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ABSTRACT

Rössler had a brilliant and successful life as a scientist during which he published a benchmark dynamical system by using an electronic circuit
interpreting chemical reactions. This is our contribution to honor his splendid erudite career. It is a hot topic to regulate a network behavior
using the pinning control with respect to a small set of nodes in the network. Besides pinning to a small number of nodes, small perturbation
to the node dynamics is also demanded. In this paper, the pinning synchronization of a coupled Rössler-network with time delay using
univariate impulse control is investigated. Using the Lyapunov theory, a theorem is proved for the asymptotic stability of synchronization in
the network. Simulation is given to validate the correctness of the analysis and the effectiveness of the proposed univariate impulse pinning
controller.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0017295

Complex network synchronization has been an active research
topic in the past two decades. It has attracted attention in engi-
neering, physics, chemistry, and biology. We consider in this
work the impulse pinning control for network synchronization,
which shows better application prospects in many fields. Many
researchers considered fundamental issues associated with pin-
ning control such as (1) the controllability of complex networks
by pinning control, (2) the minimum number of nodes that
should be pinned, and (3) the coupling strength of the network
that should be fixed to realize network synchronization. How-
ever, most existing works need to manipulate all state variables
of the nodes, which is not possible to be implemented in systems
containing an uncontrollable sub-system, such as the Rössler-
network with time delay. The univariate impulse pinning control
for the synchronization of a complex network is a strategy to per-
turb the system at the inter-pulse interval, which is more energy
efficient, requiring less perturbation to the original system. In
this paper, a univariate impulse pinning synchronization method
is proposed for the Rössler-network. The asymptotic stability the-
ory is rigorously proved for the network synchronization with
univariate impulse pinning control. Our univariate impulse con-
trol is capable of dealing with a network having an uncontrollable

sub-system, thus extending the applicability and relevance to a
board range of disciplines.

I. INTRODUCTION

Complex networks are widely present in nature, ranging from
ecosystems to infrastructure systems. In the past two decades, the
synchronization of networks has been extensively studied in vari-
ous pragmatic fields, such as communication,1,2 image processing,3,4

and biological systems.5 Various useful control strategies have been
proposed, such as pinning control,6 impulse control,7 distributed
impulse control,8 and adaptive control.9

As complex networks generally have a large number of nodes
in real world, it is unfeasible to manipulate all nodes simultane-
ously. The pinning method regulates a subset of the nodes to influ-
ence the dynamics of the whole network, which effectively reduces
the number of required controllers. Grigoriev et al. presented the
pinning control for the spatiotemporal chaos of a coupled map
lattice.6 Zhou et al. investigated how many nodes should be selected
and how large the pinning strength should be to achieve network
synchronization.10 Recently, the impulse pinning synchronization
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research further combined the pinning strategy with impulse con-
trol for network synchronization.11 By employing the pinning ratio,
a novel pinning strategy was proposed to determine the node
selection.12 A mixed impulse pinning controller was proposed for
the reaction–diffusion neural networks with time-varying and dis-
tributed delays.13 Impulse pinning control was also proposed for
stabilizing nonlinear dynamical networks with time-varying delay.14

It was shown that the threshold on the coupling strength is a suf-
ficient condition to guarantee the network synchronization by pin-
ning control.15 Pinning control is energy efficient, as it drives the full
network to a desired state by manipulating a portion of the nodes.
Impulse control is also energy-saving by manipulating the system in
discrete times instead of continuous time. The impulse control can
be constructed through an electronic circuit.16 However, all existing
research on impulse pinning control considers the regulation of all
state variables. However, in fact, some node dynamics contains state
variables of an uncontrollable sub-system, such as in the Rössler sys-
tem for describing chemical reactions. Therefore, it is of significance
to investigate the controllers of the univariate pulse pinning syn-
chronization of complex networks. Furthermore, it is desirable to
use a minimum number of variables as possible.

Professor Otto E. Rössler proposed the Rössler system, laying
an important foundation for experimental chaos theory. The Rössler
system describes the characteristics of chemical kinetics. Moreover,
Rössler defined hyperchaos that is present in a four-dimensional
flow having more than one positive Lyapunov exponent.17 His con-
tributions include elucidating the mechanism of labyrinth chaos,
characterized by sensitive dependence on initial conditions, and
flexible chaotic phase such as “chaotic walks.”18 The Rössler system
was widely studied as a paradigmatic chaotic system for research
in different topics, such as coupled oscillator synchronization,19

chemical reactions,20 and topological horseshoe.21

As we have mentioned above, general impulse control meth-
ods manipulate all state variables of the system,22 which is not
possible to use it for some application scenarios having an uncon-
trollable sub-system. Therefore, univariate impulsive control has a
more practical significance than general impulse control. The uni-
variate impulse synchronization for two hyperchaotic systems was
proposed,16 which laid the theoretical foundation for the univariate
impulse synchronization. However, univariate impulse control for
a network becomes more challenging when combined with pinning
control. Amid the mentioned references,11–15 two issues have been
considered for impulse pinning control: (1) What is the coupling
strength allowing synchronization of all nodes in the network? (2)
How to select the pinned nodes for optimal control of the network?
For the second issue, the maximum matching algorithm has been
proposed, which identifies the maximum set of links that do not
share a starting or an ending node. There are two methods to iden-
tify the maximum matching, including the Hungarian algorithm23

and the Hopcroft–Karp algorithm.24 We employ the Hungarian
algorithm in this work, whose underlying idea is to identify aug-
menting paths per iteration until there is no augmenting path with
respect to matching. However, it is difficult to simultaneously con-
sider the relationship between the theoretical stability conditions of
the univariate impulse controller and the pinning strategy. In this
paper, we consider univariate impulse pinning control for the com-
plex network, which may apply to the scenario in which some nodes

and some node state variables cannot bear perturbations. A three-
node network schematic diagram of the method is shown in Fig. 1.
In Fig. 1, x represents the state vector of a single node, xu represents
one controlled variable of the oscillator, xi (i = 1, 2, . . . , m, i 6= u)

represents the variables of the uncontrollable sub-system, m is the
dimension of the node dynamics, and a21 and a31 represent the
coupling. The external input signal u is the univariate controller
imposed to the pinning node x1 in the network, and it drives nodes
x2 and x3 to synchronize with x1 indirectly.

The remainder of the paper is organized as follows. In Sec. II,
the preliminaries of the impulse differential equation are introduced.
In Sec. III, the uniform asymptotic stability of univariate impulse
control and the sufficient condition to achieve pinning synchro-
nization are rigorously derived based on the Lyapunov stability
theory. In Sec. IV, the simulation results are given to show the syn-
chronization of two hyperchaotic Rössler-network systems by the
univariate impulse control in order to demonstrate the feasibility
and effectiveness of the proposed method. The conclusions are given
in Sec. V.

II. PRELIMINARIES OF THE IMPULSE CONTROL

DIFFERENTIAL EQUATION AND PINNING

SYNCHRONIZATION OF A COMPLEX NETWORK WITH

TIME DELAY

Consider a general hyperchaotic network with time delay,

ẋi(t) = Bxi(t) + Df1(xi(t)) + Cxi(t − τ) + σ

N
∑

j=1

AH(xj(t)), (1)

FIG. 1. Diagram of a network with univariate control.
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where xi(t) ∈ Rn represents the state vector of the ith oscillator,
i = 1, 2, . . . , N, and N is the number of oscillators in the net-
work. σ is the coupling strength constant. A = (aij)N×N

∈ RN×N

stands for directed coupling matrix, where aij = 1, if there is a
connection from node i to j; otherwise, aij = 0 (i 6= j) and aii = 0.
H(xj) = xj − xi, and H(xj) ∈ Rn → Rn is the internal coupling func-
tion among the oscillators in the network. B, C are the parameters

matrices. f1(xi(t)) : R+ × S(ρ) → Rn are smooth nonlinear func-

tions, where R+ = [0, +∞). The time delay function used in this

paper has a similar form as that proposed by Pyragas.25 In fact, this
work is also related to our past research on the time delay effect.26

The time delay form is the same as that of Pyragas used to control
chaos, while we used the time delay to generate complex dynam-

ics, including chaos. In conclusion, our investigation, together with
Pyragas’ work, shows that the time delay function is twofold, such as

the sword has two edges, because one can use time delay to either
suppress chaos or to generate chaos. This finding provides flexi-
bility for control engineers to generate chaos when it is useful or
to eliminate chaos when it is harmful just by tuning the controller
parameters without altering the controller structure.

In this paper, we consider the network with univariate impulse
pinning controllers. We wish to control the nodes in the network
to synchronize with the leader node, meaning that the states of the
other nodes are synchronized with the state of the leader node. It is
defined that ` represents the number of pinning nodes, which are
selected for manipulating the dynamics of the network. In general,
we reorder the sequence of the nodes. Let (i1, i2, . . . , i`) denotes the
set of pinning nodes, and (i`+1, i`+2, . . . , iN) denotes the set of the
uncontrolled nodes. The individual node dynamics with univariate
impulse pinning control is described by







ẋi = Bxi + Df1(xi(t)) + Cxi(t − τ) + σ
∑N

j=1 AH(xj), t 6= tk,

1xi = xi(t
+
k ) − xi(t

−
k ) = CI(xi(t

−
k ) − xθ (t

−
k )), 1 < i < `, t = tk,

1xi = 0, ` + 1 < i < N, t = tk,

(2)

where xθ (t) represents the state of the leader oscillator, being the
one node of the network that satisfies xθ ∈ xi(i = 1, . . . , N). CI

is the undetermined impulse control matrix whose diagonal has
only one nonzero element. The impulse time tk satisfies 0 < t0 <

t1 < t2 < · · · and limk→∞tk = ∞. 1xi represents the “jump” states
at the impulse time t = tk and xi(t

−
k ) = limt→t−

k
xi(t) and xi(t

+
k ) =

limt→t+
k

xi(t) represent the states at the left-hand and right-hand

limits of time tk, respectively.
Some preliminaries for the impulse differential equation are

introduced next. We define some notation first,27

K1 =
{

g ∈ C(R+, R+)
∣
∣g(0) = 0, g(s) > 0, ∀s > 0

}

.

K2 =
{

g ∈ C(R+, R+)
∣
∣ is a non-decreasing function and g(0) =

0, g(s) > 0, for s > 0}.
S(ρ) = {x ∈ Rn |‖x‖ < ρ }, where ‖·‖ represents the Rn space

Euclidean norm. PC(D, F) denotes a piecewise continuous function
from D to F.

Definition 1 (Ref. 27). Let V0 = {V : R+ × Rn
+ → R+}, V ∈

V0, for [t, x(t)] ∈ [nT, (n + 1)T] × Rn
+. The upper right derivative of

V(t, x(t)) is defined as D+V[t, x(t)] = limh→0+ sup 1
h

{

V[t + h, x(t)

+hf(t, x(t))] − V(t, x(t))
}

.
Lemma 1 (Ref. 27). Assume that ak, bk, ck ∈ K1, g ∈ K2, p ∈

PC(R+, R+), and V : [−r, ∞] × S(ρ) → R+, where V is continuous
on (−r, t0] × S(ρ) and (tk−1, tk] × S(ρ), k = 1, 2, . . . , for each x ∈

S(ρ), and k = 0, 1, 2, . . ., lim(t,y)→(t−
k

,x)V(t, y) = V(t−k , x) exists; if V

is locally Lipschitz in x and the following conditions hold:

(1) bk (|x|) 6 V(t, x) 6 ak (|x|) , (t, x) ∈ [−r, ∞) × S(ρ).
(2) D+V(t, φ(0)) 6 p(t)ck [V (t, φ (0))], for all t 6= tk in R+, and φ ∈

PC ([−r, 0] , S (ρ)) whenever V (t, φ (0)) > g [V (t + s, φ (s))] for
s ∈ [−r, 0] .

(3) V (tk, φ (0) + Ik) 6 g
[

V
(

t−k , φ (0)
)]

for all (tk, φ) ∈ R+ ×

PC ([−r, 0] , S (ρ1)) for φ
(

0−
)

= φ (0).

(4) 1 = supk∈z {τk − τk−1} < ∞, where 1 is the impulse interval,

and M1 = supt>0

∫ t+1

t
p(s) ds < ∞, M2 = infq>0

∫ q

g(q)
ds

c(s)
> M1.

Then, the trivial solution of system (2) is uniformly asymptotically
stable.

III. HYPERCHAOTIC NETWORK SYNCHRONIZATION

USING UNIVARIATE IMPULSE PINNING CONTROL

This work aims at synchronizing all oscillators with the leader
oscillator by constructing suitable univariate impulse pinning con-
trollers. If one wishes to control a network with the pinned nodes,
the controllability condition, referred to as Kalman’s controllabil-
ity rank condition, must be satisfied. However, for a higher order
nonlinear node system, it is hardly possible to build the Kalman
matrix straightforwardly. In fact, the controllability of the nonlin-
ear system does not depend on the rank, but it depends on the
system structure, e.g., the input vector.28 This means that the same
system state matrix, but a different input vector, leads to different
controllability. Therefore, we present that the network is control-
lable when the two conditions are satisfied: (1) the node system is
controllable and (2) the topology structure is controllable. Accord-
ing to Aguirre and Letellier,28 a nonlinear system can be written as
ẋ = f(x) + CIu, where f(x) is the nonlinear state equation and CI is
the input matrix. The controllability matrix of the system is 2(x)

=
[

ad0
f CI ad1

f CI · · · ads+2
f CI

]

, where the Lie bracket and

the recursion relation are adfCI = [f, CI] =
∂CI
∂x

· f − ∂f
∂x

· CI, adk
f CI

= [f, adk−1
f CI], k > 1, and ad0

f CI = CI. The system is said to be con-
trollable if the matrix 2(x) has full row rank.28 The error dynamics
network is said to be controllable if Q =

[

G, AG,A2G, · · · , AN−1G
]

is full rank,29 where G is the N × ` input matrix corresponding to
the selected pinning nodes. It is worth noting that the controllability
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condition can also be applied to decide the controllability of the
topology structure with nonlinear node networks.29,30 The determi-
nation of the number ` of pinning nodes is a key point. In general,
we increase the number of pinning nodes from 1, set its position
(putting into which state variables), and then check the controllabil-
ity matrix rank. If it is full rank, the pinning node(s) can be selected
as an option. Otherwise, we continue the procedure by changing the
position of the state variable for pinning and checking the rank again
until all positions of the variables are tried. If all positions are tried
and we cannot obtain a full rank matrix, then we have to increase
the pinning node number to 2 and so on. This procedure is illus-
trated by the flowchart given in Fig. 2. After that, we state and prove
a uniform asymptotic stability theorem for the error dynamics net-
work. In the following, we reorder the sequence of the nodes; i.e.,
i1, . . . , i` represents the pinning nodes and others are uncontrolled
nodes. Importantly, our stability Theorem 1 is independent of the
Hungarian algorithm.

Let the θ th oscillator in the network be considered as leader,
which is described as

ẋθ (t) = Bxθ (t) + Df1(xθ (t)) + Cxθ (t − τ) + σ

N
∑

i=1

ain(xi(t) − xθ (t)),

(3)
where ain is the connection between the leader node and other
nodes.

From the drive node in Eq. (3) and the response nodes in
Eq. (1), we define the error as ei(t) = xi(t) − xθ (t)(i = 1, 2, . . . , N).
The error dynamics network is given by the following:

ėi(t) = Bei(t) + Df̃1(ei) + Cf̃2(ei(t − τ)) + σ

N
∑

j=1

ÃH(ej(t)), (4)

where f̃1(ei) = f1(xi(t)) − f1(xθ (t)), f̃2(ei(t − τ)) = xi(t − τ) −

xθ (t − τ). Ã is a singular matrix.
The objective is to design a controller ui such that the error

dynamics network (4) is asymptotically stable at origin, i.e., ei =

0 for all i. The univariate impulse pinning controller is given as
follows:







ui(t) = CIei(t
−
k ), 1 < i < `, t = tk,

ui(t) = 0, ` + 1 < i < N, t = tk,
ui(t) = 0, 1 < i < N, t 6= tk,

(5)

where CI(CI = diag(0, . . . , c, 0, . . .)) represents the impulse control
matrix. The location of c in the diagonal matrix is determined
by the controllability and observability of the system. The basic
principle is that the impulse control is operated on the observable
available in the state equation.31,32 With the univariate impulse pin-
ning controller (5), the error dynamics network can be described as
follows:







ėi(t) = Bei(t) + Df̃1(ei) + Cf̃2(ei(t − τ)) + σ
∑N

j=1 ÃH(ej(t)), t 6= tk,

1ei(tk) = CIei(t
−
k ), 1 < i < `, t = tk,

1ei(tk) = 0, ` + 1 < i < N, t = tk.

(6)

Next, we rewrite network (1) as
{

ẋi = B1xi + D1f1x(xi(t), yi(t)) + C1xi(t − τ),

ẏi = B2yi + D2f1y(xi(t), yi(t)) + C2yi(t − τ) + σ
∑N

i=1 AijH(yj),
(7)

where xi represents the state variables of an uncontrollable sub-
system of node i and yi is the state variable of an controllable
sub-system of node i. Therefore, in Eq. (6), we have ei(t) =

[exi
(t), eyi

(t)]T.
Theorem 1. Considering system (6) to satisfy the following two

conditions:

(1) There exist constants l1 and l2 yielding
∥
∥f1x(xi, yi)

∥
∥

2
6 l1

∥
∥(xi, yi)

∥
∥

2

and
∥
∥f1y(xi, yi)

∥
∥

2
6 l2

∥
∥(xi, yi)

∥
∥

2
,

(2) M = max
{

2
(

λmax(B
T
1 ) +

√

λmax(D
T
1 D1)l1 + 1

2
+

l21‖C1‖2

2c2

)

,

2
(

λmax(B2) +
√

λmax(D
T
2 D2)l2 + 1

2
+

l22‖C2‖2

2c2

)}

,

0 < 1 < −
ln((1+c)2δ+1−δ)

M
,

where λmax(·) is the maximum eigenvalue of the matrix in brackets, 1
is the impulse interval, and δ is the pinning ratio defined as δ = `/N.
Then, the error dynamics network (6) is uniformly asymptotically
stable.

In this sense, the oscillators of the complex dynamical net-
work, given by Eq. (1), can be driven to synchronize with the leader
oscillator by univariate impulse controllers.

Proof of Theorem 1. Select the Lyapunov function candidate as

V =

N
∑

i=1

ei
TPei. (8)

For t = tk,

V(tk, ei(t
+
k )) =

N
∑

i=1

eT
i (tk)Pei(tk)

=

`
∑

i=1

eT
xi
(tk)Pexi

(tk) +

`
∑

i=1

eT
yi
(tk)Peyi

(tk) +

N
∑

i=`+1

eT
xi
(tk)Pexi

(tk) +

N
∑

i=`+1

eT
yi
(tk)Peyi

(tk)
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=

`
∑

i=1

eT
xi
(t−k )Pexi

(t−k ) + (1 + c)2

`
∑

i=1

eT
yi
(t−k )Peyi

(t−k ) +

N
∑

i=`+1

eT
xi
(t−k )Pexi

(t−k ) +

N
∑

i=`+1

eT
yi
(t−k )Peyi

(t−k )

6 (1 + c)2δ

N
∑

i=1

eT
i (t

−
k )Pei(t

−
k ) + (1 − δ)

N
∑

i=1

eT
i (t

−
k )Pei(t

−
k )

6
(

(1 + c)2δ + 1 − δ
)

V(t−k , ei(t
−
k ))

= g(V(t−k , ei(t
−
k ))), (9)

where g(V) =
(

(1 + c)2δ + 1 − δ
)

· V.
The derivative of V(t) yields

D+V(t, e(t)) = 2

(
N
∑

i=1

ėT
xi
(t)exi

(t) +

N
∑

i=1

eT
yi
(t)ėyi

(t)

)

= 2

[
N
∑

i=1

(eT
xi

BT
1 + f̃T1xD

T
1 + C1 f̃2x(exi

(t − τ)))exi

+

N
∑

i=1

eT
yi
(B2eyi

+ D2 f̃1y + C2 f̃2y(eyi
(t − τ)) − σ

N
∑

j=1,j6=n

ÃijH(ej))





6 2λmax(B
T
1 )

N
∑

i=1

eT
xi

exi
+ 2λmax(B2)

N
∑

i=1

eT
yi

eyi
+ 2

N
∑

i=1

f̃T1xD
T
1 exi

+ 2

N
∑

i=1

eT
yi

D2 f̃1y

+ 2

N
∑

i=1

C1 f̃2x(exi
(t − τ))exi

+ 2

N
∑

i=1

eT
yi

C2 f̃2y(eyi
(t − τ)) − 2σ

N
∑

i=1

N
∑

j=1,j6=n

eT
yi

ÃijH(ej). (10)

We have

2

N
∑

i=1

f̃1xD
T
1 eT

xi
6 2

N
∑

i=1

(√
∥
∥
∥f̃1xD

T
1

∥
∥
∥

2

·

∥
∥
∥eT

xi

∥
∥
∥

)

6 2

N
∑

i=1

(√

λmax(D
T
1 D1)l

2
1

∥
∥exi

∥
∥

2
·

∥
∥
∥eT

xi

∥
∥
∥

)

6 2

√

λmax(D
T
1 D1)l1

N
∑

i=1

exi
eT

xi
. (11)

Similarly with Eq. (11), we have

2

N
∑

i=1

eT
yi

DT
2 f̃1y 6 2

√

λmax(D
T
2 D2)l2

N
∑

i=1

eT
yi

eyi
, (12)

2

N
∑

i=1

eT
yi

C2 f̃2y(eyi
(t − τ)) 6

N
∑

i=1

(∥
∥
∥eT

yi

∥
∥
∥

2

+ ‖C2‖
2 · l22

∥
∥eyi

(t − τ)
∥
∥

2

)

6

(

1 +
l22‖C2‖

2

c2

) N
∑

i=1

eyi
eT

yi
. (13)

Similarly with Eq. (13), we have

2

N
∑

i=1

C1 f̃2x(exi
(t − τ))exi

6

(

1 +
l21‖C1‖

2

c2

) N
∑

i=1

exi
eT

xi
. (14)

Let
∑

1 = diag[1, . . . , 1
︸ ︷︷ ︸

`

, 0, . . . , 0
︸ ︷︷ ︸

N−`

] denotes the diagonal matrix

corresponding to the pinning node.

Note that the row vector of the coupling matrix Anj = 0, we get

2σ

N
∑

i=1

N
∑

j=1,j6=n

eT
yi

ÃijH(ej)

= 2σδ

l
∑

i=1

l
∑

j=1,j6=n

eT
yi

∑

1
ÃijH(ej)

6 0. (15)
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FIG. 2. The flowchart to determine the pinning nodes.

From Eqs. (11)–(15), we have

D+V(t, e(t)) 6 2λmax(B
T
1 )

N
∑

i=1

eT
xi

exi
+ 2λmax(B2)

N
∑

i=1

eT
yi

eyi

+ 2
√

λmax(DTD)l1

N
∑

i=1

exi
eT

xi

+ 2
√

λmax(DTD)l2

N
∑

i=1

eT
yi

eyi
+

(

1 +
l22‖C2‖

2

c2

)

×

N
∑

i=1

eyi
eT

yi
+

(

1 +
l21‖C1‖

2

c2

) N
∑

i=1

exi
eT

xi

6 2

(

λmax(B
T
1 ) +

√

λmax(D
T
1 D1)l1 +

1

2
+

l21‖C1‖
2

2c2

)

×

N
∑

i=1

eT
xi

exi
+ 2

(

λmax(B2) +

√

λmax(D
T
2 D2)l2 +

1

2

+
l22‖C2‖

2

2c2

) N
∑

i=1

eyi
eT

yi
6 p(t)V(t, e(t)), (16)

where p(t) = max
{

2
(

λmax(B
T
1 ) +

√

λmax(D
T
1 D1)l1 + 1

2
+

l21‖C1‖2

2c2

)

,

2
(

λmax(B2) +
√

λmax(D
T
2 D2)l2 + 1

2
+

l22‖C2‖2

2c2

)}

.

Assuming that c(s) = s, M = p(t), and from the condition (4)
of Lemma 1, we have

M2 − M1 = infq>0

∫ q

g(q)

ds

c(s)
− supt>0

∫ t+1

t

p(s) ds

= ln q − ln g(q) − M · 1

= − ln g − M · 1 > 0. (17)

According to Eq. (17), we obtain the following condition for
impulse interval 1:

0 < 1 < −
ln
(

(1 + c)2δ + 1 − δ
)

M
, (18)

where M = max
{

2
(

λmax(B
T
1 ) +

√

λmax(D
T
1 D1)l1 + 1

2
+

l21‖C1‖2

2c2

)

,

2
(

λmax(B2) +
√

λmax(D
T
2 D2)l2 + 1

2
+

l22‖C2‖2

2c2

) }

.

Therefore, the error dynamics network (6) is asymptotically
stable. �

IV. NUMERICAL SIMULATIONS

Consider the Rössler system with time delay network given by







ẋi = −yi − zi + K(xi(t − τ) − xi(t)),

ẏi = xi + ayi + σ
∑N

j=1 aij(yj − yi),

żi = b + zi(xi − c̄),

(19)

where xi, yi, zi ∈ Rn represents the state variables of the oscilla-
tor i (i = 1, 2, . . . , N). The parameters are a = b = 0.1, c̄ = 1.5,
K = 10.5, τ = 1. This node dynamics with time delay is hyperchaotic.16

We consider the directed random network with N = 10, σ = 0.025
and the directed small-world network with N = 30, σ = 0.23 in
the simulations. The topology connection diagram of two differ-
ent networks is shown in Figs. 3(a) and 3(d), respectively. The node
oscillator exhibits a chaotic attractor, as shown in Fig. 4. In this work,
the variable y of system (19) is a controlled variable, corresponding
to xu in Fig. 1.

We first derive the controllability of the Rössler system with
time delay. We expand the function of the system with the time-lag
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FIG. 3. Rössler-network topology with node dynamics given by a Rössler system. (a) Ten-node directed random network topology; (b) maximum matching of the directed
path, where pinning nodes are shown in blank; (c) connection matrix of the network in (a) (different color represents different connection weights: 0, blue lattice and 1, yellow

lattice); (d) 30-node directed small-world network topology, where the pinning nodes are marked by a green arrow u = (u1, u2, . . . , u11)
T ; and (e) connection matrix of the

network in (d) (0, blue lattice and 1, yellow lattice).

units of s + 3 dimensions,33 as shown in (20).

































ẋ = −y − z + K(us − u1),
ẏ = x + ay,
ż = b + z(x − c),
u1 =

αx−u1
T

,
u2 =

u1−u2
T

,
u3 =

u2−u3
T

,
u4 =

u3−u4
T

,
...

us =
us−1−us

T
,

(20)

where T = τ/s, τ is time delay, s is the number of the time-lag
unit cascade, and α is the compensation gain of the time-lag units.
When T is small enough, the time-lag unit approximates as a pure
delay. In this work, we only investigate the controller using y as a
manipulated variable. Therefore, the input vector field CI is given by

CI =











0

1

0

...

0











(s+3)×(1)

. The partial derivative of the system matrix is

given by
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∂f

∂x
=



















−K −1 −1 0 0 · · · 0 0 K
1 a 0 0 0 · · · 0 0 0
z 0 x − c 0 0 0 · · · 0 0

α/T 0 0 −1/T 0 0 · · · 0 0
0 0 0 1/T −1/T 0 · · · 0 0
0 0 0 0 1/T −1/T 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 0 1/T −1/T



















(s+3)×(s+3)

. (21)

The controllability matrix for the system, Eq. (20), is

2(x) =


























0 1 K − a K(K − a) + a2 − z − 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 −a a2 − 1 2a − K − a3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−z −b − zK + az ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−α/T [−αT(K − a) − α] /T2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

−α/T2 [α(K − a + 2T)] /T2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

−α/T3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

−α/T4 ∗ ∗ ∗ ∗ ∗ ∗

−α/T5 ∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗

. . . ∗ ∗

−α/Ts ∗


























. (22)

Thus, the controllability matrix 2(x) has full row rank, mean-
ing that the system is controllable. Next, we discuss the control-
lability of the topology. The network is said to be controllable
when the matrix Q =

[

G, AG,A2G, · · · ,AN−1G
]

is full rank, accord-
ing to Ref. 29. Based on the two conditions above, the network is
controllable.

FIG. 4. Chaotic attractor of the ith Rössler oscillator with time delay in the random
network.

A. Simulation results

We consider the individual node oscillator of the Rössler-
network, Eq. (19), in this paper. We assume that (X∗

i , Y∗
i , Z∗

i ) is
the equilibrium of the Rössler oscillator, where X∗

i = −aY∗
i , Z∗

i =

−Y∗
i , aY∗2

i + c̄Y∗
i + b = 0. We define Xi = xi − X∗

i , Yi = yi − Y∗
i ,

Zi = zi − Z∗
i and the transformation as given by

Żi = b + xizi − c̄zi

= b + (Xi − aY∗
i )(Zi − Y∗

i ) − c̄(Zi − Y∗
i )

= XiZi − XiY
∗
i − aZiY

∗
i − c̄Zi

= XiZi + XiZ
∗
i + Zi(X

∗
i − c̄). (23)

We then obtain the following transformation of Eq. (19):






Ẋi = −Yi − Zi + K(Xi(t − τ) − Xi),

Ẏi = Xi + aYi + σ
∑N

j=1 aij(Yj − Yi),

Żi = XiZi + XiZ
∗
i + Zi(X

∗
i − c̄),

(24)

where B1 =

[

−K −1
Z∗

i X∗
i − c̄

]

, D1 =

[

1
1

]

, C1 =

[

K
0

]

,

fxi
=

[

−Yi

XiZi

]

, B2 = a, D2 = 1, fyi
= Xi, C2 = 0 in the form

of Eq. (7) with x = [Xi, Zi]
T, y = Yi. As learned from the

above form, the system is decomposed into two subsystems,
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FIG. 5. Synchronization errors e2i of the network in Fig. 1(a) (ten-node directed
random network) when the univariate impulse pinning control is active at t =
100s.

namely, B1 and B2. There are two equilibria (X∗
i , Y∗

i , Z∗
i )1,2 =

(0.0007, −0.007, 0.007), (0.1493,
−1.493, 1.493) in the oscillator. It happens that the eigenvalues of
B1 have a negative real part, and the eigenvalues of B2 are decided
by the parameter a. Consequently, for each Rössler oscillator in the
network, subsystem B1 consisting of the variables x and z is stable.
We know that the variable y is an observable state, and then one can
apply state feedback to control state y in order to achieve the network
synchronization.

Let the node Xθ (t) be the leader node; therefore, we have the
error e1

i = Xi − Xθ , e2
i = Yi − Yθ , e3

i = Zi − Zθ . The impulse con-
trol gain is c = −1.9. For the network in Fig. 3(a), the procedure in
Fig. 2 for calculating pinning nodes could be replaced by the max-
imum matching. The result is shown in Fig. 3(b), which indicates
the two matching paths, starting from unmatched nodes 1 and 2
[blank nodes in Fig. 3(b)], ending at the matched nodes 6 and 10
[green nodes in Fig. 3(b)], respectively. The unmatched nodes are
the minimal set of the number of required external controllers. The
control link starts from an unmatched node in a directed path and
ends at the end of the matching path. Therefore, controllers on the
nodes X1 and X2 can exert full control. It is verified that if one
chooses the controllers on X1 and X2, the controllability matrix Q
is full rank. For the network in Fig. 3(d), the pinning nodes are
X1, X2, X5, X7, X8, X14, X16, X24, X25, and X28 [see green arrows in
Fig. 3(d)], which satisfies the controllability matrix rank(Q) = N.
We pin the mentioned 2 nodes in Fig. 3(a) and 11 nodes in Fig. 3(d)
for the two networks to be pinning controlled at time tk, with param-
eters δ = 0.2 and δ = 0.367. From the conditions of Theorem 1, we
have

(1)
∥
∥fxi

(x)
∥
∥

2
6 l1‖ex‖

2 = 2‖ex‖
2 and

∥
∥fyi

(y)
∥
∥

2
6 l2

∥
∥ey

∥
∥

2
= 1 ·

∥
∥ey

∥
∥

2
for the network in Fig. 3(a); therefore, condition (1) of

Theorem 1 is satisfied. Then, M = 62, 0 < 11 < 0.000 624.

FIG. 6. Synchronization errors e1i , e
2
i , and e

3
i of the network, Eq. (24), in Fig. 1(d):

(a) the second state variable error e2i of the network without control and (b)–(d)

are the state variable errors e1i , e
2
i , and e3i with the univariate impulse pinning

control on y, where i indicates the node index.
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(2)
∥
∥fxi

(x)
∥
∥

2
6 l1‖ex‖

2 = 4‖ex‖
2 and

∥
∥fyi

(y)
∥
∥

2
6 l2

∥
∥ey

∥
∥

2
= 4 ·

∥
∥ey

∥
∥

2
for the network of Fig. 3(d) so that M = 247 and 0 <

12 < 0.0003.

For the network in Fig. 3(a), when the pinning impulse interval
is taken as 11 = 0.0005s, the nodes achieve synchronization with
the leader node, as shown in Fig. 5.

Figure 6(a) shows the state variables of the network in Fig. 3(d)
without the control, which is obviously nonsynchronous. In Figs.
6(b)–6(d), the 30-node network is successfully driven to synchronize
with the leader node s(t) by univariate impulse pinning control with
impulse interval 12 = 0.0003s.

In general, to achieve synchronization, the smaller impulse
interval and the larger duty ratio correspond to the need for a smaller
impulse amplitude. Therefore, in the application, we can adjust the
impulse amplitude according to the theorem derived in the paper
to avoid the saturation of the actuator or the saturation of the state
variable. In practice, we have used the electronic circuit to imple-
ment the impulse control in the Chen circuit,16 where the saturation
problem was avoided.

In the simulation results of Figs. 5 and 6, all initial state vari-
ables of the network are randomly chosen in [−1,1]. We impose
univariate impulse controllers to determine the pinning nodes in
the two networks. It is shown that the trajectories of the error are
stabilized at zero, which validate the correctness of the proposed
method.

Note that the time delay not only increases the dimension of the
original system without time delay, but also brings more and larger
positive Lyapunov exponents. It causes the dynamics of the original
system to be more complicated. The simulations have demonstrated
that the number of positive Lyapunov exponents increases when
the time delay τ and time delay gain C are increased.34,35 More-
over, the synchronization time is longer than that of the original
system, the synchronization being harder to be achieved.

V. CONCLUSION

In this paper, using the Lyapunov stability theory, a theorem is
stated and proved, establishing the sufficient condition for network
synchronization with univariate impulse pinning control. Numeri-
cal simulations are given to demonstrate the validity of the proposed
univariate impulse pinning controller.

Note that some states of the nodes are not observable. However,
for the proposed method, one just needs one variable of the oscillator
to be observable in order to establish the univariate state feedback
controller to synchronize the whole network instead of the full-state
feedback controller, which gives better adaptability and application
potential to the proposed method.
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