solutions, obtained using a simple, b
Simp-Sym, c Simp-Con, d symmetric, e Sym-Con, and f consistent
methods

convergence tolerance of 10−3 is used. In addition, to speed
up convergence to equilibrium, the converged displacement
vector from the previous optimization iteration is used as
the initial guess, which was also used by Pajot and Maute
(2006) when solving an inverter problem. This method
was also tried for the previous examples in this paper,
with some success in reducing computational cost, but also
some negative effects, such as converging to a worse local
minima. This should be investigated further, as reusing
previous data can significantly improve efficiency, but it
does not seem to always work well.

The inverter problem is solved using all six co-rotational
methods for nonlinear geometry (Fig. 7), and also with
linear modeling (Fig. 8). A summary of optimization
iterations, objective values, and number of linear solves is
shown in Table 4.

Figure 7 shows that all methods obtain similar solutions,
except for the simple method, which contains a significant
amount of intermediate “gray” material. The inverter
problem is more challenging, as it has a nonlinear constraint
that requires the solution of an adjoint to obtain sensitivities.
Thus, using the simplified tangent stiffness results in
inaccurate sensitives for both the objective function and
compliance constraint. For this example, the optimizer
cannot cope with the inaccurate sensitivities, resulting in
a poor solution. This is not remedied by changing the
problem setup and similar poor solutions are obtained when
a different continuation scheme, or filter radius, is used.

It should be noted that the designs obtained have
very thin, almost single-node, hinges that make the
designs difficult to manufacture directly. This is a known
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Fig. 8 Inverter mechanism, solution obtained with linear modeling

problem when using density-based topology optimization
for compliant mechanism design and various techniques
have been proposed to avoid these features, for example the
robust formulation (Wang et al. 2011).

When analyzed using nonlinear geometry, the output
displacement for the linear solution (Fig. 8) is 10.35 μm,
less than half the value obtained by the nonlinear solutions.
Further investigation revealed that the linear solution
undergoes stress stiffening when the member connected
to the output node becomes more vertical, resulting in a
locking of the mechanism, which was also observed by
Pedersen et al. (2001). The same members in the nonlinear
solution are initially more angled, so the stress stiffening
effect is less severe and the mechanism does not lock under
large displacement.

The convergence behavior is very similar for all methods
(except the simple method). Thus, only the convergence for
the consistent method is shown in Fig. 9. The convergence
over the first 50 iterations contains several sawtooth-
like oscillations. These are caused by the optimizer
aggressively trying to improve the objective (maximize
output displacement) in the presence of a nonlinear
constraint (end compliance, or input displacement), which
results in several constraint violations that are remedied
by the built-in line search feature of the optimizer

Table 4 Inverter mechanism data

Method Iterations uout (μm) No. of solves

Simple 586 22.66 2928

Simp-Sym 281 25.46 3780

Simp-Con 303 25.48 3592

Symmetric 316 25.51 759

Sym-Con 297 25.50 744

Consistent 290 25.49 728

Fig. 9 Inverter mechanism convergence using the consistent method

(hence, the sawtooth-like oscillations). After the first 50
iterations, convergence is smoother and mostly monotonic,
except for when the penalization power is increased
during the continuation method. Increasing the penalization
power leads to an immediate constraint violation, as the
mechanism becomes less stiff, although the optimizer is
able to find a feasible solution within a few iterations.

For this example (and implementation), the computa-
tional times for one linear solve are approximately 0.95 s,
4.95 s, and 5.15 s when using the simple, symmetrized,
and consistent tangent stiffness matrices, respectively, again
showing that computational time is dominated by the assem-
bly of the tangent stiffness matrix. From Table 4, the number
of linear solves for the Simp-Sym and Simp-Con meth-
ods is approximately 5 times more than the symmetric,
Sym-Con, and consistent methods, whereas the cost per
solve is approximately 5 times smaller. Thus, the over-
all cost for each method (excluding the simple method) is
approximately the same.

In summary, for this example and implementation, the
simple method is not suitable, as the solution contains
a significant amount of intermediate material, caused by
inaccurate sensitivities. The other five methods all perform
similarly, obtaining similar solutions in approximately the
same amount of time.

4.4 Simply supported square plate

The final example is a square plate, simply supported on
all edges, with a central point-load acting in the normal
direction (Boroomand and Barekatein 2009). The full plate
is 2 × 2 m square, 3-mm thick, and made from a material
with Young’s modulus 200 GPa and Poisson’s ratio 1/3. The
force is 800 N and the complimentary work is minimized
subject to a 30% volume constraint, (23).
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Fig. 10 Simply supported plate: a linear solution and nonlinear
solutions obtained with b simple and c consistent methods

Due to symmetry, only one quarter of the plate is
modeled, which is discretized using 3200 equal-sized thin,
triangular shell elements. The shell elements are composed
of a discrete Kirchhoff triangle plate element for bending
stiffness and a linear strain triangle (with corner drilling dof,
instead of mid-side nodes) for membrane stiffness (Cook
et al. 2002). This results in a 3-node element with 6 dof per
node. The filter radius is 50 mm, which is twice the shortest
element edge length.

The solutions obtained using all six methods are almost
identical, so Fig. 10 only shows solutions obtained using
the simple and consistent methods, alongside the solution
obtained using linear modeling. These solutions are similar
to those obtained by Boroomand and Barekatein (2009).
Objective values for the nonlinear solutions are within
0.25%, with slightly better values for the methods not using
a simplified tangent stiffness matrix, at the cost of more
optimization iterations (Table 5), although this is mainly a
result of the convergence tolerance used. A more detailed
analysis of the computational cost is not performed for this
example, as the implementation of the consistent tangent
stiffness is not efficient, as it uses finite differences.

The complimentary work for the linear solution is
2.727, when using geometrically nonlinear modeling.
Complimentary work values obtained using linear modeling
are 51.49, 65.65, and 64.29, for the linear, simple, and
consistent solutions, respectively. Thus, complimentary
work values are an order of magnitude smaller when the

Table 5 Plate data

Method Iterations CW (Nm) No. of solves

Simple 91 1.8285 17,230

Simp-Sym 93 1.8284 17,744

Simp-Con 96 1.8284 18,402

Symmetric 205 1.8240 9745

Sym-Con 205 1.8240 9744

Consistent 205 1.8240 8571

Fig. 11 Plate convergence using the consistent method

solutions are analyzed with nonlinear geometry, compared
with linear modeling. This is because linear modeling does
not take account of the membrane stiffness, as the plate is
initially flat, whereas this is accounted for when including
nonlinear geometric effects. Note that, even if out-of-plane
displacements are small (compared with the size of the
plate), the membrane stiffness effect can be significant.
This is why the simple method performed well in this
example, as actual displacements are small, so the error in
ignoring the variation of the rotation matrix with respect to
global displacements is also small. However, it is clear that,
even if displacements are small, the geometrically nonlinear
membrane effect has a significant affect on the optimal
design. In this case, the nonlinear solution is composed of
four, almost constant thickness, members that connect the
central load to the clamped edges, as this maximizes the
benefit of membrane stiffness effect. However, the solution
obtained using linear modeling places more material near
the load, with less at the boundary, to maximize bending
stiffness.

Convergence for all methods is almost identical and the
convergence for the consistent method is shown in Fig. 11,
which is smooth and monotonic.

5 Conclusions

The co-rotational method is investigated for density-based,
geometrically nonlinear topology optimization. Three meth-
ods for constructing the tangent stiffness matrix are consid-
ered: a simplified definition of the tangent stiffness matrix,
which is the assembly of linear stiffness matrices rotated
according to the rigid body motion; a consistent defini-
tion, which is derived by differentiating the residual force
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vector by the global displacement vector; and finally a sym-
metrized consistent matrix. This leads to six co-rotational
schemes for topology optimization, as different tangent
stiffness matrices can be used for the solution of nonlinear
equilibrium (via the Newton-Raphson method) and adjoint
problem (required to obtain sensitivities).

One benefit of the co-rotational method for density-
based topology optimization is that the tangent stiffness
matrix remains positive definite. Previous studies that
used a total Lagrangian approach could suffer from non-
convergence of the equilibrium iterations, due to distortion
in low-density elements, leading to an indefinite or negative
definite tangent stiffness matrix. This issue is naturally
avoided when using the co-rotational method for small
strain problems.

The six co-rotational schemes are tested using four
benchmark examples from the literature, where it has been
shown that geometric nonlinearity significantly affects the
optimal design. These include 2D stiffness maximization
problems, a compliant mechanism, and a plate problem
(modeled using 3-node thin shell elements). In all cases,
the co-rotational method is able to obtain solutions that are
comparable with those obtained in the literature using a total
Lagrangian approach, although there are differences in the
performance of the six considered schemes, in terms of final
design, objective value, and computational cost.

In all examples, the methods involving the symmetrized
tangent stiffness did not outperform any of the other meth-
ods. This is because the computational cost is dominated by
assembling the tangent stiffness matrix, for the implemen-
tation and examples in this paper. When compared against
the consistent method, the symmetrized method does not
provide significant reduction in computational cost, while
also being less accurate. Comparing the simplified method
with the consistent method, the results show that the best
choice is problem dependent. If the problem has large dis-
placements (e.g., the cantilever and inverter mechanism),
then it is recommended to use the consistent method, as the
accurate tangent stiffness allows faster convergence of the
nonlinear equilibrium and the error in sensitivities caused
by the simplified method can lead to a poor design (espe-
cially for compliant mechanisms). On the other hand, if the
optimal design has relatively small displacements, then the
error in the simplified method is small and designs compa-
rable with those obtained using the consistent method are
obtained with less computational effort. Note that, even if
displacements are small, then geometric nonlinearity can
still significantly affect the optimal solution, for example,
by avoiding instability or accounting for membrane stiffness
in shell problems.
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Appendix A: Matlab code for simplified
co-rotational method

The following 116 lines of Matlab code can be used to
modify the 88-line topology optimization code created
by Andreassen et al. (2011) to solve 2D geometrically
nonlinear problems using the co-rotational method detailed
in Section 2. The first 74 lines replace lines 53 to 60 in
the 88-line code and the remaining lines (from 75 onwards)
make a function that can be added to the end of the code.
This makes the whole code 196 lines long. The code can use
any of the six co-rotational schemes discussed in this paper
by changing the “method” in line 2 (see Table 1). The code
also requires another input for the element edge length, h.
Note that the results in this paper are obtained by linking this
code with the optimization package NLopt and not by using
the optimality criteria method in the original 88-line code.
Also, it is not claimed that the code is efficient, in terms of
computational time or number of lines.
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Appendix B: Algorithm for extracting
rotations from a rotationmatrix

Given a 3D rotation matrix R, the following algorithm is
used to extract the unknown rotations required to produce
that matrix (Crisfield 1990). The algorithm involves the

eigenvalues of R to extract the quaternions, which are then
scaled to obtain the actual rotations.

a = max (Tr(R), R11, R22, R33) (35)

If a = Tr(R), then:

q̄ = 0.5(1 + a)
1
2 (36)
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qi = 0.25(Rkj − Rjk)/q̄ (37)

with i, j, k the cyclic permutation of 1, 2, 3.
Otherwise, if a = Rii , then:

qi = [0.5a + 0.25(1 − Tr(R))] 12 (38)

q̄ = 0.25(Rkj − Rjk)/qi (39)

ql = 0.25(Rli − Ril)/qi, for l = j, k (40)

For rotations less than 180◦, the actual rotations, θi , are
obtained by:

θ̄ = arccos q̄ (41)

θi = [(2θ̄ )/(q̄ tan θ̄ )]qi (42)
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