| 1  | Genome-wide association mapping for grain manganese in rice (Oryza sativa L.) using a                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | multi-experiment approach                                                                                                                              |
| 3  | Panthita Ruang-areerate <sup>1,2*</sup> , Anthony J. Travis <sup>1</sup> , Shannon R. M. Pinson <sup>3</sup> , Lee Tarpley <sup>4</sup> ,              |
| 4  | Georgia C. Eizenga <sup>3</sup> , Mary Lou Guerinot <sup>5</sup> , David E. Salt <sup>6</sup> , Alex Douglas <sup>1</sup> , Adam H. Price <sup>1</sup> |
| 5  | and Gareth J. Norton <sup>1</sup>                                                                                                                      |
| 6  |                                                                                                                                                        |
| 7  | <sup>1</sup> Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen,                                                     |
| 8  | AB24 3UU, UK                                                                                                                                           |
| 9  | <sup>2</sup> National Omics Center, National Science and Technology Development Agency (NSTDA),                                                        |
| 10 | Pathum Thani, 12120, Thailand                                                                                                                          |
| 11 | <sup>3</sup> USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA                                                             |
| 12 | <sup>4</sup> Texas A&M System AgriLife Research Center, Beaumont, TX 77713, USA                                                                        |
| 13 | <sup>5</sup> Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA                                                              |
| 14 | <sup>6</sup> Future Food Beacon of Excellence and the School of Biosciences, University of                                                             |
| 15 | Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK                                                                                        |
| 16 |                                                                                                                                                        |
| 17 | * Corresponding author. <i>E-mail address</i> : panthita.rua@nstda.or.th (P. Ruang-areerate)                                                           |
| 18 |                                                                                                                                                        |
| 19 | ABSTRACT                                                                                                                                               |
| 20 | Manganese (Mn) is an essential trace element for plants and commonly contributes to human                                                              |
| 21 | health; however, the understanding of the genes controlling natural variation in Mn in crop                                                            |
| 22 | plants is limited. Here, the integration of two of genome-wide association study approaches                                                            |
| 23 | were used to increase the identification of valuable quantitative trait loci (QTL) and candidate                                                       |

- 24 genes responsible for the concentration of grain Mn across 389 diverse rice cultivars grown in
- 25 Arkansas and Texas, USA in multiple years. Single-trait analysis was initially performed

26 using three different SNP datasets. As a result, significant loci could be detected using the 27 high-density SNP dataset. Based on the 5.2M SNP dataset, major QTLs were located on 28 chromosomes 3 and 7 for Mn containing six candidate genes. Additionally, the phenotypic 29 data of grain Mn concentration was combined from three flooded-field experiments from the 30 two sites and three years using multi-experiment analysis based on the 5.2M SNP dataset. 31 Two previous OTLs on chromosome 3 were identified across experiments, whereas new Mn 32 QTLs were identified that were not found in individual experiments, on chromosomes 3, 4, 9 33 and 11. OsMTP8.1 was identified in both approaches and is a good candidate gene that could 34 be controlling grain Mn concentration. This work demonstrates the utilisation of multi-35 experiment analysis to identify constitutive QTLs and candidate genes associated with the 36 grain Mn concentration. Hence, the approach should be advantageous to facilitate genomic 37 breeding programs in rice and other crops considering QTLs and genes associated with 38 complex traits in natural populations.

39

40 *Keywords:* manganese, rice grain, QTL, GWAS and multi-experiment analysis

- 41
- 42

## 43 Introduction

Genome-wide association (GWA) mapping is a powerful approach to identify genetic loci associated with complex traits in natural populations. The approach has been successfully applied in plants such as *Arabidopsis thaliana* (Atwell et al. 2010; Baxter et al. 2010), maize (Kump et al. 2011) and rice (Huang et al. 2010, 2012; Zhao et al. 2011; Norton et al. 2014; McCouch et al. 2016; Bettembourg et al. 2017) for identifying important agronomic, disease resistance and ionomic (the elemental composition of biological samples) loci. GWA mapping for ionomic traits in plants has been commonly used to perform QTL analysis

51 related on a single trait in individual experiments (Atwell et al. 2010; Baxter et al. 2010; Li et 52 al. 2010; Norton et al. 2014, 2018; Dimkpa et al. 2016; Yang et al. 2018). However, these 53 studies have not always identified QTLs for a trait from several experiments. There are 54 several reasons why a number of ionomic QTLs have not been consistently detected, 55 including a different range of phenotypic values in experiments due to large environmental 56 effects such as different geographic locations and climate data (temperature and humidity) 57 (Pinson et al. 2015; Huang and Salt 2016), and complex genetic architecture such as 58 distributed allelic variants, each of which have small effects (Korte and Farlow 2013). These 59 reasons may reduce the power of statistical association tests in GWA mapping using single-60 trait analysis in only one experiment.

61 Recently, multi-trait approaches have been developed to improve QTL detection by 62 increasing the statistical power with correlated traits and multiple experiments (Korte et al. 63 2012; Lippert et al. 2014; Zhou and Stephens 2014; Loh et al. 2015). Zhou and Stephens 64 (2014) developed a genome-wide efficient mixed model association (GEMMA) software for 65 testing multiple traits for each single genetic marker with a multivariate linear mixed model 66 (mvLMM), which controls population stratification and accounts for relatedness between 67 individuals. It was developed from the efficient mixed model association (EMMA) algorithm 68 for single-trait analysis (Kang et al. 2008) with which identified QTLs could be compared 69 with multi-trait analysis based on the EMMA algorithm.

Central to effective GWA mapping is the population that is used. The Rice Diversity Panel 1 (RDP1) is a rice panel representing the broad range of rice varieties from >70 countries (Eizenga et al. 2014). This panel was initially genotyped using 44,100 SNPs (Zhao et al. 2011), subsequently it was genotyped with 700,000 SNPs (McCouch et al. 2016) and in the latest iteration 5,231,435 SNPs have been imputed on this panel by comparing the 700,000 SNPs with whole genome sequence data of the 3,000 sequenced rice cultivars (Wang 76 et al. 2018).

77 Manganese (Mn) is an essential trace element for plants and humans. It is an 78 important co-factor or activator of many enzymes, and is involved in photosynthesis in plants 79 (Marschner 1995; Soetan et al. 2010). Mn deficiency in plants can cause a reduction in 80 growth and yield (Marschner 1995; Hebbern et al. 2005), whereas if the Mn concentration is 81 elevated it can become toxic to plants (Ducic and Polle 2005; Millaleo et al. 2010). Mn 82 homeostasis in the embryo is required for efficient seed germination (Eroglu et al. 2017). Mn 83 deficiency in humans is rare, however it can lead to a range of health impacts including 84 severe birth defects, impaired reproductive functions, skeletal defects, and asthma (Bashir et 85 al. 2013), while overexposure can lead to neurological disorders (Crossgrove and Zheng 86 2004; O'Neal and Zheng 2015). The recommended daily intake of Mn for an adult is 2.3 mg 87 day<sup>-1</sup> while the recommended tolerable levels are 11 mg day<sup>-1</sup> (Institute of Medicine 2001). 88 Rice grain concentrations of Mn are variable, but a recent dietary study of rice consumers in 89 West Bengal, India demonstrated that rice alone can contribute between 0.82 - 4.21 mg dav<sup>-1</sup> 90 for an adult, 35.7% - 183% of the recommend daily amount of Mn (Halder et al. 2020). 91 The mechanisms of Mn uptake, transport, accumulation and detoxification have been 92 studied in plants (Ducic and Polle 2005; Millaleo et al. 2010; Socha and Guerinot 2014). For 93 rice, a number of Mn transporter genes have been identified such as natural resistance-

94 associated macrophage protein 3 (*OsNRAMP3*), *OsNRAMP5* and *OsNRAMP6* (Ishimaru et al.

**95** 2012; Sasaki et al. 2012; Yang et al. 2013, 2014; Peris-Peris et al. 2017), yellow stripe-like

protein 2 (*OsYSL2*) and *OsYSL6* (Koike et al. 2004; Ishimaru et al. 2010; Sasaki et al. 2011)
and cation diffusion facilitator/metal tolerance protein 8.1 (*OsMTP8.1*), *OsMTP8.2*, *OsMTP9*and *OsMTP11* (Chen et al. 2013, 2016; Ueno et al. 2015; Takemoto et al. 2017; Zhang and
Liu 2017; Ma et al. 2018). In addition to these genes, a number of studies have identified
QTLs of grain Mn concentration in rice grains based on bi-parental mapping (Stangoulis et

al. 2007; Lu et al. 2008; Ishikawa et al. 2010; Norton et al. 2010, 2012a; Du et al. 2013;
Zhang et al. 2014). For example, QTLs have been detected on chromosomes 1 (Stangoulis et al. 2007; Lu et al. 2008), 1, 2, 7 and 12 (Ishikawa et al. 2010), 10 and 11 (Norton et al. 2010),
3, 5, 7, 8 and 9 (Norton et al. 2012a), 3, 6, 8 and 9 (Du et al. 2013), and 2, 3, 4, 6, 7, 8, 11 and
12 (Zhang et al. 2014).

106 Knowledge of natural genetic variation that regulates Mn concentration in grains 107 among rice landraces and cultivars is limited. To address this, we conducted GWA mapping 108 of grain Mn concentration in the RDP1 from four field experiments in Arkansas and Texas, 109 USA. The aims of this study were 1) to compare the impact of increasing marker density on 110 detecting loci in GWA mapping for grain Mn concentration, and 2) to identify QTLs and 111 candidate genes associated with grain Mn concentration across experiments in multiple 112 locations and years using both single-trait and multi-experiment GWA analyses.

113

# 114 Materials and methods

# 115 Sample data

A total of 389 rice accessions from the RDP1 (Zhao et al. 2011; McCouch et al. 2016)
consisting of 57 *aus* (AUS), 78 *indica* (IND), 100 *temperate japonica* (TEJ), 96 *tropical japonica* (TRJ) and 14 *aromatic* (ARO) as well as 44 admixtures were used in this study
(Supplementary Table S1). There were two major varietal groups, *Indica* (AUS and IND) and *Japonica* (TEJ, TRJ and ARO) (McCouch et al. 2016).

121 The experimental design, planting methods and rice growth conditions were described 122 in Norton et al. (2012b). Briefly, the RDP1 was grown in two locations under either flooded 123 or unflooded cultivation. The locations were Stuttgart, Arkansas (USDA-ARS Dale Bumpers 124 National Rice Research Center) and Beaumont, Texas (Texas A&M AgriLife Research 125 Center), USA. In Arkansas, the rice cultivars were grown in the same location using nearby 126 fields in 2006 and 2007, the field layout in both years was a randomized complete block 127 design (RCBD) with two replications, with identical field management practices wherein 128 fields were flooded when plants were at the five-leaf stage then drained before harvest 129 (datasets referred to as ArFl06 and ArFl07, respectively). Seeds of each cultivar were sown 130 with a seed drill to approximately 2 cm deep in a single row 5 m long with spacing of 25 cm 131 between the plants and 50 cm between the rows. Fields were flush-irrigated twice before a 132 permanent flood was applied to the fields approximately 2–3 weeks after seedling emergence. 133 In Texas, three replications of the RDP1 accessions were grown in 2009 using two different 134 water treatment conditions; flooded and unflooded (datasets referred to as TxFl09 and 135 TxUnfl09, respectively), with all other field management practices the same. The experiment 136 was set up in a RCBD. Five seeds per cultivar were drill-seeded 2 cm deep into 13-cm length 137 lines, hereafter called hillplots. Five hillplots were planted per row with 61 cm between 138 hillplots within each field row, and 25 cm between rows.

Accessions were represented by one hillplot per replication. The 10 cm depth flood were applied when average plant height was approximately 18 cm and maintained until harvest, whereas the unflooded treatment received regular flush irrigations (once or twice a week) to keep the root zone damp but aerated.

For the Arkansas field experiments rice grains for three plants per row for each of the two replications were collected. Seed collection was done by hand and threshed with an Almaco small bundle thresher to obtain the seeds for the grain Mn determination. For the Texas field experiment twenty fully mature seeds per hillplot were dehulled, from which three seeds were randomly selected for analysis of grain Mn.

The concentrations of Mn were determined in the harvested grains using inductively
coupled plasma mass spectrometry (ICP-MS) described in Norton et al. (2012b, 2014) and
Pinson et al. (2015). In brief, three whole grains of dehusked rice (c. 0.05 g) were digested

151 with 1.0 ml of concentrated nitric acid and heated. The temperature was ramped up from 152 ambient to  $110^{\circ}$ C over a period of 12 h. An internal standard of indium (final concentration 153 of 20 µg l<sup>-1</sup>) was added to each sample. Samples were diluted to 10.0 ml and analysed on a 154 PerkinElmer (Waltham, MA, USA) Elan DRCe ICP-MS for Mn. To control for drift the 155 samples were combined and used as a matrix-matched standard and measured every nine 156 samples.

157

## 158 Phenotypic analysis

159 Phenotypic variances for Mn concentrations were calculated and parsed using two-way 160 ANOVA conducted in R (version 3.3.0) (R Core Team 2016). Across the two field locations 161 (Arkansas and Texas), four field experiments were conducted, designated as ArFl06, ArFl07, 162 TxFl09 and TxUnfl09. Across the Arkansas experiments (ArFl06 and ArFl07), the 163 phenotypic variance was parsed into proportions estimated by genotypes, years, and 164 interaction between genotype and year. For the Texas experiments (TxFl09 and TxUnfl09), 165 the phenotypic variance was parsed into genotypes, water treatments and genotype by water 166 treatment interaction effects.

167 The average Mn concentration (Supplementary Table S1) of each accession per
168 experiment and treatment was used for the GWA mapping. Prior to GWA mapping, the trait
169 data were visualised to assess normality.

170

# 171 Genotypic data and analysis

The rice accessions in the RDP1 have three publicly available SNP datasets consisting of
36,901 (44K) SNPs (Zhao et al. 2011), 700,000 (700K) SNPs (McCouch et al. 2016) and
5,231,435 (5.2M) SNPs (Wang et al. 2018). The 44K and 700K SNP datasets were generated
by genotyping using 44K SNP array and High-Density Rice Array (HDRA), respectively

176 (Zhao et al. 2011; McCouch et al. 2016), whereas the 5.2M SNP dataset, which contains no
177 missing data, was generated by imputing from the set of the intersection of 700K and 18M
178 SNPs (missing data <5% and minor allele frequency (MAF) >1%) with 4.8M SNPs of the
179 3,000 Rice Genome Project (Wang et al. 2018).

The SNPs in each dataset were initially filtered using PLINK version 1.9 (Chang et al.
2015), where by SNPs were removed when the percentage of missing genotype data for a
single SNP exceeded 20% (the 5.2M SNP dataset had no missing data, due to being imputed)
and MAF was less than 5%.

184

# 185 GWA mapping with single-trait analysis

186 GWA mapping was performed using the three SNP datasets based on LMMs from EMMAX 187 (version beta-7Mar2010) (Kang et al. 2010) using the PIQUE (Parallel Identification of QTLs 188 using EMMAX) pipeline (https://github.com/tony-travis/PIQUE). Phenotype-genotype 189 association was analysed for all accessions (ALL) and four subpopulations (AUS, IND, TEJ 190 and TRJ) in the four field experiments. Due to low accession numbers (<30) from the 191 aromatic (ARO) subpopulation and the mixed genetic background of admixtures, these 192 accessions were not analysed as separate subpopulations. Population structure was estimated 193 by performing a principal component analysis (PCA) on the informative SNP data and the 194 eigenvectors for the first four principal components were included in the model as fixed 195 effects for the analysis of the whole (ALL) population (Price et al. 2010) (note: population 196 structure was not included in the analysis of the subpopulations). Relatedness (K matrix) 197 between accessions was estimated by calculating pairwise identity-by-state (IBS) using the 198 SNP data and was included in the models as random effects. For the ALL population GWA 199 analyses relatedness was estimated using the accessions which had phenotype data in each 200 experiment. For the subpopulation analyses relatedness was estimated using accessions from

201 each subpopulation for which phenotype data was collected. The significance threshold for 202 association between SNP and traits was set at P-value < 0.0001, a value previously used for 203 this population (Famoso et al. 2011; Norton et al. 2014). To further filter these SNPs for false 204 discovery rates (FDR), the *P*-values calculated by the GWA mapping analysis were adjusted 205 using the Benjamini-Hochberg method (Benjamini and Hochberg 1995). To be reported as a 206 SNP significantly associated with the trait the SNP had to both meet the *P*-value < 0.0001 and 207 meet the criteria of a 5% FDR. Manhattan plots were used to visualise SNP positions on 208 chromosomes with  $-\log_{10}(P)$  and Q-Q plots were used to visualise observed versus expected 209 values probabilities using the ggman package in R version 3.3.0 (Turner 2014).

210

# 211 GWA mapping with multi-experiment analysis

212 Multi-experiment analysis of GWA mapping for grain Mn concentration for the three 213 flooded-field experiments (ArFl06, ArFl07 and TxFl09) was performed. For this analysis 214 each environment was viewed as one trait. A total of 303 rice accessions (all accessions 215 common among the three experiments) were used for the analysis with the 3,430,260 filtered 216 SNPs (MAF >0.05%) using the mvLMM in the GEMMA version 0.97 (Zhou and Stephens 217 2014). The mvLMM accounts for both population stratification and relatedness among 218 samples to control confounding factors. The eigenvectors of the first four principal 219 components were calculated using the smartpca program in EIGENSOFT (Patterson et al. 220 2006) and included in the model as fixed effects. One eigen-decomposition of the centered 221 relatedness matrix (the n by n relatedness matrix; n = the number of samples) for random 222 effects was computed from all filtered SNPs using the relatedness matrix function in 223 GEMMA. The null hypothesis is SNP effects of a single SNP in all experiments are zero, 224 whereas the alternative hypothesis is nonzero effects of at least one SNP tested by a Wald 225 test. P-values of all association tests were presented with Manhattan plots and observed P-

- values against expected *P*-values were presented by Q-Q plots using the qqman package in R
- 227 (Turner 2014). The guideline of reliability for significant SNPs was 0.0001 (Famoso et al.
- 228 2011; Norton et al. 2014). SNPs were also tested to a 5% FDR based on the Benjamini-
- 229 Hochberg procedure (Benjamini and Hochberg 1995), as previously described.
- 230

# 231 Clustering significant SNPs and comparing QTLs on rice chromosomes

232 The grouping function CLUMP was used in PLINK to define candidate regions in the ALL 233 analysis based on the 5.2M SNP. Index SNPs were identified with *P-value* < 0.0001 (Norton 234 et al. 2014) and neighbouring SNPs were clumped with *P-value* < 0.01 (default value) and 235 squared allele frequency correlation  $(r^2) > 0.5$  (applying the criteria from Butardo et al. (2017) 236 based on the 700K SNP dataset) with the index SNPs of each peak within 500 kb, which was 237 the LD-decay average of all accessions in the RDP1 (Zhao et al. 2011). The candidate 238 regions/OTLs were then mapped and compared with previously reported OTLs based on 239 physical genome positions on the 12 rice chromosomes.

240

# 241 Local linkage disequilibrium decay analysis

242 To determine LD blocks in subpopulations that supported the significant peaks in the ALL 243 analysis, a subset of the 5.2M SNP data surrounding (1 Mbp) a significant peak was extracted 244 using PLINK. Two methods were used; 1) local LD decay was estimated at  $r^2 = 0.2$ , where  $r^2$ 245 values were calculated using PLINK and estimated by binning the average r<sup>2</sup> values of 10 kb 246 windows (Biscarini et al. 2016; Norton et al. 2018); 2)  $r^2$  values in each SNP pair in each 247 region 500 kb upstream and downstream were calculated and visualised as a local Manhattan 248 plot against a LD heatmap using the LD heatmap package in R version 3.3.0 (Shin et al. 249 2006), and then LD blocks were estimated using  $r^2 \ge 0.6$  (high LD) (Ripke et al. 2014; Yano 250 et al. 2016).

251

### 252 Candidate gene identification

253 Within each candidate region, positional genes were identified based on genes identified in 254 the Rice Genome Annotation Project (version 7; http://rice.plantbiology.msu.edu). 255 Retrotransposons and transposon genes were excluded. Genes located within candidate 256 regions were examined and used to identify potential positional functional candidate genes; 257 e.g. genes involved in the uptake, transport and accumulation of elements, associated with 258 Mn. In addition, protein sequences (http://rice.plantbiology.msu.edu) of the list of candidate 259 genes that were not matched with genes previously related to Mn were compared with protein 260 database using BLASTp (https://blast.ncbi.nlm.nih.gov) to investigate gene-sequence 261 homology with other species, in which genes were reported and characterised with functions 262 involving Mn. In addition to gene validation, the gene expression profiles across a range of 263 rice organs and tissues of all identified candidate genes obtained from RiceXPro 264 (http://ricexpro.dna.affrc.go.jp, Sakai et al. 2013) were used to confirm the validity of 265 candidate genes.

266 Differential gene expression of candidate genes was determined based on the gene 267 expression analysis conducted by Campbell et al. (2020). This data set is transcriptomic data 268 from shoots of young plants from 91 accessions from the RDP1. Initially the data was 269 screened to identify which of the proposed candidate genes were expressed. Low and high 270 grain Mn accessions were identified based on being in the highest 20% and lowest 20% for 271 grain Mn concentration, for the three flooded experiments. Then only low or high grain Mn 272 concentration accessions were selected for further analysis if they were low or high in at least 273 two of the experiments. A total of 14 accessions were identified as high and 18 identified as 274 low grain Mn accessions for which with transcript data was available (Supplementary Table 275 S2). The expression of candidate genes were examined for evidence of differential expression based on this grouping. An ANOVA was used to determine if the gene expression wasdifferent between the two groups.

278

# 279 Estimation of phenotypic variance explained by significant SNPs

280 To determine the effect size of the QTLs, two approaches were taken. Either the smallest P-281 value/index SNPs or the most significant SNP located in candidate genes based on the 5.2M 282 SNP dataset were analysed. The proportion of phenotypic variance explained by each SNP 283 was estimated using linear models, correcting for population structure and contrasting with 284 the population structure effects for all accessions (Zhao et al. 2011). ANOVA was used to 285 contrast the linear models. For subpopulations, the phenotypic variance distribution of a 286 significant SNP was estimated using a simple linear model without correcting for population 287 structure.

288

## 289 Effect sizes by index SNPs in multi-experiment analysis

- 290 Effect sizes in each index SNP of QTLs newly identified in multi-experiment analysis were
- observed in the individual experiments estimated by the mvLMM model.
- 292
- 293 Results
- 294

#### 295 Variation of grain Mn concentration in the RDP1

In Arkansas, grain Mn concentration for the accessions in 2006 and 2007 ranged from 21.4 to 62.7 mg kg<sup>-1</sup> and from 20.6 to 68.5 mg kg<sup>-1</sup>, with means of 34.6 and 40.8 mg kg<sup>-1</sup>, respectively (Fig. 1a and Table 1). There were significant differences ( $P < 2 \times 10^{-16}$ , df = 321) in grain Mn concentration among genotypes, years and a significant interaction between 300 years and genotypes that explained 39%, 15% and 16% of the phenotypic variance, 301 respectively. In Texas, grain Mn concentration for the accessions in 2009 under flooded and 302 unflooded conditions range from 10.6 to 33.5 mg kg<sup>-1</sup> and from 16.4 to 63.8 mg kg<sup>-1</sup>, with 303 means of 20.9 and 34.8 mg kg<sup>-1</sup>, respectively (Fig. 1b and Table 1). The grain Mn 304 concentration under the unflooded condition was significantly higher (1.7 times;  $P < 2 \times 10^{-16}$ , 305 df = 367) than the concentration under the flooded condition. The rice grain Mn 306 concentrations were affected by genotypes, water treatments and their interaction, which 307 explained 14%, 61% and 11% of the phenotypic variance, respectively.

To compare the grain Mn accumulation among subpopulations, only those subpopulations with at least 30 accessions (AUS, IND, TEJ and TRJ) were studied. There was a significant difference in grain Mn concentration among the subpopulations (Fig. 2). In the three flooded-field experiments, the *Japonica* (TEJ and TRJ) subgroups had higher average grain Mn concentration than the *Indica* (AUS and IND) subgroups. In contrast, the TRJ subpopulation had the lowest average grain Mn concentration in TxUnfl09.

314 The accessions screen at these field sites are known to vary in the length of time to 315 heading (Norton et al. 2012b), therefore a correlation analysis was conducted to determine if 316 there was a relationship between heading date and grain manganese concentration. For 317 Arkansas 2007 and flooded experiment in Texas, there was no correlation between flowering 318 time and grain Mn concentration. However, at the Arkansas 2006 experiment there was a 319 significant week positive correlation (r = 0.235, P < 0.001) between grain manganese and 320 flowering time, while at the Texas unflooded field site there was a significant weak negative 321 correlation (r = -0.278, P < 0.001) between grain manganese concentration and flowering 322 time.

323

#### 324 Density of SNPs among all accessions and subpopulations

325 To obtain high quality SNPs in each SNP dataset, SNPs were filtered with genotype missing

326 >20% and MAF <0.05 (Supplementary Table S3). After SNP filtering, for example, average

327 SNP density of 11.40, 0.99 and 0.11 kb per SNP were observed for the 44K, 700K and 5.2M

**328** SNP datasets, respectively for the ArFl06 dataset.

For subpopulations, it is noteworthy that the final number of filtered SNPs was lower
in the TEJ and TRJ subpopulations compared to the AUS and IND subpopulations
(Supplementary Table S3). For example, the SNP density in the TEJ subpopulation was 1
SNP per 0.41 kb, whereas the SNP density in the IND subpopulation was 1 SNP per 0.17 kb,
when using the 5.2M SNP dataset.

334

# 335 Single-trait GWA mapping for grain Mn concentration

Using the three SNP datasets, GWA mapping for grain Mn concentration was performed forall accessions (Fig. 3a and Supplementary Fig. S1–S3) and for the four subpopulations using

the 5.2M SNP dataset only (Supplementary Fig. S4–S7) in the four-field experiments.

339 Increasing the SNP density increased the number of significant SNPs associated with 340 the trait in analyses of all accessions and in subpopulation analysis (Fig. 3a, Supplementary 341 Fig. S1–S7 and Supplementary Table S4). For example, no significant SNPs for grain Mn in 342 the ALL analysis in ArF106 were identified using the 44K dataset, while 6 and 16 SNPs were 343 significant using the 700K and 5.2M SNP datasets, respectively (Supplementary Table S4). 344 In addition, there were no significant SNPs associated with Mn accumulation in several 345 subpopulations based on the 44K SNP dataset, whereas a number of significant SNPs were 346 identified based on the 700K and 5.2M SNP datasets. For example, in the TEJ subpopulation 347 in ArFl07, no significant SNPs were detected using the 44K SNP dataset, while 6 and 11 348 significant SNPs for grain Mn were detected using the 700K and 5.2M SNP datasets, 349 respectively (Supplementary Table S4).

350

#### 351 Identification of grain Mn QTLs and candidate genes based on single-trait analysis

352 Based on the high-density SNP dataset (5.2M SNPs), a number of candidate regions/QTLs in 353 the four experiments (Supplementary Table S5) were mapped on rice chromosomes and 354 compared with previously reported QTLs (Fig. 3b). QTLs were further focused on when 355 SNPs within OTLs passed the 5% FDR (Table 2). Consequently, there were three OTLs on 356 chromosome 3 and two QTLs on chromosome 7 that were significantly associated with grain 357 Mn concentration under flooded and unflooded conditions that met the criteria (Table 2). 358 Based on overlap regions from the CLUMP analysis in experiments, these QTLs on 359 chromosome 3 were at 5.33-6.14, 6.39-7.23 and 7.02-7.87 Mbp. For two of these QTL 360 regions, there are a number of candidate genes including LOC Os03g11010 (OsNRAMP2), 361 LOC Os03g11734 (OsFRDL1) and LOC Os03g12530 (OsMTP8.1). On chromosome 7, the 362 two overlapping OTL regions were at 7.21–8.06 and 7.78–8.57 Mbp. For the first of the two 363 QTL regions, there was a good candidate gene; LOC Os07g12900 (OsHMA3) but this gene 364 is outside the candidate region for the second. The expression profiles of all candidate genes 365 under normal growth conditions were obtained from the RiceXPro database (Supplementary 366 Fig. S8–S11).

All four candidate genes mentioned above were identified as being expressed in shoots (Campbell et al. 2020). Of these four genes two of the candidate genes (*OsMTP8.1* and *OsHMA3*) were found to be differentially expressed between the low grain Mn and high grain Mn accessions (Supplementary Fig. S12a, b). The expression of LOC\_Os03g12530 (*OsMTP8.1*) was higher in the accessions with low grain Mn compared to the accessions with high grain Mn, while the expression of LOC\_Os07g12900 (*OsHMA3*) was higher in the accessions identified as having high grain Mn compared to the low grain Mn accessions.

374

# 375 Identification of grain Mn QTLs in subpopulations and candidate genes based on376 single-trait analysis

377 Due to the complex population structure in the RDP1, the estimation of linkage 378 disequilibrium (LD) decay for single QTL across the whole panel is difficult. Therefore, to 379 estimate the size of QTL regions based on LD, QTL analysis was conducted in the individual 380 subpopulations (AUS, IND, TEJ and TRJ). In QTLs that were detected for the whole 381 population and one of the subpopulations, the subpopulation analysis was used to estimate 382 local LD.

383 For grain Mn QTLs in subpopulations, one significant QTL on chromosome 7 was 384 identified in only the TEJ subpopulation based on the 5.2M SNP dataset (Fig. 4a, 385 Supplementary Fig. S4–S7 and Supplementary Table S6) that were concordant with 386 significant SNPs on chromosome 7 in the all analysis at the 5% FDR. To determine the 387 accurate genomic position of the QTLs, local LD was analysed with two approaches, LD 388 decay and LD heatmap. The QTL was identified at ~8.26 Mbp in the TEJ subpopulation (Fig. 389 4a). The average local LD decay between 7 and 9 Mbp on chromosome 7 was high at >1390 Mbp  $(r^2 > 0.2)$  (Fig. 4b). The result was concordant with LD heatmap that showed a large LD 391 block at approximately 1.23 Mbp from 7.64 to 8.87 Mbp ( $r^2 \approx 0.6$ ) (Fig. 4c). One candidate 392 gene, OsNRAMP5 (~8.87 Mbp), was found to be located within the QTL. OsHMA3 at 7.40 393 Mbp which was identified as a candidate gene for the QTL detected here in the ALL analysis 394 is just before this block, while OsNRAMP1 which is at 8.97 Mbp is just after it (Fig. 4c). In this QTL, the significant SNP mlid0048878287 (8.78 Mbp,  $P = 8.11E^{-07}$ ), which located 395 396 close to OsNRAMP5 and OsNRAMP1, explained approximately 8% and 29% of phenotypic 397 variance in ALL and TEJ, respectively. Rice accessions with the TT genotype at this SNP 398 had high Mn accumulation in grains compared to the rice accessions with the CT and CC 399 genotypes (Fig. 4d). The expression profile of OsNRAMP5 and OsNRAMP1 under normal

**400** growth conditions was obtained from the RiceXPro database (Supplementary Fig. S13–S14).

401 Both OsNRAMP5 and OsNRAMP1 was identified as being expressed in shoots of rice plants

402 (Campbell et al. 2020). Of these two genes *OsNRAMP1* was found to be differentially

403 expressed between the low grain Mn and high grain Mn accessions (Supplementary Fig.

- 404 S12c). The expression of LOC\_Os07g15460 (OsNRAMP1) was higher in the accessions
- 405 identified as having grain Mn compared to the low grain Mn accessions.
- 406

# 407 Multi-experiment GWA mapping for grain Mn concentration and candidate genes

408 To increase the power of GWA mapping, a single GWA mapping was conducted for grain 409 Mn concentration of 303 accessions for the three flooded-field experiments (ArFl06, ArFl07 410 and TxFl09) based on the 5.2M SNP dataset (MAF >0.05; 3,430,260 filtered SNPs) using the 411 mvLMM in the GEMMA software. A total of 64 SNPs were significantly associated with 412 grain Mn concentration. Eight OTLs across the 12 rice chromosomes were identified (Fig. 5a 413 and Supplementary Table S7). Two of these QTLs on chromosome 3, 5.97–6.95 and 6.63– 414 7.51 Mbp including OsFRDL1 and OsMTP8.1 (Fig. 3b, 5b and Supplementary Table S7) 415 were consistent with the OTLs identified based on single-trait analysis. However, a total of 6 416 QTLs for grain Mn not detected by single-trait analysis were identified using multi-417 experiment analysis (Fig. 5 and Supplementary Table S7). The six QTLs of interest were at 418 1.16–1.38 Mbp on chromosome 3, 2.40–3.33 and 3.41–4.27 Mbp on chromosome 4, 0.39– 419 1.00 Mbp on chromosome 9, and 11.39–12.30 and 25.61–25.62 Mbp on chromosome 11. All 420 of these QTLs were novel for grain Mn concentration.

421 Comparison of the effect sizes of index SNPs for the putative QTLs in each
422 experiment estimated by the mvLMM showed that they were various (Table 3). For example,
423 the QTL on chromosome 3 had similar small positive SNP effects in all experiments, whereas
424 the two QTLs on chromosome 4 had negative SNP effects in ArFl07 compared to other

425 experiments.

426

# 427 Discussion

428 This study has identified QTLs for grain Mn in rice. Some of those co-localise with 429 previously identified QTLs and known genes involved in Mn accumulation in rice, while 430 some are novel putative QTLs. One of the key objectives of QTL mapping is the 431 identification of stable QTLs (e.g. those are detected in multiple environments). Using a 432 multi-experiment GWA mapping approach, we have been able to identify these stable QTLs.

433 The environmental factors (different years, locations, and water management 434 treatments) and genetic composition of the accessions effected the concentration of Mn in 435 rice grains. In Arkansas, the average grain Mn concentrations between 2006 and 2007 were 436 significantly different and year explained  $\sim 15\%$  of the phenotypic variance. In Texas, the Mn 437 concentration in grains under non-flooded condition significantly increased when compared 438 to the rice cultivation under flooded condition with flooding explaining  $\sim 61\%$  of the 439 variation. This is in agreement with Pinson et al. (2015) who reported that water treatment 440 effects had higher impact for element accumulation in rice grains than year effects, and the 441 average grain Mn concentration under unflooded condition was greater than the average grain 442 Mn concentration under flooded condition among 1,763 rice accessions grown in Texas in 443 2007 and 2008. Senewiratne and Mikkelsen (1961) found Mn concentration in rice leaves 444 were 7.7 fold higher under unflooded condition as compared with flooded condition. One 445 genetic factor that could have an influence on grain element concentrations is flowering time. 446 As this population is comprised of a wide range of different accessions the flowering window 447 (the time from the first accession flowering to the last) is quite large (Norton et al. 2012b). 448 During this time the environmental conditions can change which may affect the availability 449 and therefore the accumulation of manganese. However, in this study only at two sites were

450 relationships between flowering time and grain manganese concentration overserved and in451 both cases the relationships explained only a small component of the variation.

452 The genetic differences among subpopulations also affected grain Mn concentrations 453 such as higher grain Mn concentration in the TEJ and TRJ subpopulations grown under 454 flooded conditions compared with the AUS and IND subpopulations (Fig. 2). In another 455 study under flooded conditions, Japonica subgroup accessions had higher Mn concentrations 456 in their rice grains than *Indica* subgroup accessions (Yang et al. 2018). Pinson et al. (2015) 457 have shown that although water management treatments had a high impact, genetic 458 backgrounds in the 1,763 rice accessions was a major factor for grain element accumulation 459 in both flooded (average broad sense heritability (H<sup>2</sup>) of 16 elements: 0.49, Mn: 0.58) and 460 unflooded (average H<sup>2</sup>: 0.57, Mn: 0.70) conditions.

461 The efficiency of GWA mapping depends on several factors such as the proportion of 462 variation explained by genotype (heritability), the underlying population structure within the 463 panel, sample size, and marker density. McCouch et al. (2016) suggested that increasing SNP 464 density increases the ability to detect genetic loci. In this study, we tested the impact of 465 marker density while using the same rice accessions, the same phenotype data and the same 466 statistical modelling approach to account for population structure and kinship (Kang et al. 467 2010). We demonstrated the number of markers covering the genome affects the efficacy of 468 GWA mapping (Fig. 3a and Supplementary Fig. S1–S3). Our results revealed that higher 469 marker density increases the number of significant loci associated with the trait. A similar 470 observation has been made in a recent study, where GWA mapping for root cone angle in rice 471 was conducted using 15,000 and 300,000 SNPs (Bettembourg et al. 2017). Wang et al. (2018) 472 also showed that increasing from 700K to 4.8M SNPs in GWA mapping for the grain 473 amylose content in 326 *indica* accessions provided increased confidence in QTLs, as well as 474 revealing new ones. In the present study, increasing marker density improved the 475 identification of genetic loci using GWA mapping. However, at this stage it is unknown what476 the optimal marker density for GWA mapping in rice is.

477 From single-trait analyses using 5.2M SNPs, five QTLs on chromosomes 3 and 7 478 were found to affect grain Mn concentration, and the QTL sizes ranged from 789-852 kb 479 (Table 2). Some of these QTLs co-localise with QTLs previously identified in rice (Fig. 3b). 480 For example, Norton et al. (2012a) detected grain Mn OTLs using the Bala  $\times$  Azucena 481 mapping population, located similarly with QTLs detected in this study (chromosome 3 at 482 approximately 3.49–6.65 Mbp and chromosome 7 at approximately 7.12–9.14 Mbp). Zhang 483 et al. (2014) detected QTLs for grain Mn under flooded growing conditions in a TeQing-into-484 Lemont backcross introgression population on chromosome 3 (4–6 Mbp) and chromosome 7 485 (10–14 Mbp); with the chromosome 7 QTL being identified also in an independent 486 population of Lemont × TeQing recombinant inbred lines. To further narrow down a QTL on 487 chromosome 7, Liu et al. (2017) characterised a major QTL for grain Mn accumulation in 488 recombinant inbred lines from the cross of 93-11 (low grain Mn) with PA64s (high grain Mn) 489 grown in two environments. A major OTL located on the short arm of chromosome 7 was 490 fine mapped between two markers (L8857 and L8906), 49.3 kb region encompassing the 491 known Mn transporter, OsNRAMP5 (Liu et al. 2017). Recently, Shrestha et al. (2018) 492 conducted GWA mapping for shoot Mn toxicity in 271 RDP1 accessions based on the 700K 493 SNP dataset. Numerous significant SNPs were identified in a large region on the top of 494 chromosome 7. Although they did not report an exact QTL size, both OsNRAMP5 and 495 OsNRAMP1 were identified as candidate genes. These results reveal that our identified QTLs 496 based on GWA mapping with the high SNP density were smaller than the comparable 497 genomic regions when using other mapping approaches. As a result, the identified QTLs 498 contained a smaller number of positional candidates, which means the identification of genes 499 underpinning the QTLs should be easier.

500 Within the grain Mn QTLs on chromosomes 3 and 7, six genes are proposed as 501 contributing to the natural variation observed in grain Mn concentration in the RDP1. The 502 candidate genes were highly expressed in roots, shoots, reproductive organs or embryo and 503 endosperm tissues (Supplementary Fig. S8-S11 and S13-S14). On chromosome 3, three 504 candidate genes were identified as OsNRAMP2 (LOC Os03g11010), OsFRDL1 505 (LOC Os03g11734) and OsMTP8.1 (LOC Os03g12530). While the function of OsNRAMP2 506 is unknown in rice, OsNRAMP2 has high structural similarity with an Mn transporter from 507 Eremococcus coleocola (Mani and Sankaranarayanan 2018). OsNRAMP2 in rice is also an 508 orthologous gene with AtNRAMP2 in Arabidopsis (Thomine et al. 2000) that is a trans-Golgi 509 network-localised Mn transporter in roots under Mn deficiency (Gao et al. 2018). OsFRDL1 510 is a good candidate gene as a knockout of OsFRDL1 in rice resulted in lower leaf Fe 511 concentration, and higher accumulation of Zn and Mn in leaves of rice (Yokosho et al. 2009). 512 OsMTP8.1 has been shown to be involved in Mn homeostasis achieved by sequestering 513 excess Mn into vacuoles of rice (Chen et al. 2013, 2016), and to be an orthologous gene with 514 AtMTP8 involving in the localisation of Mn and Fe in Arabidopsis seeds (Chu et al. 2017). 515 On chromosome 7, there were three candidate genes; OsHMA3 (LOC Os07g12900), 516 OsNRAMP5 (LOC Os07g15370) and OsNRAMP1 (LOC Os07g15460). OsHMA3 is a 517 known tonoplast-localised transporter for Zn and Cd in rice roots, but it is reported that the 518 overexpression of OsHMA3 affected Mn concentration in roots and shoots (Sasaki et al. 519 2014). OsNRAMP5 is a major transporter for Mn as well as for Fe and Cd in rice (Ishimaru et 520 al. 2012; Sasaki et al. 2012; Yang et al. 2014; Liu et al. 2017). Although OsNRAMP1 is an Fe 521 transporter that is involved in Cd accumulations in rice (Takahashi et al. 2011), a 522 phylogenetic analysis of NRAMP sequences in plants showed that OsNRAMP1 was most 523 similar to OsNRAMP5 (Vatansever et al. 2016). Sheartha et al (2018) also identified a QTL 524 for Mn toxicity in rice using GWA mapping that encompassed both OsNRAMP1 and 525 *OsNRAMP5*. Therefore, *OsNRAMP1* is possibly involved in Mn transport or cross-talk
526 between Fe and Mn homeostasis (Vatansever et al. 2016).

527 Due to genetic similarity within the TEJ subpopulation, local LD for the identified 528 QTL on the chromosome 7 was analysed and estimated to define their candidate regions. The 529 average LD decay from 7 to 9 Mbp in the TEJ subpopulation was high at >1 Mbp with the 530 threshold of  $r^2 = 0.2$  (Fig. 4b). To determine if this large LD decay was specific to the TEJ 531 subpopulation the LD decay in the other subpopulations was determined (Supplementary Fig. 532 S15). The LD decay across the other subpopulations with only the average LD decay in the 533 IND subpopulation being lower. In addition to LD heatmap, the estimated LD distance in the 534 region (9,017 SNPs in 6.5–9.5 Mbp) in the TEJ subpopulation was 1.23 Mbp from 7.64 to 535 8.87 Mbp indicating few historical recombination events. It was similar to a large LD block 536 in the AUS (23,041 SNPs) subpopulation, whereas several LD blocks in the IND (13,731 537 SNPs) and TRJ (6,513 SNPs) subpopulations were observed (Supplementary Fig. S15).

538 For multi-experiment analysis, conducting GWA mapping for grain Mn concentration 539 with the phenotypic values of the three flooded-field experiments (ArFl06, ArFl07 and 540 TxFl09) using the mvLMM, there were 2 QTLs which had previously been detected in the 541 single site analysis and 6 newly identified QTLs (Fig. 5). Similarly, Korte et al. (2012) 542 reanalysed the flowering time data of Li et al. (2010) in 459 A. thaliana accessions grown 543 over two seasons in each of two different locations using MTMM (Multi-trait mixed model) 544 to reveal new QTLs. Three detected loci were involved in the differential flowering response 545 to different environments that were not detected in the individual screens. Indeed, multi-trait 546 analysis is an efficient tool for detecting loci/QTLs associated with multiple traits, because of 547 the increased power obtained from additional data from correlated traits or a single trait in 548 multiple experiments (Korte et al. 2012; Zhou and Stephens 2014). Thus, this approach 549 should be used to identify stable QTLs, and is potentially beneficial in terms of GWAS of complex traits. The validation of the new QTLs could be further studied for identification of
candidate genes underlying these QTLs that may contribute to the ultimate grain Mn
concentration in rice.

553 While gene expression data was not collected for the plants grown in this experiment, 554 recently transcriptomic analysis for 91 of the RDP1 accessions was conducted (Campbell et 555 al. 2020). This database consists of gene expression data from shoots, and can be used to 556 determine if genes are differentially expressed between accessions. For candidate genes 557 discussed, all were found to be expressed in shoots with OsMTP8.1, OsHMA3 and 558 OsNRAMP1 differentially expressed between the low and high grain Mn accessions 559 (Supplementary Fig. S12). Differential gene expression means that these genes are very good 560 candidates for the trait as this expression difference could be driving the QTLs. However, 561 future analysis of gene expression between low and high Mn accumulating accessions during 562 grain filling will give a further insight into the role these genes play in the Mn accumulation 563 in the grain.

564

#### 565 Conclusion

This study uses data from multiple field experiments (locations, years and irrigation treatments) to conduct GWA mapping for a grain elemental trait, Mn concentration, in rice.
We have demonstrated that multi-experiment analysis has a number of potential benefits, including the identification of QTLs not detected in individual analyses. Future study would be required to validate these genes, and identify the alleles that are responsible for variation in Mn accumulation in rice grains.

572

### 573 Declaration of Competing Interest

| 574 | The authors declare that they have no known competing financial interests or personal      |
|-----|--------------------------------------------------------------------------------------------|
| 575 | relationships that could have appeared to influence the work reported in this paper.       |
| 576 |                                                                                            |
| 577 | Acknowledgements                                                                           |
| 578 | This research was part supported by the US National Science Foundation, Plant Genome       |
| 579 | Research Program (grant #IOS 0701119 to DES, MLG and SRMP) and The US National             |
| 580 | Institutes of Health (grant 2P4ES007373 to MLG and DES). PR is a PhD student funded by     |
| 581 | the Thai Government Scholarship.                                                           |
| 582 |                                                                                            |
| 583 | References                                                                                 |
| 584 | Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y et al. (2010) Genome-       |
| 585 | wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature      |
| 586 | 465:627–631                                                                                |
| 587 | Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient          |
| 588 | biofortification of rice: progress and prospects. Front Plant Sci 4:15                     |
| 589 | Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E et al. (2010) A coastal cline |
| 590 | in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the       |
| 591 | sodium transporter AtHKT1;1. PLoS Genet 6:e1001193                                         |
| 592 | Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and       |
| 593 | powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300                       |
| 594 | Bettembourg M, Dardou A, Audebert A, Thomas E, Frouin J, Guiderdoni E et al. (2017)        |
| 595 | Genome-wide association mapping for root cone angle in rice. Rice 10:45                    |
| 596 | Biscarini F, Cozzi P, Casella L, Riccardi P, Vattari A, Orasen G et al. (2016) Genome-wide |
| 597 | association study for traits related to plant and grain morphology, and root architecture  |
| 598 | in temperate rice accessions. PLoS One 11:e0155425                                         |
|     |                                                                                            |

599 Butardo VM, Anacleto R, Parween S, Samson I, de Guzman K, Alhambra CM et al. (2017) 600 Systems genetics identifies a novel regulatory domain of amylose synthesis. Plant

601 Physiol 173:887–906

- 602 Campbell MT, Du Q, Liu K, Sharma S, Zhang C, Walia H (2020) Characterization of the
- 603 transcriptional divergence between the subspecies of cultivated rice (Oryza sativa).
- 604 BMC Genomics 21:394
- 605 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation 606 PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7
- 607 Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T et al. (2013) Mn tolerance in
- 608 rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp 609 Bot 64:4375–4387
- 610 Chen X, Li J, Wang L, Ma G, Zhang W (2016) A mutagenic study identifying critical 611 residues for the structure and function of rice manganese transporter OsMTP8.1. Sci Rep 612 6:32073
- 613 Chu HH, Car S, Socha AL, Hindt MN, Punshon T, Guerinot ML (2017) The Arabidopsis
- 614 MTP8 transporter determines the localization of manganese and iron in seeds. Sci Rep 615 7:11024
- 616 Crossgrove J, Zheng W (2004) Manganese toxicity upon overexposure. NMR Biomed 617
- 17:544-553
- 618 Dimkpa SON, Lahari Z, Shrestha R, Douglas A, Gheysen G, Price AH (2016) A genome-
- 619 wide association study of a global rice panel reveals resistance in Oryza sativa to root-620 knot nematodes. J Exp Bot 67:1191–1200
- 621 Du J, Zeng D, Wang B, Qian Q, Zheng S, Ling HQ (2013) Environmental effects on mineral
- 622 accumulation in rice grains and identification of ecological specific QTLs. Environ
- 623 Geochem Health 35:161–170

- 624 Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. 625 Braz J Plant Physiol 17:103–112
- 626 Eizenga GC, Ali ML, Bryant RJ, Yeater KM, McClung AM, McCouch SR (2014)
- 627 Registration of the rice diversity panel 1 for genomewide association studies. J Plant 628 Regist 8:109–116
- 629 Eroglu S, Giehl RFH, Meier B, Takahashi M, Terada Y, Ignatyev K et al. (2017) Metal
- 630 tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed 631 development and germination. Plant Physiol 174:1633-1647
- 632 Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante C et al. (2011) Genetic
- 633 architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-634 wide association analysis and QTL mapping. PLoS Genet 7:e1002221
- 635 Gao H, Xie W, Yang C, Xu J, Li J, Wang H et al. (2018) NRAMP2, a trans-golgi network-636 localized manganese transporter, is required for Arabidopsis root growth under
- 637 manganese deficiency. N Phytologist 217:179–193
- 638 Halder D, Saha JK, Biswas A (2020) Accumulation of essential and non-essential trace
- 639 elements in rice grain: possible health impacts on rice consumers in West Bengal, India. 640
- Sci Total Env 706:135944
- 641 Hebbern CA, Pedas P, Schjoerring JK, Knudsen L, Husted S (2005) Genotypic differences in
- 642 manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant 643 Soil 272:233–244
- 644 Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental 645 adaptation. Mol Plant 9:787–797
- 646 Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y et al. (2010) Genome-wide association
- 647 studies of 14 agronomic traits in rice landraces. Nat Genet 42:961-967
- 648 Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q et al. (2012) Genome-wide association

- study of flowering time and grain yield traits in a worldwide collection of rice
- germplasm. Nat Genet 44:32–39
- 651 Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic,
- boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon,
- 653 vanadium, and zinc. National Academies Press: Washington DC
- 654 Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T et al. (2010) A major
- quantitative trait locus for increasing cadmium-specific concentration in rice grain islocated on the short arm of chromosome 7. J Exp Bot 61:923–934
- 657 Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M et al. (2010) Rice
- metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport ofiron and manganese. Plant J 62:379–390.
- 660 Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K et al. (2012)
- 661 Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci662 Rep 2:286
- 663 Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB et al. (2010) Variance
- 664 component model to account for sample structure in genome-wide association studies.665 Nat Genet 42:348–354
- Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ et al. (2008) Efficient
  control of population structure in model organism association mapping. Genetics
  178:1709–1723
- 669 Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S et al. (2004) OsYSL2 is a
- 670 rice metal-nicotianamine transporter that is regulated by iron and expressed in the
- 671 phloem. Plant J 39:415–424
- 672 Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a
- 673 review. Plant Methods 9:29

- 674 Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M (2012) A mixed-model
- approach for genome-wide association studies of correlated traits in structuredpopulations. Nat Genet 44:1066–1071
- 677 Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA et al.
- **678** (2011) Genome-wide association study of quantitative resistance to southern leaf blight
- in the maize nested association mapping population. Nat Genet 43:163–168
- 680 Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association mapping of local
  681 climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci
- **682** 107:21199–21204
- 683 Lippert C, Casale FP, Rakitsch B, Stegle O (2014) LIMIX: genetic analysis of multiple traits.
  684 bioRxiv
- 685 Liu C, Chen G, Li Y, Peng Y, Zhang A, Hong K et al. (2017) Characterization of a major
  686 QTL for manganese accumulation in rice grain. Sci Rep 7:17704
- 687 Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM et al.
- 688 (2015) Efficient bayesian mixed-model analysis increases association power in large
  689 cohorts. Nat Genet 47:284–290
- **690** Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z (2008) Quantitative trait loci controlling Cu,
- **691** Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305–310
- 692 Ma G, Li J, Li J, Li Y, Gu D, Chen C et al. (2018) OsMTP11, a trans-golgi network localized
  693 transporter, is involved in manganese tolerance in rice. Plant Sci 274:59–69
- Mani A, Sankaranarayanan K (2018) In silico analysis of natural resistance-associated
- 695 macrophage protein (NRAMP) family of transporters in rice. Protein J 37:237–247
- 696 Marschner H (1995) Mineral nutrition of higher plants. Academic Press: London
- 697 McCouch SR, Wright MH, Tung C-W, Maron LG, McNally KL, Fitzgerald M et al. (2016)
- 698 Open access resources for genome-wide association mapping in rice. Nat Commun

**699** 7:10532

- Millaleo R, Reyes- Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential
  and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil
  Sci Plant Nutr 10:476–494
- Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping
  of the rice ionome in leaves and grain: identification of QTLs for 17 elements including
  arsenic, cadmium, iron and selenium. Plant Soil 329:139–153
- 706 Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM et al. (2014)
- 707 Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in
- rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:e89685
- 709 Norton GJ, Duan GL, Lei M, Zhu YG, Meharg AA, Price AH (2012a) Identification of
- quantitative trait loci for rice grain element composition on an arsenic impacted soil:
  influence of flowering time on genetic loci. Ann Appl Biol 161:46–56
- 712 Norton GJ, Pinson SRM, Alexander J, McKay S, Hansen H, Duan GL et al. (2012b)
- 713 Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in
- 714 multiple sites. N Phytologist 193:650–664
- 715 Norton GJ, Travis AJ, Douglas A, Fairley S, Alves EDP, Ruang-areerate P et al. (2018)
- 716 Genome wide association mapping of grain and straw biomass traits in the rice Bengal
- and Assam Aus Panel (BAAP) grown under alternate wetting and drying and
  permanently flooded irrigation. Front Plant Sci 9:1223
- 719 O'Neal SL, Zheng W (2015) Manganese toxicity upon overexposure: a decade in review.
  720 Curr Environ Heal Rep 2:315–328
- 721 Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet
  722 2:e190
- 723 Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, Campo S, Ariño J (2017) Two NRAMP6

- isoforms function as iron and manganese transporters and contribute to disease
- resistance in rice. Mol Plant-Microbe Interact 30:385–398
- 726 Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova E et al. (2015) Worldwide
- genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311
- 728 Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population
- stratification in genome-wide association studies. Nat Rev Genet 11:459–463
- 730 R Core Team (2016) R: A language and environment for statistical computing. R Foundation
  731 for Statistical Computing, Vienna
- 732 Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA et al. (2014) Biological
- insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427
- 734 Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y et al. (2013) Rice annotation
- project database (RAP-DB): an integrative and interactive database for rice genomics.
  Plant Cell Physiol 54:e6
- 737 Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and
  738 expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021
- 739 Sasaki A, Yamaji N, Xia J, Ma JF (2011) OsYSL6 is involved in the detoxification of excess
  740 manganese in rice. Plant Physiol 157:1832–1840
- 741 Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for
  742 manganese and cadmium uptake in rice. Plant Cell 24:2155–2167
- 743 Senewiratne ST, Mikkelsen DS (1961) Physiological factors limiting growth and yield of
- 744 Oryza sativa under unflooded conditions. Plant Soil 14:127–146
- 745 Shin JH, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical
- 746 display of pairwise linkage disequilibria between single nucleotide polymorphisms. J
  747 Stat Softw 16:c03
- 748 Shrestha A, Dziwornu AK, Ueda Y, Wu LB, Mathew B, Frei M (2018) Genome-wide

- association study to identify candidate loci and genes for Mn toxicity tolerance in rice.
- **750** PLoS One 13:e0192116
- 751 Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family
  752 members in manganese uptake and mobilization in plants. Front Plant Sci 5:106
- 753 Soetan K, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans,
  754 domestic animals and plants: a review. African J Food Sci 4:200–222
- 755 Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci
  756 for phytate in rice grain and their relationship with grain micronutrient content.
- **757** Euphytica 154:289–294
- 758 Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011) Role of the iron transporter
- 759 OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6:1813–
  760 1816
- 761 Takemoto Y, Tsunemitsu Y, Fujii-Kashino M, Mitani-Ueno N, Yamaji N, Ma JF et al. (2017)
- 762 The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in
  763 the shoots and roots of Oryza sativa L. Plant Cell Physiol 58:1573–1582
- 764 Thomine S, Wang R, Ward JM, Crawford NM, Schroede JI (2000) Cadmium and iron
- transport by members of a plant metal transporter family in Arabidopsis with homology
- to Nramp genes. Proc Natl Acad Sci 97:4991–4996
- 767 Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and
  768 manhattan plots. bioRxiv
- 769 Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y et al. (2015) A polarly localized
  770 transporter for efficient manganese uptake in rice. Nat Plants 1:15170
- 771 Vatansever R, Filiz E, Ozyigit II (2016) In silico analysis of Mn transporters (NRAMP1) in
  772 various plant species. Mol Biol Rep 43:151–163
- 773 Wang DR, Agosto-Pérez FJ, Chebotarov D, Shi Y, Marchini J, Fitzgerald M et al. (2018) An

- imputation platform to enhance integration of rice genetic resources. Nat Commun9:3519
- Yang M, Lu K, Zhao F-J, Xie W, Ramakrishna P, Wang G et al. (2018) Genome-wide
  association studies reveal the genetic basis of ionomic variation in rice. Plant Cell
  30:2720–2740
- 779 Yang M, Zhang W, Dong H, Zhang Y, Lv K, Wang D et al. (2013) OsNRAMP3 is a vascular
- bundles-specific manganese transporter that is responsible for manganese distribution in
  rice. PLoS One 8:e83990
- 782 Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K et al. (2014) OsNRAMP5 contributes to
- 783 manganese translocation and distribution in rice shoots. J Exp Bot 65:4849–4861
- 784 Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P, Hu L et al. (2016) Genome-wide
- association study using whole-genome sequencing rapidly identifies new genes
  influencing agronomic traits in rice. Nat Genet 48:927–934
- Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter
  required for efficient translocation of iron in rice. Plant Physiol 149:297–305
- 789 Zhang M, Liu B (2017) Identification of a rice metal tolerance protein OsMTP11 as a

manganese transporter. PLoS One 12:e0174987

- 791 Zhang M, Pinson SRM, Tarpley L, Huang XY, Lahner B, Yakubova E et al. (2014) Mapping
- and validation of quantitative trait loci associated with concentrations of 16 elements in
  unmilled rice grain. Theor Appl Genet 127:137–165
- 794 Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH et al. (2011) Genome-wide
- association mapping reveals a rich genetic architecture of complex traits in Oryza sativa.Nat Commun 2:467
- 797 Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for
- genome-wide association studies. Nat Methods 11:407–409

799

#### 800 Figures

Fig. 1 Grain Mn distributions in all rice accessions. (a) Distribution of grain Mn
concentration in Arkansas under flooded condition in 2006 and 2007. (b) Distribution of
grain Mn concentration in Texas under flooded and unflooded conditions in 2009.

Fig. 2 Distribution of grain Mn concentration in rice in four subpopulations in four fieldexperiments. The horizontal black bar is the median of grain Mn concentration.

806 Fig. 3 Genome-wide association mapping results for grain Mn concentration in rice using 807 single-trait analysis in all accessions grown in Arkansas under flooded condition in 2006. (a) 808 Manhattan (left) and Q-Q (right) plots are presented for the 44K, 700K and 5.2M SNP 809 datasets. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates 810 SNP loci passed 5% FDR. (b) Location of QTLs associated with grain Mn concentration in 811 rice for four field experiments based on the 5.2M SNP dataset using single-trait analysis and 812 previously reported QTLs. The four field experiments are ArF106 - light blue, ArF107 - blue, 813 TxFl09 – orange and TxUnfl09 – brown. Previous reported QTLs are displayed in purple 814 with the letter indicating the study they were detected in: a = Stangoulis et al. (2007), b = Lu815 et al. (2008), c = Norton et al. (2010), d = Ishikawa et al. (2010), e = Norton et al. (2012a), f 816 = Du et al. (2013) and g = Zhang et al. (2014). Known Mn-transporter locations are indicated 817 by horizontal black lines, whereas the locations of candidate genes are indicated by horizontal 818 red lines.

Fig. 4 Genome-wide association mapping results for grain Mn concentration in the *temperate japonica* subpopulation based on the 5.2M SNP dataset, as well as local linkage
disequilibrium analysis and SNP allele effects. (a) Manhattan (left) and Q-Q (right) plots are
presented in four-field experiments as ArFl06: Arkansas flooded 2006, ArFl07: Arkansas
flooded 2007, TxFl09: Texas flooded 2009 and TxUnfl09: Texas unflooded 2009. The blue

horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. (b) LD decay and (c) local Manhattan plot (top) as well as LD heatmap (bottom) for grain Mn concentration in ArFl07 on chromosome 7 at 7–9 Mbp and 6.5–9.5 Mbp, respectively. (d) The effect of SNP alleles on grain Mn concentration for the QTL on chromosome 7 with the SNP mlid0048878287 (8,781,883 bp) in all accessions (left) and the *temperate japonica* subpopulation (right) in ArFl07.

830 Fig. 5 Genome-wide association mapping results for grain Mn concentration in rice based on 831 the 5.2M SNP dataset using multi-experiment analysis. (a) Manhattan (left) and Q-Q (right) 832 plots are presented. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red 833 dot indicates SNP loci passed 5% FDR. The blue arrows point to new QTLs based on multi-834 experiment analysis. (b) Location of QTLs associated with grain Mn concentration in rice 835 based on the 5.2M SNP dataset using multi-experiment analysis and previously reported 836 QTLs. QTLs in ArFl06-ArFl07-TxFl09 is presented in red. Previous reported QTLs are 837 displayed in purple with the letter indicating the study they were detected in; a = Stangoulis 838 et al. (2007), b = Lu et al. (2008), c = Norton et al. (2010), d = Ishikawa et al. (2010), e =839 Norton et al. (2012a), f = Du et al. (2013) and g = Zhang et al. (2014). Known Mn-transporter 840 locations are indicated by horizontal black lines, whereas the locations of candidate genes are 841 indicated by horizontal red lines.

842

#### 843 Tables

**Table 1** Grain Mn concentration (mg kg<sup>-1</sup>) in the RDP1 accessions at each field experiment.

845 Table 2 Significant QTLs on chromosomes 3 and 7, and candidate genes for grain Mn

846 concentration in all rice accessions under flooded and unflooded conditions based on P

847 <0.0001 and passing 5% FDR using the 5.2M SNP dataset. All QTLs are concordant with

**848** previously reported QTLs of which references are given in Fig. 3.

- 849 Table 3 New putative QTLs and candidate genes for grain Mn concentration based on the
- 850 5.2M SNP dataset using multi-experiment analysis.



**Fig. 1** Grain Mn distributions in all rice accessions. (a) Distribution of grain Mn concentration in Arkansas under flooded condition in 2006 and 2007. (b) Distribution of grain Mn concentration in Texas under flooded and unflooded conditions in 2009.



**Fig. 2** Distribution of grain Mn concentration in rice in four subpopulations in four field experiments. The horizontal black bar is the median of grain Mn concentration.


**Fig. 3** Genome-wide association mapping results for grain Mn concentration in rice using single-trait analysis in all accessions grown in Arkansas under flooded condition in 2006. (a) Manhattan (left) and Q-Q (right) plots are presented for the 44K, 700K and 5.2M SNP datasets. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates

SNP loci passed 5% FDR. (b) Location of QTLs associated with grain Mn concentration in rice for four field experiments based on the 5.2M SNP dataset using single-trait analysis and previously reported QTLs. The four field experiments are ArFl06 – light blue, ArFl07 – blue, TxFl09 – orange and TxUnfl09 – brown. Previous reported QTLs are displayed in purple with the letter indicating the study they were detected in; a = Stangoulis et al. (2007), b = Lu et al. (2008), c = Norton et al. (2010), d = Ishikawa et al. (2010), e = Norton et al. (2012a), f = Du et al. (2013) and g = Zhang et al. (2014). Known Mn-transporter locations are indicated by horizontal black lines, whereas the locations of candidate genes are indicated by horizontal lines.



**Fig. 4** Genome-wide association mapping results for grain Mn concentration in the *temperate japonica* subpopulation based on the 5.2M SNP dataset, as well as local linkage disequilibrium analysis and SNP allele effects. (a) Manhattan (left) and Q-Q (right) plots are presented in four-field experiments as ArFl06: Arkansas flooded 2006, ArFl07: Arkansas flooded 2007, TxFl09: Texas flooded 2009 and TxUnfl09: Texas unflooded 2009. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. (b) LD decay and (c) local Manhattan plot (top) as well as LD heatmap (bottom) for grain Mn concentration in ArFl07 on chromosome 7 at 7–9 Mbp and 6.5–9.5 Mbp, respectively. (d) The effect of SNP alleles on grain Mn concentration for the QTL on chromosome 7 with the SNP mlid0048878287 (8,781,883 bp) in all accessions (left) and the *temperate japonica* subpopulation (right) in ArFl07.



**Fig. 5** Genome-wide association mapping results for grain Mn concentration in rice based on the 5.2M SNP dataset using multi-experiment analysis. (a) Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. The blue arrows point to new QTLs based on multiexperiment analysis. (b) Location of QTLs associated with grain Mn concentration in rice based on the 5.2M SNP dataset using multi-experiment analysis and previously reported QTLs. QTLs in ArFl06-ArFl07-TxFl09 is presented in red. Previous reported QTLs are displayed in purple with the letter indicating the study they were detected in; a = Stangoulis et al. (2007), b = Lu et al. (2008), c = Norton et al. (2010), d = Ishikawa et al. (2010), e = Norton et al. (2012a), f = Du et al. (2013) and g = Zhang et al. (2014). Known Mn-transporter

locations are indicated by horizontal black lines, whereas the locations of candidate genes are indicated by horizontal red lines.

| Site     | Year | Condition | No. of accessions | Range     | Mean | SD  | CV (%) |
|----------|------|-----------|-------------------|-----------|------|-----|--------|
| Arkansas | 2006 | flooded   | 342               | 21.4-62.7 | 34.6 | 6.2 | 17.8   |
|          | 2007 | flooded   | 349               | 20.6-68.5 | 40.8 | 8.6 | 21.1   |
| Texas    | 2009 | flooded   | 373               | 10.6-33.5 | 20.9 | 4.3 | 20.7   |
|          | 2009 | unflooded | 370               | 16.4–63.8 | 34.8 | 8.4 | 24.2   |

**Table 1** Grain Mn concentration (mg kg<sup>-1</sup>) in the RDP1 accessions at each field experiment.

SD, standard deviation; CV, coefficient of variation

**Table 2** Significant QTLs on chromosomes 3 and 7, and candidate genes for grain Mn concentration in all rice accessions under flooded and unflooded conditions based on P < 0.0001 and passing 5% FDR using the 5.2M SNP dataset. All QTLs are concordant with previously reported QTLs of which references are given in Fig. 3.

| Chr. | Loci | Experiment | Index SNP id   | Position  | Minor/Major<br>allele | MAF  | <i>P</i> -value | Estimated candidate<br>region | Clumped<br>size (kb) | MSU id         | Gene name |
|------|------|------------|----------------|-----------|-----------------------|------|-----------------|-------------------------------|----------------------|----------------|-----------|
| 3    | 1    | ArFl06     | mlid0018058877 | 5,804,440 | T/C                   | 0.11 | 1.77E-07        | 5,326,994–6,138,356           | 811.36               | LOC_Os03g11010 | OsNRAMP2  |
|      |      |            |                |           |                       |      |                 |                               |                      | LOC_Os03g11734 | OsFRDL1   |
|      | 2    | ArFl06     | mlid0018228403 | 6,819,735 | T/C                   | 0.13 | 1.87E-09        | 6,387,194–7,233,912           | 846.72               | LOC_Os03g12530 | OsMTP8.1  |
|      | 3    | TxUnfl09   | mlid0018352659 | 7,507,792 | T/A                   | 0.12 | 1.22E-08        | 7,019,729–7,866,465           | 846.74               | -              | -         |
| 7    | 1    | ArFl07     | mlid0048560313 | 7,594,101 | A/G                   | 0.14 | 1.80E-08        | 7,206,339-8,057,921           | 851.58               | LOC_Os07g12900 | OsHMA3    |
|      | 2    | ArFl07     | mlid0048735332 | 8,256,487 | A/C                   | 0.15 | 1.44E-08        | 7,780,036-8,568,541           | 788.51               | -              | -         |

|      |                |            |                       | Allele effect |                 |         |         |         |                               |                      |
|------|----------------|------------|-----------------------|---------------|-----------------|---------|---------|---------|-------------------------------|----------------------|
| Chr. | Index SNP id   | Position   | Minor/Major<br>allele | MAF           | <i>P</i> -value | ArF106  | ArFl07  | TxFl09  | Estimated candidate<br>region | Clumped<br>size (kb) |
| 3    | mlid0017254736 | 1,253,009  | T/C                   | 0.24          | 3.43E-07        | 0.0066  | 0.0180  | 0.0075  | 1,164,504–1,377,789           | 213.29               |
| 4    | mlid0025444660 | 2,891,380  | T/C                   | 0.17          | 1.03E-07        | 0.0043  | -0.0262 | 0.0085  | 2,403,945-3,330,179           | 926.23               |
| 4    | mlid0025744000 | 3,767,588  | C/G                   | 0.14          | 1.89E-08        | 0.0065  | -0.0014 | 0.0105  | 3,411,664–4,267,559           | 855.90               |
| 9    | mlid0060879641 | 504,844    | A/G                   | 0.40          | 6.17E-07        | -0.0113 | -0.0397 | -0.0135 | 38,664-1,004,262              | 965.60               |
| 11   | mlid0074604290 | 11,886,926 | G/A                   | 0.39          | 4.80E-07        | 0.0062  | -0.0320 | -0.0095 | 11,391,970–12,295,345         | 903.38               |
| 11   | mlid0078299980 | 25,621,708 | A/C                   | 0.05          | 2.24E-07        | 0.0094  | 0.0340  | -0.0026 | 25,619,048-25,621,708         | 2.76                 |

Table 3 New putative QTLs and candidate genes for grain Mn concentration based on the 5.2M SNP dataset using multi-experiment analysis.

## **Supplementary Information**

Genome-wide association mapping for grain manganese in rice (Oryza sativa L.)

## using a multi-experiment approach

Panthita Ruang-areerate, Anthony J. Travis, Shannon R. M. Pinson, Lee Tarpley,

Georgia C. Eizenga, Mary Lou Guerinot, David E. Salt, Alex Douglas, Adam H. Price

and Gareth J. Norton

**Table S1.** Grain Mn concentration in four field experiments. The average concentration of more two or more replicates is shown. The abbreviation of subpopulations is ADM: admixed, ADM-IND: admixed *indica*, ADM-JAP: admixed *japonica*, AUS: *aus*, IND: *indica*, TEJ: *temperate japonica* and TRJ: *tropical japonica* (Source. McCouch et al. 2016, Supplementary Data 2). The unit of the grain Mn concentration is mg kg<sup>-1</sup>. NA is not available data. Asterisks represent phenotypic data that were used in GWA analysis based on the 5.2M SNP dataset.

| NSFTV ID | HDRA ID    | Accession name         | Subpopulation | ArFl06      | ArFl07      | TxFl09      | TxUnfl09           |
|----------|------------|------------------------|---------------|-------------|-------------|-------------|--------------------|
| 1        | 86f75d2b.0 | Agostano               | TEJ           | 36.84*      | $40.75^{*}$ | $26.45^{*}$ | $43.10^{*}$        |
| 2        | cd22c3de.0 | Aichi Asahi            | TEJ           | NA          | $44.40^{*}$ | $18.51^{*}$ | $38.00^{*}$        |
| 3        | 5ef1be74.0 | Ai-Chiao-Hong          | IND           | $25.88^{*}$ | $25.46^{*}$ | $15.83^{*}$ | $26.59^{*}$        |
| 4        | 81d03b86.0 | NSF-TV 4               | AUS           | $33.37^{*}$ | 31.36*      | $18.47^{*}$ | $29.90^{*}$        |
| 5        | 5533f406.0 | NSF-TV 5               | ARO           | $47.49^{*}$ | $46.19^{*}$ | $30.46^{*}$ | $49.51^{*}$        |
| 6        | 0d125c0e.0 | ARC 7229               | AUS           | 39.01*      | $46.68^{*}$ | $21.24^{*}$ | $36.08^{*}$        |
| 7        | e37be9e5.0 | Arias                  | TRJ           | $46.14^{*}$ | $51.98^{*}$ | $26.40^{*}$ | $31.38^{*}$        |
| 8        | 30c3073f.0 | Asse Y Pung            | TRJ           | $34.79^{*}$ | $34.06^{*}$ | $16.04^{*}$ | $20.87^{*}$        |
| 9        | 2a9d8d47.0 | Baber                  | TEJ           | $29.90^{*}$ | $30.19^{*}$ | $18.14^{*}$ | $26.48^{*}$        |
| 10       | 2e1c9c87.0 | Baghlani Nangarhar     | TEJ           | NA          | 32.71*      | $22.87^{*}$ | $42.78^{*}$        |
| 11       | 1d0066e2.0 | Baguamon 14            | IND           | NA          | NA          | $15.35^{*}$ | $24.36^{*}$        |
| 12       | NA         | Basmati                | ARO           | 29.34       | 38.24       | 20.83       | 35.02              |
| 13       | 660f0236.0 | NSF-TV 13              | AUS           | $40.83^{*}$ | 54.64*      | $21.47^{*}$ | $34.29^{*}$        |
| 14       | NA         | Basmati 217            | ARO           | 33.36       | 33.18       | 24.48       | 46.63              |
| 15       | e13b4d7a.0 | Beonio                 | TEJ           | NA          | NA          | $23.47^{*}$ | $35.48^{*}$        |
| 16       | f0328a18.0 | Bico Branco            | ARO           | $40.78^*$   | $52.25^{*}$ | $26.41^{*}$ | $34.87^{*}$        |
| 17       | 446f6c62.0 | Binulawan              | IND           | NA          | NA          | $21.96^{*}$ | $42.12^{*}$        |
| 18       | cbd6b346.0 | BJ 1                   | AUS           | $24.28^{*}$ | $33.47^{*}$ | $14.10^{*}$ | $27.75^{*}$        |
| 19       | d22c8e33.0 | Black Gora             | AUS           | $28.23^{*}$ | $28.24^{*}$ | $17.84^{*}$ | 36.19*             |
| 20       | 6af7c9fc.0 | Blue Rose              | ADM-JAP       | $45.25^{*}$ | 62.51*      | $29.88^{*}$ | 36.35*             |
| 21       | fa4c4111.0 | Bvakkoku Y 5006 Seln   | IND           | 35.19*      | 45.92*      | $23.57^{*}$ | 34.98*             |
| 22       | 52c6e2ba.0 | Caawa/Fortuna 6-103-15 | TRJ           | $30.97^{*}$ | NA          | $21.77^{*}$ | $33.08^{*}$        |
| 23       | 7741d7c1.0 | Canella De Ferro       | TRJ           | 34.77*      | $48.30^{*}$ | $21.78^{*}$ | 22.72*             |
| 24       | e074229f.0 | Carolina Gold 12033    | TRJ           | 36.68*      | $40.97^{*}$ | 22.52*      | 25.57*             |
| 25       | 1ce7093b.0 | Carolina Gold 12034    | TRJ           | 31.15*      | 39.08*      | $19.34^{*}$ | $24.18^{*}$        |
| 26       | 32a15c4d.0 | Carolina Gold Sel      | TRJ           | 37.32*      | $45.09^{*}$ | 24.35*      | 32.93*             |
| 27       | 1956dd3f.0 | NSF-TV 27              | TRJ           | $28.27^{*}$ | 40.53*      | 21.21*      | $26.76^{*}$        |
| 28       | b6701089.0 | Champa Tong 54         | AUS           | 36.16*      | 46.39*      | $23.52^{*}$ | $40.73^{*}$        |
| 29       | 30646147.0 | Chau                   | IND           | NA          | 31.81*      | $18.10^{*}$ | 33.46*             |
| 30       | dd6e755e.0 | Chiem Chanh            | IND           | 31.44       | 43.13*      | $17.46^{*}$ | NA                 |
| 31       | d2da857d.0 | Chinese                | TEJ           | NA          | 45.72*      | $23.14^{*}$ | 30.26*             |
| 32       | 068b860d.0 | Chodongii              | TEJ           | $38.74^{*}$ | 52.89*      | $29.39^{*}$ | $35.24^{*}$        |
| 33       | 2b4e06fe.0 | Chuan 4                | AUS           | 38.17*      | 36.44*      | 21.12*      | 31.18*             |
| 34       | c03e2c51.0 | NSF-TV 34              | IND           | NA          | NA          | NA          | 28.33*             |
| 35       | c59435a8.0 | CO18                   | IND           | NA          | NA          | 19.37       | 34.71*             |
| 36       | 2593e5a7.0 | CS-M3                  | TEJ           | 41.56*      | 64.68*      | $25.77^{*}$ | $46.08^{*}$        |
| 37       | 69527f35.0 | Cuba 65                | TRJ           | 34.92*      | 51.08*      | 31.63*      | 38.59*             |
| 39       | 014ab0f1.0 | NSF-TV 39              | AUS           | 34.88*      | 35.76*      | 17.32*      | 36.14*             |
| 40       | 76f56677.0 | Dam                    | ADM-JAP       | 29.93*      | 37.29*      | $21.04^{*}$ | $21.83^{*}$        |
| 43       | e5951598.0 | Dee Geo Woo Gen        | IND           | 32.98*      | $36.40^{*}$ | $17.27^{*}$ | 32.66*             |
| 44       | 7d4c6c4e.0 | Dhala Shaitta          | AUS           | 46.30*      | $38.10^{*}$ | 23.33*      | 49.21 <sup>*</sup> |
| 45       | 8d6aded4.0 | Dom-Sufid              | ARO           | $40.14^{*}$ | $42.16^*$   | $26.19^{*}$ | 33.56*             |
| 46       | 68c2ecf8.0 | Dourado Agulha         | TRJ           | 29.69*      | 33.98*      | $17.44^{*}$ | 23.16*             |
| 48       | 63f63dde.0 | NSF-TV 48              | ADM-JAP       | 28.58*      | 35.80*      | $25.99^{*}$ | $20.93^{*}$        |
| 49       | 21d3f1b3.0 | DV85                   | AUS           | 33.39*      | 33.94*      | $27.64^{*}$ | 39.09*             |
| 50       | NA         | DZ78                   | AUS           | 24.19       | 25.06       | 17.04       | 28.38              |
| 51       | 57d7feea.0 | Early Wataribune       | TEJ           | 29.78*      | 43.48*      | 21.83*      | 34.55 <sup>*</sup> |
| 52       | 9e0c626c.0 | Eh Ia Chiu             | TEJ           | NA          | NA          | $28.46^{*}$ | 50.93*             |

Table S1. Continued

| NSFTV ID | HDRA ID    | Accession name        | Subpopulation | ArFl06                      | ArFl07             | TxFl09               | TxUnfl09             |
|----------|------------|-----------------------|---------------|-----------------------------|--------------------|----------------------|----------------------|
| 53       | 61b7bf53.0 | Firooz                | ARO           | $47.23^{*}$                 | 45.65              | $26.34^{*}$          | $35.43^{*}$          |
| 54       | 06334433.0 | Fortuna               | TRJ           | $45.41^{*}$                 | $46.15^{*}$        | $23.71^{*}$          | $20.59^{*}$          |
| 55       | ef8fd965.0 | Gerdeh                | ADM-JAP       | $32.82^{*}$                 | 34.31*             | $25.09^{*}$          | $40.01^{*}$          |
| 56       | 652530bb.0 | Geumobyeo             | TEJ           | NA                          | $42.50^{*}$        | $22.31^{*}$          | $45.82^{*}$          |
| 57       | 71d5fcf4.0 | NSF-TV 57             | IND           | $27.83^*$                   | $33.08^{*}$        | $17.73^{*}$          | $31.56^{*}$          |
| 58       | 9c099b78.0 | Ghati Kamma Nangarhar | AUS           | $38.34^{*}$                 | $45.70^{*}$        | $23.45^{*}$          | $38.32^*$            |
| 59       | a5ec1b10.0 | Gogo Lempuk           | TRJ           | $27.02^{*}$                 | $34.47^{*}$        | $20.85^{*}$          | $27.26^{*}$          |
| 60       | 7f7fb805.0 | Gotak Gatik           | ADM-JAP       | $34.78^{*}$                 | 34.51*             | $19.48^{*}$          | $29.31^{*}$          |
| 61       | NA         | Guan-Yin-Tsan         | IND           | 25.18                       | $22.07^{*}$        | 14.25                | 26.08                |
| 62       | 9ec86ff1.0 | Gyehwa 3              | TEJ           | NA                          | NA                 | $21.18^{*}$          | $32.11^{*}$          |
| 63       | 407f31bd.0 | Haginomae Mochi       | TEJ           | NA                          | NA                 | $28.01^{*}$          | $38.34^{*}$          |
| 64       | a53530c6.0 | Heukgveong            | TEJ           | NA                          | NA                 | $30.34^{*}$          | $36.70^{*}$          |
| 65       | 1ab838a2.0 | Honduras              | TRJ           | $33.72^{*}$                 | 39.71*             | $25.09^{*}$          | $26.56^{*}$          |
| 66       | 7691a376.0 | Hsia Chioh Keh Tu     | IND           | NA                          | NA                 | $17.70^{*}$          | $27.16^{*}$          |
| 67       | 39dd7feb.0 | Hu Lo Tao             | TEJ           | $45.80^{*}$                 | $55.50^{*}$        | $24.27^{*}$          | $41.39^{*}$          |
| 68       | NA         | I-Geo-Tze             | IND           | NA                          | 40.29              | 16.43                | 27.20                |
| 69       | c14c4e03.0 | IAC 25                | TRJ           | 32.74*                      | $42.79^{*}$        | 17.32*               | 38.20*               |
| 70       | efbb93de 0 | Iguane Cateto         | TRI           | $27.89^*$                   | 36.21*             | $21.04^{*}$          | 28.52*               |
| 71       | 61cc3858.0 | IR 36                 | IND           | 39.15*                      | 38.86*             | 22.93*               | 33.58 <sup>*</sup>   |
| 72       | 12d82364.0 | IR 8                  | IND           | $26.27^{*}$                 | 32.56*             | $18.72^*$            | $33.24^*$            |
| 72       | 97dcf87d 0 | IR O<br>IRAT 177      | TRI           | 20.27                       | $43.99^{*}$        | $20.78^{*}$          | 23.95*               |
| 73       | 55d3afae 0 | IRGA 409              | IND           | 27.05                       | $32.41^*$          | $18.71^{*}$          | 23.95<br>33.83*      |
| 74       | b0816082.0 | Jambu                 |               | 27.20<br>$31.21^{*}$        | 52.71<br>$51.25^*$ | $20.87^{*}$          | 32.38*               |
| 76       | cb5e38e6.0 | Java                  | IND           | 20.04*                      | 12.25              | $17.63^{*}$          | 26.46 <sup>*</sup>   |
| 70       | 45007861.0 | Jaya<br>IC140         | IND           | 42.54<br>42.12 <sup>*</sup> | 42.23              | 20.02*               | 20.40<br>$36.73^{*}$ |
| 70       | 45007672.0 | JC149<br>Ibono 240    |               | 42.13<br>27.19 <sup>*</sup> | 43.40              | 20.05<br>$24.60^{*}$ | 30.73<br>28.02*      |
| 70       | 00097072.0 | Julia 349             | AUS           | 22.25 <sup>*</sup>          | 49.00<br>$54.77^*$ | 24.09<br>21.59*      | 50.92<br>51 19*      |
| 79<br>80 | 024005ba 0 | JOUIKU 3930           |               | 22.25<br>22.75*             | 24.77<br>24.26*    | 21.30<br>$22.24^{*}$ | 20.07*               |
| 80<br>81 | 0200950a.0 | K 0.5<br>Kalambati    |               | 52.15<br>27.60*             | 54.20<br>42.11*    | 23.34                | 29.07<br>42.20*      |
| 81       | 00001090.0 | Kalallikati           | AUS           | 37.02<br>29.02*             | 45.11              | 21.98                | 42.30                |
| 83       | becie/6/.0 | Kamenoo               | I EJ<br>TD I  | 38.03<br>27.59*             | 49.90              | 20.33                | 37.99                |
| 84       | /bee5b9f.0 | Kaniranga             | IRJ           | 37.58                       | 39.19              | 26.88                | 30.76                |
| 85       | 328163e1.0 | Kasalath              | AUS           | 30.92                       | 37.47              | 17.04                | 37.64                |
| 86       | NA         | Kaw Luyoeng           | TEJ           | NA                          | NA<br>A            | 22.85                | 26.94                |
| 87       | 64fa0112.0 | Keriting Tingii       | ADM-JAP       | 32.42                       | 39.10              | 19.97                | 21.51                |
| 88       | NA         | Khao Gaew             | AUS           | 37.53                       | NA                 | 28.18                | 33.84                |
| 89       | 897c5eef.0 | NSF-TV 89             | TRJ           | 41.79                       | 37.81              | 24.46                | 28.29                |
| 90       | 743f41c1.0 | Kiang-Chou-Chiu       | IND           | 29.96                       | 36.10              | 16.51                | 30.31                |
| 91       | ff836253.0 | Kibi                  | TEJ           | NA                          | NA                 | 21.85                | 27.60                |
| 92       | 5df8f871.0 | Kinastano             | TRJ           | 34.36                       | 42.07              | 21.45                | 31.40                |
| 93       | 9f1f4614.0 | Kitrana 508           | ARO           | 40.57*                      | 68.48              | 31.96*               | 45.86*               |
| 94       | 20a4c97d.0 | Koshihikari           | TEJ           | 29.04*                      | 37.16              | 18.13                | 35.84*               |
| 95       | 0c85e164.0 | NSF-TV 95             | ADM           | 26.91                       | 34.17              | 21.88                | 34.84*               |
| 96       | 32a6808e.0 | KU115                 | TRJ           | 23.14*                      | 42.77*             | $18.88^{\circ}$      | 24.56*               |
| 97       | NA         | Kun-Min-Tsieh-Hunan   | IND           | NA                          | 48.17              | 21.00                | 34.79                |
| 98       | 6ab77e3e.0 | L-202                 | TRJ           | 31.59*                      | 37.10 <sup>*</sup> | $20.77^{*}_{}$       | 24.41*               |
| 99       | 7eb7c6a8.0 | LAC 23                | TRJ           | 31.65*                      | 37.77*             | 23.64*               | $22.09^{*}$          |
| 100      | 1f10be3d.0 | Lacrosse              | ADM-JAP       | $38.79^{*}$                 | $67.28^{*}$        | $28.76^{*}$          | $50.97^{*}$          |
| 101      | 9f782e9e.0 | Lemont                | TRJ           | NA                          | $39.97^{*}$        | $28.95^*$            | $30.00^{*}$          |
| 102      | 6e26f4cc.0 | Leung Pratew          | IND           | NA                          | $35.28^*$          | $16.29^{*}$          | $32.63^{*}$          |
| 103      | 8c76404c.0 | Luk Takhar            | TEJ           | $37.17^{*}$                 | $35.72^{*}$        | $18.34^{*}$          | $33.88^*$            |
| 104      | 8629f76c.0 | Mansaku               | TEJ           | $31.74^{*}$                 | $46.72^{*}$        | $18.39^{*}$          | $51.37^{*}$          |
| 105      | 16463092.0 | Mehr                  | AUS           | 32.43*                      | $30.95^{*}$        | $19.43^{*}$          | $32.67^{*}$          |
| 106      | 8a06320f.0 | Ming Hui              | IND           | $32.90^{*}$                 | $33.82^{*}$        | $18.00^*$            | $30.94^{*}$          |
| 107      | 7b7a0d82.0 | NSF-TV 107            | TRJ           | $25.85^{*}$                 | $30.99^{*}$        | $17.50^{*}$          | $23.24^{*}$          |
| 108      | e3b049a9.0 | Moroberekan           | TRJ           | $36.50^{*}$                 | $52.94^{*}$        | $22.52^{*}$          | $29.28^{*}$          |
| 110      | 11bf5114.0 | Mudgo                 | IND           | NA                          | $45.59^{*}$        | $10.64^{*}$          | $43.32^{*}$          |
| 111      | NA         | N_22                  | TRJ           | 43.02                       | NA                 | 25.26                | 32.17                |
| 112      | 531e23fa.0 | N12                   | ARO           | $39.40^{*}$                 | $60.85^{*}$        | 29.46*               | $38.49^{*}$          |
| 113      | 7a723d9e.0 | Norin 20              | TEJ           | $23.72^{*}$                 | $28.37^{*}$        | $15.72^{*}$          | $28.68^{*}$          |
| 114      | eac19fb8.0 | Nova                  | ADM-JAP       | 37.70*                      | 57.74*             | 27.41*               | 38.16*               |
| 115      | 0bca95e0.0 | NPE 835               | TEJ           | NA                          | $47.06^{*}$        | $19.09^{*}$          | $30.97^{*}$          |

| Table | <b>S1</b> . | Continued |
|-------|-------------|-----------|
|       |             |           |

| NSFTV ID | HDRA ID    | Accession name      | Subpopulation | ArFl06          | ArFl07                      | TxFl09               | TxUnfl09                    |
|----------|------------|---------------------|---------------|-----------------|-----------------------------|----------------------|-----------------------------|
| 116      | 6cedf6aa.0 | NSF-TV 116          | TRJ           | 32.26*          | $48.20^{*}$                 | $27.70^{*}$          | $29.59^{*}$                 |
| 117      | 5b144b9c.0 | O-Luen-Cheung       | IND           | $30.72^{*}$     | $39.38^{*}$                 | $17.91^{*}$          | $42.61^{*}$                 |
| 118      | 71bd9426.0 | Oro                 | TEJ           | $35.99^{*}$     | $45.71^{*}$                 | $25.09^*$            | $53.19^{*}$                 |
| 119      | 3aa51818.0 | Oryzica Llanos 5    | IND           | $38.15^{*}$     | $50.95^{*}$                 | NA                   | NA                          |
| 120      | 8e6220e5.0 | OS6                 | TRJ           | $35.25^{*}$     | $41.32^{*}$                 | $19.79^{*}$          | $30.76^{*}$                 |
| 121      | 280279b3.0 | Ostiglia            | ADM-JAP       | $34.25^{*}$     | $57.60^{*}$                 | $25.39^{*}$          | $42.79^{*}$                 |
| 122      | b6dc1bcc.0 | Padi Kasalle        | TRJ           | $37.38^{*}$     | $26.22^{*}$                 | $14.55^{*}$          | $24.33^{*}$                 |
| 123      | 714ac141.0 | Pagaiyahan          | IND           | 32.36*          | $30.46^{*}$                 | $17.50^{*}$          | $28.42^{*}$                 |
| 124      | 6c91b63d.0 | Pankhari 203        | ARO           | NA              | NA                          | $18.45^{*}$          | $25.10^{*}$                 |
| 125      | 63f298ba.0 | Pao-Tou-Hung        | IND           | $29.96^{*}$     | $33.44^{*}$                 | $13.97^{*}$          | $33.56^{*}$                 |
| 126      | 0f6a67da.0 | Pappaku             | IND           | NA              | $40.21^{*}$                 | $21.54^{*}$          | $33.14^{*}$                 |
| 127      | b403e79f.0 | NSFTV127            | TRJ           | NA              | $40.71^{*}$                 | $20.27^{*}$          | $25.91^{*}$                 |
| 128      | 76a1efc9.0 | Pato De Gallinazo   | ADM-JAP       | 32.54*          | $43.56^{*}$                 | $24.50^{*}$          | 39.83 <sup>*</sup>          |
| 129      | 8fafd383.0 | Peh-Kuh             | IND           | $27.83^{*}$     | $29.92^{*}$                 | $15.30^{*}$          | $34.73^{*}$                 |
| 130      | a796716d.0 | Peh-Kuh-Tsao-Tu     | IND           | $27.18^{*}$     | $31.08^{*}$                 | $17.71^{*}$          | $32.82^{*}$                 |
| 131      | d09d62e7.0 | Phudugey            | AUS           | $35.72^{*}$     | $41.71^{*}$                 | $20.81^{*}$          | $46.04^{*}$                 |
| 132      | 02cc7c6d.0 | Rathuwee            | IND           | $41.19^{*}$     | $50.64^{*}$                 | $24.41^{*}$          | $47.34^{*}$                 |
| 133      | 1a95985b.0 | Rikuto Kemochi      | TEJ           | NA              | $47.66^{*}$                 | $20.96^{*}$          | $48.63^{*}$                 |
| 134      | 4ab486ec.0 | Romeo               | TEJ           | $30.22^{*}$     | $39.30^{*}$                 | $18.62^{*}$          | $38.89^{*}$                 |
| 135      | NA         | RT 1031-69          | TRJ           | 38.87           | 54.43                       | 24.14                | 32.03                       |
| 136      | d72ee9ba.0 | RTS12               | IND           | NA              | NA                          | $24.40^{*}$          | NA                          |
| 137      | 8653bbdb.0 | RTS14               | IND           | 32.78*          | 28.38*                      | 16.89*               | 29.89*                      |
| 138      | 1a946dc6.0 | RTS4                | IND           | NA              | 26.36*                      | 17.41                | 30.67*                      |
| 139      | bd0d322b.0 | S4542A3-49B-2B12    | TRJ           | 35.54*          | 43.85*                      | 33.52*               | 35.89*                      |
| 140      | 85551f9c.0 | Saturn              | TRJ           | $28.50^{*}$     | NA                          | $22.47^{*}$          | $21.04^{*}$                 |
| 141      | a8319fc6.0 | Seratoes Hari       | IND           | 38.99*          | 58.75*                      | NA                   | NA                          |
| 142      | 806c51cc.0 | Shai-Kuh            | IND           | 38.64           | 46.36*                      | $19.40^{*}$          | 41.40*                      |
| 143      | 3ea144c5.0 | Shinriki            | TEJ           | 31.31*          | 35.80*                      | 21.95*               | $29.85^{*}$                 |
| 144      | 3269952e.0 | Shoemed             | TEJ           | NA              | NA                          | 22.24*               | 39.78*                      |
| 145      | 17c4070a.0 | Short Grain         | IND           | 41.83*          | 37.09*                      | 17.31*               | 32.71*                      |
| 146      | NA         | Shuang-Chiang       | IND           | NA              | NA                          | 13.46                | 24.36                       |
| 147      | 48b4f132.0 | Sinampaga Selection | TRI           | 31 31*          | $40.27^{*}$                 | 19.10                | 21.30<br>$21.47^*$          |
| 148      | ed1beb9e.0 | Sintane Diofor      | IND           | NA              | NA                          | $14.73^*$            | $26.64^*$                   |
| 149      | d56e98bc.0 | Sinaguing           | TRI           | 38 24*          | $42.06^{*}$                 | $23.04^{*}$          | $18.97^{*}$                 |
| 150      | 128dd425.0 | Sultani             | TRI           | 33.77*          | $48.69^{*}$                 | 23.01<br>$24.35^*$   | $44.08^{*}$                 |
| 150      | dee26171.0 | Suweon              | TEI           | $32.40^{*}$     | 31 59*                      | 19.26*               | $28.30^{*}$                 |
| 152      | e4533c8b 0 | T 1                 | AUS           | $34.10^{\circ}$ | $32.47^*$                   | 19.20                | 25.93 <sup>*</sup>          |
| 152      | 40f343f4 0 | T26                 | AUS           | $41.53^{*}$     | $34.44^*$                   | 16.86*               | 42.93                       |
| 155      | dfdfb828.0 | Ta Hung Ku          | TEI           | 29.99*          | 36.16*                      | $20.14^{*}$          | 31.37*                      |
| 155      | 9127f236.0 | Ta Mao Tsao         | TEI           | $30.20^{*}$     | $47.55^{*}$                 | $18.52^*$            | 38.96*                      |
| 155      | 93387d96.0 | Taichung Native 1   | IND           | $27.25^{*}$     | 32.99*                      | $13.84^*$            | 36.08 <sup>*</sup>          |
| 150      | 2db62b89.0 | Tainan Iku 487      | TEI           | 27.25<br>NA     | 51.58*                      | 23.01                | 38.98 <sup>*</sup>          |
| 158      | 6516a500.0 | Tainei 309          | TEI           | NA              | $49.78^{*}$                 | 23.75<br>$24.00^{*}$ | 51.82 <sup>*</sup>          |
| 159      | 4ef132dc.0 | Tam Cau 9A          | IND           | NA              | NA                          | 21.96*               | 31.75*                      |
| 160      | f659d521.0 | NSF-TV 160          | ARO           | 42.91*          | 52.38*                      | 33.12*               | $41.74^{*}$                 |
| 161      | 4f643bf5.0 | TeOing              | IND           | 25.83*          | 34.68 <sup>*</sup>          | $19.77^*$            | 33.11*                      |
| 162      | 2b28e441.0 | TKM6                | IND           | NA              | $43.63^{*}$                 | 18.02*               | 37.28*                      |
| 163      | 192e24ab.0 | Taducan             | IND           | 31.32           | 37.59*                      | $17.34^{*}$          | 35.57*                      |
| 164      | 72497775.0 | Tondok              | TRI           | 43 56*          | $55.47^*$                   | 30.48*               | 39.87 <sup>*</sup>          |
| 165      | 9b2223bb 0 | Trembese            | TRI           | 34 55*          | $37.49^*$                   | $22.57^*$            | $36.74^*$                   |
| 166      | 61152244.0 | Tsipala 421         | ADM-IND       | $26.76^{*}$     | 25.35*                      | $13.22^{*}$          | 30.86*                      |
| 167      | 8e941960.0 | B6616A4-22-Bk-5-4   | TRI           | 39.25*          | $42.21^{*}$                 | 22.77*               | 28.00                       |
| 168      | NA         | Vary Vato 462       | ADM           | NA              | 22.99                       | 13.91                | 21.00                       |
| 169      | ba028784.0 | WC 6                | TEJ           | NA              | 26.11*                      | $20.07^*$            | 28.79*                      |
| 170      | 715bc18e 0 | Wells               | TRJ           | NA              | 37 59*                      | 22.67*               | 20.75<br>31 46 <sup>*</sup> |
| 171      | h238d197.0 | ZHE 733             | IND           | 33 25*          | $40.62^*$                   | $21.02^{*}$          | 39.90*                      |
| 172      | 9ac72c9e 0 | Zhenshan ?          | IND           | 39.01*          | 37 31*                      | $20.21^{*}$          | $44.04^{*}$                 |
| 173      | 0f847952.0 | Nipponbare          | TEJ           | NA              | 36 78*                      | $17.87^*$            | 29.81*                      |
| 174      | 08de34ee 0 | Azucena             | TRJ           | 37.66*          | 56 30 <sup>*</sup>          | 27.71*               | 30.49*                      |
| 175      | 1e91ch13.0 | NSF-TV 175          | TRI           | 35.29*          | 50.50<br>50 56 <sup>*</sup> | 22.93*               | 25.94*                      |
| 176      | 8cfa8fb2.0 | 583                 | TRJ           | $51.02^*$       | 38.22*                      | 22.95<br>$24.00^{*}$ | 29.20*                      |
| - / 0    |            |                     |               | 21.02           | 20.22                       |                      |                             |

Table S1. Continued

| NSFTV ID | HDRA ID    | Accession name          | Subpopulation | ArFl06      | ArFl07      | TxFl09      | TxUnfl09           |
|----------|------------|-------------------------|---------------|-------------|-------------|-------------|--------------------|
| 177      | 15e6c437.0 | 68-2                    | TEJ           | $42.58^{*}$ | $38.70^*$   | $26.13^{*}$ | $61.60^{*}$        |
| 178      | 480f7505.0 | ARC 6578                | AUS           | $37.57^{*}$ | $43.28^{*}$ | $29.92^{*}$ | 31.64*             |
| 179      | 5505a767.0 | Bellardone              | TEJ           | $33.88^{*}$ | $35.63^{*}$ | $19.76^{*}$ | $38.56^{*}$        |
| 180      | f948d7b5.0 | Benllok                 | TEJ           | 36.44*      | $39.47^{*}$ | $31.80^{*}$ | $51.77^{*}$        |
| 181      | 8cd35626.0 | Bergreis                | TEJ           | $54.56^{*}$ | $43.97^{*}$ | $23.94^{*}$ | $38.34^{*}$        |
| 182      | 024bbd20.0 | Blue Rose Supreme       | ADM-JAP       | $46.27^{*}$ | $46.90^{*}$ | $24.67^{*}$ | $37.96^{*}$        |
| 183      | c08a5ea2.0 | Boa Vista               | TRJ           | $43.08^{*}$ | $40.86^{*}$ | $25.15^{*}$ | $25.88^*$          |
| 184      | 7119ebee.0 | Bombon                  | TEJ           | 33.68*      | $45.24^{*}$ | $22.26^{*}$ | $38.07^{*}$        |
| 185      | c97be7ae.0 | British Honduras Creole | TRJ           | 35.31*      | $43.15^{*}$ | $22.10^{*}$ | $27.64^{*}$        |
| 186      | 4559ff3f.0 | Bul Zo                  | TEJ           | $44.69^{*}$ | $56.08^{*}$ | $25.82^{*}$ | $59.75^{*}$        |
| 187      | 60e142c3.0 | C57-5043                | TRJ           | $42.15^{*}$ | $50.05^*$   | $17.81^{*}$ | $41.33^{*}$        |
| 188      | bf18cbae.0 | Coppocina               | TRJ           | $62.74^{*}$ | 53.61*      | $20.62^{*}$ | 36.33 <sup>*</sup> |
| 189      | 661eaeaa.0 | Criollo La Fria         | IND           | $30.26^{*}$ | $33.53^{*}$ | $16.51^{*}$ | 36.51*             |
| 190      | bf7afed8.0 | Delrex                  | TRJ           | NA          | $31.52^{*}$ | $23.66^{*}$ | $27.93^{*}$        |
| 191      | 97ce6839.0 | Dom Zard                | ARO           | $48.75^{*}$ | $41.19^{*}$ | $30.89^{*}$ | $39.16^{*}$        |
| 192      | fdd98970.0 | Erythroceros Hokkaido   | TEJ           | NA          | $35.82^{*}$ | 19.11*      | $22.13^{*}$        |
| 193      | 5632be21.0 | Fossa Av                | TRJ           | $40.28^{*}$ | $51.67^{*}$ | $19.69^{*}$ | $29.09^{*}$        |
| 195      | 3c10a4b8.0 | IRAT 13                 | TRJ           | $31.02^{*}$ | $37.24^{*}$ | $18.07^*$   | $23.29^{*}$        |
| 196      | cff871e8.0 | JM70                    | IND           | NA          | NA          | $16.20^{*}$ | $34.58^{*}$        |
| 197      | NA         | Kaukkyi Ani             | ADM           | 56.50       | 42.50       | 21.65       | 29.15              |
| 198      | 818143d8.0 | Leah                    | TRJ           | $37.99^{*}$ | $41.90^{*}$ | $20.96^{*}$ | $42.36^{*}$        |
| 199      | 958ed737.0 | NSF-TV 199              | TRJ           | 33.61*      | $32.87^{*}$ | $19.39^{*}$ | $24.99^{*}$        |
| 200      | c8a73fe7.0 | P 737                   | AUS           | 33.25*      | 37.55*      | $18.28^{*}$ | $27.87^{*}$        |
| 201      | 263f2baf.0 | Pate Blanc Mn 1         | TRJ           | $40.84^{*}$ | $51.05^{*}$ | $21.13^{*}$ | $30.25^{*}$        |
| 202      | ccdc6d39.0 | Pratao                  | TRJ           | $43.72^{*}$ | 35.91*      | $18.46^{*}$ | $30.69^{*}$        |
| 203      | f46f03bf.0 | Radin Ebos 33           | IND           | $26.67^{*}$ | $30.68^{*}$ | $15.27^{*}$ | $35.05^{*}$        |
| 204      | 778cea6e.0 | Razza 77                | TEJ           | $39.24^{*}$ | $43.80^{*}$ | $23.19^{*}$ | $49.12^{*}$        |
| 205      | 348853a5.0 | Rinaldo Bersani         | TEJ           | 31.36*      | $37.68^{*}$ | $18.83^{*}$ | $37.98^{*}$        |
| 206      | 37249a74.0 | Rojofotsy 738           | ADM-IND       | $27.58^{*}$ | $20.59^{*}$ | 13.84*      | $21.38^{*}$        |
| 207      | d628ec3a.0 | Sigadis                 | IND           | NA          | 58.39*      | $20.46^{*}$ | $52.72^{*}$        |
| 208      | e876c9ec.0 | SLO 17                  | IND           | $42.32^{*}$ | $57.09^{*}$ | $20.71^{*}$ | $40.41^{*}$        |
| 209      | 5384be83.0 | Tchibanga               | IND           | $32.79^{*}$ | $38.53^{*}$ | $16.53^{*}$ | $34.70^{*}$        |
| 211      | 5497b233.0 | Tokvo Shino Mochi       | ADM-JAP       | 36.84*      | $52.50^{*}$ | $30.72^{*}$ | $49.23^{*}$        |
| 212      | 330798b4.0 | NSF-TV 212              | TRJ           | $32.10^{*}$ | $38.37^{*}$ | $25.90^{*}$ | 32.41*             |
| 213      | b2320902.0 | WC 3397                 | TRJ           | $34.55^{*}$ | $45.47^{*}$ | $26.87^{*}$ | $20.39^{*}$        |
| 214      | 34df4fca.0 | WC 4419                 | TRJ           | 41.36*      | $46.49^{*}$ | $22.10^{*}$ | $36.58^{*}$        |
| 215      | fed1dbae.0 | WC 4443                 | TRJ           | $32.59^{*}$ | $38.07^{*}$ | $17.57^{*}$ | $29.11^{*}$        |
| 216      | 149fb038.0 | Yabani Montakhab 7      | TEJ           | $59.02^{*}$ | $45.39^{*}$ | $24.78^{*}$ | 37.64*             |
| 217      | 915c0033.0 | YRL-1                   | ADM-JAP       | $33.30^{*}$ | $41.31^{*}$ | $20.57^{*}$ | $39.50^{*}$        |
| 218      | 85da3a70.0 | PI 298967-1             | ADM-JAP       | $36.92^{*}$ | $49.24^{*}$ | $28.90^{*}$ | NA                 |
| 219      | 199f4455.0 | Nucleorvza              | TEJ           | 28.53*      | 34.12*      | $16.42^{*}$ | $21.41^{*}$        |
| 220      | c5bf98cc.0 | Azerbaidianica          | TEJ           | $34.88^{*}$ | $47.16^{*}$ | $18.79^{*}$ | $35.10^{*}$        |
| 221      | 311aaf30.0 | Sadri Belyi             | ARO           | $38.07^{*}$ | $37.42^{*}$ | $23.46^{*}$ | $48.28^{*}$        |
| 222      | 7cfe4a0c.0 | Paraiba Chines Nova     | IND           | $28.19^{*}$ | $25.40^{*}$ | $17.06^{*}$ | $41.11^{*}$        |
| 223      | f73fa9e9.0 | Priano Guaira           | TRJ           | $29.29^{*}$ | 37.94*      | $25.80^{*}$ | $28.39^{*}$        |
| 224      | f2e9bed5.0 | Karabaschak             | TEJ           | 33.03*      | $46.47^{*}$ | $24.39^{*}$ | $38.30^{*}$        |
| 225      | a31b4a06.0 | Biser 1                 | TEJ           | $36.00^{*}$ | $41.33^{*}$ | $24.55^{*}$ | $45.01^{*}$        |
| 226      | 536afc14.0 | IRAT 44                 | TRJ           | $42.80^{*}$ | $44.91^{*}$ | $21.75^{*}$ | $35.56^{*}$        |
| 227      | a7983b03.0 | Riz Local               | ADM-IND       | 41.44       | $43.75^{*}$ | $18.08^*$   | $33.11^{*}$        |
| 228      | 195567bf.0 | CA 902/B/2/1            | AUS           | 31.93*      | $30.48^{*}$ | $13.90^{*}$ | $27.20^{*}$        |
| 229      | NA         | Niquen                  | TRJ           | 24.70       | 30.61       | NA          | NA                 |
| 230      | 0ede42bd.0 | NSF-TV 230              | TEJ           | 38.86*      | NA          | NA          | NA                 |
| 231      | 49649a00.0 | Hunan Early Dwarf No. 3 | IND           | $23.58^{*}$ | $22.39^{*}$ | $14.07^{*}$ | $42.10^{*}$        |
| 232      | c528bce0.0 | Shangyu 394             | TEJ           | $33.02^{*}$ | 36.21*      | $17.43^{*}$ | 39.43*             |
| 233      | ca615802.0 | Sung Liao 2             | TEJ           | 29.06*      | 37.16*      | $22.90^{*}$ | 50.70*             |
| 234      | 32ca1759.0 | Aijiaonante             | IND           | 35.72*      | 30.00*      | $14.71^{*}$ | 35.37*             |
| 235      | 13ae4f27.0 | Sze Guen Zim            | IND           | 30.77*      | 34.14*      | 17.89*      | $29.44^{*}$        |
| 236      | eb17cda6.0 | WC 521                  | ADM-JAP       | 35.95*      | 45.13*      | 23.66*      | 42.64*             |
| 237      | dc2cf39b.0 | Estrela                 | ADM-JAP       | 36.09*      | 35.09*      | 14.66*      | 32.06*             |
| 238      | 9b36ce98.0 | WAB 56-104              | TRJ           | 26.34*      | 43.34*      | 15.89*      | 33.95*             |
| 239      | 523d5ec4.0 | WAB 502-13-4-1          | TRJ           | 30.93*      | $47.80^{*}$ | $17.92^{*}$ | 32.33*             |

Table S1. Continued

| 240   6263b1.01   WAB 501-11-5-1   TKJ   35.90"   42.72"   23.05"   33.44"     241   227724-10.0   CIA76-S89-1   TKJ   33.14"   44.91"   24.05"   33.66"     243   444erT9-0.0   Tropical Rice   TEI   21.54"   37.59"   34.69"   33.06"     244   SetReS2.0   Arabi   ADM-IAP   31.95"   30.86"   17.44"   33.01"     246   SetNation   ADM-IAP   31.95"   30.86"   10.46"   40.05"     247   de7a2T6/0   Caccasica   TEI   41.68"   41.82"   25.44"   46.07"     248   9b371874.0   Caccasica   TEI   33.65"   49.2"   22.64"   46.07"     250   Ske1162.0   Buigare   TEI   33.65"   19.42"   23.44"   33.66"     251   C2sad349.0   Pi1256*76-1-1-1   TRI   35.6"   56.53   22.06"   56.53   22.06"   34.43"     252   Sof6103.0   Guineandao   ADM-JA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NSFTV ID | HDRA ID    | Accession name          | Subpopulation | ArFl06      | ArFl07                      | TxFl09          | TxUnfl09           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------------------------|---------------|-------------|-----------------------------|-----------------|--------------------|
| 241   2a7724.10   ECLA76880-1   IND   32.44"   43.80"   20.68"   24.475"     242   b2175280   27   TRI   33.44"   44.91"   34.06"   32.00"     244   Scefe822.0   Aubi   AUDATAP   33.35"   14.69"   17.44"   32.16"     245   Scefe822.0   Aubi   TEJ   34.33"   34.60"   17.44"   32.16"     246   CeN15776.0   Dexuaxii   TEJ   35.35"   40.05"   19.44"   40.60"     248   SPN1870.0   Dexuaxii   TEJ   36.64"   41.82"   25.44"   40.07"     249   SR01162.0   Dijmoron   TND   23.87"   36.64"   17.25"   34.64"     253   19112630.0   Dijmoron   IND   NA   27.29"   34.45"     254   NA   Hon Chim   ND   NA   27.29"   34.45"     254   NA   Hon Chim   IND   NA   27.09"   34.45"     255   Stof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240      | 6f263bd1.0 | WAB 501-11-5-1          | TRJ           | $35.90^{*}$ | $42.72^{*}$                 | $23.05^{*}$     | 33.44*             |
| 242   b217528.0   27   TRJ   33.14   44.91   24.67     243   44erT9.0   Arabi   ADM-JAP   31.95   30.86   17.44   32.16'     244   Sete862.0   Arabi   ADM-JAP   31.95'   30.86'   17.45'   30.05'     246   Rest1a10.0   Saraya   AUS   33.83'   43.64'   15.80'   30.05'     247   de7a7bf.0   Desvauxii   TEJ   35.35'   40.05'   19.46'   46.07'     248   9871[874.0   Caucasica   TEJ   38.62'   64.31'   23.64'   52.51'     250   S861[162.0   Buigarc   TEJ   38.67'   39.22'   22.63'   44.65'     251   256[5102.0   Dimora   IND   NA   27.20'   14.45'   34.36'     254   NA   Ho Chim   IND   NA   27.20'   14.45'   31.95'     254   NA   Ho Chim   IND   NA   27.22'   29.25'   44.64'   30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 241      | 2a7724c1.0 | ECIA76-S89-1            | IND           | $32.44^{*}$ | $43.80^{*}$                 | $20.68^{*}$     | $44.75^{*}$        |
| 244   Science2.0   Aubi   ADM-JAP   31.57   14.59   17.44   32.06'     244   Science2.0   Aubi   TEI   34.33   43.64   15.80   30.05'     246   colls776.0   Sarayn   AUS   34.83'   34.66'   15.74'   37.45'     247   deTacThO   Desvauxii   TEJ   35.35'   40.05'   19.46'   46.67'     248   95.71874.0   Cacasica   TEJ   35.65'   44.182'   25.46'   42.60'   52.61'   22.63'   42.33'   42.60'   52.61'   32.66'   17.35'   34.69'     253   1911263.0   Djimoron   IND   NA   72.02'   34.45'   31.15'   256'   0b52048.0   Romina   TEJ   25.7'   24.64'   17.25'   31.65'   15.6'   20.50'   25.8'   31.65'   15.4''   30.5''   21.0'''   34.4''   31.15''     254   NA   Hon Chim   IND   NA   77.00''   34.4'''   30.5'''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242      | b21f7528.0 | 27                      | TRJ           | 33.14*      | $44.91^{*}$                 | $24.20^{*}$     | 32.66*             |
| 244 Sele Sele 2.0 Arabi ADM-AP 31.93 30.86 17.44 32.16   245 Ssh Ini TEJ 34.33 43.64 15.80 30.07   246 c0815776.0 Saraya AUS 34.83 34.05 17.44 37.45   247 dr.archf.0 Caucasica TEJ 35.55 40.05 19.46 40.69   248 937187.10 Caucasica TEJ 38.62 64.31 22.60 25.44 38.33   251 625.030.0 Primac 69 TEJ 38.62 65.63 22.63 34.69   252 565103.0 Ojimoron IND NA 73.25 34.69   253 1911636.3 Guneandao ADM-JAP 32.56 56.53 20.62 34.45   254 NA Hon Chim IND NA 27.29 14.45 31.15'   256 00c26021.0 Romanica TEJ 25.17 27.48 15.46 30.55'   259 fc0cc33.0 Sadri Tor Misri ADM-IND NA 37.00' 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 243      | 44aeff79.0 | Tropical Rice           | TEJ           | $21.54^{*}$ | $37.59^{*}$                 | $14.59^{*}$     | $33.09^{*}$        |
| 246841a10a.0Sah IniTEJ34.3334.4443.6415.8473.45724706815776.0DexuaxiaTEJ35.5540.0519.4640.6972489871874.0CuucasiaTEJ41.0541.84225.4446.072498762133.0Primae 69TEJ32.7143.1623.6052.31725088c1162.0BulgareTEJ32.7143.1623.6052.3172511226343.0DigmoronIND25.8333.6617.2434.432531911363.0GuineandaoADM-JAP23.6556.5322.6034.43254NAHon ChimIND29.0830.6219.2224.223255366284.30RomanicaTEJ26.7727.4815.4630.562560bc20408.0RomanicaTEJ26.7727.4815.4630.5625860c3621.0Tia BuraTRI29.5431.9317.12'16.35259fc70cc33.0Sadri Tor MisriADM-INDNA37.00'16.7824.39260bialo61.0NSF-TV 260ARO38.81'35.60'18.57'25.65'262150±1660Halwa Gose RedAUS38.81'35.60'18.57'25.65'264121236.0BatolADM-JAP27.18'30.30'19.59'33.86'264121236.0MaraelliTEJ30.70'14.83'25.7'37.61'<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 244      | 5efe8622.0 | Arabi                   | ADM-JAP       | 31.93*      | $30.86^*$                   | $17.44^{*}$     | $32.16^{*}$        |
| 246 $e0815776.0$ SarayaAUS $34.83^\circ$ $34.69^\circ$ $17.44^\circ$ $27.45^\circ$ 247 $de7arc)ftO$ DevauxiTEI $41.68^\circ$ $12.44^\circ$ $40.69^\circ$ 248 $9871874.0$ CaucasicaTEI $41.68^\circ$ $12.54^\circ$ $42.44^\circ$ $40.69^\circ$ 249 $8762133.00$ Pirinac $69$ TEI $38.62^\circ$ $64.31^\circ$ $22.60^\circ$ $52.51^\circ$ 250 $88e1162.0$ DigmoroIKD $25.83^\circ$ $33.66^\circ$ $12.25^\circ$ $42.23^\circ$ 251 $125a349.0$ H256-76-1-1-1TRI $35.87^\circ$ $39.32^\circ$ $22.67^\circ$ $42.23^\circ$ 253 $1911c363.0$ GuineandaoADM-JAP $32.26^\circ$ $56.53^\circ$ $22.69^\circ$ $34.43^\circ$ 254NAHon ChimIKDNA $27.29^\circ$ $14.45^\circ$ $31.15^\circ$ 255 $3h62843.0$ Pai Hok ClutinousIKDNA $27.29^\circ$ $14.46^\circ$ $30.56^\circ$ 258 $60c3621.0$ AgusinTEI $25.17^\circ$ $27.48^\circ$ $15.46^\circ$ $30.56^\circ$ 259 $fc70ec33.0$ Sadir for MiariADM-INDNA $37.00^\circ$ $16.78^\circ$ $22.56^\circ$ 261cefy8a3.0Sadir for MiariADM-INDNA $37.00^\circ$ $16.78^\circ$ $22.56^\circ$ 262f50e146.0HalwaGose RedAUS $39.84^\circ$ $30.30^\circ$ $19.5^\circ$ $33.86^\circ$ 263cefy8a3.0BaldoADM-JAP $37.4^\circ$ $35.44^\circ$ $23.57^\circ$ $37.64^\circ$ 264f21234.0Baldo                                                                                     | 245      | 8a41a10a.0 | Sab Ini                 | TEJ           | $34.33^{*}$ | $43.64^{*}$                 | $15.80^{*}$     | $30.03^{*}$        |
| 247   defactor   Desvaxii   TEJ   35.35   40.05   19.46   40.67     248   98718740   Caucasica   TEJ   38.62   64.31   23.60   52.51     250   88e1f162.0   Bulgare   TEJ   32.71   43.16   31.82   22.63   42.23     251   1223d349.0   Djimoron   IND   25.85   33.66   17.27   34.43     253   1911c363.0   Guineandao   ADM-JAP   25.65   55.53   22.69   34.43     254   NA   Hon Chim   IND   29.08   30.62   19.24   44.65     255   3b62281.0   Ramaria   TEI   26.17   27.48   15.46   30.57     256   0b6230.8   Romaria   TBI   25.17   27.48   15.46   30.56   16.55     258   60c36211.0   Ta Bura   TRI   29.17   27.44   15.46   33.53   16.55     260   bride601.0   NFI-TV 260   ARO   38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 246      | e0815776.0 | Saraya                  | AUS           | 34.83*      | 34.69*                      | $17.54^{*}$     | $37.45^{*}$        |
| 2489b3718740CaucasiaTEJ41.0841.82'22.44'44.04'249876213300Phinae 69TEJ38.62'64.31'23.60'52.51'25088e1162.0BulgareTEJ32.71'43.16'15.54'38.33'251125a1349.0H256-76-1-1-1TRI35.87'39.32'22.63'42.23'2525610305.0DjimoronIND75.83'33.66'17.25'34.69'25319116363.0GuineandaoADM-JAP32.56'56.53'22.69'34.43'254NAHon ChimINDNA27.29'14.45'31.15'2560bc2da08.0RomanicaTEJ26.72'42.23'17.22'29.29'257crbs18d1.0AgusiaTEJ25.17'27.48'15.46'30.56'25860c3621.0Tia BuraTRI29.54'31.93'17.12'16.35'259fc70c23.0Shim BalteAUS38.81'35.00'18.57'25.65'261ccb798a.30Shim BalteAUS39.89'53.94'18.37'25.65'263c42518'c.0MaracelliTEJ30.70'19.59'33.86'264f212364.0BaldoADM-JAP27.18'39.30'19.59'33.86'265f34448(0.0)VialoneADM-JAP27.18'39.30'19.59'33.48'264f212364.0BaldoADM-JAP27.18'39.10'18.38'51.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 247      | de7ac7bf.0 | Desvauxii               | TEJ           | $35.35^{*}$ | $40.05^{*}$                 | $19.46^{*}$     | $40.69^{*}$        |
| 249   8762130.00   Pirime 69   TEI   38.62"   64.31   52.60"   52.11"     250   B861f162.00   Bulgare   TEI   32.71"   43.16"   15.54"   38.33"     251   I25ad349.00   H256-76-1-1-1   TRJ   32.71"   43.16"   15.74"   44.23"     253   1911636.0   Djimoron   IND   22.66"   56.53"   22.66"   44.23"     254   NA   Hon Chim   IND   20.08   30.62   12.24"   44.65     255   3062843.0   Romanica   TEI   26.77"   42.63"   17.22"   29.29"     257   cb9c18d10.   Agusia   TEI   25.17"   72.45"   15.46"   30.56"     258   60c36211.0   Ta Bura   TRI   29.54"   31.93"   18.33"   26.44"     260   bfa16661.0   NSir-TV 260   ARO   38.42"   35.09"   18.33"   26.44"     261   ccb798a3.0   Simin Balte   AUS   38.81"   35.60" </td <td>248</td> <td>9b37187d.0</td> <td>Caucasica</td> <td>TEJ</td> <td><math>41.68^{*}</math></td> <td><math>41.82^{*}</math></td> <td><math>25.44^{*}</math></td> <td><math>46.07^{*}</math></td>                                                                                                                                                                                                                                                                                                                                            | 248      | 9b37187d.0 | Caucasica               | TEJ           | $41.68^{*}$ | $41.82^{*}$                 | $25.44^{*}$     | $46.07^{*}$        |
| 250   88c [162.0]   Bulgare   TEI   32.71'   43.16'   15.4'   88.3''     251   125ad340.0   H256-76-1-1-1   TRI   35.87'   39.32'   22.6''   42.25'     252   50f5103c.0   Djimoron   IND   25.8''   39.32'   22.6''   34.43''     254   NA   Hon Chim   IND   NA   27.25'   44.65'     255   31602443.0   Pai Hok Glutinous   IND   NA   27.25'   44.65'     256   0bc20a08.0   Romanica   TEI   25.17'   27.48'   41.45'   31.15''     258   6bc3621.0   Agusin   TEI   25.17'   27.48''   15.46''   30.95''     259   fc70c33   Sadri Tor Misri   ADM-IND   NA   37.00''   16.35''     250   bfa1661.0   NFT-V 260   ARO   38.4''   30.93''   18.3''   26.46''     261   cc4798a.3   Baloi   ADM-JAP   27.18''   46.4''   23.3'''''''''''''   37.46''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 249      | 87621330.0 | Pirinae 69              | TEJ           | $38.62^{*}$ | 64.31*                      | $23.60^{*}$     | $52.51^{*}$        |
| 251 $P25a(34)0.0$ $H25c,76-1-1-1$ $TRI$ $78,87^{+}$ $99,32^{+}$ $22.63^{+}$ $42.25^{+}$ 2531911c363.0DjimoronIND $25.83^{+}$ $33.66^{+}$ $17.25^{+}$ $34.69^{+}$ 2531911c363.0GuineandaoADM-JAP $22.55^{+}$ $55.53^{+}$ $22.69^{+}$ $34.43^{-}$ 254NAHon ChimIND $20.08^{+}$ $30.62^{-}$ $12.28^{+}$ $44.65^{-}$ 255 $50bc284.30$ RomanicaTEI $26.72^{-}$ $42.63^{+}$ $11.5^{+}$ 256 $0bc2008.0$ RomanicaTEI $25.17^{+}$ $27.48^{+}$ $15.46^{-}$ 257 $cbc9c184.0$ AgusinTEI $25.17^{+}$ $27.48^{+}$ $15.46^{-}$ 258 $60c3621.0$ Tia BuraTRI $29.54^{+}$ $31.93^{+}$ $18.33^{-}$ $24.39^{-}$ 260bfa16661.0NSF-TV 260ARO $38.42^{-}$ $30.93^{+}$ $18.33^{-}$ $26.48^{+}$ 261 $cb798a3.0$ Shim BalteAUS $38.81^{+}$ $35.60^{+}$ $18.33^{-}$ $33.76^{+}$ 263 $c7dc213.c.0$ MaratelliTEI $42.55^{+}$ $54.64^{+}$ $23.33^{+}$ $33.86^{+}$ 264 $2712264.0$ BaldoADM-JAP $21.8^{+}$ $39.30^{+}$ $19.30^{+}$ $19.37^{+}$ 266 $7422180.0$ HiderisirazuADM-JAP $32.7^{+}$ $44.01^{+}$ $48.3^{+}$ $23.57^{+}$ $41.09^{+}$ 266 $74242360.0$ HiderisirazuADM-JAP $33.65^{+}$ $23.64^{+}$ <                                                                                                                                                                                                               | 250      | 88e1f162.0 | Bulgare                 | TEJ           | 32.71*      | $43.16^{*}$                 | $15.54^{*}$     | $38.33^{*}$        |
| 252   566103e.0   Djimoron   IND   28.83   33.66'   17.25'   34.43'     253   1911c363.0   Guincandao   ADM-JAP   32.56'   56.53'   22.69'   34.43'     254   NA   Hon Chim   IND   NA   27.29'   14.45'   31.15'     255   31bc2443.0   Pai Hok Gluinous   IND   NA   27.29'   14.44's'   31.15'     256   bc02008.0   Romanica   TEI   25.17'   27.48'   30.95'   16.35'     259   fc70c033.0   Sadn Tor Misri   ADM-IND   NA   37.00'   16.78'   24.48'     261   ccf978a.30   Shim Balte   AUS   39.89'   53.94'   18.35'   25.65'     262   f30c1466.0   Halva Gose Red   AUS   39.80'   18.50'   18.57'   25.65'     263   cr1261.3c.0   Maratelli   TEJ   30.7'   18.35'   11.0'''     266   Frda250.0   Hiderisinzzu   ADM-JAP   27.18'   39.30'''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 251      | f25ad349.0 | H256-76-1-1-1           | TRJ           | $35.87^{*}$ | $39.32^{*}$                 | $22.63^{*}$     | $42.23^{*}$        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 252      | 56f5103e.0 | Djimoron                | IND           | $25.83^{*}$ | 33.66*                      | $17.25^{*}$     | 34.69*             |
| 254   NA   Hon Chim   IND   29.08   30.62   19.28 <sup>±</sup> 44.65     255   3bbc2843.0   Romanica   TEJ   25.7 <sup>±</sup> 21.45 <sup>±</sup> 31.15 <sup>±</sup> 256   obc20a08.0   Romanica   TEJ   25.17 <sup>±</sup> 27.48 <sup>±</sup> 15.46 <sup>±</sup> 30.56 <sup>±</sup> 258   obc3621.0   Tia Bura   TRJ   25.17 <sup>±</sup> 27.48 <sup>±</sup> 15.46 <sup>±</sup> 30.56 <sup>±</sup> 259   fc70ce33.0   Sadit Tor Misri   ADM-IND   NA   37.00 <sup>±</sup> 16.78 <sup>±</sup> 24.39 <sup>±</sup> 261   ceb798a.3.0   Shim Balte   AUS   39.89 <sup>±</sup> 53.34 <sup>±</sup> 18.37 <sup>±</sup> 25.65 <sup>±</sup> 262   f30e146b.0   Haltwa Gose Red   AUS   39.89 <sup>±</sup> 53.94 <sup>±</sup> 18.19 <sup>±</sup> 33.76 <sup>±</sup> 263   cf4215264.0   Baldo   ADM-IAP   27.18 <sup>±</sup> 39.30 <sup>±</sup> 19.59 <sup>±</sup> 33.86 <sup>±</sup> 265   5444480.0   Vailone   ADM-IAP   42.27 <sup>±</sup> 44.01 <sup>±</sup> 18.38 <sup>±</sup> 51.77 <sup>±</sup> 267   rede3322.0   Hatsminishik <td< td=""><td>253</td><td>1911c363.0</td><td>Guineandao</td><td>ADM-JAP</td><td><math>32.56^{*}</math></td><td><math>56.53^{*}</math></td><td><math>22.69^{*}</math></td><td><math>34.43^{*}</math></td></td<>                                             | 253      | 1911c363.0 | Guineandao              | ADM-JAP       | $32.56^{*}$ | $56.53^{*}$                 | $22.69^{*}$     | $34.43^{*}$        |
| 255   3/B62843.0   Pai Hok Glutinous   IND   NA   27.29°   14.45°   31.15°     256   0be20a08.0   Romanica   TEJ   26.72°   42.63°   17.22°   32.929°     257   cbbc18df.0   Agusia   TEJ   25.1°   27.48°   15.46°   30.56°     258   600:36211.0   Tia Bura   TRI   29.54°   31.93°   17.12°   16.78°   24.39°     260   bfa16661.0   NSF-TV 260   ARO   38.42°   30.93°   18.33°   26.48°     261   ccb798a.30   Shim Balle   AUS   38.81°   35.00°   18.57°   25.66°     262   170:14.00   Matarolfiel   TEJ   42.55°   54.44°   23.33°   53.44°     264   1712364.0   Baldo   ADM-JAP   21.84°   23.37°   37.61°     265   544448c0.0   Vialone   ADM-JAP   43.49°   14.48°   27.74°     266   f7da2506.0   Hatsonishkik   TEJ   26.37°   35.56°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 254      | NA         | Hon Chim                | IND           | 29.08       | 30.62                       | $19.28^{*}$     | 44.65              |
| 256   Obe2008.0   Romanica   TEJ   26.72   42.63   17.22   29.29'     257   cb9c18df.0   Agusita   TEJ   25.17'   27.48'   15.46'   30.56'     258   60c362f.10   Tia Bura   TRJ   25.54'   31.93'   17.12'   16.35'     259   fc70ce33.0   Sain Tor Misri   ADM-IND   NA   37.00'   18.33'   26.44'     260   bfa16661.0   NSF-TV 260   ARO   38.81'   35.60'   18.33'   25.65'     261   ccb7298a.30   Siim Balte   AUS   39.89'   53.04'   18.33'   25.65'     263   c7d213e.0   Maratelli   TEJ   42.57'   44.01'   18.33'   53.86'     265   54448c0.0   Vialone   ADM-JAP   73.18'   39.30'   12.55'   54.44   23.37'   71.61'     268   by3040b.0   Vaviovi   TEJ   20.97'   42.84'   14.87'   22.86'   41.09'     267   c6815ccd.0 <t< td=""><td>255</td><td>3fb62843.0</td><td>Pai Hok Glutinous</td><td>IND</td><td>NA</td><td><math>27.29^{*}</math></td><td><math>14.45^{*}</math></td><td><math>31.15^{*}</math></td></t<>                                                                                                                                                                                                                                                                                                                                                    | 255      | 3fb62843.0 | Pai Hok Glutinous       | IND           | NA          | $27.29^{*}$                 | $14.45^{*}$     | $31.15^{*}$        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 256      | 0be20a08.0 | Romanica                | TEJ           | $26.72^{*}$ | $42.63^{*}$                 | $17.22^{*}$     | $29.29^{*}$        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 257      | cb9c18df.0 | Agusita                 | TEJ           | $25.17^{*}$ | $27.48^*$                   | $15.46^{*}$     | $30.56^{*}$        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 258      | 60c362f1.0 | Tia Bura                | TRJ           | $29.54^{*}$ | 31.93*                      | $17.12^{*}$     | $16.35^{*}$        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 259      | fe70ec33.0 | Sadri Tor Misri         | ADM-IND       | NA          | $37.00^{*}$                 | $16.78^{*}$     | $24.39^{*}$        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 260      | bfa16661.0 | NSF-TV 260              | ARO           | $38.42^{*}$ | 30.93*                      | $18.33^{*}$     | $26.48^{*}$        |
| 262f30e146b.0Halwa Gose RedAUS $39.89^{\circ}$ $53.94^{\circ}$ $18.19^{\circ}$ $33.76^{\circ}$ 263 $c^{\circ}c^{2}d^{2}S13e.0$ MaratelliTEJ $42.55^{\circ}$ $54.64^{\circ}$ $23.33^{\circ}$ $53.86^{\circ}$ 264 $f^{\circ}c^{2}d^{2}S13e.0$ HaldoADM-JAP $36.49^{\circ}$ $48.90^{\circ}$ $22.56^{\circ}$ $41.09^{\circ}$ 265 $544448c_{0.0}$ VialoneADM-JAP $43.27^{\circ}$ $44.01^{\circ}$ $18.38^{\circ}$ $51.77^{\circ}$ 267aceb3352.0HatsunishikiTEJ $26.37^{\circ}$ $32.55^{\circ}$ $17.05^{\circ}$ $27.94^{\circ}$ 268b49ad0db.0VaviloviTEJ $26.37^{\circ}$ $32.55^{\circ}$ $17.05^{\circ}$ $27.94^{\circ}$ 269092f15c7.0SundensisIND29.05^{\circ} $43.98^{\circ}$ $19.30^{\circ}$ $28.62^{\circ}$ 2706615cc6d.0OsogovkaTEJ $27.4^{\circ}$ $39.46^{\circ}$ $22.48^{\circ}$ $7.89^{\circ}$ 271b67(1365.0M. BlatecTEJ $7.72^{\circ}$ $39.30^{\circ}$ $24.01^{\circ}$ $39.46^{\circ}$ 273493(2b7c.0VarylaTRJ $38.88^{\circ}$ $57.26^{\circ}$ $21.01^{\circ}$ $39.91^{\circ}$ 2747dba928c.0Padi PagalongTRJ $41.99^{\circ}$ $46.45^{\circ}$ $22.24^{\circ}$ $30.30^{\circ}$ 27507dac217.0Si Malaysia DuaTEJ $27.24^{\circ}$ $35.98^{\circ}$ $20.71^{\circ}$ $36.34^{\circ}$ 276fc26ce23.0KaukauAUS $38.90^{\circ}$ $40.01^{\circ}$ $24.08^{\circ}$ $28.75^{\circ}$ 2771516d751.0Gambiaka | 261      | ceb798a3.0 | Shim Balte              | AUS           | 38.81*      | $35.60^{*}$                 | $18.57^{*}$     | $25.65^{*}$        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 262      | f30e146b.0 | Halwa Gose Red          | AUS           | 39.89*      | 53.94*                      | $18.19^{*}$     | 33.76*             |
| 264If 2f12364.0BaldoADM-JAP27.1839.3019.5933.86'265S44148c.0.0VialoneADM-JAP36.49'48.90'22.56'41.09'266f7da2506.0HiderisirazuADM-JAP43.27'44.81'18.38'51.77'267aceb3352.0HatsunishikiTEJ26.37'42.83'23.57'37.61'268b49ad0db.0VaviloviTEJ26.37'35.56'17.05'27.94'269092f15e7.0SundensisIND29.05'43.98'19.30'28.62'2706815cc6d.0OsogovkaTEJ23.41'34.49'14.87'27.89'271b67fd5f6.0M. BlatecTEJ37.72'50.30'24.01'50.84'272c7301040.0923ADM38.19'39.16'18.96''30.80''273493f2b7e.0VarylaTRJ41.99''46.45''22.24''30.30'2747dba928e.0Padi PagalongTRJ41.99''46.45''22.24'''30.30''27507dac217.0Sri Malaysia DuaTEJ27.04''25.95'''55.87''2771516d75t0Gambiaka SebelaTEJ40.96''50.38''26.79''55.87'27817627a92.0C1-6-5-3ADM39.96''27.70''22.16'''NA2796423340.0Kon SuitoADM21.39''31.99''14.64''26.93''28058d5bla6.0RatuaADM-JAP<                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 263      | c7d2513e.0 | Maratelli               | TEJ           | 42.55*      | 54.64*                      | 23.33*          | 53.48*             |
| 265544f480.0VialoneADM-JAP36.49°48.90°22.56°41.09°266f'da2506.0HiderisirazuADM-JAP $43.27°$ 44.01°18.38°51.77°267aceb3352.0HatsunishikiTEJ30.97°42.81°32.357°37.61°268b49ad0db.0VaviloviTEJ26.37°35.56°17.05°27.94°269092115e7.0SundensisIND29.05°43.98°19.30°28.62°2706815cc6d.0OsgovkaTEJ28.41°34.49°14.87°27.88°271b67635f6.0M. BlatecTEJ37.72°50.30°24.01°50.84°272c7301040.092.3ADM38.19°37.26°21.01°39.916°273493£D7c.0VarylaTRJ41.99°46.45°22.24°30.30°2747dba928e.0Padi PagalongTRJ41.99°46.45°22.24°30.30°27507dac217.0Sri Malaysia DuaTEJ27.29°40.01°24.0828.75°2771516d75f.0Gambiaka SebelaTEJ40.96°50.38°26.79°55.87°27817627a92.0C1-6-5-3ADM39.96°27.70°22.16°NA2796422349.0Kon SuitoADM21.39°31.99°14.6426.93°28058d5bdc3.0SakuTRJ41.63°49.50°24.21°38.16°28185959164.0PatnaADM-JAP41.53°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 264      | f2f12364.0 | Baldo                   | ADM-JAP       | 27.18*      | 39.30*                      | 19.59*          | 33.86*             |
| 266f7da2506.0HiderisirazuADM-JAP $43.27^{*}$ $44.01^{*}$ $18.38^{*}$ $51.77^{*}$ 267aceb3352.0HatsunishikiTEJ $30.97^{*}$ $42.83^{*}$ $23.57^{*}$ $37.61^{*}$ 268b49ad0db.0VaviloviTEJ $26.37^{*}$ $35.56^{*}$ $17.05^{*}$ $27.94^{*}$ 269092f15e7.0SundensisIND $29.05^{*}$ $43.98^{*}$ $19.30^{*}$ $28.62^{*}$ 2706815ec6d.0OsogovkaTEJ $28.41^{*}$ $34.49^{*}$ $14.87^{*}$ $27.94^{*}$ 271b67dt5f6.0M. BlatecTEJ $37.72^{*}$ $50.30^{*}$ $24.01^{*}$ $50.84^{*}$ 273493f2b7e.0VarylaTRJ $41.99^{*}$ $64.45^{*}$ $22.24^{*}$ $30.30^{*}$ 2747dba928e.0Padi PagalongTRJ $41.99^{*}$ $64.45^{*}$ $22.24^{*}$ $30.30^{*}$ 27507dac217.0Sti Malaysia DuaTEJ $27.24^{*}$ $35.98^{*}$ $20.71^{*}$ $55.87^{*}$ 276fc26ce23.0KaukauAUS $38.90^{*}$ $40.01^{*}$ $24.08^{*}$ $28.75^{*}$ 2771516d75f.0Gambiaka SebelaTEJ $40.96^{*}$ $50.38^{*}$ $26.79^{*}$ $55.87^{*}$ 2781642238d9.0Kon SuitoADM $21.39^{*}$ $31.99^{*}$ $14.64^{*}$ $26.93^{*}$ 28058d5bdc3.0SakuTRJ $44.44^{*}$ $48.33^{*}$ $28.76^{*}$ $54.95^{*}$ 28185959164.0PitnaADM-JAP $41$                                                                                                                                                                                                                                            | 265      | 544f48c0.0 | Vialone                 | ADM-JAP       | 36.49*      | $48.90^{*}$                 | 22.56*          | $41.09^{*}$        |
| 267aceb3352.0HatsunishikiTEJ $30.97^*$ $42.83^*$ $23.57^*$ $37.61^*$ 268b49addb.0VaviloviTEJ $26.37^*$ $35.56^*$ $17.05^*$ $27.94^*$ 269092f15c7.0SundensisIND29.05^* $43.98^*$ $19.30^*$ $28.62^*$ 2706815c6d.0OsogovkaTEJ $28.41^*$ $34.49^*$ $14.87^*$ $27.89^*$ 271b67fd5f6.0M. BlatecTEJ $37.72^*$ $50.30^*$ $24.01^*$ $50.84^*$ 272c7301040.0923ADM $38.19^*$ $39.16^*$ $18.96^*$ $30.80^*$ 2734932b7c.0VarylaTRJ $41.99^*$ $46.45^*$ $22.24^*$ $30.30^*$ 2747dba928c.0Padi PagalongTRJ $41.99^*$ $46.45^*$ $22.24^*$ $30.30^*$ 27507dac217.0Sri Malaysia DuaTEJ $27.24^*$ $35.98^*$ $20.71^*$ $36.34^*$ 276fc26cc23.0KaukauAUS $38.99^*$ $40.01^*$ $24.08^*$ $28.75^*$ 27817627a92.0C1-6-5-3ADM $39.96^*$ $27.70^*$ $22.16^*$ NA2796423849.0Kon SuitoADM $21.39^*$ $31.99^*$ $14.64^*$ $26.93^*$ 28058d5bdc3.0SakuTRJ $41.44^*$ $48.33^*$ $28.75^*$ $28.67^*$ $55.87^*$ 28185959164.0PatnaADM-JAP $41.53^*$ $49.50^*$ $24.21^*$ $38.16^*$ 284a32e0586.0IR 44595 <td>266</td> <td>f7da2506.0</td> <td>Hiderisirazu</td> <td>ADM-JAP</td> <td>43.27*</td> <td>44.01*</td> <td>18.38*</td> <td>51.77*</td>                                                                                                                                                                             | 266      | f7da2506.0 | Hiderisirazu            | ADM-JAP       | 43.27*      | 44.01*                      | 18.38*          | 51.77*             |
| 268   b49ad0b.0   Vavilovi   TEJ   26.37°   35.56°   17.05°   27.94°     269   092115c7.0   Sundensis   IND   29.05°   43.98°   19.30°   28.62°     270   6815cc6d.0   Osogovka   TEJ   28.11°   34.49°   14.87°   27.89°     271   b67fd5f6.0   M. Blatec   TEJ   37.72°   50.30°   24.01°   50.84°     272   c7301040.0   923   ADM   38.19°   39.16°   18.96°   30.80°     273   493f2b7c.0   Varyla   TRJ   38.88°   57.26°   21.01°   39.91°     274   7dba228.0   Padi Pagalong   TRJ   44.95°   46.45°   22.24°   30.30°     275   07dac217.0   Sri Malaysia Dua   TEJ   27.24°   35.98°   20.71°   36.34°     276   fc2cac2.3.0   Kaukau   AUS   38.90°   40.01°   24.08°   58.87°     278   17627a92.0   C1-6-5-3   ADM   39.96° <td< td=""><td>267</td><td>aceb3352.0</td><td>Hatsunishiki</td><td>TEJ</td><td>30.97*</td><td><math>42.83^{*}</math></td><td><math>23.57^{*}</math></td><td>37.61*</td></td<>                                                                                                                                                                                                                                                                                                                                                                    | 267      | aceb3352.0 | Hatsunishiki            | TEJ           | 30.97*      | $42.83^{*}$                 | $23.57^{*}$     | 37.61*             |
| 269   092115-7.0   Sundensis   IND   29.05*   43.98*   19.30*   28.62*     270   6815ec6d.0   Osogovka   TEJ   28.41*   34.49*   14.87*   27.89*     271   b67fd5f6.0   M. Blatec   TEJ   37.7*   50.30*   24.01*   50.84*     272   c730104.0   92.3   ADM   38.19*   39.16*   18.96*   30.80*     273   493f2b7e.0   Varyla   TRJ   38.88*   57.26*   21.01*   39.91*     274   7dba928e.0   Padi Pagalong   TRJ   41.99*   46.45*   22.24*   30.30*     275   07dac217.0   Sri Malaysia Dua   TEJ   27.24*   35.98*   20.71*   36.34*     276   fc2dce23.0   Kaukau   AUS   38.90*   40.01*   24.08*   28.75*     277   1516d75f.0   Gambiaka Sebela   TEJ   40.96*   50.38*   26.79*   55.87*     278   16627a92.0   C1-6-5-3   ADM   21.99*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 268      | b49ad0db.0 | Vavilovi                | TEJ           | 26.37*      | 35.56*                      | 17.05*          | $27.94^{*}$        |
| 270   6815cc6d.0   Osogovka   TEJ   28.4"   34.49"   14.87"   27.8"     271   b67fd5f6.0   M. Blatec   TEJ   37.72"   50.30"   24.01"   50.84"     272   c7301040.0   923   ADM   38.19"   38.19"   39.16"   18.96"   30.80"     273   493£D7.0   Varyla   TRJ   41.99"   46.45"   22.24"   30.30"     275   07dac217.0   Sri Malaysia Dua   TEJ   27.24"   35.98"   20.71"   36.34"     276   fc26cc23.0   Kaukau   AUS   38.90"   40.01"   24.08"   28.75"     278   17627a92.0   C1-6-5-3   ADM   39.96"   27.70"   22.16"   NA     279   642238d9.0   Kon Suito   ADM   21.39"   31.64"   26.93"     281   85959164.0   Patna   ADM-IAP   41.53"   49.50"   24.21"   38.16"     282   5aa79684.0   Triomphe Du Maroc   TEJ   37.00"   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 269      | 092f15e7.0 | Sundensis               | IND           | 29.05*      | $43.98^{*}$                 | 19.30*          | 28.62*             |
| 271   b67fd5f6.0   M. Blatec   TEJ   37.72*   50.30*   24.01*   50.84*     272   c7301040.0   923   ADM   38.19*   39.16*   18.96*   30.80*     273   493f2b7e.0   Varyla   TRJ   38.88*   57.26*   21.01*   39.91*     274   7dba928c.0   Padi Pagalong   TRJ   41.99*   46.45*   22.24*   30.30*     275   07dac217.0   Sri Malaysia Dua   TEJ   27.24*   35.98*   20.71*   36.34*     276   fc26ce23.0   Kaukau   AUS   38.90*   40.01*   24.08*   28.75*     277   1516d75f.0   Gambiaka Sebela   TEJ   40.96*   50.38*   26.79*   55.87*     278   17627a92.0   C1-6-5-3   ADM   39.96*   27.70*   22.16*   NA     279   642238d9.0   Kon Suito   ADM   21.39*   31.99*   14.64*   26.93*     281   85959164.0   Triomphe Du Maroc   TEJ   37.00* <td>270</td> <td>6815ec6d.0</td> <td>Osogovka</td> <td>TEJ</td> <td>28.41*</td> <td>34.49*</td> <td>14.87*</td> <td><math>27.89^{*}</math></td>                                                                                                                                                                                                                                                                                                                                                                                     | 270      | 6815ec6d.0 | Osogovka                | TEJ           | 28.41*      | 34.49*                      | 14.87*          | $27.89^{*}$        |
| 272 c7301040.0 923 ADM 38.19* 39.16* 18.96* 30.80*   273 493f2b7e.0 Varyla TRJ 38.88* 57.26* 21.01* 39.91*   274 7dba928e.0 Padi Pagalong TRJ 41.99* 46.45* 22.24* 30.30*   275 07dac217.0 Sri Malaysia Dua TEJ 27.24* 35.98* 20.71* 36.34*   276 fc26ce23.0 Kaukau AUS 38.90* 40.01* 24.08* 28.75*   277 1516d75f.0 Gambiaka Sebela TEJ 40.96* 50.38* 26.79* 55.87*   278 17627a92.0 C1-6-5-3 ADM 39.96* 27.70* 22.16* NA   280 58d5bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.53* 49.50* 24.21* 38.16*   282 5aa7968d.0 Tromphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   284 a32c0586.0 IR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 271      | b67fd5f6.0 | M. Blatec               | TEJ           | 37.72*      | 50.30*                      | 24.01*          | 50.84*             |
| 273 4932b7c.0 Varyla TRJ 38.88 57.26* 21.01* 39.91*   274 7dba928e.0 Padi Pagalong TRJ 41.99* 46.45* 22.24* 30.30*   275 07dac217.0 Sri Malaysia Dua TEJ 27.24* 35.98* 20.71* 36.34*   276 fc26ce23.0 Kaukau AUS 38.90* 40.01* 24.08* 28.75*   277 1516d75f.0 Gambiaka Sebela TEJ 40.96* 50.38* 26.79* 55.87*   278 17627a92.0 C1-6-5-3 ADM 39.96* 27.70* 22.16* NA   279 642238d9.0 Kon Suito ADM 21.39* 31.99* 14.64* 26.93*   281 85959164.0 Patna ADM-IAP 41.53* 49.50* 24.21* 38.16*   282 5aa7968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3d.0 Chibica TEJ 31.01* 48.61* 18.36* 27.29*   284 a32e0586.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 272      | c7301040.0 | 923                     | ADM           | $38.19^*$   | 39.16 <sup>*</sup>          | 18.96*          | $30.80^{*}$        |
| 274 7dba928e.0 Padi Pagalong TRJ 41.99* 46.45* 22.24* 30.30*   275 07dac217.0 Sri Malaysia Dua TEJ 27.24* 35.98* 20.71* 36.34*   276 fc26cc23.0 Kaukau AUS 38.90* 40.01* 24.08* 28.75*   277 1516d75f.0 Gambiaka Sebela TEJ 40.96* 50.38* 26.79* 55.87*   278 17627a92.0 C1-6-5-3 ADM 39.96* 27.70* 22.16* NA   279 642238d9.0 Kon Suito ADM 21.39* 31.99* 14.64* 26.93*   280 58d5bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.15* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 ITA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 272      | 493f2b7e.0 | Varyla                  | TRJ           | 38.88*      | 57.26 <sup>*</sup>          | $21.01^{*}$     | 39.91 <sup>*</sup> |
| 275 07dac217.0 Sri Malaysia Dua TEJ 27.24* 35.98* 20.71* 36.34*   276 fc26ce23.0 Kaukau AUS 38.90* 40.01* 24.08* 28.75*   277 1516d75f.0 Gambiaka Sebela TEJ 40.96* 50.38* 26.79* 55.87*   278 17627a92.0 C1-6-5-3 ADM 39.96* 27.70* 22.16* NA   279 642238d9.0 Kon Suito ADM 21.39* 31.99* 14.64* 26.93*   280 58d5bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.53* 49.50* 24.21* 38.16*   282 5aa7968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 274      | 7dba928e.0 | Padi Pagalong           | TRJ           | $41.99^{*}$ | 46.45*                      | $22.24^{*}$     | 30.30*             |
| 276fc 26ce 23.0KaukauAUS $38.90^{\circ}$ $40.01^{\circ}$ $24.08^{\circ}$ $28.75^{\circ}$ 2771516d75f.0Gambiaka SebelaTEJ $40.96^{\circ}$ $50.38^{\circ}$ $26.79^{\circ}$ $55.87^{\circ}$ 27817627a92.0C1-6-5-3ADM $39.96^{\circ}$ $27.70^{\circ}$ $22.16^{\circ}$ NA279642238d9.0Kon SuitoADM $21.39^{\circ}$ $31.99^{\circ}$ $14.64^{\circ}$ $26.93^{\circ}$ 28058d5bdc3.0SakuTRJ $44.44^{\circ}$ $48.33^{\circ}$ $28.76^{\circ}$ $54.95^{\circ}$ 28185959164.0PatnaADM-JAP $41.53^{\circ}$ $49.50^{\circ}$ $24.21^{\circ}$ $38.16^{\circ}$ 2825aa7968d.0Triomphe Du MarocTEJ $37.00^{\circ}$ $52.24^{\circ}$ $22.66^{\circ}$ $47.45^{\circ}$ 284a32e0586.0IR 44595IND $34.56^{\circ}$ $33.60^{\circ}$ $24.53^{\circ}$ $38.67^{\circ}$ 2859baa653c.0Tox 782-20-1TRJ $31.01^{\circ}$ $48.61^{\circ}$ $18.36^{\circ}$ $27.29^{\circ}$ 286044639de.0IITA 135TRJ $34.50^{\circ}$ $44.94^{\circ}$ $31.49^{\circ}$ $33.60^{\circ}$ 2870e787735.0Zerawchanica KaratalskiTEJ $23.31^{\circ}$ $38.33^{\circ}$ $14.04^{\circ}$ $27.20^{\circ}$ 2897fc911f7.0LusitanoTEJ $32.87^{\circ}$ $37.64^{\circ}$ $19.62^{\circ}$ $41.42^{\circ}$ 290d86437c.0AmpostaTEJ $32.87^{\circ}$ $37.64^{\circ}$ $19.62^{\circ}$ $41.42^{\circ}$ 291b293bf4.0Toploca 70/76TEJ $32.87$                                 | 275      | 07dac217.0 | Sri Malaysia Dua        | TEJ           | 27.24*      | 35.98*                      | $20.71^{*}$     | 36.34 <sup>*</sup> |
| 277 1516d75f.0 Gambiaka Sebela TEJ 40.96* 50.38* 26.79* 55.87*   278 17627a92.0 C1-6-5-3 ADM 39.96* 27.70* 22.16* NA   279 642238d9.0 Kon Suito ADM 21.39* 31.99* 14.64* 26.93*   280 58d5bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.53* 49.50* 24.21* 38.16*   282 5a37968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3d.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 ITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0c678735.0 Zerawcha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 276      | fc26ce23.0 | Kaukau                  | AUS           | 38.90*      | 40.01*                      | $24.08^{*}$     | $28.75^*$          |
| 278 17627a92.0 C1-6-5-3 ADM 39.96* 27.70* 22.16* NA   279 642238d9.0 Kon Suito ADM 21.39* 31.99* 14.64* 26.93*   280 58d5bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.53* 49.50* 24.21* 38.16*   282 5aa7968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3d.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 ITAI 135 TRJ 34.50* 34.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 <td< td=""><td>277</td><td>1516d75f.0</td><td>Gambiaka Sebela</td><td>TEJ</td><td>40.96*</td><td>50.38*</td><td><math>26.79^{*}</math></td><td>55.87*</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 277      | 1516d75f.0 | Gambiaka Sebela         | TEJ           | 40.96*      | 50.38*                      | $26.79^{*}$     | 55.87*             |
| 279 642238d9.0 Kon Suito ADM 21.39* 31.99* 14.64* 26.93*   280 58d5bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.53* 49.50* 24.21* 38.16*   282 5aa7968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3d.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.9* 47.22* 21.69* 31.27*   290 d864377c.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 278      | 17627a92.0 | C1-6-5-3                | ADM           | 39.96*      | $27.70^{*}$                 | 22.16*          | NA                 |
| 280 5845bdc3.0 Saku TRJ 44.44* 48.33* 28.76* 54.95*   281 85959164.0 Patna ADM-JAP 41.53* 49.50* 24.21* 38.16*   282 5aa7968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3d.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0c787735.0 Zerawchanica Karatalski TEJ 23.31* 38.33* 14.04* 27.20*   289 ftc911f7.0 Lusitano TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploca 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 279      | 642238d9.0 | Kon Suito               | ADM           | 21.39*      | 31.99*                      | 14.64*          | 26.93*             |
| 280 85959164.0 Patna ADM-JAP 41.53 49.50* 24.21* 38.16*   282 5aa7968d.0 Triomphe Du Maroc TEJ 37.00* 52.24* 22.66* 47.45*   283 6b37cb3d.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 280      | 58d5bdc3.0 | Saku                    | TRI           | 44.44*      | 48.33*                      | $28.76^*$       | 54.95 <sup>*</sup> |
| 282 5aa7968d.0 Triomphe Du Maroc TEL 37.00° 52.24° 22.66° 47.45°   283 6b37cb3d.0 Chibica TEJ 41.18° 49.43° 20.59° 49.05°   284 a32e0586.0 IR 44595 IND 34.56° 33.60° 24.53° 38.67°   285 9baa653c.0 Tox 782-20-1 TRJ 31.01° 48.61° 18.36° 27.29°   286 044639de.0 IITA 135 TRJ 34.50° 44.94° 21.49° 33.60°   287 0e787735.0 Zerawchanica Karatalski TEJ 23.31° 38.33° 14.04° 27.20°   289 7fc911f7.0 Lusitano TEJ 25.99° 47.22° 21.69° 31.27°   290 d864377c.0 Amposta TEJ 38.39° 40.62° 23.37° 52.43°   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87° 37.64° 19.62° 41.42°   292 6d9c7d8b.0 Stegaru 65 TEJ 42.35° 40.48° 20.36° 29.84°   294 9a60fd42.0 <td>281</td> <td>85959164.0</td> <td>Patna</td> <td>ADM-JAP</td> <td><math>41.53^{*}</math></td> <td><math>49.50^{*}</math></td> <td><math>24.21^{*}</math></td> <td>38.16*</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 281      | 85959164.0 | Patna                   | ADM-JAP       | $41.53^{*}$ | $49.50^{*}$                 | $24.21^{*}$     | 38.16*             |
| 283 6b37cb3d.0 Chibica TEJ 41.18* 49.43* 20.59* 49.05*   284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 24.47* 37.14* 17.86* 30.43*   288 bc6b0af5.0 Italica Carolina TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 <td>282</td> <td>5aa7968d.0</td> <td>Triomphe Du Maroc</td> <td>TEJ</td> <td>37.00*</td> <td>52.24*</td> <td>22.66*</td> <td><math>47.45^{*}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 282      | 5aa7968d.0 | Triomphe Du Maroc       | TEJ           | 37.00*      | 52.24*                      | 22.66*          | $47.45^{*}$        |
| 284 a32e0586.0 IR 44595 IND 34.56* 33.60* 24.53* 38.67*   285 9baa653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 24.47* 37.14* 17.86* 30.43*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 32.87* 37.64* 19.62* 41.42*   293 4c188d7c.0 TOg 7178 ADM-IND 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 25.52* 53.92*   295 e8c621e8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 283      | 6b37cb3d.0 | Chibica                 | TEJ           | 41.18*      | 49.43*                      | 20.59*          | $49.05^{*}$        |
| 285 9ba653c.0 Tox 782-20-1 TRJ 31.01* 48.61* 18.36* 27.29*   286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 24.47* 37.14* 17.86* 30.43*   288 bc6b0af5.0 Italica Carolina TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35* 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 284      | a32e0586.0 | IR 44595                | IND           | 34.56*      | 33.60*                      | 24.53*          | 38.67*             |
| 286 044639de.0 IITA 135 TRJ 34.50* 44.94* 21.49* 33.60*   287 0e787735.0 Zerawchanica Karatalski TEJ 24.47* 37.14* 17.86* 30.43*   288 bc6b0af5.0 Italica Carolina TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35* 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 34.86* 43.96* 25.52* 53.92*   296 2b81cf74.0 </td <td>285</td> <td>9baa653c.0</td> <td>Tox 782-20-1</td> <td>TRJ</td> <td>31.01*</td> <td>48.61*</td> <td>18.36*</td> <td><math>27.29^{*}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 285      | 9baa653c.0 | Tox 782-20-1            | TRJ           | 31.01*      | 48.61*                      | 18.36*          | $27.29^{*}$        |
| 287 0e787735.0 Zerawchanica Karatalski TEJ 24.47* 37.14* 17.86* 30.43*   288 bc6b0af5.0 Italica Carolina TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35* 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 34.86* 43.96* 25.52* 53.92*   298 NA <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 286      | 044639de.0 | IITA 135                | TRJ           | 34.50*      | $44.94^{*}$                 | $21.49^{*}$     | 33.60*             |
| 288 bc6b0af5.0 Italica Carolina TEJ 23.31* 38.33* 14.04* 27.20*   289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35* 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.33* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 280      | 0e787735.0 | Zerawchanica Karatalski | TEJ           | $24.47^{*}$ | 37.14*                      | 17.86*          | $30.43^{*}$        |
| 289 7fc911f7.0 Lusitano TEJ 25.99* 47.22* 21.69* 31.27*   290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35* 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.3* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 288      | bc6b0af5 0 | Italica Carolina        | TEI           | 23.31*      | 38.33*                      | $14.04^{*}$     | $27.20^{*}$        |
| 290 d864377c.0 Amposta TEJ 38.39* 40.62* 23.37* 52.43*   291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35* 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.3* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.6* 31.47*   300 16d7e397.0 Sml Kanuri TEJ <td>289</td> <td>7fc911f70</td> <td>Lusitano</td> <td>TEI</td> <td><math>25.99^*</math></td> <td><math>47.22^{*}</math></td> <td><math>21.69^*</math></td> <td><math>31.27^*</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 289      | 7fc911f70  | Lusitano                | TEI           | $25.99^*$   | $47.22^{*}$                 | $21.69^*$       | $31.27^*$          |
| 291 b29d3bf4.0 Toploea 70/76 TEJ 32.87* 37.64* 19.62* 41.42*   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85* 57.15* 23.99* 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.3* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.6* 31.47*   300 16d7e397.0 Sml Kanuri TEJ 38.56* 44.02* 21.45* 42.66*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 202      | d864377c 0 | Amposta                 | TEI           | 38 39*      | $40.62^{*}$                 | 23.37*          | 52.43*             |
| 291 629260410 Topleta 10,10 TEJ 51.01 51.01 11.12   292 6d9c7d8b.0 Stegaru 65 TEJ 42.85 57.15 23.99 51.95*   293 4c188d7c.0 TOg 7178 ADM-IND 42.35 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.3* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.64* 31.47*   300 16d7e397.0 Sml Kanuri TEJ 38.56* 44.02* 21.45* 42.66*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 290      | b29d3bf4.0 | Toploea 70/76           | TEI           | 32.87*      | $37.64^*$                   | $19.62^{*}$     | $41.42^{*}$        |
| 293 4c188d7c.0 TOg 7178 ADM-IND 42.35 40.48* 20.36* 29.84*   294 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.3* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.64* 31.47*   300 16d7e397.0 Sml Kapuri TEI 38.56* 44.02* 21.45* 42.6*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 292      | 6d9c7d8b 0 | Stegaru 65              | TEI           | $42.85^{*}$ | 57.01<br>57.15*             | 23.99*          | 51.95*             |
| 293 9a60fd42.0 SL 22-613 IND 35.77* 34.09* 20.16* 46.82*   295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.3* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.64* 31.47*   300 16d7e397.0 Sml Kanuri TEJ 38.56* 44.02* 21.45* 42.64*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 292      | 4c188d7c 0 | TOg 7178                | ADM-IND       | 42.05       | $40.48^{*}$                 | 20.36*          | 29.84 <sup>*</sup> |
| 295 e8c621e8.0 Bombilla TEJ 42.68* 43.70* 28.33* 33.00*   296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.64* 31.47*   300 16d7e397.0 Sml Kapuri TEI 38.56* 44.02* 21.45* 42.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 293      | 9a60fd42 0 | SL 22-613               | IND           | 35 77*      | 34 00*                      | 20.30           | 29.04<br>46 89*    |
| 296 2b81cf74.0 Dosel TEJ 34.86* 43.96* 25.52* 53.92*   297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.64* 31.47*   300 16d7e397.0 Sml Kapuri TEI 38.56* 44.02* 21.45* 42.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 295      | e8c671e8 0 | Bombilla                | TEI           | 42.68*      | 43 70 <sup>*</sup>          | 20.10           | -0.02<br>33.00*    |
| 297 5ae0bd70.0 Bahia TEJ 40.22* 57.38* 26.08* 43.95*   298 NA LD 24 IND 30.19 33.62 17.05 40.10   299 07f246bb.0 SML 242 IND 35.16* 35.06* 16.64* 31.47*   300 16d7e397.0 Sml Kapuri TEI 38.56* 44.02* 21.45* 42.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 295      | 2b81cf74.0 | Dosel                   | TEI           | 34.86*      | 43.96*                      | 20.55<br>25 52* | 53.00              |
| 298   NA   LD 24   IND   30.19   33.62   17.05   40.10     299   07f246bb.0   SML 242   IND   35.16*   35.06*   16.64*   31.47*     300   16d7e397.0   Sml Kapuri   TEI   38.56*   44.02*   21.45*   42.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 297      | 5ae0bd70.0 | Bahia                   | TEI           | 40.22*      | -9.90<br>57 38 <sup>*</sup> | 25.52<br>26.08* | 43.92 <sup>*</sup> |
| 299   07f246bb.0   SML 242   IND   35.16*   35.06*   16.64*   31.47*     300   16d7e397.0   Sml Kapuri   TEI   38.56*   44.02*   21.45*   42.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 298      | NA         | LD 24                   | IND           | 30.10       | 33 67                       | 17.05           | 40.10              |
| 300 	16d7e397.0 	Sml Kapuri 	TEI 	38.56* 	44.02* 21.45* 	42.60*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290      | 07f246bb 0 | SMI 242                 | IND           | 35 16*      | 35.02                       | 16.61*          | 31 /17*            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300      | 16d7e397 0 | Sml Kanuri              | TEJ           | 38 56*      | $44.02^*$                   | $21.45^*$       | $42.60^*$          |

| Table | <b>S1</b> . | Continued |
|-------|-------------|-----------|
|       |             |           |

| NSFTV ID   | HDRA ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Accession name         | Subpopulation | ArFl06                      | ArFl07                      | TxFl09                      | TxUnfl09           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|-----------------------------|-----------------------------|-----------------------------|--------------------|
| 301        | 86556239.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Melanotrix             | TEJ           | 31.42*                      | NA                          | 13.89*                      | $29.50^{*}$        |
| 302        | 234e0df9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WIR 3039               | TEJ           | $28.77^{*}$                 | NA                          | $18.35^{*}$                 | $22.49^{*}$        |
| 303        | 73c4fdfb.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kihogo                 | TEJ           | $41.19^{*}$                 | $47.63^{*}$                 | $28.87^{*}$                 | $47.68^{*}$        |
| 304        | 773e969e.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 519                    | IND           | $30.57^{*}$                 | $35.32^{*}$                 | $14.48^{*}$                 | $28.37^*$          |
| 305        | 8288d278.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Doble Carolina Rinaldo | ADM-JAP       | 31.39*                      | $44.10^{*}$                 | $17.94^{*}$                 | $40.65^{*}$        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barsani                |               |                             |                             |                             |                    |
| 306        | 2c583eed.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WIR 3764               | TEJ           | $29.62^{*}$                 | $38.39^{*}$                 | NA                          | NA                 |
| 307        | c0d6eca3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uzbekskij 2            | TEJ           | 37.41*                      | $59.28^*$                   | $23.27^{*}$                 | $49.82^{*}$        |
| 308        | 593def74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Llanero 501            | TRJ           | $40.19^{*}$                 | $45.73^{*}$                 | $20.47^{*}$                 | $37.55^{*}$        |
| 309        | a0a3d697.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manzano                | TRJ           | $27.23^{*}$                 | $41.52^{*}$                 | $19.08^{*}$                 | $20.50^{*}$        |
| 310        | fbae20bd.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R 101                  | TRJ           | $28.79^{*}$                 | $42.70^{*}$                 | $19.09^{*}$                 | $32.06^{*}$        |
| 311        | 137628a5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56-122-23              | TEJ           | 34.81*                      | $33.46^{*}$                 | $21.96^{*}$                 | $51.13^{*}$        |
| 312        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aswina 330             | AUS           | 36.99                       | NA                          | 14.79                       | 23.42              |
| 313        | 872ec0b4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BR24                   | IND           | $25.52^{*}$                 | $26.26^{*}$                 | $16.12^{*}$                 | $32.80^{*}$        |
| 314        | ea28671d.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTG 1516               | AUS           | $36.78^{*}$                 | $34.04^{*}$                 | $21.74^{*}$                 | $40.25^{*}$        |
| 315        | 74c9fbbc.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dawebyan               | IND           | $26.13^{*}$                 | 34.84*                      | 13.47*                      | 30.94*             |
| 316        | b828b757.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DD 62                  | AUS           | 34.32*                      | 37.45*                      | 16.39*                      | $45.74^{*}$        |
| 317        | b956dfb5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DI 123                 | AUS           | 29.39*                      | 27.26*                      | $18.60^{*}$                 | 34.12*             |
| 318        | 3eb8fab5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DI 24                  | AUS           | 34.86*                      | $46.03^{*}$                 | $18.53^{*}$                 | 33.52*             |
| 319        | c7aeb39f 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DK 12                  | AUS           | 31.32*                      | 40.05<br>37.38 <sup>*</sup> | $20.46^{*}$                 | 35.52              |
| 320        | cf//b628.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DM 12                  |               | 30.85*                      | 35.29*                      | 20.40                       | 37.30*             |
| 320        | $1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1} = 1_{1$ | DM 56                  | AUS           | 30.00*                      | 33.29<br>$34.50^*$          | $1854^*$                    | 25.56 <sup>*</sup> |
| 321        | 7200f052.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DM 50                  | AUS           | 30.90<br>36.45*             | 28 25 <sup>*</sup>          | 10.04<br>$10.70^{*}$        | 25.50<br>45.74*    |
| 322        | 15100400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DNI 140                | AUS           | 55.50*                      | 40.02*                      | 17.17                       | 43.74              |
| 325        | 1310e4aa.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DNJ 140<br>DV 122      | AUS           | 20.12*                      | 40.05                       | 25.07<br>17.50*             | 31.20<br>$24.92^*$ |
| 524<br>225 | 102026-8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DV 123                 | AUS           | 30.12<br>$24.40^{*}$        | 52.44<br>27.54*             | 17.39                       | 24.05              |
| 325        | 00392188.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EMATA A 10-34          |               | 24.40<br>40.26*             | 27.34<br>41.27*             | 13.75                       | 52.02<br>50.50*    |
| 320        | aeed4684.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gnorbhai               | AUS           | 40.26                       | 41.37                       | 18.05                       | 50.50<br>22.77*    |
| 327        | 10203082.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Goria                  | AUS           | 28.40                       | 28.71                       | 14.28                       | 23.17              |
| 328        | 1e4f3933.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jamir                  | AUS           | 27.42                       | 37.25                       | 16.82                       | 34.80              |
| 329        | 3e58f34c.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kachilon               | AUS           | 28.01                       | 33.96                       | 12.46                       | 33.25              |
| 330        | 084e8b29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Khao Pahk Maw          | AUS           | 31.82                       | 37.70                       | 16.61                       | 32.12              |
| 331        | d438bfed.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Khao Tot Long 227      | AUS           | 32.53                       | 37.87                       | 15.68                       | 37.15              |
| 332        | 7e956f22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KPF-16                 | ADM-IND       | 24.90                       | 32.46                       | 12.80                       | 33.50              |
| 333        | 22e60af9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leuang Hawn            | TEJ           | 29.96                       | 35.82                       | 17.70                       | 41.25              |
| 334        | 09869491.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lomello                | TEJ           | 41.06                       | 39.40                       | 23.03                       | 56.24*             |
| 335        | 1e26852c.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Okshitmayin            | ADM-JAP       | 29.86                       | 23.18                       | 14.33                       | 18.52              |
| 336        | fa180a1e.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Paung Malaung          | AUS           | 35.54                       | 35.32                       | 15.80                       | 41.53              |
| 337        | a7bec464.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sabharaj               | IND           | 33.10                       | 42.71                       | 16.26                       | 30.48              |
| 338        | fed0b9a3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sitpwa                 | TEJ           | 47.51                       | 54.73 <sup>*</sup>          | 24.69                       | 63.81              |
| 339        | b3a301ea.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yodanya                | IND           | 32.97                       | 38.31                       | 18.34                       | $28.47^{*}$        |
| 340        | 4b0a7350.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Berenj                 | ADM           | $26.69^{*}$                 | 32.10*                      | $19.05^{*}$                 | 29.69*             |
| 341        | 9f786a86.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shirkati               | AUS           | $38.82^{*}$                 | $44.69^{*}$                 | $25.00^{*}$                 | 37.29*             |
| 342        | ac7a352c.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cenit                  | TRJ           | $33.12^{*}$                 | $36.48^{*}$                 | $19.13^{*}$                 | $31.89^{*}$        |
| 343        | b663b3f8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Victoria F.A.          | TEJ           | $37.37^{*}$                 | $47.74^*$                   | $22.99^*$                   | $44.54^{*}$        |
| 344        | a0f35768.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Habiganj Boro 6        | ADM           | 39.94*                      | $38.81^{*}$                 | NA                          | $33.40^{*}$        |
| 345        | 4e35b58a.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DZ 193                 | AUS           | $29.30^{*}$                 | $27.75^{*}$                 | $16.80^{*}$                 | $32.83^{*}$        |
| 346        | 80fc89ae.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Karkati 87             | AUS           | $42.72^{*}$                 | $44.32^{*}$                 | $18.21^{*}$                 | $28.30^{*}$        |
| 347        | 853e318c.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Creole                 | TRJ           | $34.82^{*}$                 | $44.95^{*}$                 | $20.57^{*}$                 | $30.78^{*}$        |
| 348        | a446becd.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | China 1039             | IND           | 33.85*                      | $38.24^{*}$                 | $18.97^{*}$                 | $35.02^{*}$        |
| 349        | a5a6e2dd.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chang Ch'Sang Hsu Tao  | IND           | $27.55^{*}$                 | $36.62^{*}$                 | $16.47^{*}$                 | 34.43*             |
| 350        | 8adbe877.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ligerito               | TRJ           | 36.46*                      | $56.19^{*}$                 | $23.34^{*}$                 | $30.95^{*}$        |
| 351        | c6d4b592.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NSF-TV 351             | TEJ           | $39.20^{*}$                 | NA                          | NA                          | NA                 |
| 352        | 3f0623af.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Guatemala 1021         | TRJ           | 36.16*                      | NA                          | NA                          | NA                 |
| 353        | af77442b.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARC 10376              | AUS           | 33.36*                      | 31.12*                      | 16.91*                      | 34.58*             |
| 354        | 41be3af3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BALA                   | IND           | 31.15*                      | 32.30*                      | 20.51*                      | 34.18*             |
| 355        | 122a975h 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ASD 1                  | TEI           | 38.65*                      | $49.82^{*}$                 | $\frac{20.01}{31.14^*}$     | $40.27^{*}$        |
| 356        | f22d2dc6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IC 117                 | IND           | $33.44^*$                   | 31.77*                      | 15 69*                      | 29.19*             |
| 357        | ccOef8cf 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9524                   | AUS           | 37.75*                      | NΔ                          | 15.09                       | 29.19<br>30.03*    |
| 358        | 076/178-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARC 10086              | TRI           | 35.75                       | 56 11*                      | 13.05<br>22.20*             | 20.05<br>20.53*    |
| 350        | c86f37d0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surjamkuhi             | AUS           | 33.34<br>31.70 <sup>*</sup> | 20.11<br>27 85*             | 22.39<br>20.27*             | 29.55<br>/0.03*    |
| 360        | 6f068760 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | AUS           | 33.20*                      | 27.03<br>30.02*             | 10.27<br>10.06 <sup>*</sup> | 40.05<br>20.11*    |
| 500        | 01000/09.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.30                 | AUS           | 55.00                       | 30.93                       | 17.00                       | 50.11              |

| NSFTV ID | HDRA ID    | Accession name     | Subpopulation | ArFl06      | ArFl07             | TxFl09      | TxUnfl09    |
|----------|------------|--------------------|---------------|-------------|--------------------|-------------|-------------|
| 361      | NA         | F.R. 13A           | TEJ           | 38.33       | 59.57              | 29.78       | 41.36       |
| 362      | cbba6af5.0 | NSF-TV 362         | TRJ           | 33.68*      | NA                 | NA          | NA          |
| 363      | e32c9d62.0 | Edomen Scented     | TEJ           | $35.18^{*}$ | $44.06^{*}$        | $19.23^{*}$ | NA          |
| 364      | 14e43b02.0 | Rikuto Norin 21    | ADM-JAP       | $35.96^{*}$ | $46.27^{*}$        | $21.29^{*}$ | $51.49^{*}$ |
| 365      | f2e723fc.0 | Shirogane          | TEJ           | $41.91^{*}$ | $60.46^{*}$        | $22.04^{*}$ | $42.33^{*}$ |
| 366      | 73b20824.0 | Kiuki No. 46       | TEJ           | 31.65*      | $44.42^{*}$        | $22.64^{*}$ | $50.80^{*}$ |
| 367      | e59cbfbe.0 | Sanbyang-Daeme     | ADM-JAP       | $33.55^{*}$ | $43.40^{*}$        | $18.05^{*}$ | 34.37*      |
| 368      | db737b9b.0 | Deokjeokjodo       | TEJ           | $30.63^{*}$ | 35.91*             | $17.89^{*}$ | $35.74^{*}$ |
| 369      | dd2bfbfb.0 | Sathi              | AUS           | 35.81*      | 39.93 <sup>*</sup> | $20.40^{*}$ | $25.10^{*}$ |
| 370      | bd7aaa87.0 | Coarse             | AUS           | 33.81*      | $38.76^{*}$        | $19.67^{*}$ | 31.31*      |
| 371      | 84ad8457.0 | Santhi-Sufaid      | AUS           | $28.90^{*}$ | $42.03^{*}$        | $18.42^{*}$ | 31.51*      |
| 372      | e8f708a5.0 | Sufaid             | AUS           | $26.32^{*}$ | $25.68^{*}$        | $16.82^{*}$ | $25.69^{*}$ |
| 373      | c20dfc59.0 | Lambayeque 1       | ARO           | $39.65^{*}$ | 36.36*             | $25.87^*$   | $37.55^{*}$ |
| 374      | b37e6755.0 | NSF-TV 374         | TEJ           | $35.16^{*}$ | NA                 | NA          | NA          |
| 375      | 9aa2c28a.0 | Upland             | TRJ           | $32.15^{*}$ | NA                 | NA          | NA          |
| 376      | de696d95.0 | Breviaristata      | ADM-JAP       | $26.22^{*}$ | 37.51*             | $20.16^*$   | $27.77^*$   |
| 377      | 2779bba9.0 | PR 304             | TRJ           | 39.81*      | $50.00^{*}$        | $24.01^{*}$ | $32.19^{*}$ |
| 378      | eca85a73.0 | Kalubala Vee       | AUS           | $24.08^*$   | $30.39^{*}$        | $12.82^{*}$ | $23.79^{*}$ |
| 379      | 626cd18d.0 | Wanica             | TRJ           | $31.59^{*}$ | $40.57^{*}$        | $21.57^{*}$ | $22.94^{*}$ |
| 380      | 238f25f1.0 | Tainan-Iku No. 512 | TEJ           | $39.37^{*}$ | $47.49^{*}$        | $30.04^{*}$ | $47.05^{*}$ |
| 381      | 77f6728e.0 | 325                | TRJ           | $39.83^{*}$ | $37.12^{*}$        | $32.97^{*}$ | $29.00^*$   |
| 383      | 3e1268da.0 | NSF-TV 383         | TEJ           | 31.69*      | NA                 | NA          | NA          |
| 384      | 9764b3c8.0 | 318                | TRJ           | $32.12^{*}$ | $38.21^{*}$        | $22.50^*$   | $22.03^{*}$ |
| 385      | 3b25c24f.0 | Nira               | IND           | $27.92^*$   | $29.53^{*}$        | $14.26^{*}$ | $33.37^{*}$ |
| 386      | 4f4f777a.0 | Palmyra            | TRJ           | $29.92^*$   | $40.04^{*}$        | $20.50^{*}$ | $36.92^{*}$ |
| 387      | a08839ce.0 | M-202              | ADM-JAP       | $39.43^{*}$ | $54.55^{*}$        | $26.25^{*}$ | $39.42^{*}$ |
| 389      | 7126c359.0 | CI 11011           | TRJ           | NA          | NA                 | $19.54^{*}$ | $25.31^{*}$ |
| 390      | 5c592759.0 | CI 11026           | ADM           | $30.04^{*}$ | $31.56^{*}$        | $18.70^{*}$ | $27.35^{*}$ |
| 391      | 180a155f.0 | Della              | TRJ           | $33.00^*$   | $49.18^{*}$        | $29.42^{*}$ | $29.26^{*}$ |
| 392      | c4a397e5.0 | Edith              | TRJ           | $33.71^{*}$ | $35.76^{*}$        | $25.45^{*}$ | $24.58^*$   |
| 394      | 1f856ac1.0 | Lady Wright Seln   | TRJ           | $40.59^{*}$ | $44.00^{*}$        | $23.31^{*}$ | $31.91^{*}$ |
| 395      | ffde60f9.0 | OS 6 (WC 10296)    | TRJ           | $33.17^{*}$ | $33.67^{*}$        | $23.49^{*}$ | $20.57^*$   |
| 396      | 1eb5d579.0 | Cocodrie           | TRJ           | 32.11*      | NA                 | $25.64^{*}$ | $40.88^{*}$ |
| 397      | 45d3c920.0 | Cybonnet           | TRJ           | 31.37*      | NA                 | $27.16^{*}$ | $42.38^{*}$ |
| 398      | 0c8eb926.0 | 93-11              | IND           | 32.91*      | NA                 | NA          | NA          |
| 399      | 12a175c1.0 | Spring             | TRJ           | $29.13^{*}$ | NA                 | NA          | NA          |
| 400      | 61876b53.0 | Yang Dao 6         | IND           | $34.43^{*}$ | NA                 | NA          | NA          |

Table S1. Continued

| NSFTV ID | Accession name          | Grain Mn concentration |
|----------|-------------------------|------------------------|
| 5        | NSF-TV 5                | high                   |
| 16       | Bico Branco             | high                   |
| 36       | CS-M3                   | high                   |
| 37       | Cuba 65                 | high                   |
| 57       | NSF-TV 57               | low                    |
| 72       | IR 8                    | low                    |
| 74       | IRGA 409                | low                    |
| 83       | Kamenoo                 | high                   |
| 107      | NSF-TV 107              | low                    |
| 122      | Padi Kasalle            | low                    |
| 130      | Peh-Kuh-Tsao-Tu         | low                    |
| 132      | Rathuwee                | high                   |
| 156      | Taichung Native 1       | low                    |
| 177      | 68-2                    | high                   |
| 187      | C57-5043                | high                   |
| 188      | Coppocina               | high                   |
| 201      | Pate Blanc Mn 1         | high                   |
| 228      | CA 902/B/2/1            | low                    |
| 231      | Hunan Early Dwarf No. 3 | low                    |
| 234      | Aijiaonante             | low                    |
| 243      | Tropical Rice           | low                    |
| 255      | Pai Hok Glutinous       | low                    |
| 262      | Halwa Gose Red          | high                   |
| 270      | Osogovka                | low                    |
| 295      | Bombilla                | high                   |
| 303      | Kihogo                  | high                   |
| 315      | Dawebyan                | low                    |
| 329      | Kachilon                | low                    |
| 335      | Okshitmayin             | low                    |
| 349      | Chang Ch'Sang Hsu Tao   | low                    |
| 356      | JC 117                  | low                    |
| 381      | 325                     | high                   |

**Table S2.** Cultivars identified as having low or high grain Mn concentration (top or bottom 20%) across at least two of the flooded field experiments. Only cultivars with transcriptomic data from Campbell et al (2020) are shown.

**Table S3.** The information of SNP filtering in the Arkansas flooded 2006 experiment. The criteria of SNP filtering are genotype missing >20% and minor allele frequency <0.05. The abbreviation of analysis sets is ALL: all accessions, AUS: *aus*, IND: *indica*, TEJ: *temperate japonica* and TRJ: *tropical japonica*.

| SNP dataset | Number        | ALL       | AUS       | IND       | TEJ       | TRJ       |
|-------------|---------------|-----------|-----------|-----------|-----------|-----------|
| 44K         | accessions    | 330       | 55        | 56        | 76        | 84        |
|             | missing >20%  | 1,344     | 3,288     | 3,215     | 1,136     | 1,119     |
|             | MAF < 0.05    | 2,822     | 17,629    | 16,724    | 28,518    | 25,215    |
|             | remained SNPs | 32,735    | 15,984    | 16,962    | 7,247     | 10,567    |
|             | a SNP per kb  | 11.40     | 23.35     | 22.00     | 51.50     | 35.32     |
| 700K        | Accessions    | 322       | 53        | 52        | 80        | 88        |
|             | missing >20%  | 9,137     | 56,735    | 46,710    | 23,618    | 28,960    |
|             | MAF < 0.05    | 312,759   | 407,489   | 430,441   | 545,580   | 517,299   |
|             | remained SNPs | 378,104   | 235,776   | 222,849   | 130,802   | 153,741   |
|             | a SNP per kb  | 0.99      | 1.58      | 1.67      | 2.85      | 2.43      |
| 5.2M        | Accessions    | 324       | 54        | 52        | 80        | 88        |
|             | missing >20%  | 0         | 0         | 0         | 0         | 0         |
|             | MAF < 0.05    | 1,815,120 | 3,074,054 | 3,098,722 | 4,317,423 | 3,962,973 |
|             | remained SNPs | 3,416,313 | 2,157,379 | 2,132,711 | 914,010   | 1,268,460 |
|             | a SNP per kb  | 0.11      | 0.17      | 0.18      | 0.41      | 0.29      |

**Table S4.** The number of significant SNPs detected in the GWA mapping for grain Mn concentration in four field experiments based on a *P*-value of <0.0001 and 5% FDR.

|            |     | No. of significant SNPs |       |       |     |     |        |        |        |     |                  |     |     |     |     |
|------------|-----|-------------------------|-------|-------|-----|-----|--------|--------|--------|-----|------------------|-----|-----|-----|-----|
|            |     | 44K S                   | NP da | taset |     |     | 700K S | SNP da | ataset |     | 5.2M SNP dataset |     |     |     |     |
| Experiment | ALL | AUS                     | IND   | TEJ   | TRJ | ALL | AUS    | IND    | TEJ    | TRJ | ALL              | AUS | IND | TEJ | TRJ |
| ArFl06     | 0   | 0                       | 0     | 0     | 0   | 6   | 0      | 0      | 0      | 0   | 16               | 0   | 0   | 0   | 1   |
| ArFl07     | 0   | 0                       | 0     | 0     | 0   | 0   | 0      | 0      | 6      | 0   | 2                | 0   | 0   | 11  | 0   |
| TxFl09     | 0   | 0                       | 0     | 0     | 0   | 0   | 0      | 0      | 1      | 0   | 0                | 0   | 0   | 0   | 0   |
| TxUnfl09   | 0   | 0                       | 0     | 0     | 0   | 5   | 0      | 1      | 4      | 0   | 1                | 0   | 0   | 0   | 0   |

| Experiment | Index SNP      | Chr. | Position   | Minor/Major<br>allele | MAF  | P-value  | Effect size | No. of significant<br>SNPs | Position range        | Region<br>size | No. of genes |
|------------|----------------|------|------------|-----------------------|------|----------|-------------|----------------------------|-----------------------|----------------|--------------|
| ArFl07     | mlid0000019940 | 1    | 123,009    | A/G                   | 0.14 | 4.64E-05 | 0.0438      | 2                          | 123,009-165,099       | 42.09          | 5            |
| ArFl06     | mlid0000033090 | 1    | 181,426    | A/G                   | 0.08 | 7.96E-05 | 0.0073      | 6                          | 174,826-600,441       | 425.62         | 61           |
| ArFl07     | mlid0000448047 | 1    | 2,146,717  | T/C                   | 0.43 | 3.01E-05 | -0.0562     | 158                        | 2,131,720-2,215,765   | 84.05          | 5            |
| TxFl09     | mlid0000723178 | 1    | 3,459,839  | C/T                   | 0.17 | 2.61E-05 | 0.0153      | 296                        | 3,436,376-3,730,200   | 293.82         | 45           |
| TxFl09     | mlid0000878141 | 1    | 4,292,449  | T/C                   | 0.47 | 2.68E-05 | 0.0080      | 171                        | 4,217,828-4,311,080   | 93.25          | 11           |
| ArFl06     | mlid0001146690 | 1    | 5,664,904  | T/C                   | 0.38 | 3.88E-05 | 0.0049      | 57                         | 5,383,347-5,697,586   | 314.24         | 35           |
| TxUnfl09   | mlid0001328468 | 1    | 6,539,781  | A/G                   | 0.08 | 2.33E-05 | 0.0020      | 6                          | 6,536,809-6,585,491   | 48.68          | 6            |
| ArFl06     | mlid0001628295 | 1    | 8,045,294  | C/T                   | 0.44 | 8.67E-05 | -0.0044     | 2                          | 8,045,294-8,045,549   | 0.26           | 0            |
| TxFl09     | mlid0002185886 | 1    | 10,656,792 | C/T                   | 0.44 | 8.16E-05 | -0.0115     | 923                        | 10,226,516-11,057,661 | 831.15         | 77           |
| TxUnfl09   | mlid0002776198 | 1    | 13,048,025 | T/C                   | 0.22 | 2.50E-05 | -0.0014     | 3                          | 12,878,686-13,048,025 | 169.34         | 11           |
| ArFl07     | mlid0003005243 | 1    | 13,920,386 | T/C                   | 0.38 | 7.62E-05 | -0.0622     | 277                        | 13,560,157-14,157,770 | 597.61         | 63           |
| ArFl07     | mlid0005164163 | 1    | 22,292,167 | A/G                   | 0.18 | 7.83E-05 | 0.0591      | 76                         | 21,945,024-22,435,786 | 490.76         | 46           |
| ArFl06     | mlid0005661019 | 1    | 24,391,177 | A/C                   | 0.25 | 2.90E-06 | -0.0062     | 5                          | 24,391,177-24,729,936 | 338.76         | 34           |
| ArFl06     | mlid0006248765 | 1    | 27,153,440 | T/C                   | 0.25 | 1.99E-05 | -0.0070     | 59                         | 26,834,385-27,560,934 | 726.55         | 78           |
| ArFl07     | mlid0006337462 | 1    | 27,568,714 | A/G                   | 0.33 | 2.64E-05 | -0.0619     | 10                         | 27,568,714-27,814,025 | 245.31         | 32           |
| ArFl06     | mlid0006457031 | 1    | 28,199,195 | C/A                   | 0.17 | 9.83E-05 | -0.0066     | 17                         | 27,775,114-28,607,327 | 832.21         | 116          |
| ArFl07     | mlid0006934369 | 1    | 30,572,995 | G/T                   | 0.39 | 5.57E-06 | -0.0528     | 70                         | 30,208,786-30,591,047 | 382.26         | 54           |
| ArFl07     | mlid0006970577 | 1    | 30,732,639 | T/C                   | 0.09 | 2.06E-05 | -0.0579     | 5                          | 30,651,782-30,732,639 | 80.86          | 12           |
| TxUnfl09   | mlid0007008512 | 1    | 30,919,865 | T/C                   | 0.16 | 3.22E-05 | 0.0018      | 6                          | 30,862,865-30,931,025 | 68.16          | 10           |
| TxUnfl09   | mlid0007413155 | 1    | 33,201,894 | T/A                   | 0.18 | 5.73E-05 | 0.0031      | 13                         | 32,756,728-33,201,992 | 445.26         | 56           |
| TxUnfl09   | mlid0007652134 | 1    | 34,397,681 | T/C                   | 0.21 | 3.38E-05 | 0.0014      | 69                         | 34,362,967-34,630,675 | 267.71         | 41           |
| ArFl06     | mlid0008175383 | 1    | 37,169,154 | C/T                   | 0.35 | 8.29E-05 | -0.0116     | 14                         | 36,931,912-37,605,080 | 673.17         | 96           |
| ArFl06     | mlid0009325893 | 2    | 60,863     | G/T                   | 0.12 | 8.63E-05 | -0.0062     | 4                          | 17,321-335,545        | 318.22         | 48           |
| TxFl09     | mlid0010026617 | 2    | 3,880,164  | T/C                   | 0.10 | 6.93E-05 | 0.0088      | 3                          | 3,879,499-3,882,581   | 3.08           | 0            |
| ArFl07     | mlid0010796973 | 2    | 7,451,014  | T/C                   | 0.20 | 7.50E-05 | -0.0784     | 34                         | 7,444,276-7,882,035   | 437.76         | 39           |
| ArFl06     | mlid0012726450 | 2    | 15,300,734 | A/G                   | 0.05 | 5.76E-05 | -0.0101     | 2                          | 15,296,780-15,300,734 | 3.95           | 0            |
| ArFl06     | mlid0013375366 | 2    | 18,105,789 | T/C                   | 0.08 | 3.35E-05 | -0.0076     | 11                         | 18,006,819-18,348,310 | 341.49         | 31           |
| ArFl06     | mlid0013438666 | 2    | 18,382,286 | T/C                   | 0.06 | 6.97E-05 | 0.0080      | 3                          | 18,368,364-18,401,417 | 33.05          | 4            |
| ArFl06     | mlid0014599910 | 2    | 23,520,095 | G/A                   | 0.27 | 8.74E-05 | -0.0061     | 24                         | 23,464,601-23,520,095 | 55.49          | 8            |
| ArFl07     | mlid0015051855 | 2    | 25,239,189 | T/A                   | 0.48 | 1.81E-05 | 0.0420      | 267                        | 25,145,898-25,271,445 | 125.55         | 19           |
| TxFl09     | mlid0017089793 | 3    | 248,540    | T/C                   | 0.21 | 2.23E-06 | -0.0094     | 3                          | 2,137-248,540         | 246.40         | 31           |
| TxUnfl09   | mlid0017139000 | 3    | 534,810    | G/A                   | 0.29 | 6.83E-06 | 0.0021      | 25                         | 182,400-1,013,046     | 830.65         | 125          |
| ArFl07     | mlid0017141509 | 3    | 548,141    | T/G                   | 0.08 | 6.83E-05 | -0.0488     | 9                          | 450,203-896,900       | 446.70         | 67           |

**Table S5.** Information of QTLs with index SNPs at *P*-value <0.0001 for grain Mn concentration in the analysis of all accessions based on the 5.2M SNP dataset using single-trait analysis. Asterisks represent SNPs passing 5% FDR.

| Experiment | Index SNP       | Chr. | Position   | Minor/Major<br>allele | MAF  | P-value  | Effect size | No. of significant<br>SNPs | Position range        |
|------------|-----------------|------|------------|-----------------------|------|----------|-------------|----------------------------|-----------------------|
| TxFl09     | mlid0017217822  | 3    | 1,034,975  | T/G                   | 0.31 | 1.02E-06 | 0.0089      | 88                         | 983,312-1,042,969     |
| ArFl06     | mlid0017254736  | 3    | 1,253,009  | T/C                   | 0.24 | 5.75E-06 | -0.0058     | 162                        | 1,164,504-1,339,597   |
| TxFl09     | mlid0017279658  | 3    | 1,377,789  | C/G                   | 0.18 | 4.53E-07 | -0.0109     | 131                        | 1,157,226-1,648,969   |
| TxUnfl09   | mlid0017369457  | 3    | 1,935,699  | G/A                   | 0.39 | 3.01E-06 | -0.0017     | 566                        | 1,436,180-2,420,174   |
| ArFl06     | mlid0017391766  | 3    | 2,053,421  | A/G                   | 0.25 | 1.64E-05 | 0.0075      | 10                         | 1,940,674-2,053,421   |
| ArFl07     | mlid0017403189  | 3    | 2,139,454  | C/G                   | 0.14 | 9.42E-06 | -0.0483     | 3                          | 1,733,087-2,139,454   |
| TxFl09     | mlid0017403189  | 3    | 2,139,454  | C/G                   | 0.14 | 8.81E-07 | -0.0095     | 2                          | 1,955,068-2,139,454   |
| TxUnfl09   | mlid0017403189  | 3    | 2,139,454  | C/G                   | 0.14 | 3.39E-06 | -0.0015     | 2                          | 1,955,068-2,139,454   |
| ArFl07     | mlid0017490028  | 3    | 2,609,343  | A/G                   | 0.24 | 1.59E-05 | -0.0515     | 25                         | 2,286,634-3,075,111   |
| TxUnfl09   | mlid0017524623  | 3    | 2,810,078  | A/G                   | 0.11 | 1.54E-06 | -0.0017     | 6                          | 2,564,544-2,962,701   |
| ArFl06     | mlid0017538827  | 3    | 2,896,387  | G/A                   | 0.08 | 4.57E-05 | 0.0080      | 10                         | 2,570,519-3,180,256   |
| ArFl07     | mlid0017825959  | 3    | 4,494,487  | A/C                   | 0.42 | 7.03E-05 | 0.1032      | 30                         | 4,344,754-4,751,396   |
| ArFl06     | mlid0018058877* | 3    | 5,804,440  | T/C                   | 0.11 | 1.77E-07 | -0.0085     | 34                         | 5,326,994-6,138,356   |
| ArFl07     | mlid0018109250  | 3    | 6,112,919  | T/C                   | 0.18 | 1.43E-06 | -0.0551     | 24                         | 5,652,891-6,576,407   |
| TxUnfl09   | mlid0018109250  | 3    | 6,112,919  | T/C                   | 0.18 | 1.98E-07 | -0.0018     | 24                         | 5,652,891-6,576,407   |
| ArFl06     | mlid0018228403* | 3    | 6,819,735  | T/C                   | 0.13 | 1.87E-09 | -0.0097     | 28                         | 6,387,194-7,233,912   |
| TxUnfl09   | mlid0018228403  | 3    | 6,819,735  | T/C                   | 0.12 | 7.39E-08 | -0.0020     | 27                         | 6,387,194-7,233,912   |
| TxFl09     | mlid0018232940  | 3    | 6,850,443  | T/C                   | 0.12 | 1.30E-05 | -0.0095     | 16                         | 6,387,194-7,233,912   |
| ArFl07     | mlid0018272219  | 3    | 7,068,710  | C/A                   | 0.41 | 7.90E-06 | 0.1309      | 1707                       | 6,568,754-7,565,173   |
| TxUnfl09   | mlid0018352659* | 3    | 7,507,792  | T/A                   | 0.12 | 1.22E-08 | -0.0022     | 6                          | 7,019,729-7,866,465   |
| TxFl09     | mlid0018435354  | 3    | 7,960,970  | A/G                   | 0.18 | 6.67E-05 | 0.0078      | 46                         | 7,950,154-8,220,761   |
| ArFl06     | mlid0018435354  | 3    | 7,960,970  | A/G                   | 0.19 | 3.41E-05 | 0.0058      | 24                         | 7,960,970-8,220,761   |
| ArFl07     | mlid0018480795  | 3    | 8,188,534  | C/T                   | 0.16 | 1.75E-06 | -0.0579     | 20                         | 7,765,595-8,509,003   |
| TxUnfl09   | mlid0018497934  | 3    | 8,272,283  | G/A                   | 0.48 | 1.10E-05 | 0.0017      | 584                        | 7,964,037-8,714,866   |
| TxUnfl09   | mlid0018696761  | 3    | 9,280,288  | T/C                   | 0.21 | 1.80E-05 | -0.0015     | 13                         | 8,844,326-9,660,452   |
| TxFl09     | mlid0018818593  | 3    | 9,944,846  | G/A                   | 0.38 | 9.51E-05 | 0.0214      | 62                         | 9,857,809-10,160,493  |
| ArFl06     | mlid0018989251  | 3    | 10,877,033 | A/G                   | 0.14 | 2.60E-05 | -0.0073     | 29                         | 10,596,192-11,297,028 |

A/G

A/T

A/G

A/G

A/G

T/G

A/G

0.19

0.13

0.34

0.38

0.22

0.18

0.31

1.12E-05

1.49E-05

7.05E-05

6.50E-05

8.47E-05

5.19E-05

5.76E-05

-0.0015

-0.0508

-0.0052

-0.0044

0.0018

-0.0013

0.0016

38

2

35

44

22

10

191

Region

size

59.66

175.09

491.74

983.99

112.75

406.37

184.39

184.39

788.48

398.16

609.74

406.64

811.36

923.52

923.52

846.72

846.72

846.72

996.42

846.74

270.61

259.79

743.41

750.83

816.13

302.68

700.84

916.75

0.14

83.10

116.52

607.88

336.09

505.93

10,729,062-11,645,807

11,540,252-11,540,388

11,987,123-12,070,220

12,190,862-12,307,385

11,880,797-12,488,679

12,697,481-13,033,575

13,197,939-13,703,865

No. of genes

11

7

65

141

17

63

29

29

111

55

85

60

116

127

127

108

108

108

121

118

29

28

96

91 103

41

99

119

0

7

12

74

38

35

Table S5. Continued

TxUnfl09

ArFl07

ArFl06

ArFl06

TxUnfl09

TxUnfl09

TxUnfl09

mlid0019037439

mlid0019119471

mlid0019213444

mlid0019247158

mlid0019267880

mlid0019364540

mlid0019440785

3

3

3

3

3

3

3

11,158,867

11,540,252

12,066,585

12,219,211

12,338,820

12,844,485

13,213,054

| Table SE Continued |
|--------------------|
|--------------------|

| Experiment | Index SNP      | Chr. | Position   | Minor/Major<br>allele | MAF  | P-value  | Effect size | No. of significant<br>SNPs | Position range        | Region<br>size | No. of genes |
|------------|----------------|------|------------|-----------------------|------|----------|-------------|----------------------------|-----------------------|----------------|--------------|
| TxUnfl09   | mlid0019804810 | 3    | 14,724,047 | A/C                   | 0.15 | 3.70E-05 | -0.0015     | 27                         | 14,611,170-15,131,932 | 520.76         | 63           |
| ArFl07     | mlid0019960770 | 3    | 15,357,505 | A/G                   | 0.06 | 5.93E-05 | 0.0758      | 21                         | 15,143,056-15,380,006 | 236.95         | 20           |
| ArFl07     | mlid0021659521 | 3    | 22,106,879 | A/G                   | 0.17 | 8.63E-05 | 0.0514      | 9                          | 21,644,339-22,578,211 | 933.87         | 100          |
| TxUnfl09   | mlid0024568427 | 3    | 36,301,884 | T/G                   | 0.08 | 6.00E-05 | 0.0018      | 10                         | 36,174,146-36,393,037 | 218.89         | 33           |
| ArFl06     | mlid0025149650 | 4    | 1,968,617  | G/T                   | 0.14 | 3.79E-05 | -0.0070     | 501                        | 1,479,804-2,452,868   | 973.06         | 62           |
| ArFl07     | mlid0025707475 | 4    | 3,656,689  | A/G                   | 0.24 | 6.34E-05 | -0.0623     | 2                          | 3,656,689-3,656,691   | 0.00           | 0            |
| TxFl09     | mlid0025717115 | 4    | 3,683,138  | T/G                   | 0.25 | 1.44E-05 | -0.0077     | 260                        | 3,566,693-4,150,560   | 583.87         | 31           |
| ArFl06     | mlid0025744000 | 4    | 3,767,588  | C/G                   | 0.15 | 1.75E-05 | -0.0070     | 475                        | 3,546,454-4,267,559   | 721.11         | 42           |
| ArFl07     | mlid0026000519 | 4    | 4,518,590  | G/C                   | 0.45 | 5.55E-05 | 0.0441      | 3                          | 4,518,590-4,561,388   | 42.80          | 3            |
| ArFl06     | mlid0026026457 | 4    | 4,589,724  | A/G                   | 0.10 | 2.65E-05 | -0.0077     | 116                        | 4,143,492-5,076,058   | 932.57         | 73           |
| ArFl06     | mlid0026549601 | 4    | 6,411,467  | T/A                   | 0.16 | 8.97E-05 | -0.0057     | 13                         | 6,274,498-6,910,392   | 635.89         | 43           |
| TxUnfl09   | mlid0028161429 | 4    | 12,700,111 | G/A                   | 0.41 | 7.37E-05 | 0.0023      | 45                         | 12,345,772-13,075,898 | 730.13         | 61           |
| ArFl07     | mlid0028172730 | 4    | 12,750,568 | A/G                   | 0.07 | 9.52E-05 | 0.0635      | 9                          | 12,713,034-13,247,363 | 534.33         | 34           |
| ArFl07     | mlid0031106832 | 4    | 25,869,921 | A/C                   | 0.08 | 5.74E-05 | -0.0545     | 2                          | 25,816,271-25,869,921 | 53.65          | 8            |
| TxUnfl09   | mlid0031438547 | 4    | 27,723,582 | T/C                   | 0.16 | 1.81E-05 | -0.0014     | 4                          | 27,530,771-27,723,582 | 192.81         | 25           |
| TxUnfl09   | mlid0032139446 | 4    | 31,379,472 | A/C                   | 0.25 | 1.73E-05 | 0.0012      | 3                          | 31,379,472-31,396,020 | 16.55          | 2            |
| TxUnfl09   | mlid0032169157 | 4    | 31,517,245 | G/A                   | 0.21 | 7.86E-06 | 0.0013      | 24                         | 31,436,463-31,518,249 | 81.79          | 10           |
| ArFl06     | mlid0032239044 | 4    | 31,795,359 | A/G                   | 0.06 | 8.39E-05 | 0.0094      | 2                          | 31,674,813-31,795,359 | 120.55         | 17           |
| ArFl06     | mlid0032355393 | 4    | 32,352,335 | C/T                   | 0.23 | 5.55E-05 | -0.0052     | 202                        | 32,191,244-32,416,112 | 224.87         | 37           |
| ArFl06     | mlid0032431814 | 4    | 32,762,655 | T/A                   | 0.39 | 3.59E-05 | 0.0054      | 301                        | 32,692,323-32,962,075 | 269.75         | 37           |
| TxFl09     | mlid0032464069 | 4    | 32,946,010 | G/C                   | 0.05 | 5.78E-05 | 0.0121      | 237                        | 32,701,018-32,961,093 | 260.08         | 35           |
| TxFl09     | mlid0032576659 | 4    | 33,565,328 | A/G                   | 0.14 | 6.71E-05 | -0.0095     | 8                          | 33,562,872-33,651,420 | 88.55          | 12           |
| TxFl09     | mlid0032599030 | 4    | 33,695,231 | C/A                   | 0.07 | 1.40E-05 | -0.0131     | 7                          | 33,685,641-34,190,893 | 505.25         | 85           |
| TxUnfl09   | mlid0032618309 | 4    | 33,821,719 | A/G                   | 0.13 | 6.97E-08 | 0.0022      | 58                         | 33,690,561-34,000,755 | 310.19         | 48           |
| TxUnfl09   | mlid0033054616 | 5    | 788,750    | T/A                   | 0.06 | 2.88E-05 | -0.0026     | 110                        | 474,196-1,126,253     | 652.06         | 100          |
| TxUnfl09   | mlid0033429210 | 5    | 2,559,004  | A/C                   | 0.05 | 1.99E-05 | -0.0028     | 4                          | 2,518,640-2,976,477   | 457.84         | 64           |
| ArFl06     | mlid0034828288 | 5    | 8,514,958  | T/C                   | 0.17 | 2.81E-05 | 0.0064      | 729                        | 8,252,741-8,861,638   | 608.90         | 58           |
| ArFl07     | mlid0035784333 | 5    | 11,982,703 | G/A                   | 0.16 | 6.69E-05 | 0.0792      | 20                         | 11,627,410-12,391,785 | 764.38         | 26           |
| TxFl09     | mlid0036699269 | 5    | 15,505,854 | A/C                   | 0.14 | 4.01E-05 | 0.0094      | 2                          | 15,505,854-15,505,866 | 0.01           | 0            |
| ArFl06     | mlid0036877832 | 5    | 16,216,139 | T/G                   | 0.19 | 6.56E-06 | 0.0078      | 9                          | 15,788,068-16,321,462 | 533.39         | 43           |
| ArFl07     | mlid0037053083 | 5    | 17,005,018 | G/A                   | 0.06 | 6.47E-05 | 0.0633      | 4                          | 16,896,601-17,005,018 | 108.42         | 14           |
| ArFl06     | mlid0038239792 | 5    | 22,311,347 | A/G                   | 0.18 | 9.30E-05 | -0.0079     | 545                        | 22,085,885-22,678,493 | 592.61         | 80           |
| ArFl07     | mlid0039149707 | 5    | 27,022,326 | G/A                   | 0.42 | 7.28E-05 | 0.0528      | 99                         | 26,995,511-27,100,109 | 104.60         | 10           |
| TxUnfl09   | mlid0039187547 | 5    | 27,226,215 | T/C                   | 0.11 | 4.64E-06 | 0.0016      | 3                          | 26,888,797-27,244,382 | 355.59         | 60           |
| TxUnfl09   | mlid0039365198 | 5    | 28,218,584 | C/T                   | 0.18 | 1.80E-06 | -0.0015     | 29                         | 27,736,768-28,282,420 | 545.65         | 85           |

| Experiment | Index SNP       | Chr. | Position   | Minor/Major<br>allele | MAF  | P-value  | Effect size | No. of significant<br>SNPs | Position range        | Region<br>size | No. of genes |
|------------|-----------------|------|------------|-----------------------|------|----------|-------------|----------------------------|-----------------------|----------------|--------------|
| ArFl07     | mlid0040021997  | 6    | 1,262,141  | T/C                   | 0.19 | 5.16E-05 | -0.0544     | 14                         | 1,223,768-1,269,796   | 46.03          | 1            |
| ArFl07     | mlid0041121469  | 6    | 6,621,721  | G/A                   | 0.24 | 7.18E-05 | -0.0650     | 269                        | 6,482,121-6,681,234   | 199.11         | 22           |
| ArFl07     | mlid0041502434  | 6    | 8,335,458  | T/C                   | 0.06 | 4.21E-05 | -0.0673     | 5                          | 8,334,407-8,828,318   | 493.91         | 34           |
| ArFl06     | mlid0041742621  | 6    | 9,306,770  | T/C                   | 0.23 | 1.32E-05 | -0.0067     | 136                        | 9,262,477-9,649,409   | 386.93         | 28           |
| ArFl07     | mlid0045073481  | 6    | 22,175,896 | G/A                   | 0.49 | 8.18E-05 | 0.0509      | 33                         | 22,169,258-22,244,613 | 75.36          | 7            |
| TxUnfl09   | mlid0045399949  | 6    | 23,470,209 | G/T                   | 0.48 | 2.62E-05 | 0.0015      | 516                        | 23,242,450-23,610,281 | 367.83         | 46           |
| TxFl09     | mlid0045461862  | 6    | 23,781,926 | A/G                   | 0.33 | 2.27E-05 | 0.0074      | 2                          | 23,781,926-23,798,692 | 16.77          | 1            |
| TxFl09     | mlid0046349982  | 6    | 27,986,699 | T/C                   | 0.06 | 6.10E-05 | 0.0118      | 21                         | 27,955,019-28,388,068 | 433.05         | 50           |
| TxFl09     | mlid0047302856  | 7    | 1,786,904  | G/A                   | 0.11 | 5.72E-05 | -0.0097     | 46                         | 1,712,575-2,122,805   | 410.23         | 60           |
| ArFl07     | mlid0047344943  | 7    | 1,976,642  | T/G                   | 0.08 | 2.37E-05 | -0.0653     | 21                         | 1,551,405-2,248,771   | 697.37         | 111          |
| TxUnfl09   | mlid0047349435  | 7    | 1,996,390  | T/C                   | 0.14 | 6.20E-07 | -0.0018     | 33                         | 1,712,575-2,122,805   | 410.23         | 60           |
| ArFl06     | mlid0047878419  | 7    | 4,649,020  | T/C                   | 0.09 | 7.36E-06 | 0.0083      | 265                        | 4,525,393-4,769,910   | 244.52         | 29           |
| TxUnfl09   | mlid0048280334  | 7    | 6,467,214  | T/C                   | 0.07 | 2.15E-05 | 0.0026      | 241                        | 6,396,326-6,655,214   | 258.89         | 15           |
| ArFl06     | mlid0048394990  | 7    | 6,943,451  | C/T                   | 0.38 | 2.18E-05 | 0.0105      | 7                          | 6,904,525-6,945,546   | 41.02          | 3            |
| TxUnfl09   | mlid0048395730  | 7    | 6,947,990  | A/G                   | 0.18 | 1.87E-05 | -0.0014     | 14                         | 6,943,808-7,432,428   | 488.62         | 50           |
| ArFl07     | mlid0048417532  | 7    | 7,039,315  | T/G                   | 0.09 | 3.04E-05 | 0.0609      | 10                         | 6,896,309-7,188,320   | 292.01         | 27           |
| ArFl07     | mlid0048560313* | 7    | 7,594,101  | A/G                   | 0.14 | 1.80E-08 | -0.0642     | 62                         | 7,206,339-8,057,921   | 851.58         | 95           |
| ArFl07     | mlid0048735332* | 7    | 8,256,487  | A/C                   | 0.15 | 1.44E-08 | -0.0646     | 43                         | 7,780,036-8,568,541   | 788.51         | 85           |
| ArFl07     | mlid0048878287  | 7    | 8,781,883  | T/C                   | 0.13 | 8.11E-07 | -0.0584     | 19                         | 8,286,791-8,966,501   | 679.71         | 50           |
| TxUnfl09   | mlid0048911414  | 7    | 8,918,567  | A/G                   | 0.17 | 1.35E-06 | -0.0016     | 26                         | 8,426,282-9,415,605   | 989.32         | 70           |
| TxUnfl09   | mlid0049262184  | 7    | 10,000,611 | T/C                   | 0.11 | 7.50E-05 | 0.0020      | 120                        | 9,580,684-10,479,183  | 898.50         | 51           |
| TxFl09     | mlid0049468238  | 7    | 10,792,084 | C/A                   | 0.08 | 7.79E-05 | 0.0129      | 48                         | 10,468,770-11,137,290 | 668.52         | 38           |
| TxUnfl09   | mlid0049975685  | 7    | 12,511,952 | C/A                   | 0.48 | 9.56E-05 | 0.0020      | 45                         | 12,138,139-12,996,207 | 858.07         | 49           |
| ArFl06     | mlid0050130596  | 7    | 13,115,593 | A/C                   | 0.41 | 3.81E-05 | -0.0053     | 12                         | 12,925,876-13,596,994 | 671.12         | 54           |
| ArFl07     | mlid0050176584  | 7    | 13,293,081 | T/A                   | 0.47 | 2.60E-05 | -0.0716     | 827                        | 12,814,477-13,776,495 | 962.02         | 78           |
| TxUnfl09   | mlid0050192943  | 7    | 13,360,325 | A/G                   | 0.12 | 7.44E-05 | 0.0021      | 314                        | 13,150,959-13,858,120 | 707.16         | 55           |
| ArFl07     | mlid0050369562  | 7    | 14,074,821 | T/A                   | 0.44 | 8.48E-05 | 0.0072      | 252                        | 13,591,238-14,574,700 | 983.46         | 40           |
| ArFl06     | mlid0050369562  | 7    | 14,074,821 | T/A                   | 0.46 | 7.89E-05 | 0.0545      | 8                          | 13,596,994-14,465,797 | 868.80         | 32           |
| TxFl09     | mlid0050861939  | 7    | 15,950,972 | A/T                   | 0.08 | 2.96E-05 | -0.0100     | 10                         | 15,879,438-15,983,624 | 104.19         | 9            |
| TxFl09     | mlid0050917382  | 7    | 16,158,488 | C/T                   | 0.35 | 9.01E-06 | -0.0136     | 524                        | 15,997,895-16,612,767 | 614.87         | 48           |
| ArFl07     | mlid0051111163  | 7    | 16,863,655 | T/G                   | 0.09 | 4.78E-05 | -0.0556     | 17                         | 16,388,691-16,909,831 | 521.14         | 39           |
| ArFl07     | mlid0051123185  | 7    | 16,913,539 | T/C                   | 0.05 | 3.39E-05 | 0.0615      | 4                          | 16,913,539-17,312,997 | 399.46         | 40           |
| ArFl07     | mlid0051160215  | 7    | 17,076,700 | C/T                   | 0.13 | 6.99E-05 | -0.0443     | 6                          | 17,045,677-17,085,743 | 40.07          | 1            |
| TxFl09     | mlid0051330148  | 7    | 17,774,245 | T/C                   | 0.10 | 4.46E-06 | -0.0108     | 25                         | 17,590,345-18,241,304 | 650.96         | 45           |
| TxUnfl09   | mlid0051462630  | 7    | 18,399,434 | T/G                   | 0.26 | 3.85E-05 | -0.0011     | 104                        | 18,220,434-18,415,839 | 195.41         | 20           |

## Table S5. Continued

| Table S5. Con | tinued |
|---------------|--------|
|---------------|--------|

| Experiment | Index SNP      | Chr. | Position   | Minor/Major<br>allele | MAF  | <i>P</i> -value | Effect size | No. of significant<br>SNPs | Position range        | Region<br>size | No. of genes |
|------------|----------------|------|------------|-----------------------|------|-----------------|-------------|----------------------------|-----------------------|----------------|--------------|
| TxFl09     | mlid0051475438 | 7    | 18,458,422 | C/T                   | 0.43 | 7.44E-05        | -0.0071     | 36                         | 18,432,355-18,461,325 | 28.97          | 1            |
| TxUnfl09   | mlid0051676689 | 7    | 19,362,191 | T/C                   | 0.09 | 5.94E-07        | -0.0022     | 12                         | 18,877,554-19,785,070 | 907.52         | 91           |
| TxFl09     | mlid0051872874 | 7    | 20,201,002 | G/A                   | 0.27 | 4.64E-05        | -0.0117     | 102                        | 20,189,963-20,508,341 | 318.38         | 29           |
| TxUnfl09   | mlid0051919873 | 7    | 20,449,244 | C/A                   | 0.13 | 2.75E-06        | -0.0018     | 163                        | 19,983,846-20,943,211 | 959.37         | 103          |
| TxUnfl09   | mlid0052008601 | 7    | 20,822,294 | T/C                   | 0.16 | 4.19E-05        | -0.0014     | 186                        | 20,777,914-21,312,625 | 534.71         | 67           |
| ArFl07     | mlid0093681574 | 7    | 20,837,538 | A/G                   | 0.36 | 4.71E-05        | 0.0521      | 2                          | 20,837,538-21,118,140 | 280.60         | 31           |
| TxUnfl09   | mlid0052223663 | 7    | 21,697,917 | C/T                   | 0.10 | 3.87E-07        | -0.0021     | 529                        | 21,216,322-22,080,444 | 864.12         | 108          |
| ArFl06     | mlid0052705543 | 7    | 24,085,380 | A/T                   | 0.49 | 6.80E-05        | -0.0048     | 31                         | 24,085,380-24,494,687 | 409.31         | 57           |
| TxFl09     | mlid0053724675 | 7    | 29,253,689 | T/C                   | 0.40 | 1.05E-05        | -0.0072     | 4                          | 29,252,102-29,256,983 | 4.88           | 0            |
| ArFl07     | mlid0054540507 | 8    | 3,448,579  | C/T                   | 0.40 | 8.96E-05        | -0.0407     | 11                         | 3,448,579-3,466,494   | 17.92          | 3            |
| ArFl06     | mlid0057441135 | 8    | 14,251,515 | A/G                   | 0.07 | 8.26E-05        | 0.0092      | 6                          | 14,251,515-14,658,228 | 406.71         | 39           |
| TxUnfl09   | mlid0057724097 | 8    | 15,404,266 | A/T                   | 0.30 | 1.10E-05        | 0.0017      | 99                         | 15,069,541-15,569,082 | 499.54         | 40           |
| TxUnfl09   | mlid0058629740 | 8    | 18,633,227 | A/G                   | 0.45 | 4.93E-05        | 0.0009      | 6                          | 18,632,924-18,633,798 | 0.87           | 0            |
| ArFl06     | mlid0058845647 | 8    | 19,441,251 | T/C                   | 0.08 | 3.49E-06        | 0.0073      | 3                          | 19,396,502-19,441,251 | 44.75          | 3            |
| TxUnfl09   | mlid0059904850 | 8    | 24,476,847 | C/G                   | 0.07 | 3.73E-05        | -0.0017     | 2                          | 24,476,847-24,537,135 | 60.29          | 8            |
| TxFl09     | mlid0060088398 | 8    | 25,306,049 | G/A                   | 0.41 | 7.64E-05        | 0.0103      | 8                          | 25,304,471-25,309,350 | 4.88           | 0            |
| TxUnfl09   | mlid0060116389 | 8    | 25,451,883 | A/G                   | 0.35 | 7.32E-06        | 0.0014      | 21                         | 25,431,981-25,452,150 | 20.17          | 6            |
| TxUnfl09   | mlid0060118314 | 8    | 25,457,748 | A/G                   | 0.17 | 7.99E-05        | 0.0013      | 7                          | 25,452,903-25,469,768 | 16.87          | 1            |
| ArFl06     | mlid0060823934 | 9    | 265,940    | G/A                   | 0.41 | 1.25E-06        | 0.0096      | 1737                       | 38,664-763,797        | 725.13         | 36           |
| ArFl06     | mlid0062326730 | 9    | 6,101,631  | A/G                   | 0.07 | 8.46E-06        | -0.0090     | 76                         | 6,096,839-6,230,575   | 133.74         | 12           |
| TxFl09     | mlid0063419233 | 9    | 10,242,506 | T/C                   | 0.30 | 1.41E-05        | -0.0084     | 90                         | 9,937,552-10,381,365  | 443.81         | 38           |
| TxUnfl09   | mlid0063897346 | 9    | 12,059,032 | A/G                   | 0.31 | 9.98E-06        | -0.0011     | 10                         | 12,054,891-12,077,225 | 22.33          | 2            |
| ArFl07     | mlid0063932979 | 9    | 12,201,784 | A/G                   | 0.12 | 8.26E-05        | -0.0456     | 5                          | 12,078,356-12,201,784 | 123.43         | 14           |
| TxFl09     | mlid0064157659 | 9    | 13,128,154 | A/G                   | 0.26 | 8.51E-05        | -0.0084     | 58                         | 12,660,585-13,574,815 | 914.23         | 86           |
| ArFl07     | mlid0064176730 | 9    | 13,220,840 | T/C                   | 0.29 | 7.21E-05        | -0.0653     | 100                        | 12,922,629-13,656,075 | 733.45         | 64           |
| ArFl07     | mlid0066552620 | 10   | 1,433,318  | G/A                   | 0.50 | 8.96E-05        | -0.0485     | 125                        | 1,021,398-1,521,235   | 499.84         | 48           |
| ArFl07     | mlid0068753817 | 10   | 9,135,984  | A/G                   | 0.17 | 7.24E-05        | -0.0659     | 18                         | 9,034,312-9,581,739   | 547.43         | 46           |
| ArFl07     | mlid0069308421 | 10   | 11,270,727 | T/C                   | 0.15 | 4.87E-06        | 0.0651      | 297                        | 10,770,822-11,638,851 | 868.03         | 119          |
| ArFl06     | mlid0069442493 | 10   | 11,819,220 | A/G                   | 0.15 | 1.54E-05        | 0.0061      | 131                        | 11,784,075-11,860,967 | 76.89          | 9            |
| ArFl06     | mlid0070818833 | 10   | 17,859,436 | G/A                   | 0.39 | 5.77E-05        | 0.0114      | 273                        | 17,560,135-18,024,179 | 464.04         | 48           |
| ArFl07     | mlid0071294637 | 10   | 20,222,070 | T/C                   | 0.05 | 6.17E-05        | -0.0787     | 3                          | 19,926,365-20,237,046 | 310.68         | 42           |
| TxFl09     | mlid0071609317 | 10   | 21,796,956 | A/G                   | 0.21 | 8.93E-05        | -0.0185     | 221                        | 21,615,363-22,079,560 | 464.20         | 61           |
| ArFl06     | mlid0072361199 | 11   | 2,698,985  | A/G                   | 0.06 | 6.59E-05        | -0.0074     | 2                          | 2,698,985-3,040,074   | 341.09         | 42           |
| ArFl07     | mlid0072447960 | 11   | 3,174,953  | T/C                   | 0.20 | 9.85E-05        | -0.0438     | 5                          | 3,064,685-3,174,953   | 110.27         | 14           |
| ArFl07     | mlid0072977556 | 11   | 5,610,752  | G/A                   | 0.43 | 5.39E-05        | -0.0543     | 239                        | 5,454,343-5,998,805   | 544.46         | 50           |

| Experiment | Index SNP      | Chr. | Position   | Minor/Major<br>allele | MAF  | <i>P</i> -value | Effect size | No. of significant<br>SNPs | Position range        | Region<br>size | No. of genes |
|------------|----------------|------|------------|-----------------------|------|-----------------|-------------|----------------------------|-----------------------|----------------|--------------|
| TxUnfl09   | mlid0073114890 | 11   | 6,165,503  | T/A                   | 0.39 | 6.25E-05        | -0.0013     | 1188                       | 6,032,253-6,511,266   | 479.01         | 55           |
| TxFl09     | mlid0073321131 | 11   | 6,882,891  | G/C                   | 0.17 | 2.99E-05        | 0.0112      | 17                         | 6,515,329-7,198,896   | 683.57         | 58           |
| ArFl07     | mlid0073516248 | 11   | 7,720,491  | G/A                   | 0.25 | 8.93E-05        | -0.0648     | 390                        | 7,542,683-8,000,900   | 458.22         | 45           |
| TxUnfl09   | mlid0073588741 | 11   | 8,042,077  | G/A                   | 0.06 | 2.39E-05        | -0.0022     | 25                         | 8,041,460-8,412,015   | 370.56         | 36           |
| ArFl07     | mlid0073894380 | 11   | 9,187,040  | C/T                   | 0.23 | 5.76E-05        | -0.0884     | 371                        | 8,921,323-9,423,133   | 501.81         | 49           |
| ArFl07     | mlid0076536806 | 11   | 18,849,758 | C/T                   | 0.41 | 7.63E-05        | -0.0704     | 135                        | 18,424,490-18,959,363 | 534.87         | 45           |
| TxFl09     | mlid0076988314 | 11   | 20,676,859 | A/T                   | 0.10 | 1.02E-05        | -0.0116     | 620                        | 20,359,638-20,702,309 | 342.67         | 41           |
| TxUnfl09   | mlid0077484051 | 11   | 22,425,949 | G/A                   | 0.36 | 5.36E-05        | -0.0011     | 148                        | 22,318,664-22,428,638 | 109.97         | 8            |
| ArFl06     | mlid0077498371 | 11   | 22,473,981 | C/T                   | 0.35 | 1.12E-05        | 0.0057      | 104                        | 22,287,380-22,921,862 | 634.48         | 74           |
| TxFl09     | mlid0077561546 | 11   | 22,736,597 | A/G                   | 0.18 | 1.03E-06        | 0.0104      | 243                        | 22,239,670-22,958,836 | 719.17         | 81           |
| ArFl06     | mlid0078153893 | 11   | 25,033,501 | A/G                   | 0.05 | 6.34E-05        | -0.0096     | 76                         | 24,975,860-25,135,667 | 159.81         | 8            |
| ArFl06     | mlid0078353755 | 11   | 25,818,971 | C/T                   | 0.05 | 5.59E-06        | -0.0095     | 9                          | 25,606,178-25,849,741 | 243.56         | 26           |
| ArFl06     | mlid0078388730 | 11   | 25,947,679 | T/A                   | 0.22 | 7.09E-05        | -0.0053     | 25                         | 25,897,420-26,030,224 | 132.80         | 5            |
| ArFl06     | mlid0078489434 | 11   | 26,357,777 | T/C                   | 0.23 | 1.20E-05        | -0.0057     | 13                         | 26,098,105-26,531,387 | 433.28         | 44           |
| ArFl06     | mlid0078771642 | 11   | 27,391,131 | A/G                   | 0.06 | 7.94E-05        | -0.0093     | 54                         | 27,027,670-27,830,326 | 802.66         | 81           |
| ArFl07     | mlid0078777862 | 11   | 27,412,331 | T/C                   | 0.06 | 9.71E-06        | 0.0590      | 4                          | 27,382,797-27,412,942 | 30.15          | 4            |
| TxFl09     | mlid0079128359 | 11   | 28,765,760 | T/C                   | 0.26 | 6.36E-05        | -0.0070     | 150                        | 28,361,729-28,796,600 | 434.87         | 49           |
| ArFl06     | mlid0079597426 | 12   | 2,160,756  | G/A                   | 0.35 | 8.83E-05        | 0.0146      | 28                         | 1,723,629-2,559,097   | 835.47         | 114          |
| TxUnfl09   | mlid0079901644 | 12   | 3,613,472  | T/C                   | 0.24 | 6.93E-05        | 0.0013      | 12                         | 3,612,538-3,638,198   | 25.66          | 4            |
| ArFl06     | mlid0079970698 | 12   | 3,923,305  | A/C                   | 0.08 | 8.39E-05        | -0.0073     | 11                         | 3,844,627-4,190,069   | 345.44         | 48           |
| ArFl06     | mlid0080262794 | 12   | 5,098,184  | A/G                   | 0.19 | 3.64E-05        | -0.0061     | 27                         | 4,634,609-5,330,735   | 696.13         | 63           |
| TxUnfl09   | mlid0080556281 | 12   | 6,229,277  | T/G                   | 0.50 | 9.87E-05        | 0.0012      | 1193                       | 5,774,262-6,659,161   | 884.90         | 60           |
| ArFl06     | mlid0080684017 | 12   | 6,740,964  | A/C                   | 0.12 | 2.94E-05        | -0.0071     | 6                          | 6,740,964-7,230,369   | 489.41         | 37           |
| ArFl07     | mlid0081693964 | 12   | 10,264,614 | A/G                   | 0.14 | 1.35E-05        | -0.0533     | 2                          | 10,264,614-10,271,635 | 7.02           | 0            |
| ArFl07     | mlid0082841259 | 12   | 14,152,000 | T/C                   | 0.08 | 6.22E-05        | 0.0715      | 6                          | 14,105,006-14,264,032 | 159.03         | 8            |
| ArFl06     | mlid0083359334 | 12   | 15,889,073 | C/G                   | 0.08 | 5.00E-06        | 0.0084      | 3                          | 15,829,690-15,889,073 | 59.38          | 5            |
| ArFl06     | mlid0084408685 | 12   | 19,851,795 | T/C                   | 0.12 | 4.36E-05        | -0.0068     | 4                          | 19,670,268-19,851,840 | 181.57         | 20           |
| TxUnfl09   | mlid0084491921 | 12   | 20,174,978 | T/C                   | 0.28 | 5.86E-05        | 0.0015      | 9                          | 20,104,393-20,376,884 | 272.49         | 12           |
| ArFl06     | mlid0084893680 | 12   | 22,058,105 | C/G                   | 0.08 | 7.74E-07        | 0.0099      | 771                        | 21,997,826-22,453,255 | 455.43         | 38           |
| ArFl06     | mlid0085270959 | 12   | 23,577,179 | T/C                   | 0.45 | 8.93E-07        | -0.0067     | 138                        | 23,495,787-23,662,701 | 166.91         | 23           |
| ArFl06     | mlid0085583646 | 12   | 25,155,287 | A/G                   | 0.15 | 9.82E-05        | -0.0058     | 7                          | 25,121,845-25,207,138 | 85.29          | 3            |
| ArFl06     | mlid0085642863 | 12   | 25,419,976 | T/C                   | 0.12 | 8.39E-06        | -0.0073     | 22                         | 25,258,977-25,816,872 | 557.90         | 73           |
| TxUnfl09   | mlid0085928877 | 12   | 26,805,183 | T/A                   | 0.47 | 8.48E-05        | -0.0016     | 11                         | 26,805,183-27,260,581 | 455.40         | 53           |

**Table S6.** List of significant SNPs (*P*-value <0.0001 and passing 5% FDR) for grain Mn concentration in the association peak on chromosome 7 in the *temperate japonica* subpopulation in the Arkansas flooded 2007 experiment based on the 5.2M SNP dataset using single trait analysis.

| -              |      |           | Minor/Major |      |          |             |
|----------------|------|-----------|-------------|------|----------|-------------|
| SNP id         | Chr. | Position  | allele      | MAF  | P-value  | Effect size |
| mlid0048683628 | 7    | 8,068,469 | T/C         | 0.40 | 2.04E-07 | -0.0773     |
| mlid0048735174 | 7    | 8,255,712 | A/G         | 0.32 | 5.10E-07 | -0.0829     |
| mlid0048735332 | 7    | 8,256,487 | A/C         | 0.35 | 1.47E-08 | -0.0870     |
| mlid0048736042 | 7    | 8,259,474 | G/A         | 0.34 | 7.07E-08 | -0.0849     |
| mlid0048739213 | 7    | 8,274,209 | A/G         | 0.32 | 5.10E-07 | -0.0829     |
| mlid0048741969 | 7    | 8,286,791 | T/C         | 0.32 | 5.10E-07 | -0.0829     |
| mlid0048744587 | 7    | 8,297,556 | T/G         | 0.32 | 5.10E-07 | -0.0829     |
| mlid0048755700 | 7    | 8,342,845 | G/C         | 0.32 | 5.10E-07 | -0.0829     |
| mlid0048757951 | 7    | 8,351,860 | A/G         | 0.33 | 2.66E-07 | -0.0832     |
| mlid0048760588 | 7    | 8,362,721 | T/C         | 0.35 | 7.79E-08 | -0.0843     |
| mlid0048762728 | 7    | 8,368,012 | G/C         | 0.32 | 5.10E-07 | -0.0829     |

| Table S7. Information of QTLs with index SNPs at P-value <0.0001 for grain Mn concentration in 303 rice accessions based on the 5.2M SNP        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| dataset using multi-experiment analysis. Asterisks represent SNPs passing 5% FDR. Bold font indicates QTLs that were not detected using single- |
| trait analysis based on P-value < 0.0001, but they were identified using multi-experiment analysis.                                             |

| Index SNP       | Chr. | Position   | Minor/Major<br>allele | MAF  | <i>P</i> -value | ArFl06<br>effect size | ArFl07<br>effect size | TxFl09<br>effect size | No. of<br>significant<br>SNPs | Position range        | Region size | No. of genes |
|-----------------|------|------------|-----------------------|------|-----------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|-------------|--------------|
| mlid0000119132  | 1    | 615,232    | T/C                   | 0.29 | 1.45E-05        | -0.0015               | -0.0554               | -0.0008               | 76                            | 454,506-622,002       | 167.50      | 25           |
| mlid0001151802  | 1    | 5,690,218  | T/G                   | 0.32 | 6.24E-05        | -0.0055               | -0.0294               | -0.0070               | 9                             | 5,660,309-5,697,586   | 37.28       | 7            |
| mlid0005661019  | 1    | 24,391,177 | A/C                   | 0.24 | 7.21E-05        | 0.0061                | 0.0293                | 0.0050                | 3                             | 24,391,177-24,406,734 | 15.56       | 4            |
| mlid0006421683  | 1    | 28,000,525 | C/A                   | 0.45 | 5.56E-05        | -0.0006               | 0.0489                | 0.0021                | 546                           | 27,749,433-28,282,038 | 532.61      | 66           |
| mlid0006934369  | 1    | 30,572,995 | G/T                   | 0.38 | 4.30E-05        | 0.0052                | 0.0508                | 0.0016                | 59                            | 30,497,194-30,591,047 | 93.85       | 12           |
| mlid0010026617  | 2    | 3,880,164  | T/C                   | 0.11 | 4.70E-06        | -0.0035               | 0.0080                | -0.0093               | 3                             | 3,879,499-3,882,581   | 3.08        | 0            |
| mlid0011856950  | 2    | 11,863,144 | A/G                   | 0.37 | 1.41E-05        | 0.0051                | 0.0011                | -0.0013               | 17                            | 11,618,987-12,090,182 | 471.20      | 39           |
| mlid0013232407  | 2    | 17,548,954 | T/C                   | 0.11 | 1.32E-05        | 0.0076                | 0.0513                | 0.0030                | 190                           | 17,371,671-17,807,609 | 435.94      | 35           |
| mlid0015205876  | 2    | 25,996,854 | G/T                   | 0.30 | 1.14E-06        | 0.0036                | -0.0394               | 0.0036                | 7                             | 25,832,178-26,009,875 | 177.70      | 18           |
| mlid0015314364  | 2    | 26,510,097 | T/C                   | 0.38 | 2.60E-06        | -0.0022               | 0.1015                | 0.0070                | 1199                          | 26,010,310-26,826,269 | 815.96      | 109          |
| mlid0016839251  | 2    | 34,744,900 | T/C                   | 0.38 | 9.60E-05        | -0.0011               | -0.0360               | -0.0014               | 3                             | 34,681,316-34,744,900 | 63.58       | 5            |
| mlid0017089793  | 3    | 241,484    | A/C                   | 0.18 | 5.16E-05        | -0.0107               | -0.0472               | -0.0184               | 2                             | 198,229-248,540       | 50.31       | 35           |
| mlid0017087587  | 3    | 248,540    | T/C                   | 0.19 | 1.33E-05        | 0.0048                | 0.0256                | 0.0090                | 213                           | 217,406-468,920       | 251.51      | 4            |
| mlid0017254736* | 3    | 1,253,009  | T/C                   | 0.24 | 3.43E-07        | 0.0066                | 0.0180                | 0.0075                | 168                           | 1,164,504-1,377,789   | 213.29      | 22           |
| mlid0017312969  | 3    | 1,576,033  | T/G                   | 0.18 | 7.89E-06        | 0.0040                | 0.0457                | 0.0080                | 10                            | 1,561,296-1,906,322   | 345.03      | 52           |
| mlid0017485103  | 3    | 2,573,901  | A/G                   | 0.23 | 1.19E-05        | 0.0052                | 0.0440                | 0.0102                | 23                            | 2,081,528-3,013,586   | 932.06      | 130          |
| mlid0018081677  | 3    | 5,941,461  | A/G                   | 0.13 | 6.53E-06        | 0.0075                | 0.0445                | 0.0067                | 31                            | 5,482,084-6,387,194   | 905.11      | 128          |
| mlid0018163783* | 3    | 6,451,980  | T/C                   | 0.13 | 2.96E-07        | 0.0083                | 0.0512                | 0.0088                | 18                            | 5,966,229-6,946,412   | 980.18      | 116          |
| mlid0018263668* | 3    | 7,019,729  | T/C                   | 0.13 | 1.63E-08        | 0.0089                | 0.0552                | 0.0112                | 19                            | 6,633,863-7,507,792   | 873.93      | 110          |
| mlid0018475760  | 3    | 8,158,810  | T/C                   | 0.12 | 2.09E-06        | 0.0070                | 0.0635                | 0.0102                | 19                            | 7,671,825-8,394,062   | 722.24      | 97           |
| mlid0018818253  | 3    | 9,943,206  | G/A                   | 0.38 | 4.32E-06        | -0.0011               | -0.1257               | -0.0179               | 266                           | 9,793,467-10,166,279  | 372.81      | 50           |
| mlid0020245537  | 3    | 16,537,232 | A/G                   | 0.37 | 4.72E-05        | 0.0088                | 0.0005                | -0.0034               | 5                             | 16,537,232-16,978,380 | 441.15      | 39           |
| mlid0021261713  | 3    | 20,475,126 | T/C                   | 0.09 | 7.85E-05        | 0.0067                | 0.0268                | -0.0002               | 19                            | 20,109,360-20,866,631 | 757.27      | 54           |
| mlid0023316606  | 3    | 29,673,238 | T/C                   | 0.13 | 1.75E-05        | 0.0067                | -0.0159               | 0.0017                | 5                             | 29,651,332-29,703,696 | 52.36       | 3            |
| mlid0025444660* | 4    | 2,891,380  | T/C                   | 0.17 | 1.03E-07        | 0.0043                | -0.0262               | 0.0085                | 325                           | 2,403,945-3,330,179   | 926.23      | 44           |
| mlid0025744000* | 4    | 3,767,588  | C/G                   | 0.14 | 1.89E-08        | 0.0065                | -0.0014               | 0.0105                | 479                           | 3,411,664-4,267,559   | 855.90      | 48           |

| Index SNP       | Chr. | Position   | Minor/Major<br>allele | MAF  | <i>P</i> -value | ArFl06<br>effect size | ArF107<br>effect size | TxF109<br>effect size | No. of<br>significant<br>SNPs | Position range        | Region size | No. of genes |
|-----------------|------|------------|-----------------------|------|-----------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|-------------|--------------|
| mlid0025923404  | 4    | 4,270,357  | A/G                   | 0.17 | 5.39E-07        | 0.0048                | 0.0022                | 0.0102                | 332                           | 3,772,040-4,723,318   | 951.28      | 66           |
| mlid0026136232  | 4    | 4,962,085  | T/C                   | 0.10 | 8.72E-05        | 0.0059                | 0.0070                | 0.0076                | 3                             | 4,561,606-4,962,085   | 400.48      | 30           |
| mlid0026570948  | 4    | 6,488,383  | T/C                   | 0.13 | 6.07E-05        | 0.0059                | 0.0046                | 0.0093                | 9                             | 6,317,929-6,939,295   | 621.37      | 43           |
| mlid0032196084  | 4    | 31,629,134 | T/C                   | 0.27 | 5.41E-05        | -0.0041               | -0.0250               | -0.0129               | 35                            | 31,596,359-31,893,463 | 297.10      | 44           |
| mlid0032464069  | 4    | 32,946,010 | G/C                   | 0.06 | 3.31E-05        | -0.0079               | -0.0372               | -0.0133               | 241                           | 32,701,044-32,961,659 | 260.62      | 35           |
| mlid0032618309  | 4    | 33,821,719 | A/G                   | 0.10 | 5.45E-05        | -0.0069               | -0.0472               | -0.0109               | 17                            | 33,794,465-34,000,755 | 206.29      | 32           |
| mlid0034764646  | 5    | 8,295,089  | G/A                   | 0.21 | 2.64E-05        | -0.0078               | -0.0295               | -0.0033               | 243                           | 8,252,741-8,767,546   | 514.81      | 51           |
| mlid0036877832  | 5    | 16,216,139 | T/G                   | 0.18 | 4.87E-05        | -0.0079               | -0.0350               | -0.0066               | 9                             | 16,153,431-16,321,462 | 168.03      | 18           |
| mlid0037757883  | 5    | 20,056,165 | T/G                   | 0.12 | 1.08E-05        | 0.0027                | -0.0449               | 0.0016                | 27                            | 20,053,176-20,500,839 | 447.66      | 44           |
| mlid0041294108  | 6    | 7,399,042  | G/A                   | 0.29 | 5.53E-05        | 0.0034                | 0.0318                | 0.0119                | 33                            | 7,210,399-7,400,220   | 189.82      | 23           |
| mlid0041674617  | 6    | 9,005,159  | T/G                   | 0.06 | 1.80E-05        | 0.0013                | -0.0365               | 0.0147                | 31                            | 8,981,585-9,371,897   | 390.31      | 38           |
| mlid0044708996  | 6    | 20,737,946 | C/T                   | 0.37 | 1.90E-06        | -0.0017               | 0.0239                | 0.0070                | 37                            | 20,527,784-20,854,368 | 326.58      | 27           |
| mlid0045245146  | 6    | 22,842,399 | T/C                   | 0.21 | 1.69E-05        | 0.0031                | 0.0008                | 0.0087                | 6                             | 22,833,028-22,844,930 | 11.90       | 2            |
| mlid0045375351  | 6    | 23,378,178 | A/G                   | 0.06 | 1.42E-05        | -0.0077               | 0.0138                | -0.0073               | 11                            | 22,962,887-23,465,838 | 502.95      | 57           |
| mlid0045883156  | 6    | 25,746,611 | G/A                   | 0.22 | 8.93E-05        | 0.0030                | -0.0179               | -0.0062               | 17                            | 25,745,131-26,172,285 | 427.15      | 46           |
| mlid0046371189  | 6    | 28,083,983 | T/G                   | 0.19 | 1.84E-05        | -0.0025               | -0.0527               | -0.0180               | 110                           | 28,071,820-28,377,309 | 305.49      | 36           |
| mlid0046403975  | 6    | 28,256,298 | A/C                   | 0.30 | 4.62E-05        | 0.0018                | -0.0016               | 0.0081                | 28                            | 28,256,298-28,400,201 | 143.90      | 16           |
| mlid0047057872  | 7    | 598,763    | G/A                   | 0.43 | 5.73E-05        | 0.0004                | -0.0356               | -0.0071               | 25                            | 180,763-1,073,310     | 892.55      | 129          |
| mlid0047344943  | 7    | 1,976,642  | T/G                   | 0.09 | 6.70E-05        | 0.0048                | 0.0659                | 0.0040                | 21                            | 1,551,405-2,248,771   | 697.37      | 111          |
| mlid0047878419  | 7    | 4,649,020  | T/C                   | 0.09 | 3.05E-05        | -0.0079               | -0.0437               | -0.0111               | 239                           | 4,591,509-4,769,910   | 178.40      | 23           |
| mlid0048486308  | 7    | 7,310,792  | T/C                   | 0.17 | 2.37E-06        | 0.0046                | 0.0613                | 0.0030                | 50                            | 6,887,656-7,785,057   | 897.40      | 89           |
| mlid0048735332  | 7    | 8,256,487  | A/C                   | 0.15 | 2.98E-06        | 0.0033                | 0.0631                | 0.0050                | 35                            | 7,785,057-8,541,590   | 756.53      | 83           |
| mlid0048878287  | 7    | 8,781,883  | T/C                   | 0.13 | 7.60E-05        | 0.0031                | 0.0565                | 0.0050                | 17                            | 8,286,791-8,966,501   | 679.71      | 50           |
| mlid0050369562  | 7    | 14,074,821 | T/A                   | 0.44 | 3.19E-05        | -0.0071               | -0.0582               | -0.0099               | 15                            | 13,596,994-14,513,241 | 916.25      | 35           |
| mlid0051330148  | 7    | 17,774,245 | T/C                   | 0.11 | 1.71E-06        | 0.0058                | 0.0386                | 0.0130                | 14                            | 17,590,345-18,168,663 | 578.32      | 41           |
| mlid0051931577  | 7    | 20,503,283 | T/C                   | 0.22 | 8.67E-05        | 0.0019                | -0.0259               | 0.0125                | 117                           | 20,201,002-20,901,965 | 700.96      | 71           |
| mlid0052704275  | 7    | 24,077,615 | C/T                   | 0.38 | 9.19E-05        | 0.0068                | -0.0015               | -0.0017               | 19                            | 24,059,058-24,536,167 | 477.11      | 68           |
| mlid0054110197  | 8    | 1,452,574  | G/C                   | 0.20 | 2.29E-05        | 0.0033                | 0.0540                | -0.0007               | 85                            | 1,179,366-1,538,633   | 359.27      | 35           |
| mlid0054433657  | 8    | 2,964,931  | T/G                   | 0.06 | 6.73E-06        | -0.0079               | -0.0148               | -0.0117               | 14                            | 2,964,931-3,305,329   | 340.40      | 43           |
| mlid0056084253  | 8    | 9,312,470  | A/G                   | 0.08 | 7.44E-05        | 0.0095                | -0.0187               | 0.0023                | 160                           | 9,286,088-9,803,558   | 517.47      | 46           |
| mlid0056418718  | 8    | 10,539,375 | G/A                   | 0.48 | 6.59E-05        | 0.0031                | -0.0265               | -0.0046               | 6                             | 10,536,674-10,605,025 | 68.35       | 5            |
| mlid0058845647  | 8    | 19,441,251 | T/C                   | 0.08 | 2.34E-05        | -0.0076               | -0.0221               | -0.0077               | 3                             | 19,396,502-19,441,251 | 44.75       | 3            |
| mlid0060144404  | 8    | 25,573,297 | G/A                   | 0.29 | 7.87E-05        | -0.0040               | -0.0535               | 0.0008                | 9                             | 25,304,471-25,573,297 | 268.83      | 38           |
| mlid0060879641* | 9    | 504,844    | A/G                   | 0.40 | 6.17E-07        | -0.0113               | -0.0397               | -0.0135               | 2091                          | 38,664-1,004,262      | 965.60      | 62           |

## Table S7. Continued

| Index SNP       | Chr. | Position   | Minor/Major<br>allele | MAF  | <i>P</i> -value | ArFl06<br>effect size | ArF107<br>effect size | TxFl09<br>effect size | No. of<br>significant<br>SNPs | Position range        | Region size | No. of genes |
|-----------------|------|------------|-----------------------|------|-----------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|-------------|--------------|
| mlid0061102684  | 9    | 1,422,015  | A/G                   | 0.45 | 9.39E-05        | -0.0082               | -0.0274               | -0.0079               | 161                           | 935,661-1,920,658     | 985.00      | 78           |
| mlid0062289801  | 9    | 5,946,922  | T/C                   | 0.06 | 7.67E-05        | 0.0082                | 0.0240                | -0.0001               | 14                            | 5,946,449-6,038,822   | 92.37       | 6            |
| mlid0062331992  | 9    | 6,115,870  | A/G                   | 0.07 | 7.03E-05        | 0.0073                | 0.0059                | -0.0004               | 78                            | 6,096,839-6,275,947   | 179.11      | 20           |
| mlid0062863625  | 9    | 8,081,414  | T/C                   | 0.18 | 3.26E-05        | -0.0009               | -0.0461               | -0.0178               | 26                            | 8,032,283-8,179,033   | 146.75      | 7            |
| mlid0063411145  | 9    | 10,212,061 | A/G                   | 0.26 | 6.81E-05        | 0.0024                | 0.0252                | 0.0090                | 70                            | 10,205,318-10,381,365 | 176.05      | 16           |
| mlid0064176730  | 9    | 13,220,840 | T/C                   | 0.29 | 6.58E-06        | -0.0002               | 0.0657                | 0.0102                | 146                           | 12,784,010-13,704,170 | 920.16      | 81           |
| mlid0064318980  | 9    | 13,755,872 | T/C                   | 0.28 | 4.17E-05        | -0.0017               | 0.0558                | 0.0077                | 196                           | 13,280,793-14,122,080 | 841.29      | 83           |
| mlid0065478248  | 9    | 19,317,384 | A/C                   | 0.08 | 6.75E-05        | 0.0065                | -0.0036               | -0.0033               | 9                             | 19,235,010-19,423,934 | 188.92      | 29           |
| mlid0067295435  | 10   | 4,051,656  | C/T                   | 0.17 | 8.90E-05        | -0.0042               | 0.0131                | -0.0014               | 7                             | 4,049,902-4,054,829   | 4.93        | 0            |
| mlid0068604008  | 10   | 8,585,553  | A/G                   | 0.10 | 1.56E-05        | 0.0046                | -0.0298               | 0.0026                | 3                             | 8,585,553-8,600,241   | 14.69       | 1            |
| mlid0069452339  | 10   | 11,855,805 | T/C                   | 0.42 | 1.41E-05        | 0.0055                | 0.0266                | -0.0003               | 92                            | 11,690,846-12,019,332 | 328.49      | 40           |
| mlid0070499360  | 10   | 16,393,038 | A/C                   | 0.29 | 5.82E-05        | 0.0043                | -0.0338               | -0.0007               | 559                           | 15,897,032-16,614,309 | 717.28      | 57           |
| mlid0070835331  | 10   | 17,942,694 | G/C                   | 0.38 | 1.92E-05        | -0.0071               | 0.0175                | -0.0001               | 382                           | 17,594,989-18,133,647 | 538.66      | 51           |
| mlid0071372105  | 10   | 20,566,356 | C/T                   | 0.15 | 4.40E-05        | 0.0013                | 0.0299                | -0.0053               | 2                             | 20,559,757-20,566,356 | 6.60        | 1            |
| mlid0073131281  | 11   | 6,224,133  | A/C                   | 0.29 | 4.76E-05        | 0.0034                | -0.0234               | 0.0027                | 2                             | 6,038,550-6,224,133   | 185.58      | 19           |
| mlid0073208579  | 11   | 6,521,180  | T/G                   | 0.05 | 3.06E-05        | 0.0042                | -0.0551               | -0.0032               | 3                             | 6,514,408-6,542,506   | 28.10       | 7            |
| mlid0074142720  | 11   | 10,110,682 | T/C                   | 0.05 | 7.79E-05        | -0.0006               | 0.0523                | 0.0126                | 20                            | 10,103,980-10,149,355 | 45.38       | 4            |
| mlid0074403768  | 11   | 11,135,039 | G/C                   | 0.38 | 2.55E-05        | 0.0019                | -0.0768               | -0.0131               | 508                           | 10,666,049-11,634,777 | 968.73      | 67           |
| mlid0074604290* | 11   | 11,886,926 | G/A                   | 0.39 | 4.80E-07        | 0.0062                | -0.0320               | -0.0095               | 615                           | 11,391,970-12,295,345 | 903.38      | 40           |
| mlid0074977833  | 11   | 13,193,760 | T/C                   | 0.40 | 1.96E-05        | 0.0053                | -0.0177               | -0.0062               | 1302                          | 12,702,185-13,693,545 | 991.36      | 39           |
| mlid0075140599  | 11   | 13,761,449 | G/C                   | 0.38 | 4.06E-06        | 0.0051                | -0.0097               | -0.0078               | 1407                          | 13,262,755-14,259,612 | 996.86      | 72           |
| mlid0075586567  | 11   | 15,370,194 | A/G                   | 0.32 | 3.09E-05        | -0.0001               | -0.0429               | -0.0118               | 1087                          | 14,878,752-15,863,313 | 984.56      | 75           |
| mlid0077375864  | 11   | 22,025,542 | T/C                   | 0.28 | 5.48E-06        | -0.0017               | -0.0244               | 0.0053                | 26                            | 21,638,079-22,245,086 | 607.01      | 74           |
| mlid0077561546  | 11   | 22,736,597 | A/G                   | 0.20 | 1.36E-05        | -0.0040               | -0.0264               | -0.0104               | 232                           | 22,667,520-22,923,569 | 256.05      | 23           |
| mlid0077694518  | 11   | 23,256,507 | G/A                   | 0.08 | 1.03E-05        | 0.0059                | 0.0284                | 0.0124                | 33                            | 22,799,122-23,332,367 | 533.25      | 50           |
| mlid0078166555  | 11   | 25,085,885 | C/T                   | 0.07 | 1.26E-05        | 0.0090                | 0.0370                | 0.0007                | 131                           | 24,962,490-25,135,667 | 173.18      | 9            |
| mlid0078268426  | 11   | 25,502,331 | A/G                   | 0.09 | 4.42E-05        | 0.0043                | 0.0151                | -0.0050               | 535                           | 25,433,099-25,523,426 | 90.33       | 14           |
| mlid0078299980* | 11   | 25,621,708 | A/C                   | 0.05 | 2.24E-07        | 0.0094                | 0.0340                | -0.0026               | 1                             | 25,619,048-25,621,708 | 2.76        | 0            |
| mlid0078353755  | 11   | 25,818,971 | C/T                   | 0.05 | 6.95E-05        | 0.0091                | 0.0487                | 0.0041                | 9                             | 25,606,178-25,849,741 | 243.56      | 26           |
| mlid0078489434  | 11   | 26,357,777 | T/C                   | 0.23 | 7.73E-05        | 0.0056                | 0.0118                | 0.0017                | 4                             | 26,306,042-26,531,387 | 225.35      | 25           |
| mlid0078615844  | 11   | 26,864,275 | A/G                   | 0.06 | 1.44E-05        | 0.0080                | 0.0458                | -0.0001               | 6                             | 26,835,209-26,864,275 | 29.07       | 0            |
| mlid0079958592  | 12   | 3,865,724  | A/G                   | 0.08 | 5.79E-05        | 0.0077                | 0.0498                | 0.0107                | 12                            | 3,844,627-4,175,567   | 330.94      | 45           |
| mlid0080184534  | 12   | 4,789,369  | A/G                   | 0.07 | 1.37E-05        | -0.0002               | -0.0425               | 0.0070                | 648                           | 4,641,827-5,074,311   | 432.48      | 48           |
| mlid0083359334  | 12   | 15,889,073 | C/G                   | 0.09 | 2.41E-05        | -0.0082               | -0.0531               | -0.0063               | 3                             | 15,829,690-15,889,073 | 59.38       | 5            |
| mlid0084609216  | 12   | 20,857,807 | T/G                   | 0.31 | 4.30E-05        | 0.0039                | -0.0241               | 0.0003                | 978                           | 20,365,464-21,100,322 | 734.86      | 75           |

Table S7. Continued

| Index SNP      | Chr. | Position   | Minor/Major<br>allele | MAF  | <i>P</i> -value | ArFl06<br>effect size | ArFl07<br>effect size | TxFl09<br>effect size | No. of<br>significant<br>SNPs | Position range        | Region size | No. of genes |
|----------------|------|------------|-----------------------|------|-----------------|-----------------------|-----------------------|-----------------------|-------------------------------|-----------------------|-------------|--------------|
| mlid0084924877 | 12   | 22,172,677 | C/T                   | 0.07 | 1.37E-06        | -0.0103               | -0.0195               | -0.0104               | 726                           | 21,844,726-22,664,758 | 820.03      | 73           |
| mlid0085427253 | 12   | 24,343,696 | T/C                   | 0.21 | 1.17E-05        | 0.0061                | 0.0091                | 0.0092                | 8                             | 24,108,337-24,537,021 | 428.68      | 41           |
| mlid0085463456 | 12   | 24,527,475 | A/T                   | 0.37 | 1.02E-06        | -0.0036               | 0.0404                | -0.0047               | 47                            | 24,465,323-24,605,323 | 140.00      | 9            |
| mlid0085642863 | 12   | 25,419,976 | T/C                   | 0.11 | 5.60E-05        | 0.0070                | 0.0269                | 0.0092                | 9                             | 25,258,977-25,816,872 | 557.90      | 73           |
| mlid0085791065 | 12   | 26,157,133 | A/G                   | 0.06 | 5.25E-05        | 0.0043                | 0.0250                | -0.0063               | 7                             | 26,157,133-26,355,570 | 198.44      | 19           |

Table S7. Continued



**Fig. S1.** Genome-wide association mapping results for grain Mn concentration in rice based on the 44K, 700K and 5.2M SNP datasets using single-trait analysis in all accessions grown in Arkansas under flooded condition in 2007. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR.



**Fig. S2.** Genome-wide association mapping results for grain Mn concentration in rice based on the 44K, 700K and 5.2M SNP datasets using single-trait analysis in all accessions grown in Texas under flooded condition in 2009. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR.



**Fig. S3.** Genome-wide association mapping results for grain Mn concentration in rice based on the 44K, 700K and 5.2M SNP datasets using single-trait analysis in all accessions grown in Texas under unflooded condition in 2009. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR.



**Fig. S4.** Genome-wide association mapping results for grain Mn concentration in rice based on the 5.2M SNP dataset in four subpopulations grown in Arkansas under flooded condition in 2006. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal dashed line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. The abbreviation of subpopulations is AUS: *aus*, IND: *indica*, TEJ: *temperate japonica* and TRJ: *tropical japonica*.



**Fig. S5.** Genome-wide association mapping results for grain Mn concentration in rice based on the 5.2M SNP dataset in four subpopulations grown in Arkansas under flooded condition in 2007. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal dashed line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. The abbreviation of subpopulations is AUS: *aus*, IND: *indica*, TEJ: *temperate japonica* and TRJ: *tropical japonica*.



**Fig. S6.** Genome-wide association mapping results for grain Mn concentration in rice based on the 5.2M SNP dataset in four subpopulations grown in Texas under flooded condition in 2009. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal dashed line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. The abbreviation of subpopulations is AUS: *aus*, IND: *indica*, TEJ: *temperate japonica* and TRJ: *tropical japonica*.



**Fig. S7.** Genome-wide association mapping results for grain Mn concentration in rice based on the 5.2M SNP dataset in four subpopulations grown in Texas under unflooded condition in 2009. Manhattan (left) and Q-Q (right) plots are presented. The blue horizontal dashed line represents the  $-\log_{10}(P)$  threshold at 4. The red dot indicates SNP loci passed 5% FDR. The abbreviation of subpopulations is AUS: *aus*, IND: *indica*, TEJ: *temperate japonica* and TRJ: *tropical japonica*.



**Fig. S8.** Pattern of LOC\_Os03g11010 (*OsNRAMP2*) expression in each rice tissue from the RiceXPro database with the feature number as 22201.



**Fig. S9.** Pattern of LOC\_Os03g11734 (*OsFRDL1*) expression in each rice tissue from the RiceXPro database with the feature number as 08741.


**Fig. S10.** Pattern of LOC\_Os03g12530 (*OsMTP8.1*) expression in each rice tissue from the RiceXPro database with the feature number as 09448.



**Fig. S11.** Pattern of LOC\_Os07g12900 (*OsHMA3*) expression in each rice tissue from the RiceXPro database with the feature number as 28741.



**Fig. S12.** Gene expression differences between cultivars with high grain Mn concentration and low grain Mn concentration. a) shoot gene expression levels for LOC\_Os03g12530 (*OsMTP8.1*), b) shoot gene expression levels for LOC\_Os07g12900 (*OsHMA3*) and c) shoot gene expression levels for LOC\_Os07g15460 (*OsNRAMP1*). Expression data from Campbell et al., 2020.



**Fig. S13.** Pattern of LOC\_Os07g15370 (*OsNRAMP5*) expression in each rice tissue from the RiceXPro database with the feature number as 35235.



**Fig. S14.** Pattern of LOC\_Os07g15460 (*OsNRAMP1*) expression in each rice tissue from the RiceXPro database with the feature number as 01568.



**Fig. S15.** LD decay (left) and LD heatmap (right) for grain Mn concentration in the Arkansas flooded 2007 experiment in *aus* (a), *indica* (b) and *tropical japonica* (c) subpopulations on chromosome 7 at 7–9 Mbp (left) and 6.5–9.5 Mbp (right), respectively.