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Rössler had a brilliant and successful life as a scientist, during which he published a benchmark dynamical
system by using an electronic circuit interpreting chemical reactions. This is our contribution to honour his
splendid erudite career. It is a hot topic to regulate a network behavior using the pinning control with respect
to a small set of nodes in the network. Besides pinning to small number of nodes, small perturbation to the
node dynamics is also demanded. In this paper, the pinning synchronization of coupled Rössler-Network with
time delay using univariate impulse control is investigated. Using the Lyapunov theory, a theorem is proved
for the asymptotic stability of synchronization in the network. Simulation is given to validate the correctness
of the analysis and the effectiveness of the proposed univariate impulse pinning controller.

Keywords: Rössler-Network with time delay, univariate impulse control, pinning strategy, synchronization
theorem.

Complex network synchronization has been an ac-
tive research topic in the past two decades. It has
attracted attention in engineering, physics, chem-
istry and biology. We consider in this work the
impulse pinning control for network synchroniza-
tion, which shows better application prospects in
many fields. Many researchers considered fun-
damental issues associated with pinning control
such as: (1) the controllability of complex net-
works by pinning control; (2) the minimum num-
ber of nodes that should be pinned; and (3) the
coupling strength of the network that should be
fixed to realize network synchronization. How-
ever, most existing works need to manipulate all
state variables of the nodes, which is not possi-
ble to be implemented in systems containing an
uncontrollable sub-system, such as the Rössler-
Network with time delay. The univariate impulse
pinning control for the synchronization of a com-
plex network is a strategy to perturb the system
at the inter-pulse interval, which is more energy
efficient, requiring less perturbation to the orig-
inal system. In this paper, a univariate impulse
pinning synchronization method is proposed for
the Rössler-Network. The asymptotic stability
theory is rigorously proved for the network syn-
chronization with univariate impulse pinning con-
trol. Our univariate impulse control is capable of
dealing with a network having an uncontrollable
sub-system, thus extending the applicability and
relevance to a board range of disciplines.

a)Electronic mail of corresponding author:renhaipeng@xaut.edu.cn

I. INTRODUCTION

Complex networks are widely present in nature, rang-
ing from ecosystems to infrastructure systems. In the
past two decades, the synchronization of networks have
been extensively studied in various pragmatic fields, such
as communication1,2, image processing3,4 and biological
systems5. Various useful control strategies have been
proposed, such as pinning control6, impulse control7, dis-
tributed impulse control8, and adaptive control9.

As complex networks generally have large number of
nodes in real world, it is unfeasible to manipulate all
nodes simultaneously. Pinning method regulates a sub-
set of the nodes to influence the dynamics of the whole
network, which effectively reduces the number of re-
quired controllers. Grigoriev et al. presented the pinning
control for the spatiotemporal chaos of a coupled map
lattice6. Zhou et al. investigated how many nodes should
be selected and how large the pinning strength should
be to achieve network synchronization10. Recently, the
impulse pinning synchronization research further com-
bined the pinning strategy with impulse control for net-
work synchronization11. By employing the pinning ra-
tio, a novel pinning strategy was proposed to determine
the node selection12. A mixed impulse pinning controller
was proposed for the reaction-diffusion neural networks
with time-varying and distributed delays13. Impulse pin-
ning control was also proposed for stabilizing nonlinear
dynamical networks with time-varying delay14. It was
shown that the threshold on the coupling strength is a
sufficient condition to guarantee the network synchro-
nization by pinning control15. Pinning control is energy
efficient, as it drives the full network to a desired state
by manipulating a portion of the nodes. Impulse control
is also energy-saving by manipulating the system in dis-
crete times instead of continuous time. The impulse con-
trol can be constructed through an electronic circuit16.
However, all existing research on impulse pinning con-
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trol considers the regulation of all state variables. But
in fact, some node dynamics contains state variables of
an uncontrollable sub-system, such as in the Rössler sys-
tem for describing chemical reactions. Therefore, it is of
significance to investigate the controllers of the univari-
ate pulse pinning synchronization of complex networks.
Furthermore, it is desirable to use a minimum number of
variables as possible.

Professor Otto E. Rössler proposed the Rössler sys-
tem, lying an important foundation for experimental
chaos theory. The Rössler system describes the char-
acteristics of chemical kinetics. Moreover, Rössler de-
fined hyperchaos, present in a four-dimensional flow
having more than one positive Lyapunov exponents17.
His contributions include elucidating the mechanism of
labyrinth chaos, characterized by sensitive dependence
on initial conditions, and flexible chaotic phase like
chaotic walks18. Rössler system was widely studied as
a paradigmatic chaotic system for research in different
topics, like coupled oscillators synchronization19, chemi-
cal reactions20, and topological horseshoe21.

As we have mentioned above, general impulse control
methods manipulate all state variables of the system22,
which is not possible to use it for some application sce-
narios having an uncontrollable sub-system. Therefore,
univariate impulsive control has a more practical signif-
icance than general impulse control. The univariate im-
pulse synchronization for two hyperchaotic systems was
proposed16, which laid the theoretical foundation for the
univariate impulse synchronization. However, univari-
ate impulse control for a network becomes more chal-
lenging when combining with pinning control. Amid the
mentioned references11–15, two issues have been consid-
ered for impulse pinning control : (1) What is the cou-
pling strength allowing synchronization of all nodes in
the network? (2) How to select the pinned nodes for
optimal control of the network? For the second issue,
the maximum matching algorithm has been proposed,
which identifies the maximum set of links that do not
share starting or ending node. There are two methods
to identify the maximum matching, including Hungar-
ian algorithm23 and Hopcrof-Karp algorithm24. We em-
ploy Hungarian algorithm in this work, whose underlying
idea is to identify augmenting paths per iteration until
there is no augmenting path with respect to the match-
ing. However, it is difficult to simultaneously consider
the relationship between the theoretical stability condi-
tions of the univariate impulse controller and the pinning
strategy. In this paper, we consider univariate impulse
pinning control for the complex network, which may ap-
ply to the scenario in which some nodes and some node
state variables cannot bear perturbations. A three-node
network schematic diagram of the method is shown in
Fig. 1. In Fig. 1, x represents the state vector of a
single node, and xu represents one controlled variable of
the oscillator, and the xi (i = 1, 2, ...,m, i 6= u) repre-
sents the variables of the uncontrollable sub-system, m
is the dimension of the node dynamics, and a21 and a31

represent the coupling. The external input signal u is
the univariate controller imposed to the pinning node x1

in the network, it drives nodes x2 and x3 to synchronize
with x1 indirectly.
The remainder of the paper is organized as follows. In

Section II, the preliminaries of impulse differential equa-
tion are introduced. In Section III, the uniform asymp-
totic stability of univariate impulse control and the suf-
ficient condition to achieve pinning synchronization are
rigorously derived based on the Lyapunov stability the-
ory. In Section IV, the simulation results are given to
show the synchronization of two hyperchaotic Rössler-
Network systems by the univariate impulse control, in
order to demonstrate the feasibility and effectiveness of
the proposed method. The conclusions are given in Sec-
tion V.

II. PRELIMINARIES OF IMPULSE CONTROL

DIFFERENTIAL EQUATION AND PINNING

SYNCHRONIZATION OF COMPLEX NETWORK WITH

TIME DELAY

Consider a general hyperchaotic network with time de-
lay:

ẋi(t) =Bxi(t)+Df1(xi(t))+Cxi(t−τ)+σ

N∑

j=1

AH(xj(t)),

(1)
where xi(t) ∈ Rn represents the state vector of the i-
th oscillator, i = 1, 2, ..., N , N is the number of oscil-
lators in the network. σ is the coupling strength con-
stant. A = (aij)N×N ∈ RN×N stands for directed cou-
pling matrix, where aij = 1, if there is a connection from
node i to j, otherwise aij = 0 (i 6= j), and aii = 0.
H(xj) = xj − xi,H(xj) ∈ Rn → Rn is the internal cou-
pling function among the oscillators in the network. B, C
are the parameters matrices. f1(xi(t)) : R+×S(ρ) → Rn

are smooth nonlinear functions, where R+ = [0,+∞).
The time delay function used in this paper has a sim-
ilar form as that proposed by Pyragas25. In fact, this
work is also related to our past research on the time delay
effect26. The time delay form is the same as that of Pyra-
gas used to control chaos, while, we used the time delay
to generate complex dynamics, including chaos. In con-
clusion, our investigation, together with Pyragas’ work,
shows that the time delay function is two-fold, like the
sword has two edges, because one can use time delay to
either suppress chaos or to generate chaos. This finding
provides flexibility for control engineers to generate chaos
when it is useful or to eliminate chaos when it is harmful
just by tuning the controller parameters without altering
the controller structure.
In this paper, we consider the network with univari-

ate impulse pinning controllers. We wish to control the
nodes in the network to synchronize with the leader
node, meaning that the states of the other nodes are
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FIG. 1. Diagram of network with univariate control.

synchronized with the state of the leader node. It is
defined that ℓ represents the number of pinning nodes,
which are selected for manipulating the dynamics of the
network. In general, we reorder the sequence of the
nodes. Let (i1, i2..., iℓ) denotes the set of pinning nodes,
and (iℓ+1, iℓ+2..., iN ) denotes the set of the uncontrolled
nodes. The individual node dynamics with univariate
impulse pinning control is described by,







ẋi = Bxi +Df1(xi(t)) +Cxi(t− τ) + σ

N∑

j=1

AH(xj),

t 6= tk,

∆xi = xi(t
+
k )− xi(t

−
k ) = CI(xi(t

−
k )− xθ(t

−
k )),

1 < i < ℓ, t = tk,

∆xi = 0, ℓ+ 1 < i < N , t = tk,
(2)

where xθ(t) represents the state of the leader oscilla-
tor, being the one node of the network that satisfies
xθ ∈ xi(i = 1, ..., N). CI is the undetermined impulse
control matrix whose diagonal has only one nonzero ele-
ment. The impulse time tk satisfies 0 < t0 < t1 < t2 < ...
and lim

k→∞
tk = ∞. ∆xi represents the ”jump” states

at the impulse time t = tk, xi(t
−
k ) = lim

t→t
−

k

xi(t) and

xi(t
+
k ) = lim

t→t
+

k

xi(t) represent the states at the left-hand

and right-hand limits of time tk, respectively.
Some preliminaries for the impulse differential equa-

tion are introduced next. We define some notation first27:

K1 = {g ∈ C(R+, R+) |g(0) = 0, g(s) > 0, ∀s > 0}.

K2 = {g ∈ C(R+, R+)| is a non - decreasing function

and g(0) = 0, g(s) > 0, for s > 0}.

S(ρ) = {x ∈ Rn |‖x‖ < ρ}, where ‖·‖ represents Rn

space Euclidean norm;

PC(D,F ) denotes a piecewise continuous function from
D to F .

Definition 127: Let V0 = {V : R+×Rn
+ → R+}, V ∈ V0,

for [t, x(t)] ∈ [nT, (n + 1)T ] × Rn
+. The upper right

derivative of V (t,x(t)) is defined as D+V [t,x(t)] =
lim

h→0+
sup 1

h
{V [t+ h,x(t) + hf(t,x(t))]− V (t,x(t))}.

Lemma 127: Assume that ak, bk, ck ∈ K1, g ∈ K2,
p ∈ PC(R+, R+), and V : [−r,∞] × S(ρ) → R+, where
V is continuous on (−r, t0] × S(ρ) and (tk−1, tk] × S(ρ),
k = 1, 2, ..., for each x ∈ S(ρ), and k = 0, 1, 2, ...,
lim(t,y)→(t−

k
,x)V (t, y) = V (t−k , x) exists; if V is locally

Lipschitz in x and the following conditions hold:
(1) bk (|x|) 6 V (t,x) 6 ak (|x|) , (t, x) ∈ [−r,∞) ×

S(ρ);
(2) D+V (t, φ(0)) 6 p(t)ck [V (t, φ (0))], for all t 6= tk in

R+, and φ ∈ PC ([−r, 0] , S (ρ)) whenever V (t, φ (0)) >

g [V (t+ s, φ (s))] for s ∈ [−r, 0].
(3) V (tk, φ (0) + Ik) 6 g

[
V
(
t−k , φ (0)

)]
for all (tk, φ) ∈

R+ × PC ([−r, 0] , S (ρ1)) for φ (0−) = φ (0).
(4) ∆ = supk∈z {τk − τk−1} < ∞, where ∆ is the im-

pulse interval, and M1 = sup
t>0

∫ t+∆

t
p(s)ds < ∞, M2 =

inf
q>0

∫ q

g(q)
ds
c(s) > M1.

Then, the trivial solution of system (2) is uniformly
asymptotically stable.

III. HYPERCHAOTIC NETWORK SYNCHRONIZATION

USING UNIVARIATE IMPULSE PINNING CONTROL

This work aims at synchronizing all oscillators with the
leader oscillator by constructing suitable univariate im-
pulse pinning controllers. If one wishes to control a net-
work with the pinned nodes, the controllability condition,
referred to as Kalman’s controllability rank condition,
must be satisfied. However, for a higher order nonlinear
node system, it is hardly possible to build the Kalman
matrix straightforwardly. In fact, the controllability of
the nonlinear system does not depend on the rank, but it
depends on the system structure, e.g., the input vector28.
This means that the same system state matrix, but differ-
ent input vector, leads to different controllability. There-
fore, we present that the network is controllable when
the two conditions are satisfied: (1) the node system is
controllable; and (2) the topology structure is control-
lable. According to Aguirre and Letellier28, a nonlin-
ear system can be written as ẋ = f(x) + CIu, where
f(x) is the nonlinear state equation, CI is input ma-
trix. The controllability matrix of the system is Θ(x) =
[ ad0fCI ad1fCI · · · ads+2

f CI ], where the Lie bracket
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4

and the recursion relation are adfCI = [f ,CI ] =
∂CI

∂x
·f−

∂f
∂x

·CI , ad
k
f CI = [f , adk−1

f CI ], k > 1, and ad0fCI = CI .
The system is said to be controllable if the matrix Θ(x)
has full row rank28. The error dynamics network is said
to be controllable ifQ =

[
G,AG,A2G,...,AN−1G

]
is full

rank29, where G is the N × ℓ input matrix correspond-
ing to the selected pinning nodes. It is worth noting
that the controllability condition can also be applied to
decide the controllability of the topology structure with
nonlinear nodes networks29,30. The determination of the
number ℓ of pinning nodes is a key point. In general,
we increase the number of pinning nodes from 1, set its
position (putting into which state variables), and then
check the controllability matrix rank. If it is full rank,
the pinning node(s) can be selected as an option. Else,
we continue the procedure by changing the position of the
state variable for pinning, checking the rank again, until
all positions of the variables are tried. If all positions are
tried and we cannot obtain a full rank matrix, then we
have to increase the pinning node number to 2, and so
on. This procedure is illustrated by the flowchart given in
Fig. 2. After that, we state and prove a uniform asymp-
totic stability theorem for the error dynamics network.
In the following, we reorder the sequence of the nodes,
i.e., i1, ..., iℓ represents the pinning nodes and others are
uncontrolled nodes. Importantly, our stability Theorem
1 is independent of the Hungarian algorithm.

Let the θ-th oscillator in the network be considered as
leader, described as,

ẋθ(t) = Bxθ(t) +Df1(xθ(t)) +Cxθ(t− τ)+

σ

N∑

i=1

ain(xi(t)− xθ(t)),
(3)

where ain is the connection between the leader node and
other nodes.

From the drive node in Eq. (3) and the response nodes
in Eq. (1), we define the error as ei(t) = xi(t)−xθ(t), (i =
1, 2, ..., N). The error dynamics network is given by the
following,

ėi(t) = Bei(t)+Df̃1(ei)+Cf̃2(ei(t−τ))+σ

N∑

j=1

ÃH(ej(t)),

(4)

where f̃1(ei) = f1(xi(t))−f1(xθ(t)), f̃2(ei(t−τ)) = xi(t−

τ)− xθ(t− τ). Ã is a singular matrix.

The objective is to design a controller ui such that
the error dynamics network (4) is asymptotically stable
at origin, i.e., ei = 0 for all i. The univariate impulse
pinning controller is given as follows,

FIG. 2. The flowchart to determine the pinning nodes.







ui(t) = CIei(t
−
k ), 1 < i < ℓ, t = tk,

ui(t) = 0, ℓ+ 1 < i < N , t = tk,

ui(t) = 0, 1 < i < N , t 6= tk ,

(5)

where CI (CI = diag(0, ..., c, 0, ...) represents the im-
pulse control matrix. The location of c in the diagonal
matrix is determined by the controllability and observ-
ability of the system. The basic principle is that the
impulse control is operated on the observable available
in the state equation31,32. With the univariate impulse
pinning controller (5), the error dynamics network can
be described as follows:
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

































ėi(t) = Bei(t) +Df̃1(ei) +Cf̃2(ei(t− τ )) + σ

N
∑

j=1

ÃH(ej(t)),

t 6= tk,

∆ei(tk) = CIei(t
−
k ), 1 < i < ℓ, t = tk,

∆ei(tk) = 0, ℓ+ 1 < i < N, t = tk,
(6)

Next, we rewrite network (1) as,







ẋi = B1xi +D1f1x(xi(t), yi(t)) + C1xi(t− τ),

ẏi = B2yi +D2f1y(xi(t), yi(t)) + C2yi(t− τ)

+ σ

N∑

i=1

AijH(yj),

(7)

where xi represents the state variables of uncontrollable
sub-system of node i, and yi is the state variable of con-
trollable sub-system of node i. Therefore, in Eq. (6), we
have ei(t) = [exi

(t), eyi
(t)]T

Theorem 1 Considering system (6) to satisfy the follow-
ing two conditions:

(1) There exist constants l1 and l2 yielding

‖f1x(xi, yi)‖
2

6 l1‖(xi, yi)‖
2

and ‖f1y(xi, yi)‖
2

6

l2‖(xi, yi)‖
2,

(2)M = max
{

2
(

λmax(B
T
1 ) +

√

λmax(DT
1 D1)l1 +

1
2 +

l21‖C1‖
2

2c2

)

,

2
(

λmax(B2) +
√

λmax(DT
2 D2)l2 +

1
2 +

l22‖C2‖
2

2c2

)}

,

0 < ∆ < −
ln((1+c)2δ+1−δ)

M
,

where λmax(·) is the maximum eigenvalue of the matrix
in brackets and ∆ is the impulse interval, δ is the pinning
ratio defined as δ = ℓ/N . Then the error dynamics
network (6) is uniformly asymptotically stable.

In this sense, the oscillators of the complex dynam-
ical network, given by Eq. (1), can be driven to syn-
chronize with the leader oscillator by univariate impulse
controllers.

Proof of Theorem 1
Select Lyapunov function candidate as:

V =

N∑

i=1

ei
TPei (8)

For t = tk:

V (tk, ei(t
+
k )) =

N∑

i=1

eTi (tk)Pei(tk)

=
ℓ∑

i=1

eTxi
(tk)Pexi

(tk) +
ℓ∑

i=1

eTyi
(tk)Peyi

(tk) +
N∑

i=ℓ+1

eTxi
(tk)Pexi

(tk) +
N∑

i=ℓ+1

eTyi
(tk)Peyi

(tk)

=
ℓ∑

i=1

eTxi
(t−k )Pexi

(t−k ) + (1 + c)
2

ℓ∑

i=1

eTyi
(t−k )Peyi

(t−k ) +
N∑

i=ℓ+1

eTxi
(t−k )Pexi

(t−k ) +
N∑

i=ℓ+1

eTyi
(t−k )Peyi

(t−k )

6 (1 + c)2δ
N∑

i=1

eTi (t
−
k )Pei(t

−
k ) + (1 − δ)

N∑

i=1

eTi (t
−
k )Pei(t

−
k )

6

(

(1 + c)
2
δ + 1− δ

)

V (t−k , ei(t
−
k ))

= g(V (t−k , ei(t
−
k ))),

(9)

where g(V ) =
(

(1 + c)
2
δ + 1− δ

)

· V .

The derivative of V (t) yields,

D+V (t, e(t)) = 2

(

N
∑

i=1

ėTxi
(t)exi

(t) +
N
∑

i=1

eTyi(t)ėyi(t)

)

= 2

[

N
∑

i=1

(eTxi
BT

1 + f̃T
1xD

T
1 + C1f̃2x(exi

(t− τ )))exi
+

N
∑

i=1

eTyi(B2eyi +D2f̃1y + C2f̃2y(eyi(t− τ ))− σ
N
∑

j=1,j 6=n

ÃijH(ej))

]

6 2λmax(B
T
1 )

N
∑

i=1

eTxi
exi

+ 2λmax(B2)
N
∑

i=1

eTyieyi + 2
N
∑

i=1

f̃T
1xD

T
1 exi

+ 2
N
∑

i=1

eTyiD2f̃1y

+ 2
N
∑

i=1

C1f̃2x(exi
(t− τ ))exi

+ 2
N
∑

i=1

eTyiC2f̃2y(eyi(t− τ ))− 2σ
N
∑

i=1

N
∑

j=1,j 6=n

eTyiÃijH(ej).

(10)
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6

We have

2

N∑

i=1

f̃1xD
T
1 e

T
xi

6 2

N∑

i=1

(√
∥
∥
∥f̃1xDT

1

∥
∥
∥

2

·
∥
∥eTxi

∥
∥

)

6 2

N∑

i=1

(√

λmax(DT
1 D1)l

2
1‖exi

‖
2
·
∥
∥eTxi

∥
∥

)

6 2
√

λmax(DT
1 D1)l1

N∑

i=1

exi
eTxi

.

(11)

Similarly with Eq. (11), we have,

2

N∑

i=1

eTyi
DT

2 f̃1y 6 2
√

λmax(DT
2 D2)l2

N∑

i=1

eTyi
eyi

. (12)

2

N
∑

i=1

eTyiC2f̃2y(eyi(t− τ )) 6

N
∑

i=1

(

∥

∥

∥e
T
yi

∥

∥

∥

2

+ ‖C2‖
2 · l22‖eyi(t− τ )‖2

)

6

(

1 +
l22‖C2‖

2

c2

) N
∑

i=1

eyie
T
yi
.

(13)

Similarly with Eq. (13), we have,

2

N∑

i=1

C1f̃2x(exi
(t− τ))exi

6

(

1 +
l21‖C1‖

2

c2

)
N∑

i=1

exi
eTxi

.

(14)

Let
∑

1 = diag[1, ..., 1
︸ ︷︷ ︸

ℓ

, 0, ..., 0
︸ ︷︷ ︸

N−ℓ

] denotes the diagonal

matrix corresponding to the pinning node.

Note that the row vector of coupling matrix Anj = 0,
we get,

2σ
N∑

i=1

N∑

j=1,j 6=n

eTyi
ÃijH(ej)

= 2σδ

l∑

i=1

l∑

j=1,j 6=n

eTyi

∑

1
ÃijH(ej)

6 0.

(15)

From Eqs. (11)-(15), we have,

D+V (t, e(t)) 6 2λmax(B
T
1 )

N∑

i=1

eTxi
exi

+ 2λmax(B2)
N∑

i=1

eTyi
eyi

+ 2
√

λmax(DTD)l1
N∑

i=1

exi
eTxi

+ 2
√

λmax(DTD)l2
N∑

i=1

eTyi
eyi

+
(

1 +
l22‖C2‖

2

c2

) N∑

i=1

eyi
eTyi

+
(

1 +
l21‖C1‖

2

c2

) N∑

i=1

exi
eTxi

6 2
(

λmax(B
T
1 ) +

√

λmax(DT
1 D1)l1 +

1
2 +

l21‖C1‖
2

2c2

) N∑

i=1

eTxi
exi

+ 2
(

λmax(B2) +
√

λmax(DT
2 D2)l2 +

1
2 +

l22‖C2‖
2

2c2

) N∑

i=1

eyi
eTyi

6 p(t)V (t, e(t)),

(16)

where p(t) = max
{

2
(

λmax(B
T
1 ) +

√

λmax(DT
1 D1)l1 +

1
2 +

l21‖C1‖
2

2c2

)

,

2
(

λmax(B2) +
√

λmax(DT
2 D2)l2 +

1
2 +

l22‖C2‖
2

2c2

)}

.

Assuming that c(s) = s,M = p(t), and from the con-
dition (4) of Lemma 1, we have

M2 −M1 = inf
q>0

∫ q

g(q)

ds

c(s)
− sup

t>0

∫ t+∆

t

p(s)ds

= ln q − ln g(q)−M ·∆

= − ln g −M ·∆ > 0.

(17)

According to Eq. (17), we obtain the following condi-
tion for impulse interval ∆,

0 < ∆ < −
ln
(

(1 + c)
2
δ + 1− δ

)

M
, (18)

whereM = max
{

2
(

λmax(B
T
1 ) +

√

λmax(DT
1 D1)l1 +

1
2 +

l21‖C1‖
2

2c2

)

,

2
(

λmax(B2) +
√

λmax(DT
2 D2)l2 +

1
2 +

l22‖C2‖
2

2c2

)}

.

Therefore, the error dynamics network (6) is asymp-
totically stable.
End of proof.

IV. NUMERICAL SIMULATIONS

Consider the Rössler system with time delay network
given by:
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7







ẋi = −yi − zi +K(xi(t− τ)− xi(t)),

ẏi = xi + ayi + σ

N∑

j=1

aij(yj − yi),

żi = b+ zi(xi − c̄),

(19)

where xi, yi, zi ∈ Rn represents the state variables of
the oscillator i (i = 1, 2, ..., N). The parameters are
a = b = 0.1, c̄ = 1.5, K = 10.5, τ = 1. This node dy-
namics with time delay is hyperchaotic16. We consider
directed random network with N = 10, σ = 0.025, and
the directed small-world network with N = 30, σ = 0.23
in the simulations. The topology connection diagram of
two different networks is shown in Fig. 3(a) and Fig.
3(d), respectively. The node oscillator exhibits a chaotic
attractor, as shown in the Fig. 4. In this work, the
variable y of system (19) is a controlled variable, corre-
sponding to xu in Fig. 1.

We first derive the controllability of Rössler system
with time delay. We expand the function of the system
with the time-lag units of s + 3 dimensions33, as shown
in (20).







ẋ = −y − z +K(us − u1)
ẏ = x+ ay

ż = b+ z(x− c)
u1 =

αx−u1

T

u2 = u1−u2

T

u3 = u2−u3

T

u4 = u3−u4

T
...

us =
us−1−us

T

, (20)

where T = τ/s, τ is time delay, s is the number of
time-lag units cascade, α is the compensation gain of
the time-lag units. When T is small enough, the time-
lag unit approximates as a pure delay. In this work, we
only investigate the controller using y as manipulated
variable. Therefore, the input vector field CI is given

by CI =










0
1
0
...

0










(s+3)×(1)

. The partial derivative of the

system matrix is given by

∂f

∂x
=


















−K −1 −1 0 0 · · · 0 0 K
1 a 0 0 0 · · · 0 0 0
z 0 x− c 0 0 0 · · · 0 0

α/T 0 0 −1/T 0 0 · · · 0 0
0 0 0 1/T −1/T 0 · · · 0 0
0 0 0 0 1/T −1/T 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 0 1/T −1/T


















(s+3)×(s+3)

(21)

The controllability matrix for the system, Eq. (20), is
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FIG. 3. Rössler-Network topology with node dynamics given by a Rössler system. (a) 10-node directed random network
topology; (b) maximum matching of directed path, where pinning nodes are shown in blank; (c) connection matrix of the
network in (a) (different color represents different connection weights: 0-blue lattice; 1-yellow lattice); (d) 30-node directed
small world network topology, where the pinning nodes are marked by green arrow u = (u1, u2, ..., u11)

T ; (e) connection matrix
of the network in (d) (0-blue lattice; 1-yellow lattice).

Θ(x) =

















































0 1 K − a K(K − a) + a2 − z − 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 −a a2 − 1 2a−K − a3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−z −b− zK + az ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−α/T [−αT (K − a)− α] /T 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−α/T 2 [α(K − a+ 2T )] /T 2 ∗ * ∗ ∗ ∗ ∗ ∗
−α/T 3 ∗ * * ∗ ∗ ∗ ∗

−α/T 4 * * * * ∗ ∗
−α/T 5 * * ∗ ∗ ∗

. . . * ∗ ∗ ∗
. . . ∗ ∗ ∗

. . . ∗ ∗
−α/T s ∗

















































. (22)

Thus, the controllability matrix Θ(x) has full row
rank, meaning that the system is controllable. Next,
we discuss the controllability of the topology. The
network is said to be controllable when the matrix

Q =
[
G,AG,A2G,...,AN−1G

]
is full rank, according to

the reference 29. Based on the two conditions above, the
network is controllable.
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FIG. 4. Chaotic attractor of the i-th Rössler oscillator with
time delay in the random network.

A. Simulation results

We consider the individual node oscillator of the
Rössler-Network, Eq. (19), in this paper. We assume
that (X∗

i , Y
∗
i , Z

∗
i ) is the equilibrium of Rössler oscilla-

tor, where X∗
i = −aY ∗

i , Z
∗
i = −Y ∗

i , aY
∗2
i + c̄Y ∗

i + b = 0.
We define Xi = xi −X∗

i , Yi = yi − Y ∗
i , Zi = zi −Z∗

i and
the transformation as given in Eq. (23),

Żi = b+ xizi − c̄zi

= b+ (Xi − aY ∗
i )(Zi − Y ∗

i )− c̄(Zi − Y ∗
i )

= XiZi −XiY
∗
i − aZiY

∗
i − c̄Zi

= XiZi +XiZ
∗
i + Zi(X

∗
i − c̄).

(23)

We then obtain the following transformation of Eq.
(19), as shown in Eq. (24),







Ẋi = −Yi − Zi +K(Xi(t− τ) −Xi),

Ẏi = Xi + aYi + σ

N∑

j=1

aij(Yj − Yi),

Żi = XiZi +XiZ
∗
i + Zi(X

∗
i − c̄),

(24)

where B1 =

[
−K −1
Z∗
i X∗

i − c̄

]

, D1 =

[
1
1

]

, C1 =
[
K
0

]

, fxi
=

[
−Yi

XiZi

]

, B2 = a, D2 = 1, fyi
= Xi,

C2 = 0, in the form of Eq. (7) with x = [Xi, Zi]
T ,

y = Yi. As learned from the above form, the sys-
tem is decomposed into two subsystems, namely, B1

and B2. There are two equilibria (X∗
i , Y

∗
i , Z

∗
i )1,2 =

(0.0007,−0.007, 0.007), (0.1493,−1.493, 1.493) in the os-
cillator. It happens that the eigenvalues of B1 have nega-
tive real part and the eigenvalues of B2 is decided by the
parameter a. Consequently, for each Rössler oscillator in
the network, subsystem B1 consisting of the variables x
and z is stable. We know that the variable y is an observ-

0 100 200 300 400 500

t

-1.5

-1

-0.5

0

0.5

1

1.5

e
2 i

FIG. 5. Synchronization errors e2i of the network in Fig.
1(a) (10-node directed random network), when the univariate
impulse pinning control is active at t = 100s.

able state, then one can apply state feedback to control
state y in order to achieve the network synchronization.
Let the node Xθ(t) be the leader node, so we have

the error e1i = Xi − Xθ, e
2
i = Yi − Yθ, e

3
i = Zi − Zθ.

The impulse control gain is c = −1.9. For the net-
work in Fig. 3(a), the procedure in Fig. 2 for calcu-
lating pinning nodes could be replaced by the maximum
matching. The result is shown in Fig. 3(b), which indi-
cates the two matching paths, starting from unmatched
nodes 1 and 2 (blank nodes in Fig. 3(b)), ending at the
matched nodes 6 and 10 (green nodes in Fig. 3(b)), re-
spectively. The unmatched nodes are the minimal set
of the number of required external controllers. The con-
trol link starts from an unmatched node in a directed
path and ends at the end of the matching path. There-
fore, controllers on the nodes X1 and X2 can exert
full control. It is verified that if one chooses the con-
trollers on X1 and X2, the controllability matrix Q is full
rank. For the network in Fig. 3(d), the pinning nodes
areX1,X2,X5,X7,X8,X14,X16,X24,X25, andX28 (see
green arrows in Fig. 3(d)), that satisfies the controllabil-
ity matrix rank(Q) = N . We pin the mentioned two
nodes in Fig. 3(a) and eleven nodes in Fig. 3(d) for the
two networks to be pinning controlled at time tk, with
parameters δ = 0.2 and δ = 0.367. From the conditions
of the Theorem 1, we have,

(1)‖fxi
(x)‖2 6 l1‖ex‖

2 = 2‖ex‖
2 and ‖fyi

(y)‖2 6

l2‖ey‖
2
= 1 · ‖ey‖

2
for the network in Fig. 3(a), so the

condition (1) of Theorem 1 is satisfied. Then M = 62,
0 < ∆1 < 0.000624.

(2)‖fxi
(x)‖2 6 l1‖ex‖

2 = 4‖ex‖
2 and ‖fyi

(y)‖2 6

l2‖ey‖
2
= 4 · ‖ey‖

2
for the network of Fig. 3(d), so that

M = 247 and 0 < ∆2 < 0.0003.

For the network in Fig. 3(a), when the pinning impulse
interval is taken as ∆1 = 0.0005s, the nodes achieve syn-
chronization with the leader node, as shown is Fig. 5.
Figure 6(a) shows the state variables of the network in
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Fig. 3(d) without the control, which is obviously nonsyn-
chronous. In Figs. 6(b),(c),(d), the 30-node network are
successfully driven to synchronize with the leader node
s(t) by univariate impulse pinning control with impulse
interval ∆2 = 0.0003s.

In general, to achieve synchronization, the smaller im-
pulse interval and the larger duty ratio correspond to
the need for a smaller impulse amplitude. Therefore, in
the application, we can adjust the impulse amplitude ac-
cording to the Theorem derived in the paper to avoid
the saturation of the actuator or the saturation of the
state variable. In practice, we have used electronic circuit
to implement the impulse control in the Chen circuit16,
where the saturation problem was avoided.

In the simulation results of Fig. 5 and Fig. 6, all
initial state variables of the network are randomly chosen
in [-1,1]. We impose univariate impulse controllers to
determine the pinning nodes in the two networks. It is
shown that the trajectories of the error are stabilized
at zero, which validate the correctness of the proposed
method.

Note that, the time delay not only increases the di-
mension of the original system without time delay, but
also brings more and larger positive Lyapunov expo-
nents. It causes the dynamics of the original system
to be more complicated. The simulations have demon-
strated that the number of positive Lyapunov exponents
increases when the time delay τ and time delay gain C
are increased34,35. Moreover, the synchronization time is
longer than that of the original system, the synchroniza-
tion being harder to be achieved.

V. CONCLUSION

In this paper, using Lyapunov stability theory, a Theo-
rem is stated and proved, establishing the sufficient con-
dition for network synchronization with univariate im-
pulse pinning control. Numerical simulations are given
to demonstrate the validity of the proposed univariate
impulse pinning controller.

Note that, some states of the nodes are not observable.
But, for the proposed method, one just needs one variable
of the oscillator to be observable in order to establish the
univariate state feedback controller to synchronize the
whole network, instead of the full-state feedback con-
troller, which gives better adaptability and application
potential to the proposed method.
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FIG. 6. Synchronization errors e1i , e
2
i and e3i of the network,

Eq. (24), in Fig. 1(d); (a) the second state variable error
e2i of the network without control; (b), (c) and (d) are the
state variables errors e1i , e

2
i and e3i with the univariate impulse

pinning control on y, where i indicates the node index.
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