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Abstract 

Growing evidence suggests that hepatic-insulin resistance is sufficient to promote progression 

to cardiovascular disease. We have shown previously that liver-specific protein-tyrosine-

phosphatase 1B (PTP1B) deficiency improves hepatic-insulin sensitivity and whole-body 

glucose homeostasis. The aim of this study was to investigate the impact of liver-specific 

PTP1B-deficiency (L-PTP1B-/-) on cardiac and peripheral vascular function, with special 

emphasis on endothelial function in the context of high-fat diet (HFD)-induced obesity. 

L-PTP1B-/- mice exhibited an improved glucose and lipid homeostasis and increased insulin 

sensitivity, without changes in body weight. HFD-feeding increased systolic blood pressure 

(BP) in both L-PTP1B-/- and control littermates; however, this was significantly lower in L-

PTP1B-/- mice. HFD-feeding increased diastolic BP in control mice only, whilst the L-PTP1B-

/- mice were completely protected. The analysis of the function of the left ventricle (LV) 

revealed that HFD-feeding decreased LV fractional shortening in control animals, which was 

not observed in L-PTP1B−/− mice. Importantly, HFD feeding significantly impaired 

endothelium-dependent vasorelaxation in response to acetylcholine in aortas from control 

mice, whilst L-PTP1B−/− mice were fully protected. This was associated with alterations in 

eNOS phosphorylation. Selective inhibition of COX-2, using NS-398, decreased the 

contractile response in response to serotonin (5-HT) only in vessels from control mice. HFD-

fed control mice released enhanced levels of prostaglandin E, a vasoconstrictor metabolite; 

whilst both chow- and HFD-fed L-PTP1B−/− mice released higher levels of prostacylin, a 

vasorelaxant metabolite.  

Our data indicate that hepatic-PTP1B inhibition protects against HFD-induced endothelial 

dysfunction, underscoring the potential of peripheral PTP1B inhibitors in reduction of 

obesity-associated cardiovascular risk in addition to its anti-diabetic effects. 
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Introduction 

Obesity incidence is reaching epidemic proportions worldwide, and is associated with 

an increased risk of premature death [1,2]. As a consequence, the incidence of obesity-related 

disorders, such as metabolic syndrome, diabetes and cardiovascular disease, is rising at an 

alarming rate. A common feature of these disorders is the development of insulin resistance, 

resulting in decreased insulin-stimulated glucose uptake, failure to suppress hepatic glucose 

production, and accumulation of hepatic lipids. Obesity, in particular abdominal obesity, was 

pointed out as a primary contributor to acquired insulin resistance, as increasing adiposity is 

correlated with impaired insulin action [1,3].  

Growing evidence suggests that hepatic insulin resistance is sufficient to induce 

several components of the metabolic syndrome and promote progression to cardiovascular 

disease [1]. Vascular dysfunction related to obesity, in particular endothelial dysfunction in 

various vascular beds and in response to different vasodilator stimuli, might affect both 

peripheral vascular resistance and the delivery of substrates to metabolically active tissues, 

thereby contributing to both hypertension and metabolic abnormalities. Endothelial 

dysfunction is characterized by defects in the normal vasodilator response to mediators such 

as acetylcholine or to shear stress. It is considered as an independent predictor of 

cardiovascular events that has been consistently associated with obesity and the metabolic 

syndrome in a complex interplay with insulin resistance and inflammation. Deficiency of 

endothelial nitric oxide (NO) is believed to be the primary defect that links insulin resistance 

and endothelial dysfunction.  

The mechanisms linking insulin resistance to endothelial dysfunction remain not well 

understood. There is evidence to suggest that the direct effects of insulin on the endothelium 

or disrupted endothelial insulin signalling may disturb endothelial function. Insulin stimulates 

endothelial cell production of NO [4], and, therefore, insulin resistance at the level of the 

endothelium might be expected to be associated with decreased insulin-stimulated NO. 

Duncan et al. [5] demonstrated that transgenic mice with endothelium-targeted over-

expression of a dominant-negative mutant of human insulin receptor had a significant 

endothelial dysfunction, as evidenced by blunted aortic vasodilation in response to 

acetylcholine. The insulin receptor is a classic receptor tyrosine kinase and, as such, is 

inactivated by protein tyrosine phosphatases, notably the protein tyrosine phosphatase 

(PTP)1B [6]. PTP1B is also a negative regulator of leptin receptor signalling [7]. Whole-body 

PTP1B knockout studies in mice established PTP1B as a key negative regulator of body mass 

and insulin sensitivity. PTP1B−/− mice are lean, insulin sensitive, and have enhanced muscle 
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and liver insulin receptor phosphorylation [8,9]. Mice with brain-specific PTP1B−/− deficiency 

exhibit a similar phenotype to the global knockouts in terms of resistance to diet-induced 

obesity and enhanced insulin sensitivity, mostly due to central effect on leptin signalling [10]. 

Muscle-specific PTP1B deficient mice exhibit marked improvement in whole-body glucose 

homeostasis, without changes in body mass or adiposity as well as myeloid-cell specific 

knockouts [11]; whilst adipocyte-PTP1B deficient mice exhibit mild glucose intolerance and 

increased adipocyte cell size [12,13].  

Liver-specific PTP1B deletion (L-PTP1B-/-) improves whole-body glucose and lipid 

homeostasis, independently of changes in body mass/adiposity [14,15]. Liver-specific 

PTP1B−/− mice exhibit increased hepatic insulin signalling, enhanced insulin-induced 

suppression of hepatic glucose production in clamp studies and decreased expression of 

gluconeogenic genes. L-PTP1B-/- mice are also protected against HFD-induced increase in 

serum and liver triglyceride and cholesterol levels, associated with decreased expression of 

lipogenic genes [14,15]. Hepatic PTP1B may affect lipid metabolism via a pathway distinct 

from the insulin signalling where its location within the endoplasmic reticulum (ER) 

membrane appears critical. This was mainly attributable to L-PTP1B-/- mice being protected 

against obesity-induced ER stress in the liver [14,15]. ER stress has been reported to play a 

crucial role in insulin resistance and lipid accumulation [16].  

Considering that in vivo liver-PTP1B deficiency improves hepatic insulin sensitivity 

and both global glucose homeostasis and lipid metabolism independently of changes in 

adiposity and body mass, we hypothesized that liver-specific PTP1B deficiency would also 

lead to protection against obesity-induced endothelial dysfunction and reduction of 

cardiovascular risk.  
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Experimental Procedures 

Animal studies 

All animal studies were performed under a project licence approved by the Home Office 

under the Animals (Scientific Procedures) Act 1986. Mice were maintained on a 12-hour 

light/dark cycle in a temperature-controlled barrier facility, with free access to water and food. 

L-PTP1B-/- mice were described previously and were achieved using an Albumin-cre 

promoter [14,15]. All mice studied were age-matched littermate males on the mixed 

129Sv/C57Bl6 background. Genotyping for the PTP1B floxed allele and the presence of 

Albumin-Cre was performed by PCR [14,17]. Mice were placed either on standard chow 

pellet diet (Rat and Mouse Breeder and Grower, Special Diets Services, Horley, UK) or high-

fat diet (HFD) (Adjusted Calories Diet, 55% Fat, Harlan Teklad, Belton, UK or Research 

Diets, 45% Fat) at weaning (21 days old), and weights were monitored weekly.   

Metabolic measurements 

Glucose from tail blood was assessed using a glucometer (Accu-Check, Burgess Hill, UK). 

Serum insulin was determined by ELISA (CrystalChem, Downers Grove, USA). Glucose 

tolerance tests (GTTs) were performed as described previously, following an overnight fast 

[12,14]. 

Blood Pressure 

Each mouse was trained to the tail-cuff technique for 2 days before each measurement was 

recorded with a Physiograph Desk Model and an Electro-Sphygmomanometer (LE 5001 non-

invasive blood pressure meter, Panlab, Barcelona, Spain). Five separate measurements were 

made on conscious mice for systolic and diastolic blood pressure (mmHg) and heart rate 

determinations. 

Echocardiographic examination 

In vivo transthoracic echocardiography was performed using a Vevo770 high frequency 

ultrasound machine (Visual Sonics, Toronto, Canada) in mice anesthetized with isoflurane 

(induction 5 %, maintenance 2 %) inhalation. Briefly, a two-dimensional short axis view of 

the left ventricle was obtained at the level of the papillary muscle in order to record M-mode 

tracings. Left ventricular end-diastolic diameter (LVEDD) and end-systolic diameter 

(LVESD) were measured by the American Society of Echocardiology leading-edge method 

from at least 3 consecutive cardiac cycles. Doppler cardiac output was calculated cardiac 

index was calculated by normalizing the cardiac output to the animal body weight as 

previously performed [18]. 

Vascular reactivity 
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Mice were sacrificed and aorta removed and carefully cleaned of adhering fat and connective 

tissue and then cut into rings (1.5-2 mm long) that were mounted on a wire myograph filled 

with physiological salt solution (PSS), as previously described [18-20]. Endothelium-

dependent vasodilatation in response to acetylcholine (ACh, 1 nM to 10 µM, Sigma-Aldrich, 

St. Quentin, Fallavier, France) was studied in aortas with functional endothelium pre-

contracted with the thromboxane A2 agonist (9, 11-dideoxy-11a, 9a-

epoxymethanoprostaglandin F2-α) (U46619; Sigma-Aldrich, St. Quentin, Fallavier, France) at 

80% of their maximal response in the presence or absence of the superoxide dismutase (SOD) 

mimetic, Mn(III)tetrakis(1-Methyl-4-pyridyl)porphyrin Pentachloride (MnTMPyP; Sigma-

Aldrich, St. Quentin, Fallavier, France). 

Contractile response was assessed by concentration-response curves by cumulative 

application of serotonin (5-HT, 1 nmol/ to 10 µmol/l; Sigma-Aldrich, St. Quentin, Fallavier, 

France) to aortas with functional endothelium in the absence or presence the given inhibitor 

pre-incubated for 30 min: the NO synthase inhibitor NG-nitro-L-arginine (L-NA, 100 µmol/l; 

Sigma-Aldrich, St. Quentin, Fallavier, France), the selective cyclooxygenase (COX)-2 

inhibitor N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398, 10 µmol/l; 

Sigma-Aldrich, St. Quentin, Fallavier, France), indomethacin, the non-selective COX 

inhibitor (100 µmol/l; Sigma-Aldrich, St. Quentin, Fallavier, France). All inhibitors were used 

at maximal active concentrations at which they inhibit the release of either NO from all 

isoforms of NO synthases, metabolites from COX-2 isoform or metabolites from COX in 

blood vessels, as reported in many of our previous studies [18-20]. Higher concentrations of 

L-NA, NS-398 or indomethacin did not induce further inhibition. 

Also, relaxation was assessed in response to sodium nitroprusside (SNP; Sigma-Aldrich, St. 

Quentin, Fallavier, France; 1 nM to 10 µM), a donor of NO in aorta rings pre-contracted with 

U46619. 

Determination of prostanoid production 

After sacrifice of mice, aorta was dissected and treated with 5-HT (1 µM, 37°C, 30 min; 

Sigma-Aldrich, St. Quentin, Fallavier, France) in 500 μL of PSS. After collection of the 

medium, prostacyclin, prostaglandin E and 8-isoprostane were measured by enzyme 

immunoassays kits (Cayman Chemicals, Ann Arbor, USA). The concentration of prostanoids 

was expressed as pg/ml/mg tissue (dry weight) [19]. 

Immunoblotting 

Tissue lysates were prepared in radioimmunoprecipitation assay (RIPA) buffer as previously 

described [10,12,14]. Proteins were separated by 10% SDS-PAGE and transferred to 
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nitrocellulose membranes. Immunoblots were performed using antibodies against p-eNOS Ser 

1177, p-eNOS Thr 495 (Cell Signaling Technology, Beverly, USA), COX-1, COX-2, eNOS, 

iNOS, caveolin-1 (BD Biosciences, San Jose, USA), Cu/Zn-SOD, Mn-SOD, EC-SOD 

(Stressgen Biotechnologies; Victoria, Canada), SHP-2 (Santa Cruz  Biotechnology, Dallas, 

USA) and PTP1B (Abcam, Cambridge, UK). Immunoblots were developed with horseradish 

peroxidase-conjugated secondary antibody, visualized using enhanced chemiluminescence, 

and quantified by densitometry scanning. 

superoxide anion (O2
−) determination by electron paramagnetic resonance (EPR) 

For superoxide anion (O2
-) spin-trapping, mouse aortas were dissected and allowed to 

equilibrate in deferoxamine-chelated Krebs-Hepes solution containing 1-hydroxy-

3methoxycarbonyl-2,2,5,5-tetramethylpyrrolidin (CMH, Noxygen; Denzlingen, Germany) 

(500 µM), deferoxamin (25 µM, Sigma-Aldrich, St. Quentin, Fallavier, France) and DETC (5 

µM, Sigma-Aldrich, St. Quentin, Fallavier, France) under constant temperature (37°C) for 60 

minutes. Then, they were frozen in liquid N2 and analyzed in a Dewar flask by EPR. Values 

are expressed in unit/mg weight of dried tissue [18,19]. 

Data analysis 

Data are expressed as mean ± SEM, and n represents the number of mice or biological 

replicates. Statistical analyses were performed using ANOVA (2-way or 1-way, as 

appropriate), and Mann-Whitney U tests. P < 0.05 was considered to be statistically 

significant. 
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Results 

 

In vivo liver-PTP1B deficiency improves glucose and lipid homeostasis 

As expected from our previous findings, this cohort of L-PTP1B−/− mice exhibited ~80% 

decrease in PTP1B protein in whole liver lysates compared to control littermates (Figure 1A). 

However, aortas from L-PTP1B−/− and control (fl/fl) mice expressed PTP1B to the same level 

(Figure 1A). 

L-PTP1B−/− and control mice were weaned either onto normal chow diet (4.5% fat) or HFD 

(55% kcal from fat). There were no differences in body weight between the control and L-

PTP1B−/− mice on either diet (Figure 1B) and as previously published [14]. There was a 

tendency for L-PTP1B−/− mice to have a slightly higher body mass, but this was not 

significant at any point. HFD-feeding increased to the same extent liver weight (Figure 1C) in 

both L-PTP1B−/− and control mice, but did not affect heart weight in either genotype (Figure 

1D). 

To assess the efficiency of HFD to induce glucose intolerance, we performed longitudinal 

glucose tolerance tests (GTTs). As expected, HFD-fed control mice developed glucose 

intolerance in a time-dependent manner (Figure 1E and 1F), whilst L-PTP1B−/− mice 

exhibited an enhanced ability to clear glucose from the peripheral circulation during 

intraperitoneal GTTs (at both 5- and 12-weeks of HFD) (Figure 1E and 1F).  

By monitoring fasting glucose levels of L-PTP1B−/− and control littermates on HFD 

longitudinally, we determined that whilst at 5 weeks of HFD there were no differences in 

fasting glucose levels between the two groups, at 8 and 12 weeks of HFD-feeding control 

littermates developed fasting hyperglycemia (Figure 1G).  

L-PTP1B−/− mice had markedly lower circulating insulin levels (Figure 1H), under both chow- 

and HFD-feeding conditions. This was associated with an increase in serum cholesterol levels 

upon HFD-feeding in control mice only, whilst L-PTP1B−/− mice had the same cholesterol 

levels as chow-fed mice (Figure 1I).  

Collectively, these data indicate that, L-PTP1B−/− mice are protected against HFD-induced 

glucose intolerance and show improvements in lipid maintenance compared to their control 

littermates, like previously shown by us [14]. 

 

Liver-PTP1B deficiency protects against HFD-induced blood pressure increase and 

cardiac function alterations 
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Obesity is associated with hypertension and risk of developing cardiovascular disease 

[1,3,21]. To investigate the cardiovascular effects of liver-specific PTP1B deficiency in the 

context of obesity, blood pressure (BP) was monitored longitudinally in chow- and HFD-fed 

mice of both genotypes, using the non-invasive tail-cuff system. Prior to the terminal 

procedure, we performed the analysis of cardiac structure and function. 

Heart rate was unaffected by short-term (3 weeks) or long-term (10 and 14 weeks) 

HFD-feeding in either genotype (Figure 2A). Short-term HFD-feeding (3 weeks) did not 

affect systolic blood pressure in either group; however, longer-term HFD-feeding (10- and 

14-weeks) increased BP in both L-PTP1B-/- and control littermates; however, L-PTP1B-/- 

mice had significantly lower systolic BP compared to controls at both of these time-points 

(Figure 2B).  

Diastolic BP was comparable between the groups for the first 10 weeks of HFD-

feeding; however, whilst diastolic BP increased in the control fl/fl mice at 14 weeks post-

HFD feeding, L-PTP1B-/- mice were protected (Figure 2C). 

Next, we investigated by echocardiography the structure and function of the left 

ventricle of HFD-fed control and L-PTP1B−/− mice and compared it to their lean chow-fed 

respective controls. HFD-feeding increased systolic left-ventricular dimension (LVDs) in 

control fl/fl mice (Figure 2D), without affecting their diastolic left-ventricular dimension 

(LVDd) (Figure 2E). Interestingly however, HFD-feeding did not cause cardiac remodeling in 

L-PTP1B−/− mice, as measured by LVDs and LVDd (Figure 2D and 2E). Moreover, HFD-

feeding decreased cardiac index in control fl/fl mice only, whilst L-PTP1B−/− remained 

completely protected (Figure 2F). 

 

Liver-PTP1B deficiency protects against obesity-induced endothelial dysfunction in 

mouse aorta 

Endothelial dysfunction, a key early factor in the development of atherosclerosis and a 

predictor of cardiovascular events, has been found in patients with obesity and metabolic 

syndrome [20]. Thus, the effect of liver-PTP1B deficiency on endothelial function was 

evaluated in aortas isolated from mice fed chow or HFD. On chow diet, there were no 

differences between the L-PTP1B−/− and control littermates (Figure 3A). As expected, HFD-

feeding significantly impaired endothelium-dependent vaso-relaxation in response to 

acetylcholine in aortas collected from control fl/fl mice compared to chow diet-fed control 

fl/fl mice (Figure 3B). Remarkably, L-PTP1B−/− mice were completely protected against 
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HFD-induced endothelial dysfunction and remained as sensitive as chow-fed mice (Figure 

3C).  

To examine if the observed impaired response to acetylcholine in HFD-fed mice may 

be due to an impaired capacity of smooth muscle to dilate, the relaxation to an NO donor, 

SNP, was assessed in aortas from HFD-fed control fl/fl and L-PTP1B−/− mice. As shown in 

Figure 3D, response to SNP stimulation was similar in aortas from both control fl/fl and L-

PTP1B−/− mice, indicating the absence of alterations in the capacity of smooth muscle to 

dilate.  

Western blotting analyses demonstrated that HFD-feeding decreased eNOS 

phosphorylation at the activator site (Ser 1177) in aortas from both control fl/fl and L-

PTP1B−/− mice, but eNOS phosphorylation was significantly higher in aortas from L-

PTP1B−/− mice (Figure 4A). In addition, HFD-feeding enhanced, to the same extent, eNOS 

phosphorylation at the inhibitory site (Thr 495) in aortas from both control fl/fl and L-

PTP1B−/− mice (Figure 4B), without affecting total eNOS (Figure 4C), caveolin-1 (Figure 4D) 

or iNOS (Figure 4E) levels. 

 

Involvement of oxidative stress in HFD-induced endothelial dysfunction 

Endothelial dysfunction is associated with oxidative stress [22]. To assess whether the 

protective effect of liver-PTP1B deletion on endothelial function involves a decrease in 

reactive oxygen species (ROS), the endothelium-dependent relaxation in response to 

acetylcholine was evaluated in aortas from HFD-fed control fl/fl and L-PTP1B−/− mice in the 

presence of the cell-permeant SOD mimetic, MnTMPyP, to blunt superoxide anion (O2
-) 

production, the major ROS in vasculature.  

Even in the presence of MnTMPyP, the endothelial dysfunction still persisted in 

vessels from control fl/fl mice only (Figure 5A), indicating that ROS may not be involved in 

the mechanism of protection in L-PTP1B−/− mice.  

This was further confirmed by the absence of differences in O2
- production in aortas 

from all groups (Figure 5B). Assessment of protein levels of the different isoforms of 

antioxidant SOD enzyme (Mn-, EC-, and Cu/Zn-SOD) demonstrated that Mn- and EC-SODs 

levels were not affected, whilst Cu/Zn-SOD was increased in aortas from PTP1B−/− mice 

under HFD condition (Figure 5C-5E). 

 

Enhanced release of COX-derived vasodilators in aortas from L-PTP1B−/− mice 
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Vascular inflammation is reported to play a key role in obesity-induced vascular 

dysfunction [23]. Thus, the impact of HFD-feeding on vascular reactivity in response to 

vasoconstrictor agents was investigated with special emphasis on the relative contribution of 

inflammatory COX-derived agents in the regulation of vascular tone in both control fl/fl and 

L-PTP1B−/− mice, fed chow or HFD.  

Concentration-response curves in response to serotonin (5-HT) were constructed in 

aortas from control fl/fl and L-PTP1B−/− mice in the presence or absence of COX inhibitors. 

In the absence of any inhibitor, aortas from HFD-fed mice displayed a trend towards 

enhanced response to 5-HT compared to those examined from chow-fed groups (Figure 6A).  

The non-selective inhibition of COX isoforms by indomethacin blunted, to the same extent, 

the contractile response to 5-HT in aortas from all the groups (Figure 6B). Interestingly, 

however, the selective inhibition of COX-2 isoform, achieved using NS-398, decreased 

contractile response only in vessels from control fl/fl mice whilst the latter was preserved in 

vessels obtained from L-PTP1B−/− mice (Figure 6C). This indicated either a presence of more 

COX-2-derived vasoconstrictor agents in control fl/fl mice and/or secretion of more COX-2-

derived vasodilator agents in L-PTP1B−/− mice. 

To investigate this, we analyzed COX-derived metabolite release from mouse aortas in 

all the experimental groups, which revealed that both chow- and HFD-fed L-PTP1B−/− mice 

exhibited higher levels of prostacylin, a vasodilator metabolite (Figure 6D).  In addition, and 

as shown in Figure 6E, HFD-fed control fl/fl mice had higher levels of prostaglandin E, a 

vasoconstrictor metabolite, compared to chow–fed mice, whilst L-PTP1B−/− mice were 

completely protected.  

The vasoconstrictor metabolite isoprostane-8 release was unaltered in all the groups 

(Figure 6F). Furthermore, these effects are independent of changes in COX-1 levels (Figure 

6G and 6H); however, aortas from HFD-fed L-PTP1B−/− mice had increased protein levels of 

COX-2 (Figure 6G and 6I). 
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Discussion 

We have previously shown that selectively deleting PTP1B in mouse liver results in 

improved glucose homeostasis and decreased levels of triglycerides and cholesterol, 

independently of changes in body weight or adiposity [14,24]. More recently, we also 

demonstrated that inflammatory ER-stress response and hepatic PTP1B expression are 

interlinked and that directly down-regulating PTP1B expression in liver can relieve over-

activation of the ER-stress response associated with HFD-feeding, obesity and insulin 

resistance [15,16]. We now report that these improvements in hepatic insulin sensitivity in L-

PTP1B−/− mice can also lead to a complete protection against obesity-induced endothelial 

dysfunction and cardiovascular remodelling, at least partly due to a further modulation of the 

relative contribution of COX-derived vasodilator agents in the regulation of vascular tone. 

Altogether, these studies show a complex interplay between obesity, hepatic insulin resistance 

and cardiovascular dysfunction and indicate that liver-PTP1B deficiency is able to improve 

several features of metabolic syndrome and thus highlight the potential utility of PTP1B 

inhibitors not only as anti-diabetic drugs but also as useful agents to protect against 

cardiovascular disease.  

One of the major findings in the present work is that liver-PTP1B deletion protected 

mice in vivo against obesity-induced blood pressure increase and functional alterations of left 

ventricle, and improved glucose homeostasis at the same time. These data are consistent with 

observations in the literature associating impaired cardiac function with poor insulin 

sensitivity. Diabetes and insulin resistance often coexist with chronic heart failure in an inter-

relationship such that each condition may impact on each other in terms of causation and 

outcome. In the Framingham study, Kannel et al. reported that nearly 20% of patients with 

chronic heart failure also had diabetes [25]. L-PTP1B-/- mice protection against HFD-induced 

increase in systolic and diastolic blood pressure and remodelling at the left ventricle level, 

was most likely due to the correction of peripheral insulin resistance in cardiac tissue. These 

findings are in line with a previous study from our group showing that treatment of Zucker 

fatty obese rats with red-wine polyphenol extract reduced glycaemia and blood pressure and 

improved left ventricle cardiac performances in obese rats [18]. Together with the current 

findings, these results reinforce the critical role of new insulin sensitizing approaches in 

correcting cardiac dysfunction associated with insulin resistance in cardiac tissue.  

Other insulin sensitising strategies, however, were notable to correct cardiac 

alterations associated with insulin resistance. For instance, thiazolidinediones were reported to 

improve insulin sensitivity in the liver and peripheral tissues [26]; however, adverse 
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cardiovascular outcomes were also reported to be associated with the use of 

thiazolidinediones, most notably with chronic heart failure hospitalizations [27]. Liver-PTP1B 

targeting and its subsequent improvement of insulin sensitivity may lead to improved 

myocardial energy metabolism and thus to improved cardiac function [28]. Together these 

findings position the targeting of liver-PTP1B as a new and safe potential therapeutic 

approach to reduce both insulin resistance and cardiac disturbances associated to it.  

Targeting directly PTP1B at the whole-body level either by genetic deletion in mouse 

or using pharmacological inhibitors was also shown to reduce adverse left ventricle 

remodelling, and to improve left ventricle function in a mouse model of chronic heart failure 

[29]. Nonetheless, because total PTP1B-/- mice are lean and resistant to obesity and 

dramatically insulin and leptin sensitive, and because of the systemic action of PTP1B 

inhibitors, it is very difficult to conclude from this study whether the observed effects are 

secondary to the global enhanced insulin sensitivity or a direct effect of PTP1B-deletion in the 

cardiovascular tree. The present findings suggest improvements in hepatic and global insulin 

sensitivity that can directly lead to an improvement in cardiac function in L-PTP1B-/- mice. 

These effects occur without affecting PTP1B in endothelial cells or cardiomyocytes and lead 

to protection against cardiovascular disease. 

The present study showed that liver-PTP1B deletion was protective against obesity-

induced endothelial dysfunction, an early step in development of atherosclerosis. Endothelial 

dysfunction was described to be inextricably associated with obesity and insulin resistance.  

Indeed, insulin receptors are present in endothelial cells and the disruption of endothelial 

insulin signalling may affect endothelial function [4,30]. At physiological concentrations, 

insulin stimulates both eNOS activity and expression in endothelial cells [31,32]. The 

phosphorylation of eNOS at Ser 1177 can be blunted by hyperglycaemia [33] and elevated 

concentrations of saturated free fatty acids under conditions of vascular insulin 

resistance [34]. In the present study, diet-induced obesity blunted the phosphorylation of 

eNOS at Ser 1177 in aortas from control mice while it was partially restored in vessels from 

L-PTP1B-/- mice most probably due to enhanced insulin sensitivity. Interestingly, the HFD-

induced endothelial dysfunction was not associated with an increase in oxidative stress. In our 

study, mainly the contribution of superoxide anion was assessed, but other free radicals such 

as peroxynitrite may also play a role in the observed endothelial dysfunction [35]. It was 

shown that in HFD-fed L-PTP1B−/− mice, vascular Cu/Zn-SOD expression was increased 

while the superoxide production was not altered. These data may suggest that increased 

antioxidant defense mechanism participate to decrease oxidative stress in these animals. Thus 
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decrease and/or normalization of oxidative stress might be responsible for most of the 

cardiovascular protection in the current study.  

Interestingly, aortas from HFD-fed L-PTP1B-/- had a fully preserved vasoconstrictor 

response to 5-HT in the presence of COX-inhibitors. This was associated with reduced levels 

of COX-derived vasoconstrictors (prostaglandin E) and enhanced production of vasodilators 

(prostacyclins) owing to an increase in COX-2 levels. The reduction in the secretion of 

prostacyclin together with NO by the endothelium forms the basis of endothelial abnormality 

in diabetes. Clinical and experimental diabetes are associated with a reduction in prostacyclin 

secretion [36,37]. The increased level of prostacyclin is thus a compensatory mechanism 

which may participate in maintaining endothelium-dependent relaxation within physiological 

range in aortas from L-PTP1B-/- mice. Consistent with the present findings, previous studies 

indicated that COX-2 protein levels are elevated in the aortas of mice with obesity and type 2 

diabetes [38]. In addition, in diabetic patients, vascular expression of COX-2 was found to be 

markedly elevated in coronary arterioles and bradykinin induced enhanced COX-2-derived 

prostaglandin-mediated dilation in these vessels [39]. Furthermore, in L-PTP1B-/- mice, 

improved left ventricle function may lead to improved haemodynamics and thus participate in 

the improvement of endothelial function through for example an increase in vascular shear 

stress. It has previously been reported that insulin resistance decreases activity of arterial 

prostacyclin synthase, the key enzyme involved in prostanoid biosynthesis of prostacyclin, by 

increasing endothelial fatty acid oxidation [40]. Here, we report that liver-PTP1B deletion 

improved whole-body insulin resistance and lipid metabolism in addition to decreasing ER 

stress response, as previously reported by us [14,15]. Altogether, these effects may improve 

the activity of prostacyclin synthase thus leading to increased levels of vascular prostacylin 

release. 

Several studies have reported that direct whole-body targeting of PTP1B improved 

endothelial function in different cardiovascular disease animal models of obesity and chronic 

heart failure [29,41,42]. Ali et al. [41] demonstrated that total PTP1B knock-down improved 

endothelial function in peripheral vessels from obese and diabetic leptin-receptor deficient 

db/db mice.  Gomez et al. [29] and Vercauteren et al. [42] reported in mouse models of 

chronic heart failure that both genetic deletion and pharmacological inhibition of PTP1B 

improved flow-mediated dilation in small mesenteric arteries. However, these experimental 

models do not allow to distinghish whether this improvement is due to global enhancement of 

insulin sensitivity or due to PTP1B deletion in endothelial cells themselves because of the 

systemic targeting of PTP1B in these animals. Indeed, these findings may reflect a direct role 
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of PTP1B in the endothelium with special emphasis on eNOS activation and NO release, 

through enhanced tyrosine phosphorylation of eNOS. Activation of eNOS by shear stress was 

indeed shown to require tyrosine phosphorylation [43] in addition to the classical 

phosphorylation pattern on Ser 1177. The generation of endothelium-specific PTP1B 

knockouts will help addressing these conflicting mechanistic points.  

Finally, inflammatory signalling was not assessed in the present study that may 

contribute to endothelial dysfunction. However, very recently, it has been reported that 

PTP1B deletion protects against septic-shock-induced cardiovascular function resulting from 

reduction of inflammation [44]. Such mechanism might be also implicated in the 

improvement of endothelial dysfunction reported here. Furthermore, we have previously 

shown that because of its critical localisation within the ER membrane liver-PTP1B deletion 

decreased ER stress response [14,15], which has been reported to play a crucial role in insulin 

resistance and lipid accumulation [16] and more recently was shown to play an important role 

in endothelial dysfunction in experimental models of diabetes and hypertension [45,46]. 

Diagram shown in Figure 7 summarizes the main mechanisms behind improved 

cardiovascular function in L-PTP1B-/- mice.  

Altogether, our findings further demonstrate the critical role of PTP1B in hepatic 

glucose and lipid metabolism and underscore the importance of targeting liver-PTP1B as a 

strategy to reduce cardiovascular risk in the context of obesity and metabolic syndrome. 
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Figure Legends  

Figure 1. In vivo liver-PTP1B deletion improves glucose and lipid homeostasis 

independently of body mass changes 

(A) PTP1B protein levels in livers (n = 3) and aortas (n = 6) from fl/fl control and L-PTP1B-/- 

mice. (B)  

Terminal body weights of fl/fl control and L-PTP1B-/- mice fed either chow or high fat diets. 

(C) Terminal liver weights from fl/fl control and L-PTP1B-/- mice fed either chow or high fat 

diets. (D) Terminal heart weights from fl/fl control and L-PTP1B-/- mice fed either chow or 

high fat diets. (E) GTTs in fl/fl control and L-PTP1B-/- mice at 5 weeks of HFD. (F) GTTs in 

fl/fl control and L-PTP1B-/- mice at 12 weeks of HFD. (G) Fasting blood glucose in fl/fl 

control and L-PTP1B-/- mice at 5, 8 and 12 weeks of HFD. (H) Fasting insulin levels in fl/fl 

control and L-PTP1B-/- mice fed either chow or high fat diets. (I) Total cholesterol circulating 

levels in fl/fl control and L-PTP1B-/- mice fed either chow or high fat diets. Data are presented 

as mean± SEM and were analysed by either by one-way or two-way (E, F) ANOVA or one-

way ANOVA, followed with a Tukey’s multiple comparison test. *P<0.05, **P<0.01, 

***P<0.001 vs. the indicated group or chow fl/fl and ## P < 0.01 vs. chow L-PTP1B-/- (n = 7-

11 in each group). 

Figure 2. Liver-PTP1B deletion protects against obesity-induced blood pressure increase 

and cardiac function alterations 

(A) Heart rate in fl/fl control and L-PTP1B-/- mice at 5, 10 and 14 weeks of HFD. (B) Systolic 

blood pressure in fl/fl control and L-PTP1B-/- mice at 5, 10 and 14 weeks of HFD. (C) 

Diastolic blood pressure in fl/fl control and L-PTP1B-/- mice at 5, 10 and 14 weeks of HFD. 

(D) End-Systolic left ventricle (LV) dimension in in fl/fl control and L-PTP1B-/- mice fed 

either chow or high fat diets. (E) End-Diastolic left ventricle (LV) dimension in in fl/fl control 

and L-PTP1B-/- mice fed either chow or high fat diets. (F) Cardiac index (CI) in fl/fl control 

and L-PTP1B-/- mice fed either chow or high fat diets. Data are presented as mean± SEM and 

were analysed by one-way ANOVA, followed with a Tukey’s multiple comparison test. 

*P<0.05, ***P<0.001 vs. 3 weeks HFD or chow mice; #P<0.05 vs. fl/fl mice in the same 

group. (n = 7-11 in each group). 

Figure 3. Liver-PTP1B deletion protects against obesity-induced endothelial dysfunction 

in mouse aorta 

(A) Endothelium-dependent relaxation in response to ACh in aortas from fl/fl control and L-

PTP1B-/- mice fed chow diet. (B) Endothelium-dependent relaxation in response to ACh in 

aortas from fl/fl control mice fed either chow or high fat diets. (C) Endothelium-dependent 
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relaxation in response to ACh in aortas from fl/fl control and L-PTP1B-/- mice fed HFD. (D) 

Endothelium-independent relaxation in response to SNP in aortas from fl/fl control and L-

PTP1B-/- mice fed. Data are presented as mean± SEM and were analysed by two-way 

ANOVA. **P<0.01, ***P<0.001 vs. indicated group. (n = 7-11 in each group). 

Figure 4. Altered eNOS signalling in mouse aorta from L-PTP1B−/− mice (A) 

Phosphorylation of eNOS on activator site Ser 1177 in aortas from fl/fl control and L-PTP1B-

/- mice fed either chow or high fat diets. (B) Phosphorylation of eNOS on inhibitor site Thr 

495 in aortas from fl/fl control and L-PTP1B-/- mice fed either chow or high fat diets. (C) 

Total eNOS expression in aortas from fl/fl control and L-PTP1B-/- mice fed either chow or 

high fat diets. (D) Caveolin-1 expression in aortas from fl/fl control and L-PTP1B-/- mice fed 

either chow or high fat diets. (E) iNOS expression in aortas from fl/fl control and L-PTP1B-/- 

mice fed either chow or high fat diets. Western blots results are representative of 3 

independent experiments (n = 3 mice in each group), and the densitometry values are 

expressed in arbitrary units (A.U.). Data are presented as mean± SEM and were analysed by 

one-way ANOVA, followed with a Tukey’s multiple comparison test. **P<0.01vs. chow 

groups and #P<0.05 vs. the indicated group.  

Figure 5. Oxidative stress in not involved in obesity-induced endothelial dysfunction in 

mouse aorta 

(A) Endothelium-dependent relaxation in response to ACh in the presence of SOD mimetic 

(MnTMPyP) in aortas from fl/fl control and L-PTP1B-/- mice fed HFD. (B) Superoxide anion 

(O2
-) production in aortas from fl/fl control and L-PTP1B-/- mice fed either chow or high fat 

diets. Mn SOD (C), EC SOD SOD (D) and Cu/Zn (E) expressions in aortas from fl/fl control 

and L-PTP1B-/- mice fed either chow or high fat diets. Western blots results are representative 

of 3 independent experiments (n = 3 mice in each group), and the densitometry values are 

expressed in arbitrary units (A.U.). Data are presented as mean± SEM and were analysed 

either by two-way ANOVA (A) or one-way ANOVA, followed with a Tukey’s multiple 

comparison test (B-E). *P<0.05vs. fl/fl mice. 

Figure 6. Enhanced release of COX-2 derived vasodilators in aortas from L-PTP1B−/− 

mice 

(A) Vascular reactivity in response to 5-HT agonist in aortas from fl/fl control and L-PTP1B-/- 

mice fed either chow or high fat diets. (B) Vascular reactivity in response to 5-HT agonist in 

the presence of non-selective COX inhibitor, indomethacin, in aortas from fl/fl control and L-

PTP1B-/- mice fed either chow or high fat diets. (C) Vascular reactivity in response to 5-HT 

agonist in the presence of COX-2 selective inhibitor, NS398, in aortas from fl/fl control and 
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L-PTP1B-/- mice fed either chow or high fat diets. (D) Prostacyclin release in aortas from fl/fl 

control and L-PTP1B-/- mice fed either chow or high fat diets. (E) Prostaglandin E release in 

aortas from fl/fl control and L-PTP1B-/- mice fed either chow or high fat diets. (F) 8-

Isoprostane release in aortas from fl/fl control and L-PTP1B-/- mice fed either chow or high fat 

diets. (G) COX-1 and COX-2 protein expressions in aortas from fl/fl control and L-PTP1B-/- 

mice fed either chow or high fat diets. Western blots results are representative of 3 

independent experiments (n = 3 mice in each group), and the densitometry values are 

expressed in arbitrary units (A.U.). Data are presented as mean± SEM and were analysed 

either by or two-way ANOVA (A-C) or one-way ANOVA followed with a Tukey’s multiple 

comparison test (D-H). *P<0.05, **P<0.01, ***P<0.001vs. the indicated group or fl/fl mice.  

 

Figure 7. Summary of mechanisms involved in cardiovascular liver-PTP1B actions 

Obesity leads to an increase in the expression and activity of PTP1B in the liver which will 

then cause hepatic insulin resistance through the inactivation of insulin receptor signalling 

pathway. Furthermore, because of its critical localisation within the endoplasmic reticulum 

(ER) membrane, PTP1B will also lead to activation of the ER stress response pathway, 

leading to lipid accumulation and activation of inflammatory pathways. Altogether, impaired 

hepatic glucose homeostasis and increased lipid metabolism in addition to ER stress 

activation will eventually cause endothelial dysfunction in peripheral vessels and impair 

cardiac function. These are normalised by hepatic PTP1B deficiency.  
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