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Abstract  

In this paper, an integrated model is presented to support human reliability based decision producing 

and making process by evaluating safety promotion plan for power supply system in LNG (Liquid 

Natural Gas) terminal. This model is mainly mathematically treated through fuzzy Cognitive 

Reliability and Error Analysis Method (CREAM) in combination with Genetic Algorithms (GA) and 

Adaptive Neuro-Fuzzy Inference System (ANFIS). The fuzzy CREAM accounts the operators’ 

individual factors, organization factors, environmental factors and technique factors together to 

identify the fuzzy membership degree of each control mode and to calculate Human Error Probability 

(HEP). However, when the calculated HEP fails to meet the requirement, the GA will identify the 

target membership degree of each CREAM control mode, and adopting such target membership 

degree and fuzzy logic rule to generate a decision pool for safety promotion. Finally, an experts’ 

evaluation result based ANFIS provides a standard evaluating system for plan choice and update. The 

proposed model has been tested on a power supply system for an LNG terminal in Beihai China. 

Keywords: Human reliability based; Fuzzy CREAM; Decision producing and making; Genetic 

algorithms; ANFIS  

1. Introduction 

According to the statistical data from 1964 to 2005, the frequency of accidents during LNG off-

loading is one of the highest among all (Vanem et al., 2008), and during the shipping LNG off-

loading activity in LNG terminal, the power supply system is a key factor to guarantee the operation 

running normally. So ensuring and improving the safety performance of power supply system is 

crucial to avoid the consequence. Maintaining the power supply system is mainly human related work, 

and according to many accidents’ reports, human factors are important reasons that trigger the over 

60% of catastrophic accidents in the commercial shipping and process industry (Wiegmann and 

Shappell, 2001; Dhillon, 2007; Casal and Olsen, 2016). Therefore, a human reliability based plan for 

safety promotion in power supply system is necessary. However, under many situations, the HEP data 

calculated by Human Reliability Analysis (HRA) methods are mostly viewed as simply values with 

limited applications and even fail to reach the requirements, and unfortunately, there is inadequate 

research to tackle such situation. Therefore, this study is aiming to extend HRA application and to 

find the valuable information behind the HEP data to provide a safety promotion plan evaluating 

model for power supply system in an LNG terminal. 

Human reliability has received systematic research since the Second World War, due to remarkable 

acceleration in military technology (Swain, 1990). Two generations of Human Reliability Analysis 

(HRA) methods have been developed. The source idea of the first generation methods mainly results 

from the inherent deficiencies of human (Marseguerra et al., 2006). The widely used first generation 

methods include Task-based Technique for Human Error Rate Prediction, Human Error Assessment 

and Reduction Technique, Success Likelihood Index Methodology, etc. (Kim and Bishu, 2006).  
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However, as extensive studies of human performance have illustrated that the importance of the 

outside environmental conditions in which the task is performed is greater than the natures of the task 

itself, the first generation HRA method has been doubted for over 20 years (Yang et al., 2013).  

For the sake of addressing the shortcoming of first generation methodology, the second generation 

method has been developed which includes Cognitive Event Tree System, Human Interaction Time 

Line, Connection Assessment of Human Reliability, and CREAM. Among them, CREAM is the most 

well-known method. The CREAM method integrates the operators’ individual factors, organization 

factors, environmental factors, and technique factors together. Nine Common Preference Conditions 

(CPCs) are introduced to evaluate and decide the Contextual Control Model (COCOM). As listed in 

Table 1, nine CPCs are adequacy of organisation, working condition, adequacy of man-machine 

interface and operational support, availability of procedures and plans, number of simultaneous goals, 

available time, time of day, adequacy of training and experience, and crew collaboration quality. The 

COCOM contains four kinds of control modes: strategic, tactical, opportunistic, and scrambled 

(Hollnagel, 1998). Each COCOM has its corresponding HEP interval. CREAM has been used in 

many industrial practices including the offshore oil platform operation (Turan and El-laden, 2012), 

LPG terminal operation (Akyuz and Celik, 2015), nuclear power plant operation (He et al., 2008; 

Ribeiro et al., 2016), and maritime industry operation such as oil tanker ship operation (Akyuz, 2015; 

Ung, 2015; Zhou et al., 2017). Additionally, many improvements have been applied on CREAM, 

sensitivity and uncertainty of CREAM have been analysed with the consideration of different 

cognitive failure modes to improve the CREAM (Bedford et al., 2013), and the revised CPCs are 

provided for tanker shipping activity (Zhou et al., 2017); moreover, for the sake of dealing with the 

uncertainty and imprecision during CREAM process, fuzzy logic and Fuzzy Analytic Hierarchy 

Process (FAHP) are introduced to increase the accuracy of CREAM (Konstandinidou et al., 2006;  

Ung, 2015; Zhou et al., 2017).  

This research adopts fuzzy CREAM for HRA, and the defuzzification process on CREAM to give the 

calculated HEP, but under the situation that such calculated HEP fails to meet the requirement of HEP, 

some methods should be provided. Facing this situation, implementing GA on defuzzification process, 

and viewing the required HEP and defuzzification function as the target and the objective function 

respectively, then the target membership of each COCOM in fuzzy CREAM can be identified. 

According to the theory of fuzzy CREAM, through changing the performance data of one/some CPCs, 

the target membership degrees of COCOM will be achieved, and the corresponding calculated HEP 

will be accepted. Besides, there are 9 CPCs in CREAM form, and each CPC contains several sub-

influence factors which are shown in Appendix A. Therefore, there are many potential passages to 

reach the target membership degrees to fulfil the HEP requirement. In other words, the CREAM can 

be extended as a tool to construct a plan pool for promoting human reliability and system safety. After 

that, facing those defined choices, a decision making process is needed. Obviously, this is a multi-

criteria decision making (MCDM) problem, and the experienced experts evaluate each defined plan, 

then an Adaptive Neural Fuzzy Inference System (ANFIS) is constructed based on experts’ evaluation 

results to simulate the experts’ decision process for future plan evaluating and updating. 

(Golmohammadi, 2011; Özkan and İnal, 2014; Azadeh et al., 2016). In summary, the description 

above forms the major contribution of this paper.  

In this paper, the work extending the fuzzy CREAM from a simply HRA method to a method that can 

generate a pool of safety promotion plans will be presented and based on a power supply system in 

LNG terminal. Then based on the experts’ evaluation results, ANFIS is used to provide a standard 

system for plan updating and evaluating. The structure of this paper is as following. In section 2, the 

http://www.sciencedirect.com/science/article/pii/S1568494614003068
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framework of this method is explained; in section 3, the description of chosen methods are presented; 

in section 4, a real example is illustrated to approve the method; in section 5, the conclusion is given, 

and the future work is discussed.   

2. The framework of the proposed approach 

A flow diagram of method process is shown in Fig.1, and the main steps are briefly explained as 

follows. 

Step 1-Fuzzification: The aim of this stage is to determine the fuzzy membership degrees for nine 

CPCs. 

Step 2-Fuzzy CREAM calculation: After defining and inputting the fuzzy membership degree data, 

through fuzzy logical rules and based on CREAM, the membership of the control mode can be 

identified. 

Step 3-Defuzzification: In this part, with the membership degree of each control mode, the HEP can 

be calculated by taking membership degree data of COCOM into defuzzification method “Centre of 

Area (COA)” (Ung, 2015; Ung and Shen, 2011). 

Step 4-Finding the target fuzzy membership degrees: If the calculated HEP fails to achieve the 

requirement, the required HEP value will be set as an objective, and GA will be applied on the 

defuzzification process (COA equation) to find target membership degree of each COCOM within the 

objective and each constraint. 

Step 5-Potential plans identification: Once the target membership degree of each COCOM is 

identified, using such membership degree as target, and then through improving the performance of 

one/some CPCs, a plenty of potential safety promotion plans will be produced. Namely, through 

different ways to change the performance data of some CPCs to reach the target membership degrees, 

so to ensure the calculated HEP is acceptable. 

Step 6-Construction of decision making model: In this step, all potential plans are evaluated by 

experienced experts, and the experts’ evaluation results based ANFIS is adopted to simulate the 

human decision making process and to build a standard and robust decision making system for future 

plan evaluating and updating for this system. 
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Fig.1. The flow diagram of the methodology 

3. Research methodologies 

This paper introduces a modified version of CREAM so that it not only can be used for HRA, but also 

can be extended as a medium for safety promotion plan generating and deciding. 

3.1Fuzzy CREAM 

Because the subjective opinion becomes a crucial shortcoming to HRA and there is a lack of human 

error database, if-then rule based fuzzy logic, which is useful in dealing with uncertainty data, has 

been incorporated in CREAM (Konstandinidou et al., 2006). The evaluation form of CREAM is 

displayed as Table 1. In this form, each CPC has several levels, and different levels have different 

effects on reliability. As shown in Table 1, “+1”, “0”, and “-1” are introduced to represent the positive 

effect, no effect, and negative effect on human reliability performance respectively. Additionally, in 

this paper, for simplification, the weights of each CPC for human reliability calculating are assumed 

to be equally distributed.  

Table 1. The CREAM evaluation form 

CPC name Level Effect on reliability 

1.Adequacy of organization 

Very efficient Improved (+1) 
Efficient Not significant (0) 

Inefficient Reduced (-1) 
Deficient Reduced (-1) 

   

2.Working condition 
Advantageous Improved (+1) 

Compatible Not significant (0) 

Incompatible Reduced (-1) 
   

3.Adequacy of Man 
Machine Interface (MMI) 
and operational support 

Supportive Improved (+1) 

Adequate Not significant (0) 
Tolerable Not significant (0) 

Inappropriate Reduced (-1) 
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4.Availability of procedures/       
plans 

Appropriate Improved (+1) 
Acceptable Not significant (0) 

Inappropriate Reduced (-1) 

   

5.Number of simultaneous 

goals 

Fewer than capacity Not significant (0) 
Matching current capacity Not significant (0) 

More than capacity Reduced (-1) 
   

6.Available time 

Adequate Improved (+1) 

Temporarily inadequate Not significant (0) 
Continuously inadequate Reduced (-1) 

   

7.Time of day 
Day Not significant (0) 

Evening Reduced (-1) 

Night Reduced (-1) 
   

8.Adequacy of training and 
expertise 

Adequate high experience Improved (+1) 

Adequate, limited 
experience 

Not significant (0) 

Inadequate Reduced (-1) 
   

9.Crew collaboration quality 

Very efficient Improved (+1) 

Efficient Not significant (0) 
Inefficient Not significant (0) 
Deficient Reduced (-1) 

During the CREAM application, Fig.2 and Context Influence Index (CII) are introduced to decide the 

COCOM. The CII value is determined by Eq. (1). 

𝐶𝐼𝐼 = ∑|𝑅𝑒𝑑𝑢𝑐𝑒𝑑| − ∑|𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑|                                                (1) 

where ∑|𝑅𝑒𝑑𝑢𝑐𝑒𝑑| and ∑|𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑| are the total number of CPCs with reduced reliability effect (-1) 

and improved reliability effect (+1) as described in Table 1, respectively. 
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Fig.2. The relationship of each CPC and COCOM. 

The HEP interval, the logarithm interval of each COCOM, and the CII value as defined by Table 2. 

Table 2. HEP and 𝑙𝑜𝑔10𝐻𝐸𝑃 interval of each COCOM (Sun et al., 2012) 
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COCOMs HEP interval 𝑙𝑜𝑔𝐻𝐸𝑃interval CII  values 

Strategic 0.00005<HEP<0.01 -5.3<𝑙𝑜𝑔𝐻𝐸𝑃<-2 -7≤CII≤-3 

Tactical 0.001<HEP<0.1 -3<𝑙𝑜𝑔𝐻𝐸𝑃<-1 -3≤CII≤1 

Opportunistic 0.01<HEP<0.5 -2<𝑙𝑜𝑔𝐻𝐸𝑃<-0.3 2≤CII≤5 

Scrambled 0.1<HEP<1.0 -1<𝑙𝑜𝑔𝐻𝐸𝑃<0 6≤CII≤9 

However, under most situations, the boundaries of different levels in CPCs and COCOMs are unclear, 

fuzzy logic is therefore utilised in CREAM to evaluate each CPC and to determine the membership 

level of COCOMs. The if-then rule based fuzzy logic operations are shown as Eq. (2). 

{
𝜇𝑚𝑖𝑛
𝑚 = 𝜇𝑚

1 ∧ 𝜇𝑚
2 ∧⋯ 𝜇𝑚

𝑖  (𝑚 = 1,2,3⋯𝑀, 𝑖 = 1.2⋯9)

𝜇𝑚𝑎𝑥 = 𝜇min
1 ∨ 𝜇min

2 ∨ ⋯𝜇min
𝑀′

 
                             (2) 

where, 𝜇𝑚
𝑖  is the fuzzy membership degree of ith CPC in mth if-then rule, M is the total number of  if-

then rules,  𝜇𝑚𝑖𝑛
𝑚  (m=1,2,⋯𝑀)is the minimum fuzzy degree data among all 𝜇𝑚

𝑖  in mth if-then rule, 

𝜇𝑚𝑎𝑥  is the maximum fuzzy degree among all fuzzy degrees under a certain COCOM, 𝑀′  is the 

number of if-then rules under such COCOM. Then the trapezoid fuzzy membership function is chosen 

to express the fuzzy data and to avoid too many fuzzy data. In this paper, the trapezoid membership 

function, denoted as 𝜇[𝑎,𝑏,𝑐,𝑑](𝑥), is adopted which takes the form as Eq. (3). 

𝜇[𝑎,𝑏,𝑐,𝑑](𝑥) =

{
 
 

 
 
0              (𝑥 ≤ 𝑎)
𝑥−𝑎

𝑏−𝑎
     (𝑎 ≤ 𝑥 ≤ 𝑏)

1          (𝑏 ≤ 𝑥 ≤ 𝑐)
𝑑−𝑥

𝑑−𝑐
     (𝑐 ≤ 𝑥 ≤ 𝑑)

0               (𝑥 ≥ 𝑑)

                                                      (3) 

where x can be the mark in range from 0 to 100, or the logarithm of HEP data.  

With the fuzzy membership data of each CPC, the membership degree of each control mode can be 

determined. Then the Centre of Area (COA) (defuzzification method) shown in Eq. (4) is adopted for 

calculating the HEP result. 

𝑙𝑜𝑔10𝐻𝐸𝑃 =

∑ [∫ 𝜇
𝑖′
(𝑥)𝑥𝑑𝑥]

𝑥𝑈
𝑖′

𝑥𝐿
𝑖′

𝑛
𝑖=1

∑ [∫ 𝜇𝑖′(𝑥)𝑑𝑥
𝑥𝑈
𝑖′

𝑥𝐿
𝑖′

𝑛
𝑖=1 ]

                                                            (4) 

where, x is the logarithm of HEP data,  𝜇𝑖′(𝑥) is the 𝑖′ th expression of the corresponding fuzzy 

membership function, and the corresponding upper and lower limits of the integration for 𝑖′ th 

membership function are expressed by 𝑥𝑈
𝑖′ and 𝑥𝐿

𝑖′. 

3.2 GA optimization 

GA technique, developed at the University of Michigan by John Holland in the late 1960s (Konak et 

al., 2006), and is inspired by the observation of the biological phenomenon. GA is considered as a 

smart searching tool which focuses on the objective function with one or more variables, and possibly 

subject to some linear and/or nonlinear constraints (Innal et al., 2015; Torres-Echeverria et al., 2009). 

As both linear problems and nonlinear problems can be friendly operated by GA optimization, GA is 

stronger than linear programming; in addition, compared with other optimization methods such as 

Particle Swarm Optimization and Ant Colony Algorithm, GA is good in finding the global solutions 

with less iteration, so GA is adopted for this study. Fig.3 shows the flow chart of GA optimization. 
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Fig.3. The flow chart of GA optimization 

The GA starts with the objective identification, and then the objective function and the constraints 

should be determined. The objective function is normally determined by the requirements of the study, 

so the objective functions and corresponding constraints for this research will be explained in the 

section “Case study”. After that, GA process can be carried out to find the global solution which can 

meet the objective within the constraints. In summary, the main advantages of GA optimization are 1) 

the method is friendly to use (MATLAB, 2009); 2) it will not take long time to finish the optimization 

(this project takes 10 minutes); 3) GA optimization can find the global solution in relatively high 

efficiency.  

3.3 ANFIS 

ANFIS is a kind of artificial intelligence method and has been used for clustering, pattern recognition 

regression, and decision making (Abbasi and Mahlooji, 2012). This method is a feed-forward neural 

network which integrates fuzzy logic and neural network together (Özkan and İnal, 2014). The fuzzy 

rules are used to treat the input data, and the neural network is worked as a way to finish the training 

process. During the ANFIS process, the gradient descent method and the least square methods are 

used to train the fuzzy inputs (Özkan and İnal, 2014). A two-input ANFIS model is shown in Fig.4 as 

an example, and five layers are included in ANFIS structure to process the data.  

http://www.sciencedirect.com/science/article/pii/S1568494614003068
http://www.sciencedirect.com/science/article/pii/S1568494614003068
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Fig.4. The basic architecture of ANFIS (Sarkheyli et al., 2015). 

Layer 1: This layer is the input layer, the fuzzy membership function is utilised to express the raw 

data from layer 0, and the output of layer 1, 𝑂1,𝑘is 

𝑂1,𝑘 = {
𝜇𝐴𝑘(𝑥′) (𝑘 = 1,2)

𝜇𝐵𝑘(𝑦′) (𝑘 = 1,2)
                                                      (5) 

where 𝜇𝐴𝑘(𝑥′) and 𝜇𝐵𝑘(𝑦′) are fuzzy membership function for input 𝑥′ and 𝑦′.  

Layer 2: This layer represents the if-then rules in fuzzy logic to model the training data set (Wei, 

2016). Every incoming signal multiplication based on Eq. (6) displayed below:  

𝑂2,𝑘 = 𝑤𝑘 = 𝜇𝐴𝑘(𝑥′) × 𝜇𝐵𝑘(𝑦′) (𝑘 = 1,2)                                        (6) 

where 𝑂2,𝑘 is the output of layer 2, 𝑤𝑘 is the firing strength of each if-then rule. So each node in this 

layer is labelled “∏” in Fig.4. 

Layer 3:  The third layer is to generate the normalized data by Eq. (7), 

𝑂3,𝑘 = �̅�𝑘 =
𝑤𝑘

∑ 𝑤𝑘
2
𝑘=1

                                                            (7) 

where 𝑂3,𝑘 is the output of layer 3, �̅�𝑘 is the normalised firing strengths. So each node in this layer is 

labelled “N” in Fig.4. 

Layer 4:  The fourth layer is the consequence of if-then rules, which is expressed by Eq. (8)  

𝑂4,𝑘 = �̅�𝑘(𝑝𝑘𝑥
′ + 𝑞𝑘𝑦

′ + 𝑟𝑘) (𝑘 = 1,2)                                           (8) 

where  𝑂4,𝑘 is the output of layer 4, 𝑝𝑘, 𝑞𝑘, and 𝑟𝑘 are consequence parameters that can be determined 

by least square method. 

Layer 5: the fifth layer is the summation of the results collected from layer 4 (Sridevi and Nirmala, 

2016), which is expressed by Eq. (9),  

𝑂5 = ∑ �̅�𝑘(𝑝𝑘𝑥
′ + 𝑞𝑘𝑦

′ + 𝑟𝑘)
2
𝑘=1                                                (9) 
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where 𝑂5 is the output of layer 5. During the ANFIS process, 80% of the total sample are viewed as a 

training set; the rest samples are treated as a testing set to check whether the ANFIS output is accurate 

and general enough.   

4. Case study 

In this section, the methodology mentioned above will be utilised for maintenance work in a power 

supply system of Beihai LNG terminal in Southern China. This power supply system is the key factor 

to guarantee the whole terminal especially the transfer arms running normally. During the lifetime of 

this power supply system, maintenance work is necessary to ensure the safety. The maintenance work 

is mainly a human factor related activity, so fuzzy CREAM could be applied to calculate the HEP 

data under real condition. The previous study shows the required HEP should be set at 0.002 (Zhang 

and Tan, 2016). In this paper, the research focuses on building a decision data pool through fuzzy 

CREAM, and constructing a general ranking system for decision-making to evaluate the safety 

promotion plan. 

4.1 Finding the HEP under real condition 

As inputs to the fuzzy CREAM process, four experienced experts are chosen to mark for each CPC. 

The evaluating questionnaire for CPC marking is shown in Appendix A, and the full mark is 100. 

Therefore, for the CPC1 “the adequacy of organization”, the four marks given by the four experts are 

(85, 70, 80, 85). Similarly, the rest CPCs’ marks are displayed in Table 3.  

Table 3. The marks of 9 CPCs. 

CPC Expert 1 Expert 2 Expert 3 Expert 4 

Adequacy of organization 85 70 80 85 
Working condition 65 70 55 70 

Adequacy of MMI and operational support 80 75 80 80 

Availability of procedures/plans 65 70 40 70 
Number of simultaneous goals 65 60 50 60 

Available time 65 50 65 65 
Time of day 65 55 70 70 

Adequacy of training and experience 65 60 70 70 

Crew collaboration quality 80 80 85 80 

Then the fuzzy membership function is adopted to determine the linguistic variables in a numerical 

form. In such method, the linguistic variables can be explained by fuzzy sets and corresponding 

membership degrees. For example, those fuzzy sets used to explain CPC1 “Adequacy of organization” 

are Deficient [a,b,c,d] = [0, 0, 10, 40] Inefficient [a,b,c,d] =  [10, 40, 40, 60], Efficient [a,b,c,d] = [40, 

60, 70, 80], and Very-efficient [a,b,c,d] = [70, 80, 100, 100], where [a,b,c,d] contains the four 

parameters for the describing the trapezoid membership function in Eq. (3). Likewise, all linguistic 

variables can be described, and Fig.5 shows the results.  
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Fig.5.Membership curves for nine CPCs. 
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As shown in Table 2, there are HEP intervals for each COCOM, then the fuzzy membership functions 

are implemented on it as well, and the logarithm is applied on each HEP interval to distinguish them 

clearly. As a result, Fig.6 displays the fuzzy membership curves.   

 

Fig.6. Membership curves of each COCOM. 

As the four experts have differences, the weights of each expert in marking each CPC should also be 

determined. Fuzzy Analytical Hierarchy Process (FAHP) method is suitable to find each weight 

(Akkaya et al., 2015). As a result, the weights of each expert are identified by FAHP, which is shown 

in Table 4. 

Table 4. The weight of each expert. 

 Expert 1 Expert 2 Expert 3 Expert 4 

Weight 0.27 0.21 0.24 0.28 

After that, the final marks of each CPC can be deduced through Eq. (10). 

𝐹𝑖 = ∑ 𝜔𝑗 ∗ 𝑎𝑖𝑗
𝑁
𝑗=1  (𝑖 = 1,2⋯ ,9)                                               (10) 

where 𝐹𝑖 is the final mark of ith CPC, N is the total number of experts, here N equals 4, 𝜔𝑗 is the 

weight of jth expert in CPC marking, 𝑎𝑖𝑗 is the mark given by jth expert for ith CPC, which is defined 

in Table 3. As a result, the final marks of each CPC are displayed below. 

Table 5. Final marks of each CPC. 

 CPC1 CPC2  CPC3 CPC4 CPC5 CPC6 CPC7 CPC8 CPC9 

Marks 80.65 65.05 78.95 61.45 58.95 61.85 65.5 66.55 81.2 

Based on fuzzy membership function in Fig. 5 and fuzzy logic, the final membership level of each 

CPC can be determined as shown in Table 6. 

Table 6. Membership level of each CPC. 

No. CPC Fuzzy data 

1 Adequacy of organization Very efficient (1.0) 

2 Working condition Compatible (1.0) 
3 Adequacy of MMI and operational support Supportive (0.895), Adequate (0.105) 
4 Availability of procedures/plans Acceptable (0.9275), Appropriate (0.0725) 

5 Number of simultaneous goals 
Matching current capacity (0.965), 

Continuous inadequate (0.035) 

6 Available time 
Temporarily inadequate (0.9075), 

Adequate( 0.0925) 
7 Time of day Day (1.0) 

8 Adequacy of training and experience Adequate with limited experience (1.0) 
9 Crew collaboration quality Very efficient (1.0) 

The final fuzzy membership degree of COCOM is 0.895 (tactical) and 0.0925 (strategic), and 

according to the COA defuzzification method shown in Eq. (4), the calculated HEP equals 0.0044 



12 

 

which fails to achieve the HEP requirement (0.002). Therefore, under this situation, the required HEP 

0.002 can be set as the target value which should be ensured in optimization, and the COA equation 

shown in Eq. (4) can be viewed as an objective function which should be optimized. Then, based on 

the flow chart of methodology shown in Fig.1, GA will be implemented on the defuzzification 

equation to identify the best parameters and meanwhile to ensure the calculated HEP is less than 

0.002. 

4.2 GA in defuzzification process 

In the project, the membership degrees of COCOM only cover “strategic” and “tactical”; so based on 

the fuzzy membership curve in Fig.6, and the trapezoid membership function defined as Eq. (3), their 

fuzzy membership functions are simplified as below: 

𝜇𝑠(𝑥) = {
𝑠         (−5.3 < 𝑥 < 𝑥1)

−𝑥 − 2 (𝑥1 < 𝑥 < −2)
                                               (11) 

𝜇𝑡(𝑥) = {

𝑥 + 3   (−3 < 𝑥 < 𝑥2)

𝑡             (𝑥2 < 𝑥 < 𝑥3)
−𝑥 − 1(𝑥3 < 𝑥 < −1)

                                               (12) 

where 𝜇𝑠(𝑥) is the membership function which covers “strategic” control mode, x is the logarithm of 

corresponding HEP, s is the membership degree of strategic control mode which is a constant with 

value range from 0 to 1, 𝜇𝑡(𝑥)is the membership function which covers tactical control mode, t is the 

membership data of tactical control mode which is also a constant ranging from 0 to 1. Then, by 

applying COA method on Eq. (11) and (12) together, the objective function can be expanded as Eq. 

(13). 

y =

∫ 𝑠𝑥𝑑𝑥
𝑥1
−5.3

+∫ (−𝑥−2)𝑥𝑑𝑥
−2
𝑥1

+∫ (𝑥+3)𝑥𝑑𝑥
𝑥2
−3

+∫ 𝑡𝑥𝑑𝑥
𝑥3
𝑥2

+∫ (−𝑥−1)𝑥𝑑𝑥
−1
𝑥3

∫ 𝑠𝑑𝑥
𝑥1
−5.3

+∫ (−𝑥−2)𝑑𝑥
−2
𝑥1

+∫ (𝑥+3)𝑑𝑥
𝑥2
−3

+∫ 𝑡𝑑𝑥
𝑥3
𝑥2

+∫ (−𝑥−1)𝑑𝑥
−1
𝑥3

                                   (13) 

Based on Fig.6, Eq. (11), and Eq. (12), the constraints of 𝑥1 ,𝑥2 , and 𝑥3  are 𝑥1 ∈ (−3,−2), 𝑥2 ∈

(−3, −2),  𝑥3 ∈ (−2,−1), and 𝑥2 + 𝑥3 = −4; besides, the constraint of “𝑠” (membership degree of 

strategic control mode) is 𝑠 = −𝑥1 − 2, and constraint of “𝑡” (membership degree of tactical control 

mode) is 𝑡 = 𝑥2 + 3. As the requirement of HEP is less than 0.002, the objective of Eq. (13) is less 

than -2.699 (𝑙𝑜𝑔100.002). After that, giving GA optimization on Eq. (13) within the objective and 

constraints, then the results are: 𝑥1=-2.206, 𝑥2=-2.229, 𝑥3=-1.771 which are presented in Fig.7. 

Consequently, the target membership degree of strategic control mode “𝑠” equals 0.206 and tactical 

control mode “𝑡” equals 0.771. 
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Fig.7. The result of GA optimization for HRA. 

4.3 Identify potential promotion plans 

The initial membership degrees (0.895 for tactical control mode, 0.0925 for strategic control model) 

are different with the target membership degrees (0.771 for tactical control mode, and 0.206 for 

strategic control mode), which means the original calculated HEP fails to meet the required HEP.  

Therefore, some specific plans should be worked out. According to the information from Fig.5, Table 

1 and Table 6, it can be seen that there is some room to improve the performance of some CPCs 

(CPC2, CPC3, CPC4, CPC6, CPC8) from “not significant to reliability” to “improved to reliability”. 

Therefore, by improving the performance marks of some CPCs, and based on the fuzzy membership 

function curves of each CPC in Fig.5, the fuzzy membership degrees of some CPCs will be changed. 

Then based on the “fuzzy logic operation rules” in Eq. (2), the fuzzy membership function curves of 

each COCOM in Fig.6, and defuzzification method in Eq. (4), the revised HEP can be calculated, 

which may be different from the original. Besides, as described in Table 1, the CREAM evaluation 

form contains nine CPCs, and each of them involves some sub-influencing factors which are shown in 

Appendix A, it is possible that through changing the performance data of some CPCs to reach the 

requirement. For instance, according to Appendix A, if improving the safety bonus, then performance 

mark of CPC2 (working condition) will be increased, and the membership degree of each COCOM 

will be changed as well as the corresponding calculated HEP. Thus, through similar way to improve 

the performance of some CPCs, a plenty of plans can be provided. For this project, 54 potential plans 

are selected, and three of them are listed below as examples.  

1) Through improving the safety awards, providing more personal protective equipment, and 

replacing the old facility to high reliability equipment to ensure the human reliability can be 

maintained at the acceptable level. 

2) Through recruiting higher qualified employee, giving enough expertise training on power supply 

systems, and periodically reviewing the employee’s working performance to avoid the human errors. 

3) Through improving the automatic level of operating process, and increasing the inherent safety 

level of equipment in power supply system; besides, increasing the number of operators in 

maintenance work to enhance current working capacity so that the operator can finish the job goals on 

time. 

Having a plenty of plans available, it is necessary to evaluate all the available plans and then to build 

a standard model for current and future decision making in this system. 

4.4 Constructing a standard multi-criteria decision making model  

Selecting the most suitable plan is a typical MCDM problem. As many decisions are motivated by 

economy (Borysiewicz et al., 2015), this study considers the economy performance in MCDM 

process. Besides, reasonable time duration is helpful to take a plan into practice friendly, so it is a 

considerable factor for plan evaluation. In addition, since the objective is to improve the human 

reliability, the reliability performance of each plan should be evaluated. Therefore, three attribute 

ratios have been used to evaluate each plan, they are, “Economy ratio”, “Practicability ratio”, and 

“Reliability ratio”. The “Economy ratio” and “Practicability ratio” are to display the performance of a 

plan on money investment and the performance of estimated time duration for a chosen plan. In 

addition, this study deems system reliability is the combination of human reliability and facility 

reliability together. Namely, operators and facilities are both ensuring the system normal running 

http://www.sciencedirect.com/science/article/pii/S0951832015000587
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(Zhang and Tan, 2016), and some potential plans can improve the facility reliability as well, so in this 

study, the “Reliability ratio” represents the integrated performance on human reliability and facility 

reliability together. Then the value of each attribute ratio is collected from Eq. (14)  

𝐴𝑟 =
𝑣𝑐−𝑣𝑓

𝑣𝑐−𝑣𝑖
                                                                    (14) 

where 𝐴𝑟 is the ratio for the attribute, 𝑣𝑐 is the  critical value that cannot be exceeded,  𝑣𝑓 is the final 

value after implementing the plan, and 𝑣𝑖 is the initial value before taking the decision. With the 

attribute ratios of each plan, the experts can give evaluated mark on each plan based on their 

experience and knowledge. The attribute ratios and the corresponding evaluated marks are shown in 

Appendix B, and plan 5 “to increase the available time during the maintenance work” is best one.  

Thereafter, ANFIS is introduced to build a decision making system to simulate the experts’ evaluation 

so that the future update decision making results can be collected without experts’ judgement. In this 

study, 80% of the samples in Appendix B are viewed as the training set to construct an ANFIS model 

to simulate the experts’ evaluation for supporting the MCDM process. The attribute ratios are used as 

inputs for ANFIS, the evaluated marks of each plan are viewed as expected results for ANFIS output, 

and the error tolerance of training process is set at 0. Besides, Gaussian membership function, which 

is determined by Eq. (15), is adopted to express each attribute (inputs). 

Gaussian (𝑥𝑖𝑛, �̅�, 𝜎) =𝑒−
1

2
(
𝑥𝑖𝑛−�̅�

𝜎
)2

                                                     (15) 

where 𝑥𝑖𝑛 is the input data of this ANFIS,  �̅� is the centre of Gaussian the membership function curve 

centre, and 𝜎 is the width of the Gaussian membership curve.. In each input (“Practicability ratio”, 

“Economy ratio”, and “Reliability ratio”), three membership degrees are involved; the structure of 

ANFIS model is presented in Fig.8. 

 

Fig.8. The structure of ANFIS model 
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After 1000 iterations, their fuzzy membership functions of each attribute ratio are automatically 

adjusted by the gradient decent method. Fig.9 gives the final fuzzy membership function curves of 

each attribute ratio. Besides, according to input data and ANFIS output results after 1000 iterations, 

the relationships between each two of three attribute ratios and the ANFIS outputs in training process 

are explained by Fig.10. Fig.10(a) displays the relationship among the “Practicability ratio”, 

“Economy ratio”, and ANFIS output under the situation that “Reliability ratio” equals to 2.384. Fig. 

10(b) shows how “Practicability ratio” and “Reliability ratio” work together to change the ANFIS 

output, when “Economy ratio” is 1.375. Fig.10(c) illustrates the contribution of “Reliability ratio” and 

“Economy ratio” to ANFIS output, when the “Practicability ratio” is -0.5.  

Meanwhile, based on three inputs and ANFIS output, Fig.11 uses a 4D diagram to illustrate the 

relationship among “Practicability ratio”, “Economy ratio”, “Reliability ratio” and ANFIS output, and 

a colour bar is displayed in Fig.11 to illustrate the change of ANFIS output value by changing colour 

from blue to red. Moreover, the comparison between ANFIS outputs of the training set and their real 

evaluating output scores are shown in Fig.12, and the rest 20% samples (testing set) are compared 

with the ANFIS results as well, which is shown in Fig.13. Then, the Mean Square Error (MSE) and R-

value of testing set can be calculated by Eq. (16) and Eq. (17).  

𝑀𝑆𝐸 =
1

𝜑
∑ (𝛺𝐴𝑁𝐹𝐼𝑆 − 𝛺𝑟𝑒𝑎𝑙)

2𝜑
𝑖=1                                                   (16) 

𝑅2 = 1−
∑ (𝛺𝐴𝑁𝐹𝐼𝑆−𝛺𝑟𝑒𝑎𝑙)

2𝜑
𝑖=1

∑ (𝛺𝐴𝑁𝐹𝐼𝑆−𝛺𝑎𝑣𝑒𝑟)2
𝜑
𝑖=1

                                                       (17) 

Where, 𝜑 is the number of testing sample (in this case 𝜑=12), 𝛺𝐴𝑁𝐹𝐼𝑆 represents the ANFIS output, 

𝛺𝑟𝑒𝑎𝑙 is the real evaluating output, and 𝛺𝑎𝑣𝑒𝑟 is the average value of real evaluating output, then the 

MSE of testing set is 2.21 × 10−3 , and the R-value of the testing set is 9.85 × 10−1 . It can be 

concluded that the error of both training set and testing set is small, so the ANFIS model is reliable. 
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Fig.9. The membership levels of three inputs. 

 

(a)                                                                           (b) 

 

(c) 

Fig.10. The relationship between each two of three attributes and ANFIS outputs. 

 

Fig.11. The relationship between each attribute and output value 
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Fig.12. The results of ANFIS training outputs and real outputs of training set 

  

Fig.13. The results of ANFIS training outputs and real outputs of testing set. 

5. Conclusion and future work 

In this study, fuzzy CREAM is adopted to identify the membership degrees of each COCOM and to 

calculate HEP data. Then, the GA optimization can be applied to the defuzzification equation with the 

required HEP and constraints to find the target membership degree of each COCOM, when the 

original calculated HEP fails to meet the requirement. After that, facing the target membership degree 

of each COCOM, many solutions will be worked out based on fuzzy CREAM evaluation form and 

fuzzy logic rules. Finally, an experts’ evaluation results based ANFIS decision supporting model is 

constructed. In summary, the proposed method conducts an integrating model for human reliability 

promotion plan finding and evaluating based on a power supply system of Beihai LNG terminal, and 

it extends the applicability of fuzzy CREAM from HRA method to a medium that can identify the 

best way to achieve the reliability objective. The following highlights are made with respect to this 

research: 

1)  Extending the original CREAM from a simply HRA method to a method which can generate a 

pool of plans for safety promotion. 

2)  The target fuzzy membership degrees of human control modes are identified by GA optimization. 

3) Providing a mathematical and logical way to construct a standard and robust model for decision 

making to improve the safety. 

The paper contributes to on-going efforts towards the improvement of safety for power supply system 

in LNG terminal, since power supply system is the crucial factor to ensure LNG transfer arm normal 

running during LNG loading/unloading process, and the accidents’ frequency during 

loading/unloading process is high. According to the chosen example and the final results, the best plan 

is to increase the available time during the maintenance work. Furthermore, the proposed method can 

be used by senior safety engineers, or third party safety assessment companies to calculate the HEP 

and to reasonably identify and evaluate all potential safety promotion plans. In addition, this method 

can be applied for other human related cases and more involved in QRA process for other industry as 

well.  

CREAM has some drawbacks; for instance, it focuses on how action fails, it only focuses on human 

being, and it lends support to the concept of “error” (Zhou et al., 2017). However, compared with 

other HRA methods, CREAM considers more factors which can affect human operations, so it is 

more suitable to be transferred to a medium for plan producing. Besides, by introducing fuzzy logic 

into CREAM, the unclear boundaries of each COCOM and each level in CPC can be tackled, and 
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original CREAM can be quantified. However, as lack of data and standards, this study involves some 

experts’ evaluation, which limits this study, so when applying this method, the high experienced staffs 

are necessary. In addition, this study still requires some improvements: the CPCs and their 

corresponding sub-influence factors should be specially designed for LNG terminal, and the 

relationship, interaction and weight among each revised CPC should be reconsidered and calculated 

as well. Therefore, in next research, those improvements will be engaged. 
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Appendix A. Questionnaire for CREAM evaluation 

CPC Questions 

CPC1 Adequacy of organization 1.1 Do they have enough departments to cover each activity for 

maintenance and other related work?  
 1.2 Does each department understand their responsibility?  
 1.3 Do they have periodically departmental check to ensure 

their performance? 
CPC2 Working condition 2.1 Do they provide enough personal protective equipment? 
 2.2 Do the facilities for power supply have high reliability and 

are easy to operate? 
 2.3 Are the salary and bonus sufficient to encourage staff to 

follow the safety rule?  

CPC3 Adequacy of Man Machine 
Interface (MMI) and operational support 

3.1 Can the alarm and emergency shutdown system prevent the 
consequences of failure?    

 3.2 Does the distance automatic control provide enough 
operational support? 

CPC4 Availability of procedures/plans 4.1 Do they have sufficient maintenance and emergency plans? 

 4.2 Do they have enough supporting equipment and component 
for the maintenance work?  

CPC5 Number of simultaneous goals 5.1 Do they have enough operators to finish the maintenance 

work on time? 
 5.2 Can operators all receive periodically expertise training to 

update their skills for the maintenance work? 
CPC6 Available time 6.1 Do they have enough time to finish all the maintenance 

work? 

CPC7  Time of day 7.1 Do they usually work in the daytime? 
 7.2 Do they usually work in the evening? 

7.3 Do they usually work at night? 

CPC8 Adequacy of training and 
experience 

8.1 Do they recruit experienced staff? 

 8.2 Do they provide enough expertise training before work? 
 8.3 Are there any periodically check to evaluate the 

performance of each operator? 

CPC9 Crew collaboration quality 9.1 How is the safety culture in this LNG terminal? 
 9.2 Do all operators understand their responsibility? 
 9.3 Are all operators suitable for their maintenance work? 

Appendix B. Raw data for ANFIS 

Sample Input Output 
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number Practicability 
ratio 

Economy 
ratio 

Reliability 
ratio 

Final 
score 

1 0.3448 0.8778 2.7003 1.2970 
2 -1.4348 1.6980 2.0615 0.5410 

3 -1.3961 1.6714 2.8103 0.8120 

4 1.0000 1.3500 1.9515 1.4170 

5 1.3950 0.9475 2.6673 1.7330 
6 -0.7528 1.0650 1.9515 0.6300 

7 -0.7100 1.0000 2.5339 0.8360 

8 -1.1850 1.0195 2.7003 0.7040 

9 -1.8298 2.0480 2.7432 0.7010 
10 0.3448 1.0528 2.7000 1.3390 

11 -1.2442 2.0214 2.6905 0.9170 

12 0.3448 0.7028 2.6868 1.2500 

13 -1.4348 0.8966 2.4668 0.4900 
14 -1.4348 0.8699 2.6958 0.5640 

15 0.5411 0.9399 2.6203 1.3650 

16 -1.4511 1.6980 2.3276 0.6270 

17 -1.2472 1.6675 2.7693 0.8580 
18 0.3436 0.7971 2.2306 1.1130 

19 -1.8461 1.5056 2.3355 0.4220 

20 -1.6398 1.4789 2.8103 0.6660 

21 0.3448 0.8253 2.6753 1.2760 
22 -1.4348 1.6456 2.2129 0.5810 

23 -1.0011 1.6189 2.8167 0.9640 

24 -0.4270 0.8934 1.9724 0.7300 

25 0.5424 0.8778 2.1742 1.1940 
26 -0.4421 0.8934 2.7096 0.9820 

27 -1.8358 1.7790 2.3005 0.4790 

28 -1.4348 1.6980 2.3040 0.6260 

29 -1.8358 1.7790 2.8066 0.6570 
30 -1.8020 1.6815 2.7531 0.6280 

31 -1.3961 1.5839 2.7531 0.7710 

32 -1.7911 1.6284 2.7531 0.6200 

33 1.0000 0.9685 2.4464 1.4990 
34 -0.2705 1.1750 2.4464 1.0270 
35 -0.2705 1.1330 2.6928 1.1040 

36 0.6445 0.8600 2.2873 1.2710 

37 -1.0125 0.9475 2.2873 0.6130 
38 -1.0125 0.8600 2.6928 0.7340 
39 0.9012 1.2170 2.6619 1.5930 

40 -0.7528 1.0125 2.5120 0.8140 

41 1.1975 0.9370 2.5385 1.6040 
42 -0.7528 1.0020 2.6928 0.8740 
43st -0.7528 0.9635 2.3251 0.7360 

44st 1.0790 0.8950 2.3251 1.4710 

45st -0.7528 0.9600 2.7078 0.8700 
46st -1.2100 1.0000 2.5697 0.6430 
47st -1.9594 1.0650 2.5635 0.3500 

48st -2.3950 1.0000 2.7025 0.2040 

49st 0.9210 0.8950 2.4835 1.4620 

50st -0.7528 0.9775 2.4454 0.7820 
51st -0.7528 0.8950 2.7189 0.8580 

52st -0.7528 1.2400 2.6258 0.9080 
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53st -0.8150 1.2275 2.6258 0.8800 

54st -2.3950 1.2275 2.7361 0.2700 

“st” represents the sample for testing. 
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