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  11 

Abstract: Quantifying groundwater storage in weathered/fractured basement rock aquifers can be 12 

challenging owing to both their high degree of heterogeneity and their overall low storage capacity. 13 

Therefore, in these aquifers, the use of direct borehole hydraulic data is usually insufficient. Here we 14 

assessed the popular method of electrical resistivity tomography (ERT), combined with borehole data 15 

and including associated uncertainties, to resolve the spatial variability of groundwater storage 16 

properties at high resolution within a fractured mica schist aquifer in Ireland. Porosity distributions 17 

across both the saturated and unsaturated zones were calculated from two-dimensional (2D) ERT 18 

resistivities using two standard petrophysical models, Archie and Waxman & Smits (WS), the latter 19 

accounting for the influence of clay minerals on resistivity data. Our results demonstrated the 20 

importance of the hydrogeological conceptual constraints provided by ERT when parametrizing the 21 

2D petrophysical models from borehole point data. They also confirmed the importance of accounting 22 

for clay minerals (the products of bedrock weathering processes) in the WS model, whereas 23 

predictions from Archie’s model produced unrealistically high porosity values of over an order of 24 

magnitude higher than the WS model. The WS model predicted porosities decreasing exponentially 25 
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with depth, with values ranging from a few % in the shallowest, most-weathered part of the bedrock 26 

(upper 5 m on average) and deep fractured zones (to about 20 m deep), to less than 1% in the 27 

underlying fissured aquifer, and possibly down another order of magnitude in the deep massive 28 

bedrock. WS-derived porosities were in agreement with independent vertical water content profiles 29 

derived from magnetic resonance sounding (MRS), as well as point storativity values estimated from 30 

borehole hydraulic testing at the study site, with particularly good matches in the upper 31 

weathered/fractured bedrock and deeply weathered/fractured zones associated with regional faults. 32 

Detailed comparison suggested that WS provides an upper-bound estimate of groundwater storage in 33 

this environment. In the deep massive, un-weathered, and poorly fractured bedrock, however, 34 

discrepancies between groundwater storage estimate obtained from the three methods (ERT, MRS, 35 

and hydraulic) prevented reliable storage quantification, owing to the methods’ inherent technical 36 

limitations in such low porosity rocks. Our results demonstrated the suitability of resistivity 37 

tomography to quantify groundwater storage heterogeneity in weathered/fractured basement rock 38 

aquifers at high resolution and with reasonable overall uncertainty given the relative high 39 

uncertainties in petrophysical parameters at the kilometric scale. The results are promising for better 40 

characterization of groundwater storage variations in these hydrogeological systems, which are crucial 41 

to predict their response to climate variability and human exploitation. 42 

Keywords: Hydrogeophysics; Hard rock aquifer; Petrophysics; Clays; Porosity; Storativity. 43 
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1. Introduction 51 

More than 90% of the total liquid fresh water is groundwater (Gleick, 1993) with a fraction of this 52 

water being stored in weathered/fractured basement rocks. Basement rock aquifers, including igneous 53 

and metamorphic rocks, are devoid of primary porosity and groundwater flow and storage take place 54 

through fractures and secondary porosity created by weathering processes. They are also often 55 

referred to as hard rock aquifers (Lachassagne et al., 2011). Some authors however also included 56 

under the definition of hard rock aquifers cemented sedimentary rocks (which can exhibit primary 57 

porosity) and hard carbonate rocks (which can also exhibit primary porosity and karstification) 58 

because of their similarly poor drillability, but these are not considered here. Basement, hard rock 59 

aquifers cover a fifth of the Earth’s land surface (Singhal, 2008) and locally constitute socio-60 

economically and ecologically important water resources. The distribution and overall volume of 61 

water contained in these reservoirs are the least known primarily because of their high degree of 62 

heterogeneity and overall low productivity (Comte et al., 2012a). It is however acknowledged that 63 

most of groundwater flow and storage take place at a relatively shallow depth within the most 64 

weathered/fractured bedrock (Abdulaziz et al., 2012; Kumar et al., 2016). Such shallow depths of 65 

interest (tens of meters) make near-surface geophysical techniques suitable to characterize and 66 

understand weathered/fractured basement rock aquifers (Day-Lewis et al., 2017). 67 

Until recently, the difficulties to locate and extract water from basement rock aquifers implied that 68 

they have been largely disregarded for water supply outside local rural use (MacDonald and Davies, 69 

2000; Singhal, 2008). However, as a source more resilient than surface water to the predicted impact 70 

of climate change, basement rock aquifers, similarly to better known, more productive regional 71 

aquifer system, could play a strategic role in sustaining local drinking water supplies in an adaptation 72 

to predicted long-term climate change trends and short-term extreme drought events (Taylor et al., 73 

2013). Therefore, new developments in basement rock aquifers characterization and sustainable 74 

exploitation are key for water security in the near future. 75 

Understanding the function of weathered/fractured hard rock groundwater systems requires a good 76 

characterization of the complex geology, including structural heterogeneity such as fracture systems 77 
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and weathering that characterize this type of aquifers (Lachassagne et al., 2001, 2011). There have 78 

been a significant amount of studies in this field (Ahmed et al., 2008; Singhal and Gupta, 2010; 79 

Ofterdinger et al. 2019), all of which stress the need to improve the knowledge and characterizations 80 

of hard rock reservoirs in terms of spatial distributions of hydrodynamic properties at appropriate 81 

scales (Butler, 2005; Lachassagne et al., 2014). This type of water source is not as productive as 82 

sedimentary, karstic or volcanic aquifers however it is geographically widespread (Dewandel et al., 83 

2011) which makes it well suited to be a fresh water source for farms, villages as well as small and 84 

medium size cities (Lachassagne et al., 2011). 85 

Hard rock aquifers are characterized by low to null primary porosity and permeability (Singhal, 86 

2008). Thus, aquifer productivity is mainly linked to fracturing and weathering processes producing a 87 

secondary porosity and secondary permeability (Krásný and Sharp, 2007). The hydrogeological 88 

structure of hard rock aquifers is commonly divided in three conceptual horizons; from top to bottom 89 

(1) a weathered zone with a thickness of up to several tens of meters commonly referred to as 90 

saprolite; (2) a fractured zone with depths of a few to hundreds of meters characterized by well-91 

connected fractures/fissures networks in which the permeability and porosity decrease with depth; and 92 

(3) a massive zone usually formed by a massive bedrock with low density of poorly connected 93 

fractures and faults acting more as individual flow paths rather than an interconnected network 94 

(Krásný et al., 2014). 95 

Geophysical methods are fast, flexible, non-invasive techniques suitable to characterize the spatial 96 

variations of subsurface geological structures and hydrogeological properties at various scales and 97 

resolutions including in the near surface (Rubin and Hubbard, 2005; Binley et al., 2015), i.e. the first 98 

100 m that typically host hard rock aquifers (Lachassagne, 2008). One of the main advantages of 99 

using geophysics resides in their abilities to provide high resolution, near continuous (Spatial and or 100 

temporal) information, instead of only dealing with point data (discrete) typically associated with 101 

traditional hydrology studies. 102 

The relationship between geophysical measurements and reservoir properties through the use of 103 

petrophysical models has been the focus of much work specifically in the oil industry (Ellis and 104 
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Singer, 2007; Kirsch, 2009; Tiab and Donaldson, 2016) and their application in groundwater studies 105 

have been rapidly increasing in the last two decades, which has defined the emergence of an 106 

interdisciplinary research field called Hydrogeophysics (Binley et al., 2015; Day-Lewis et al., 2017). 107 

A variety of research studies have successfully applied geophysics to solve different quantitative 108 

problems in hydrology (Vereecken et al., 2006) and some other used these approaches specifically to 109 

model petrophysical properties in carbonate aquifers (Whitman and Yeboah-Forson, 2015) and hard 110 

rock aquifers (Descloitres et al., 2008) providing further quantitative information on the aquifer 111 

properties including storage properties (porosity, specific yield) and recharge processes. 112 

Very few studies have combined different geophysical methods to model hydraulic properties in 113 

complex hard rock aquifers and even less have assessed the uncertainty of these properties (Massuel 114 

et al., 2006; Slater, 2007; Chaudhuri et al., 2013;). Electrical resistivity tomography (ERT) is suitable 115 

for weathered/fractured aquifer characterization (Pellerin, 2002), particularly to constrain reservoir 116 

geometries i.e. to estimate the thickness and variability of weathered (laminated layer) and fractured 117 

horizons as well as localized deep fractures zones (Chaudhuri et al., 2013; Belle et al., 2019) or as a 118 

monitoring tool for salt tracer tests in complex hard rock systems (Robert et al., 2012). Only a few 119 

studies have assessed the relation of geophysical measurements (resistivity and conductivity) with 120 

hydraulic properties (porosity and water saturation) in hard rock aquifers due to their complexity and 121 

lack for information on petrophysical model input parameters (Leopold et al., 2013; Flinchum et al., 122 

2018, 2019). 123 

This study aimed at assessing the capabilities of the popular ERT technique to quantify the spatial 124 

variability of aquifer storage properties in weathered/fractured rock aquifers with high resolution. The 125 

study uses in situ ERT data from a 1,305 m hillslope transect obtained in a mica schist aquifer in 126 

Ireland as an analog for basement rock aquifers. Two alternative petrophysical models were 127 

considered to estimate porosity from measured resistivities with the aid of complementary in situ 128 

information, used for both model parameterization and verification. These data included multi-depth 129 

borehole hydraulic data and geophysical logging along with information on the vertical distribution of 130 

aquifers’ water content as obtained from magnetic resonance sounding, MRS (Legchenko et al., 2017; 131 
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Comte et al., 2019). Specifically, this research builds on, and uses in situ data and conceptual 132 

knowledge acquired from previous work at the site over the past decade. Comte et al. (2012a) 133 

established the aquifer conceptual model including hillslope spatial variability and lateral continuity 134 

of weathering profiles, through combining the ERT and borehole hydraulic data with groundwater 135 

level monitoring. Caulfield et al. (2014) performed petrographic and mineralogical analyses of 136 

borehole cores along with groundwater chemistry to further highlight modern weathering processes 137 

and weathering controls on groundwater contribution to surface water. Legchenko et al. (2017) 138 

applied Magnetic Resonance Sounding (MRS) to provide estimates, with associated uncertainties, of 139 

vertical groundwater storage profiles at several locations along the hillslope. Comte et al. (2019) 140 

reconciled previous hydrogeological, ERT, and MRS water content data and further integrated them 141 

into a numerical groundwater model to test and verify the conceptual model, including groundwater 142 

flow pathways and residence times, against spatiotemporal hydrological monitoring data 143 

(groundwater level time series and groundwater ages). These works, in addition to provide relevant 144 

data for the present study, suggested a high heterogeneity of groundwater storage, and highlighted the 145 

challenges associated with achieving storage characterization and high enough spatial resolution 146 

required for better understanding basement rock groundwater regimes and resources response to both 147 

short term and long term climate and anthropogenic forcing. In this present study, we therefore 148 

focused on a detailed quantitative assessment of the resolution and reliability, including sensitivity 149 

and uncertainty analysis, of ERT-derived groundwater storage estimates using popular petrophysical 150 

models, along with additional geological information and constraints (conceptual hydrogeological 151 

units, water saturation, clay content), and we further verify the results again independent groundwater 152 

storage data. 153 

Thus, the specific objectives of this work were: (1) to model the 2D spatial distribution of the aquifer 154 

petrophysical properties based on 1D borehole data and the structural-conceptual information 155 

provided by the interpretation of 2D electrical resistivity data; (2) produce 2D porosity models from 156 

the combination of resistivity and petrophysical parameters distributions within the Archie and 157 

Waxman & Smits models; and (3) quantify the sensitivity of the petrophysical models and the 158 
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uncertainty of the final aquifer porosity models (expected to be considerable due to larger parameter 159 

uncertainty associated to large scale studies), and further verify them against independent geophysical 160 

water content estimates and borehole hydraulic data. 161 

 162 

2. Hydrogeological setting 163 

The studied aquifer is located in County Donegal, Ireland.  (Fig. 1). The Gortinlieve catchment is an 164 

upland basin with permanent stream flow, underlain by Precambrian psammites and mica schist of the 165 

Dalradian Southern Highland Group and composed of quartz, muscovite, chlorite, albite with 166 

secondary minerals such as calcite and iron oxides (Caulfield et al., 2014). The bedrock is covered in 167 

places by overburden deposits of glacial till, alluvium, and thin soil/peat layer (Fig. 2). In 2006, the 168 

Irish Environmental Protection Agency drilled three borehole clusters (Table 1) as part of a national 169 

groundwater monitoring program. They were distributed along the study area at strategic locations 170 

that comprehended three elevations (GO1 at 174 m a.m.s.l.; GO2 at 88 m a.m.s.l.; GO3 at 33 m 171 

a.m.s.l.)  within the catchment (Comte et al., 2012a, 2019; Moe et al., 2010). A first interpretation 172 

carried by Moe et al., (2010) identified four hydrogeological units, subsoil (1-3 m below ground 173 

surface), transition zone (4-5 m b.g.s.), shallow bedrock (8-19 m b.g.s.) and deep bedrock (30-67 m 174 

b.g.s.). Average monthly temperatures fluctuate from 6-14°C with an annual rainfall of 1000-1200 175 

mm (Caulfield et al., 2014). See Comte et al. (2012a, 2019) for a detailed description of hydraulic 176 

tests and interpretations.   177 
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 178 

Figure 1. Location of the study site. (a) Site location within the geological framework of the Irish 179 

basement. (b) Borehole locations and ERT profile, modified from Comte et al. (2019). 180 
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 181 

Figure 2. Hydrogeological conceptual model of weathered/fractured rock aquifers in the context of 182 

Irish terminology. Modified from Comte et al. (2012a) 183 

 184 

 185 

 186 

 187 
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3. Data and methods 188 

3.1. Petrophysical relationship between resistivity and porosity 189 

The resistivity measurements were the main inputs in the petrophysical modelling used for porosity 190 

calculation. The two petrophysical models used in this study were based on Archie’s law (Archie, 191 

1942) and its extension developed by Waxman & Smits (1968). Archie describes a relationship 192 

between the electrical conductivity of a clay-free rock, its porosity, and the electrical conductivity of 193 

the fluid saturating the pores. Archie´s Law is expressed as  194 

𝑅" =
$	&'

()	*'+
 (1) 195 

where Rt is the formation resistivity (ohm.m), 𝜙 is the fractional pore volume, i.e. the porosity (-), Sw 196 

is the fraction of pores containing water, i.e. the saturation (-), Rw (ohm.m) is the water resistivity, and 197 

a, m and n are empirical constants known as tortuosity, cementation exponent and saturation exponent 198 

respectively. These constants are dimensionless. 199 

To account for clay mineral electrical properties, several studies have proposed empirical 200 

modifications of Archie and the most commonly accepted was proposed by Waxman & Smits (1968). 201 

The Waxman & Smits equation includes additional parameters to quantify the influence of clay and is 202 

given by 203 

-
&.
= (.

)	*'+

/	&'
	01 + 𝐵	𝑄5 	

&'
*'
6 (2) 204 

where B is the equivalent counterion mobility (mho cm2/meq) expressed as   205 

𝐵 =	 [1 − 0.6 exp	(−0.77/𝑅B)]	4.6 (3) 206 

and QV is the volumetric charge density (meq/mL) expressed by 207 

𝑄5 = 	𝜌G 	
-H	(
(
	𝐶𝐸𝐶 (4) 208 

where ρg is the grain density of the aquifer and CEC (meq/g) cation exchange capacity (Revil, 1998). 209 

For a mixture of clay minerals, the total CEC is given by 210 
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𝐶𝐸𝐶 = 	𝜑L 	∑𝑋O	𝐶𝐸𝐶O (5) 211 

Xi is the relative fraction of each clay minerals in the fraction of the rock, CECi is the cation exchange 212 

capacity of each of these clay minerals and 𝜑w is the mass fraction of clay in the rock. 213 

Before applying these models, both formation and pore water resistivities must be normalized to a 214 

temperature of 25°C, as temperature also influences electrical conductivity, and 25°C is the 215 

temperature at which the water saturation equations were developed. The conversion is done using the 216 

following equation (Arps, 1953): 217 

𝑅 = 𝑅P Q
RST-.U
RVST-.U

W (6) 218 

where R is the new resistivity calculated at the temperature desired (25°C), RF resistivity at formation 219 

temperature, T is the temperature desired (25°C) and TF is the formation temperature (°C). 220 

 221 

3.2. Petrophysical model input data 222 

3.2.1.  Structural-conceptual interpretation of ERT geophysical data 223 

Geophysical data comprised an ERT profile of 1,305 m along a catchment hillslope transect crossing 224 

the three borehole clusters locations (Fig. 1). The tomography was carried out using a Syscal Pro 225 

resistivity meter with 60 electrodes distributed on 5 cables with a spacing of 5 meters, extending the 226 

acquisition length by using the roll-along technique. Dipole-dipole (DD) and multi-gradient (mGD) 227 

arrays were combined to optimize the resolution of geological structures (Comte et al., 2012b). 228 

Measurement errors (standard deviation after stacking) higher than 4% were filtered out, in total 1.6% 229 

of the pre-processed raw dataset. The average error for the remaining dataset was 0.13% with only 230 

2.2% of the data having errors between 1% and 4%. Data inversion was implemented using 231 

RES2DINV v3.58 (Geotomo Software) with a depth of investigation analysis (DOI) index of 0.1 as 232 

proposed by Oldenburg and Li (1999). The overall inversion error was 9.6% and the model block 233 

resistivity uncertainty ranged 1-21% with an average of 4% across the section. Further details of 234 

acquisition and processing are in Comte et al. (2012a). 235 
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ERT inversion results revealed a subsurface layering with strong resistivity changes (Fig. 3a). Comte 236 

et al. (2012a) proposed a conceptual interpretation with low resistivities (< 500 ohm.m) representing 237 

the alluvium and clay-till sediments, fully saturated in their majority. A high resistivity zone (> 1,000 238 

ohm.m) mainly characterized by unsaturated psammite schist with low clay content in the NNW zone 239 

of the study area. Below this layer, the resistivity increased ranging from 500-2500 ohm.m interpreted 240 

as the weathered/fissured schist. At the bottom of the profile, the most resistant zone (> 1000 ohm.m) 241 

is formed by unweathered mica schist with very low fracture density (Fig. 3b). 242 

A refined interpretation was proposed in this case study. Using prior understandings (Moe et al., 243 

2010; Comte et al., 2012a) of borehole and ERT data, a model comprised of five hydrogeological 244 

units has been used: (1) a deepest layer (massive bedrock, MB) of high resistivities (> 1,000 ohm.m) 245 

with low to null clay content and a low fracture density; (2) over the MB, the resistivities ranging 246 

from 500-3,000 ohm.m represents a weathered/fissured schist (fissured bedrock, FB) with higher clay 247 

content and the major thickness variability (5-30m); (3) the third layer (broken bedrock, BB) is 248 

characterized by high resistivities at high elevation (300-2,500 ohm.m) decreasing in SSE direction 249 

with an unsaturated zone and relatively low clay content (clay-leached horizon, Comte et al. 2019); 250 

(4) resistivities below 750 ohm.m are considered as the glacial deposit’s unit, unsaturated in some 251 

areas and intercalated by the BB unit; (5) the alluvium is the fifth unit in this model, with presence 252 

only in the surrounding area of the GO3 borehole, it has the lowest resistivities (< 300 ohm.m) in the 253 

ERT profile (Fig. 3c). 254 

 255 

3.2.2. Borehole logging analysis 256 

The boreholes in the Gortinlieve catchment were drilled in three clusters (GO1, GO2, GO3). GO1 and 257 

GO2 have three wells, while GO3 has four wells to monitor the catchment at different 258 

hydrogeological units (Table 1). Logging analysis for this case study included gamma ray (GR) and 259 

temperature (T) logs. 260 

 261 
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Table 1. Borehole clusters of monitoring programme by Irish EPA. Modified from Moe et al. (2010). 262 

Monitoring 
Well 

Depth 
(m) Borehole completion 

Uncased 
(open) 
Interval (m) 

Zone Elevation 
(m. a. s. l.) 

GO1-Deep 76.20 Uncased 6 in. borehole 46.60-76.20 Massive 
bedrock 

174 GO1-Shallow 13.11 Uncased 6 in. borehole 4.72-13.11 Fissured 
bedrock 

GO1-Transition 2.44 
6 in. PVC screen with 2mm 
slots, screen covered with 300-
micron filter fabric 

0.65-2.20 Broken 
bedrock 

GO2- Deep 67.06 Uncased 6 in. borehole 29.26-67.06 Massive 
bedrock 

88 GO2-Shallow 15.24 Uncased 6 in. borehole 7.92-15.24 Fissured 
bedrock 

GO2-Transition 3.05 
6 in. PVC screen with 2mm 
slots, screen covered with 300-
micron filter fabric 

0.63-2.85 Broken 
bedrock 

GO3-Deep 53.34 Uncased 6 in. borehole 36.27-53.34 Massive 
bedrock 

33 

GO3-Shallow 23.77 Uncased 6 in. borehole 12.19-23.77 Fissured 
bedrock 

GO3-Transition 7.15 
6 in. PVC screen with 2mm 
slots, screen covered with 300-
micron filter fabric 

4.73-6.95 Broken 
bedrock 

GO3-Subsoil 3.35 
6 in. PVC screen with 2mm 
slots, screen covered with 300-
micron filter fabric 

1.63-3.20 Subsoil 

 263 
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 264 

Figure 3. Inverse resistivity model of the Gortinlieve catchment along with two alternative 265 

hydrogeological conceptual interpretations. GO1, GO2, GO3 indicate borehole locations and triangles 266 

indicate locations of magnetic resonance soundings.   267 

 268 
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3.2.3. Characterization of clay minerals and electrical properties 269 

The bedrock in this study area has a significant content of clay deposited in the fractures due to 270 

weathering processes in the aquifer (Caulfield et al., 2014) reducing the pore space. Clays are fined-271 

grained high porosity minerals or soil material with a low hydraulic conductivity, so the water cannot 272 

easily flow through them (Moreno-Maroto and Alonso-Azcárate, 2018). For the application of the 273 

Waxman & Smits model, unlike Archie’s model, the total CEC of the rock was required and 274 

computed using the Eq. (5) using (1) the nature (with known CEC ranges for individual minerals 275 

CECi are reported in Table 2) and respective proportions of clay minerals Xi for the site as reported 276 

from the analysis of borehole cuttings by Caulfield et al. (2014) and (2) total clay volumes, expressed 277 

a clay mass fraction in the bulk rock 𝜑w, estimated using gamma ray (GR) logs.  278 

The gamma ray log measures the natural radioactivity of a formation (expressed in API units) and it 279 

can be used to estimate the clay weight fraction. The gamma ray logs measure the radioactive material 280 

of the formations surrounding the borehole at a constant rate by measuring three primary isotopes 281 

Potassium (K), Thorium (T) and Uranium (U) which are highly concentrated in clay minerals. 282 

Therefore, GR logs mostly respond to parts of the rock formation matrix that is weathered into clays. 283 

Water circulation is a major factor for weathering, and since it is primarily controlled by fractures, it 284 

is expected that weathering clays predominantly occur in and in the vicinity of hydraulically active 285 

fracture (sometimes subsequently clogging fractures and hampering flow). 286 

Clay weight fractions were obtained from GR by assuming two relations specifically for this case 287 

study. First, a linear relation expressed as    288 

𝜑B = 𝐼Y& = 	
Y&Z[\HY&)]+

Y&)^_HY&)]+
 (7) 289 

where the IGR is the gamma ray index, GRlog is the gamma ray log reading, GRmin is the minimum 290 

gamma ray value corresponding to a clean clay point (0%) and GRmax is the maximum gamma ray 291 

value in a saturated clay point (100%) according to pure clay values for the observed clay mineral as 292 

reported by Revil et al., (1998): Chlorite,180 API; Illite, 250 API; Montmorillonite, 150 API; 293 

Muscovite, 250 API. Second, a non-linear relation expressed as  294 



 16 

𝜑B = 0.33 × (2Tcde − 1) (8) 295 

that compensate for the different clay mineral proportions for shale (Revil et al., 1998; Ellis and 296 

Singer, 2007). The gamma ray index (IGR) was scaled into percentage to estimate the clay weight 297 

fraction of the formations. Borehole analysis for clays (Caulfield et al. 2014) described constant clay 298 

mineralogy across the study area, with variations in clay mineral relative proportions and clay weight 299 

fractions according to the hydrogeological unit. Average values for clay weight fraction were 300 

estimated from GR logs for each borehole and hydrogeological zone (Table 3). For detailed clay 301 

volume analysis, see the supplementary material (S1). 302 

 303 

Table 2. Cation exchange capacity (CEC) of the clay minerals present in the Gortinlieve catchment 304 

(Dolcater et al., 1972; Meunier, 2005; Christidis, 2010; Bibi et al. 2016). 305 

Clay mineral CEC 
(meq/100g) 

Selected CEC 
(meq/100g)* 

Chlorite 10-40 20 

Illite 10-40 20 

Montmorillonite 80-120 90 

Muscovite 1-10 1 

* Distributed according to their clay mineral volume using method proposed by Revil et al. (1998). 306 

 307 

The IGR yielded clay volumes with small variations between boreholes GO1 and GO2. In contrast, the 308 

GO3 borehole had higher variations of clay volume decreasing from the BB to the FB. The major 309 

impact of clay volume changes was observed when the CEC of each mineral was introduced in the 310 

Waxman & Smits model, quantifying the variations in the total CEC values (Eq. 5). According to the 311 

clay mineralogy, all three main bedrock hydrogeological units (BB, FB, MB) are dominated by 312 

muscovite. Outside the FB in GO2, the most deeply weathered location, muscovite accounts for 313 

between 40% and over 80% of all clay minerals. The FB unit has consistently the most balanced clay 314 

mineralogy (in proportions of muscovite, chlorite, illite, and montmorillonite) and is simultaneously, 315 
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because of its highest proportions of illite and montmorillonite, the unit with the highest total CEC. In 316 

contrast, the MB is devoid of both minerals due to insignificant weathering, while the BB has 317 

relatively low proportions of these minerals, finally resulting in lower CECs than the FB for both 318 

units. This distribution is interpreted as secondary clays produced by weathering of predominantly the 319 

BB, and to a lesser extend the FB, being leached from BB and accumulate in fissures and fractures of 320 

the FB unit. As this pattern in clay proportions is very consistent within each hydrogeological unit 321 

(BB, FB, MB) we assumed that mineralogy and CEC, and their associated uncertainty, can reasonably 322 

be interpolated across each unit along the whole 1300 m transect. 323 

 324 

Table 3. Clay minerals identified in the groundwater monitoring wells. Gamma ray mean value per 325 

zone using linear and non-linear relation. Clay weight fraction and total CEC per zone. Modified from 326 

Comte et al. (2019). 327 

 Chlorite 
(%) 

Illite 
(%) 

Montmorillonite 
(%) 

Muscovite 
(%) 

Natural 
gamma 
(cps) 

Clay 
weight 
fraction 
(%) 

Total CEC 
(meq/100g) 

GO1        

Broken bedrock (BB) 26.8 7.5 7.9 57.9 116 49.7 5.9 

Fissured bedrock (FB) 20.2 21.7 18.1 40.0 111 48.6 11.2 

Massive bedrock (MB) 34.2 0.0 0.0 65.8 102 42.6 1.7 

GO2        

Broken bedrock (BB) 11.5 8.4 4.8 75.4 101 40.1 3.1 

Fissured bedrock (FB) 3.3 46.7 31.9 18.0 102 44.7 17.3 

Massive bedrock (MB) 17.5 0.0 0.0 82.5 116 46.6 1.2 

GO3        

Alluvium 13.5 5.4 3.9 77.2 40 13.3 0.9 

Glacial till 13.5 5.4 3.9 77.2 45 15.5 1.1 

Broken bedrock (BB) 13.5 5.4 3.9 77.2 78 30.0 2.0 

Fissured bedrock (FB) 5.5 39.6 26.6 28.3 41 14.8 4.8 

Massive bedrock (MB) 17.5 0.0 0.0 82.5 116 46.6 1.2 



 18 

 328 

3.2.4. Other input parameters for the Archie and W&S models 329 

Not all the input parameters for the petrophysical models were available from the study site: this 330 

includes the rock density, porous media tortuosity, and cementation exponent which are empirical 331 

parameters that have been constrained from previously published literature (Table 4). The 332 

cementation exponent (m) is the most important parameter in Archie’s law, depending on the porosity 333 

and fracture density (Archie, 1942; Aguilera, 1976). These authors found a relationship between the 334 

pore connectivity and the fracture network stating that high fracture content is associated with a low 335 

cementation exponent (Aguilera, 1976). Other authors suggested that the shape of the grains and the 336 

pores are more significant for variations of the cementation exponent than other properties (Salem and 337 

Chilingarian, 1999). More recent studies claimed that m is dependent on the connectedness (transport 338 

pathways), taking into account its variation as a function of porosity and the connectivity of the 339 

matrix. The connectedness, also known as conductivity formation factor, describes how the electrical 340 

conductivity of a fluid is modified by the presence of solid non-conducting grains. (Glover, 2009, 341 

2010).  342 

Additionally, the studied hard rock aquifer had a significant volume of clay, which can lead to an 343 

increase of m depending on the volume and type of the clay (Waxman & Smits, 1968; Salem and 344 

Chilingarian, 1999). As a conclusion, the cementation exponent is not easy to determine because is 345 

highly affected by several factors. However, previous studies (Salem, 2001; Tabibi and Emadi, 2013; 346 

Kazakis et al., 2016) have proposed m values for weathered/fractured aquifers with clay content to 347 

predict reservoir quality and performance. In this work, m was calibrated using the range of values 348 

provided by these studies (Table 4). 349 

An average density range was calculated for each hydrogeological unit according to the rock types 350 

identified in the borehole cuttings. The third of these parameters was the tortuosity (α), defined as a 351 

ratio of fluid flow in a porous media (Pisani, 2011; Tokan-Lawal et al., 2014). For this study, the 352 

value of α was fixed at 1.4 (Urish, 1981; Aguilera, 2008; Piedrahita and Aguilera, 2017) for all the 353 
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hydrogeological units due to its low impact in zones with low porosity, a primary characteristic of this 354 

catchment. 355 

 356 

Table 4. Parameters used to quantify porosity for Archie and Waxman & Smits model. Modified from 357 

Comte et al. (2019) 358 

 
Water 
temperature 
(°C) 

Cementation 
exponenta 

Rock density 
(g/cm3)b 

Water 
resistivity 
(Ω.m) 

Alluvium 15.5-16.0 1.8 1.50-2.20 22.22-22.65 

Glacial till 13.5-16.0 2.05 1.60-2.0 22.22-29.63 

Broken bedrock 12.1-16.0 2.5 2.45-2.55 22.22-37.04 

Fissured bedrock 12.8-14.2 2.0 2.6-2.70 20.0-34.48 

Massive bedrock 12.7-13.1 1.5 2.75-2.85 17.54-30.03 
aCementation exponent (Salem, 2001; Tabibi and Emadi, 2013; Kazakis et al., 2016) 359 

bRock density (Sharma, 1997; Caulfield et al., 2014; Schön, 2015) 360 

 361 

The Archie and Waxman & Smits models were applied considering different saturation values (Sw) in 362 

the aquifer unsaturated zone. Both models were quantified using 4 percentages of saturation (100%, 363 

75%, 50%, and 25%) introduced in the respective equations (Eq. 1,2). The unsaturated zone was 364 

structurally delineated from ERT as representing a thin shallow layer of up to a few meters depending 365 

on the location. 366 

 367 

3.3. Spatial interpolation of borehole-based petrophysical parameters 368 

Considering that some of the input data for the petrophysical models were only available at 3 borehole 369 

locations, these parameters were spatially interpolated and extrapolated to provide 2D spatial 370 

distributions over the same grid as the input ERT data. Interpolation was performed following three 371 

conceptual-structural scenarios; (1) simple (unconstrained) interpolation, (2) structurally constrained 372 
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interpolation using 3 conceptual hydrogeological units based on the ERT interpretation and (3) 373 

constrained using 5 conceptual units based on the ERT interpretation. The process was carried out 374 

using SURFER v13.0 by Golden Software considering three interpolations methods; nearest neighbor, 375 

triangular interpolation, and kriging.  376 

Borehole parameters included in the interpolation process were water temperature (T), water 377 

resistivity (Rw), cementation exponent (m), rock density (ρ), and cation exchange capacity (CEC). The 378 

nearest-neighbor method was finally chosen for subsequent work as being less subject to artifacts than 379 

the other two methods. 380 

 381 

3.4. Sensitivity and uncertainty analysis 382 

Sensitivity analysis (SA) aimed at exploring the robustness and accuracy of model results for either 383 

Archie or Waxman & Smits by understanding the impact of the variations in individual input 384 

parameters on the outputs of the model (Balaman, 2019). The SA measured the impact of change in 385 

the model by introducing increments or decrements of ±15% and ±30% in the parameters and 386 

quantifying the percentage change of each of them. This enabled us to distinguish between high-387 

leverage parameters, whose values have a significant impact on the model behavior and low-leverage 388 

parameters, whose value have minimal impact in the outputs (Jørgensen and Fath, 2011), and focus on 389 

the significant parameters to reduce uncertainty and increase the reliability of the model due to the 390 

high sensitivity of Archie’s and Waxman & Smits. 391 

Uncertainty analysis (UA) was further carried out to quantify the variability of the final model output 392 

that is due to the combined variability of all input parameters, which is considerable in a large-scale 393 

study. The following workflow was applied: (1)  identify the model input parameters subject to 394 

uncertainty (α and Rw are fixed values for maximum and minimum models; ERT measurement errors 395 

of 0.13% in average were disregarded as negligible compared to the subsequent resistivity inversion 396 

error of 9.6%, and the average resistivity model block error of 4%, see section 3.2.1); (2) quantify the 397 

variations (uncertainty) of all input parameters, in this case, according to hydrogeological conditions; 398 
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(3) generate maximum and minimum values of each parameter; (4) compute the maximum and 399 

minimum model outputs; and (5) calculate the relative uncertainty (Geffray et al., 2019). 400 

In this work, all input parameter errors were evaluated with minimum and maximum values according 401 

to hydrogeological conditions (Table 5). This provided quantification of the relative uncertainty for 402 

each parameter, and the petrophysical models in a 2D distribution. Additionally, the average relative 403 

uncertainty per zone was obtained for Archie’s and Waxman & Smits models, as in Eq. 9:  404 

𝑅𝑈 = gh
ii

	× 100% (9) 405 

where RU is the relative uncertainty, AU is the absolute uncertainty and MM is the magnitude of 406 

measurement.  407 

 408 

Table 5. Parameters considered for uncertainty analysis with ranges of values and relative 409 

uncertainties across the three hydrogeological units. 410 

Parameter Full range of 
values 

Min-Max Rel. 
uncertainty (%) 

Cementation exponent (m) 1.4 - 2.6 4 – 7 

Total CEC (meq/100g) 1.10 - 30.03 49 – 150 

Density (g/cm3) 2.35 - 2.90 2.6 - 3.0 

Formation resistivity (Rt ) (Ω.m) 125 – 39,301 1 – 21 

Saturation water (Sw) 0.25 - 1 0 - 75 
 411 

3.5. Model verification using water storage estimates from 1D magnetic resonance sounding 412 

For our study, we used NUMISplus and NUMISpoly MRS equipments manufactured by IRIS 413 

instruments (France). In Gortinlieve catchment, 11 MRS stations were located along the ERT profile 414 

with three stations situated as close as possible to the boreholes (Fig. 1). Three of them were rejected 415 

because of low signal-to-noise ratio (SNR) and the remaining 8 MRS measurements were used in this 416 

study (Comte et al., 2019). SAMOVAR software package was used to run one-dimensional inversion 417 
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of MRS data. See Legchenko et al. (2017) for a detailed description of processing and inversion of 418 

MRS data. Accuracy of MRS results depends on the SNR defined by the ambient electromagnetic 419 

noise, the target location relative to the measuring loop, and the amount of water in the subsurface 420 

(Legchenko et al., 2011). The study area is characterized by a low porosity aquifer and the third 421 

condition caused the major effect in the data quality. In general, MRS resolution and sensitivity 422 

degrade with the increasing depth to investigated aquifer formation, which limits the depth of 423 

investigation with MRS. 424 

 425 

3.6. Model comparison with pumping and recovery test  426 

Pumping and recovery tests were previously carried out by Comte et al. (2012a) in each borehole of 427 

the study site and further interpreted to provide values of transmissivity, hydraulic conductivity, and 428 

storativity (see Comte et al., 2012a, for acquisition methodology and interpretation results). These 429 

values, especially storativity, would be representative of a very small volume around the open 430 

boreholes due to the low pumping rate possible in such low productivity aquifer, and more so for the 431 

deep boreholes. As a result, values could be affected by small scale heterogeneities (e.g. preferential 432 

flow pathways) and possibly locally enhanced fracturing associate to the downhole hammer drilling 433 

process as well as washing of clay clogging in existing fractures due to drilling fluids. To limit the 434 

influence of small scale heterogeneities, the storativity values in each bedrock zone intersected by the 435 

boreholes (BB, FB, MB), were averaged to provide one value per zone (Table 6). Average storativity 436 

values were then compared to corresponding average values of ERT-derived porosity (Archie and 437 

Waxman & Smits) and MRS-derived water content for each zone. 438 

 439 

 440 

 441 

 442 
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 443 

Table 6. Storativity values per zone (from Comte et al., 2012a) 444 

Zone Storativity 
average (-) Min Max Data points 

Broken bedrock 
(BB) 0.05 0.05 0.05 2 

Fissured bedrock 
(FB) 0.01 0.001 0.02 3 

Massive bedrock 
(MB) 0.005 0.005 0.005 2 

 445 

4. Results 446 

4.1. Spatial distribution of input parameters for petrophysical models 447 

The results of interpolating all the petrophysical model input parameters using the nearest neighbor 448 

algorithm (Fig. 4) matched overall the constraints (input data values) at the borehole locations. 449 

However, the use of a non-structurally constrained interpolation developed artifacts in the data 450 

distribution producing unrealistic geological structures. In detail, CEC spatial patterns exhibited a 451 

compartmentalized tabular distribution, with strong lateral and vertical changes. The tabularity angle 452 

was controlled by the value applied in the search limits (6.5° taken as the average topographical 453 

slope). Similar behavior was found in the other parameters (m, Rw, T, ρ) with a lower degree of 454 

change in all directions due to the low variability of the initial data for the model without structural 455 

constraints.  456 

The two structurally-constrained interpolations (with 3 and 5 zones, respectively) produced more 457 

realistic parameter distributions. Both structurally-constrained interpolations had similar outputs in the 458 

upper 1000 m of the modeled profile, slightly differing in the lower 500 m beneath the valley flat. In 459 

general, the 5 structural unit model distribution suffered a ´pull-up´ of the data in the vertical direction 460 

over 500 m. Comparing the models of 5 and 3 zones, the 5 zones model suffered a decrease in values 461 

for CEC, m, and Rw in the MB and FB while an increase for T and ρ in the MB and FB in the 462 

surrounding area near the GO3 borehole. CEC interpolation yielded a distribution highly influenced 463 

by the hydrogeological units’ model, having the highest values (> 0.11 meq/g) in the FB specifically 464 
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in the center zone of the aquifer. In the case of m, the difference between the two structurally-465 

constrained interpolations demonstrated that the major impact occurs in the last 500 m of the modeled 466 

profile, keeping a smooth lateral and vertical distribution of the data that perfectly delineates the two 467 

hydrogeological conceptual models.  468 

Interpolation of rock density, with a low variation (2.4-2.9 g/cm3) for the rock minerals encountered 469 

in the study area produced similar patterns as m, having a distribution with smooth vertical and lateral 470 

changes. Rw and T interpolation exhibited significantly different spatial patterns than other parameters, 471 

with large variability and relative compartmentalization in lateral directions with minor influence of 472 

the structural constraints in the interpolations. This is due to these hydrogeological parameters (Rw and 473 

T) having much larger lateral (upslope-downslope) variability than vertical (depth) variability. 474 

Interpolated ranges of values for these parameters are within the input data limits (Rw = 18-36 ohm.m; 475 

T = 12-16°C). 476 
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 477 

Figure 4. Nearest neighbor interpolation results of borehole-based petrophysical parameters; cation 478 

exchange capacity (CEC); cementation exponent (m); water resistivity (Rw); temperature (T) and rock 479 

density (ρ); without (single unit) and with (3 units and 5 units) structural constraints based on 480 

conceptual interpretation of resistivity model.  481 
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4.2. Porosity predictions 482 

The 2D porosity models resulting from computing the 2D inverted ERT data (Fig. 3a) and the 2D 483 

interpolated parameter distribution (Fig. 4) in the two selected petrophysical models (Archie and 484 

Waxman & Smits) are presented in Fig. 5. As expected, the conceptual constraints used when 485 

interpolating the petrophysical input parameters had a major influence on the final spatial distribution 486 

of porosities. The porosity distribution obtained with no conceptual constraints exhibits tabular 487 

layering of massive, fissured, and broken bedrock. Uphill, porosities were an order of magnitude 488 

lower than in the mid-slope and downslope areas, with abrupt changes in porosities. A distribution 489 

that did not match well the initial structural interpretation of the resistivity profile.  490 

Distributions using 3 and 5-zone structural constraints showed spatial patterns of porosity that better 491 

match the original ERT interpretation and associated conceptual model. Highest porosity values were 492 

found in the shallow (broken) bedrock characterized by lower resistivities. The deep and intermediate 493 

zones (MB and FB) had the lowest values of porosity associated with fracture density and aperture as 494 

well as weathering intensity (secondary clay content) decreasing with depth. The downslope area, 495 

nearby GO3 borehole, exhibited the highest porosity values of all three conceptual models, with a 496 

vertical distribution largely controlled by the applied structural constraints. The generally lower 497 

porosities obtained uphill for all models were consistent with the different, less weathering-prone 498 

psammite lithology as evidenced from outcrop observation and ERT result showing thinner broken 499 

and fissured horizons. 500 

Archie’s model overall produced porosity values ranging between 3 x 10-2 (i.e. 3%) to 7 x 10-1 (i.e. 501 

70%) for the three conceptual models with arithmetic mean values of 16% (no zones), 17% (3 zones) 502 

and 16.5% (5 zones). The 3-layer model (3 hydrogeological units) was considered as the best model. 503 

Although both 3-layer and 5-layer models well preserved the geological structure, the alluvium and 504 

glacial deposits which were additionally considered in the 5-layer model (Fig. 3), remained zones of 505 

small volume having very little impact in the final porosity models. Therefore the 3-layer model 506 

appeared as best to compromise in terms of resolution and simplicity of parametrization and 507 

associated computational efficiency. In this model, the MB (massive unweathered and poorly 508 
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fractured mica schist) had the lowest average porosity (8 x 10-2, i.e. 8%) of the 3 units followed by an 509 

increase of porosity in the FB (2 x 10-1, i.e. 20%) characterized by a weathered/fractured bedrock. At 510 

the top, the BB reached the highest porosity (3 x 10-1, i.e. 30%) considering the glacial deposits and 511 

alluvium units as the areas with the higher values. The Waxman & Smits porosity model produced 512 

lower porosities than Archie’s model by an order of magnitude with values for the non-structurally-513 

constrained model of 9 x 10-3 (i.e. 0.9%), and for the structural-constrained models of 1.3 x 10-2 i.e. 514 

1.3% (3 zones) and 1.1 x 10-2 i.e. 1.1% (5 zones) in average. Waxman & Smits porosities rapidly 515 

decreased with depth dropping from BB (5 x 10-2, i.e. 5%) by two orders of magnitude at the MB (3 x 516 

10-4, i.e. 0.03%) in terms of average porosity. The unsaturated zone considered 50% for water 517 

saturation (Sw), increasing the porosities in the BB for both models (Archie and Waxman & Smits), 518 

this applied for the 3 scenarios (1 non-structural and 2 structural-constrained). The unsaturated zone 519 

was tested applying four alternative saturations (Sw = 25%, 50%, 75%, and 100%) producing an 520 

inverse relationship between ϕ and Sw. Archie´s model showed less dispersion of porosity values 521 

showing a normal distribution within and across all the zones including the unsaturated area. 522 

Contrastingly, the Waxman & Smits model had a higher spreading of the calculated porosity with a 523 

log-normal distribution across, and a normal distribution within, each of the three zones (BB, FB, and 524 

MB) (Fig. 6). 525 
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 526 

Figure 5. Predicted 2D spatial variations of porosity compared to original resistivity data. (a) original 527 

(input) inverted ERT profile. (b-g) predicted porosity distributions for different structural constraints 528 

and petrophysical models: Archie’s model (b) and Waxman & Smits model (c) no structural 529 

constraint; Archie’s model (d) and Waxman & Smits model (e) with 3 structural units; Archie’s model 530 

(f) and Waxman & Smits model (g) with 5 structural units. Triangles at the ground surface indicate 531 

the location of MRS soundings (see section 3.5).  532 
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 533 

Figure 6. Porosity distribution per hydrogeological unit from Archie and Waxman & Smits model. (a) 534 

broken bedrock unsaturated zone considering 4 saturation values (Sw) 25, 50, 75 and 100%, (b) entire 535 

saturated and unsaturated broken bedrock unit and considering 4 values of saturation (Sw) above the 536 

water table, and c) three hydrogeological conceptual units BB, FB and MB (considering uniform 50% 537 

saturation water for the unsaturated zone.  538 

 539 
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4.3. Sensitivity and uncertainty analysis 540 

The sensitivity analysis enabled us to quantify the weight of the petrophysical parameters involved in 541 

the forward modelling (Fig. 7). When using both Archie and Waxman & Smits models, the 542 

cementation exponent (m) appeared as the parameter responsible for the largest sensitivity. For the 543 

Archie model, a variation of ±15% produced porosity changes of ±26%. The Waxman & Smits model 544 

was even more sensitive to m, i.e. for the same ±15% of variation, porosity changed by 120% and -545 

68% respectively. Saturation (SW) was the second most sensitive parameter (18% in a 15% increment) 546 

in Archie´s model close to that of the m parameter while in the Waxman & Smits model the 547 

sensitivity to other parameters was not as high as for m but added together, they introduced significant 548 

uncertainty into the models.  549 

 550 

Figure 7. Sensitivity analysis of (a) Archie and (b) Waxman & Smits porosity models.  551 

 552 

The uncertainty analysis provided valuable information with regards to the models´ accuracy. In this 553 

paper, we present the relative uncertainty computed for the model with 3 hydrogeological units using 554 

the maximum and minimum possible values for each input parameter as estimated from the geological 555 
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characteristics of the study area (Table 5). The final porosity predictions for Archie and Waxman & 556 

Smits held relative uncertainties in predicted porosities of ±16% and ±105% (Fig. 8) and absolute 557 

uncertainties of ±3 and ±1 on average, respectively. When looking separately at average uncertainties 558 

for each specific hydrogeological conceptual unit (BB, FB, MB), MB had the lowest absolute porosity 559 

uncertainty (where porosity is expressed in %) in both models (Archie = 1.44% and W&S = 0.06%) 560 

decreasing with depth (Fig. 9a). In terms of relative uncertainty, the BB unit appeared as the zone 561 

with the highest values in Archie’s model (22% on average) while in Waxman & Smits the highest 562 

relative uncertainty affected the MB, amounting 180% on average and 300% locally (Fig. 9b) i.e. 563 

three times the best predicted values.  564 

 565 

Figure 8. 2D relative uncertainty of Archie and Waxman & Smits porosity models.  566 
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 567 

Figure 9. Box plots of (a) absolute and (b) relative porosity uncertainty per conceptual unit for Archie 568 

and Waxman & Smits models.  569 

 570 

The highest contributing factor to porosity uncertainty for the Archie model was the water saturation 571 

(75% on average) while for the Waxman & Smits model the CEC (87% on average) had the highest 572 

contribution (Fig. 10). While the water saturation also contributed to the uncertainty in W&S, the 573 

influence was smaller compared to the uncertainty introduced by the CEC. Despite being the most 574 

sensitive parameter in the model, the cementation exponent (4-7%) did not produce as high relative 575 

uncertainty as the CEC did. In addition to the other parameter uncertainties, the formation resistivity 576 

(Rt) obtained from ERT data inversion had a relatively low uncertainty (1-21%) and as such did not 577 

impact significantly the final model uncertainty. Note that the uncertainty in the formation resistivity 578 

only considers the ERT inversion errors but not the ERT measurement errors.  579 
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 580 

Figure 10. Uncertainty analysis of petrophysical models input parameters: formation resistivity (Rt), 581 

cementation exponent (m), cation exchange capacity (CEC), rock density (ρ), and water saturation 582 

(Sw). 583 
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In this study, the ERT measurements errors (standard deviation of 0.13% on average) were discarded 584 

from the uncertainty analysis due to being negligible compared to the inversion error (9.6%) and 585 

model block resistivity errors (4% on average). The very stable, low noise, measurement conditions 586 

were to be attributed to excellent electrode coupling due to the favorable soil conditions (wet, clay-silt 587 

soils and unsaturated zone), high water table and low anthropogenic noise. In different conditions, 588 

such as drier/more resistant soils (e.g. in more arid regions), deep water table, or presence of 589 

anthropogenic noise such as metal pipes, buried fences, etc. the ERT measurements would be less 590 

stable with higher errors, which may need to be taken into account in the uncertainty analysis as the 591 

would significantly increase the uncertainty in porosity estimates. 592 

 593 

4.4. Model verification using independent 1D water content data 594 

At each station, inversion of MRS measurements showed a vertical profile of the water content. The 595 

water content was compared with the boundaries of hydrogeological units identified using the ERT 596 

interpretation. It allowed to develop a correspondence between the water content value and the 597 

geological formation. Thus, the average water content (WC) was estimated with MRS as 1% in the 598 

massive bedrock, 2-3% in the fissured bedrock and in the broken bedrock ranging from 5 to 6%. In 599 

the selected 8 MRS measurements, the highest WC was found in the profile F1 (1-6%) at 480m 600 

NNW-SSE direction, characterized by a thick FB highly fractured and fully saturated. The lowest WC 601 

(<2%) was shared by the profiles D1 and D3, at 240m NNE-SSW direction, located in a high 602 

resistivity zone (MB) with low fracture density.  603 

The water content profiles from MRS surveys were compared with the ERT porosity models (Archie 604 

and Waxman & Smits) extracting the data in the nearest location to each MRS survey and presented 605 

in the logarithmic scale (Fig. 11). Fig. 11 also shows the minimum and maximum models of the MRS 606 

water content and the ERT porosity models. Archie porosity values were distinguished by largely 607 

overestimating the pore space with values ranging 5-35 x 10-2 (5-35%) i.e. about an order of 608 

magnitude (i.e.  ̴1000%) higher than water content obtained from MRS surveys for the broken and 609 
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fissured bedrock at all locations but decreasing with depth as expected for the study area. Massive 610 

bedrock estimates showed porosities ranging 1-1.5 x 10-1 (i.e. 10-15%), range rather expected for the 611 

broken bedrock. Not accounting for the clay content in the aquifer by using Archie´s law 612 

overestimated the porosity of the study area where typical porosities for this geological setting were 613 

widely reported are much lower (metamorphic rocks f  = ~ 4%) (Earle, 2015). Waxman & Smits 614 

porosity values had a slightly better fit with MRS water content data producing consistent spatial 615 

patterns at three locations. The best match occurred specifically in the profiles F1, F2, and JV1, 616 

locations where the minimum and maximum values for water content and ERT-derived porosities 617 

predicted the highest porosities (2-6 x 10-2). In the other 5 soundings, there were significant 618 

discrepancies between ERT-porosities and MRS water contents. The ERT porosity values from 619 

Waxman & Smits were higher than MRS water contents in the broken bedrock (0-10m) but lower in 620 

fissured and massive bedrock, overall providing lower groundwater storage values at higher depths. 621 

The clay content variations in the fissured and the massive bedrock could be a reason for this behavior 622 

but also the uncertainty attributed to this method (Waxman & Smits model) that increases with depth. 623 

 624 

Figure 11. Comparison between MRS water content and ERT porosity for Archie’s model and 625 

Waxman & Smits model (total porosity, including saturated and unsaturated porosity). 626 
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4.5. Model comparison with storativity values from hydraulic tests 627 

Comparison of storativity data, porosity models and water content showed that Archie´s porosities 628 

poorly matched observed storativity values, with values always higher by an order of magnitude in all 629 

the zones of the aquifer (BB, FB, and MB) and systematically out of the variability range (Fig. 12). 630 

On the other hand, Waxman & Smits porosities, displaying lower values than Archie´s model, 631 

matched reasonably well the storativity values, especially in the broken and fissured bedrock. WS 632 

porosities in the massive bedrock were lower by an order of magnitude but close in the upper limit of 633 

the variability range. MRS water content profiles generally underestimated storativity values close to 634 

the surface (BB) but had a strong correlation between storativity and porosity at larger depth (FB, r = 635 

0.97 and MB, r = 0.98). 636 

 637 

Figure 12. Comparison of ERT-derived porosity (Archie and Waxman & Smits porosity models) and 638 

water content (MRS) per hydrogeological zone with their respective ranges of spatial variations (both 639 

on vertical axis), to corresponding borehole storativity values estimated from hydraulic testing 640 

(horizontal axis). 641 



 37 

5. Discussion 642 

The capability of resistivity methods to resolve pore space variability in a low porosity, basement 643 

aquifer system with spatial variations in weathering and fracturing intensity has been explored using 644 

hydrogeological and geophysical data acquired in a fractured metamorphic hard rock aquifer in 645 

Ireland. This study demonstrates that Waxman & Smits´ petrophysical model is superior to Archie´s 646 

model because of the presence of clay minerals associated with bedrock weathering, which is 647 

generalizable to most weathered/fractured basement aquifer systems. 648 

 649 

5.1. Importance of conceptual constraints when combining borehole data with 2D geophysical 650 

data 651 

Interpolation of point (borehole) petrophysical data was required to provide inputs for the 2D 652 

petrophysical models to obtain 2D porosity distributions from 2D ERT resistivity. Both the 653 

interpolation algorithms and the integration of structural constraints based on conceptual 654 

interpretation of geophysical data as part of the interpolation had a high impact on the spatial 655 

distribution of the parameters across the study area. Combining borehole data and a geological 656 

interpretation increased the accuracy of the distribution (Boyd et al. 2019) while showing where the 657 

geological interpretations (3-zone vs 5-zone) made the higher impact. Triangular interpolation and 658 

kriging methods produced unrealistic distributions lacking geologic sense, the nearest neighbor 659 

algorithm achieved a superior spatial distribution of the data for both Archie and Waxman & Smits 660 

models. The results exposed the fact that the absence in the interpolation of structural constraints 661 

based on hydrogeological boundaries produced spatial distributions of parameters that are 662 

geologically unrealistic as the interpolation tends to yield straight lateral continuity between 663 

boreholes, which disagreed with the structural information provided by ERT data. Constraining the 664 

models with structural boundaries is the most important tool to control the distribution of the 665 

parameters and it should be based on reliable data as is the case of this study (ERT survey). This is 666 

demonstrated when two alternative hydrogeological interpretations assuming a 3-zone and a 5-zone 667 
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layering are incorporated as structural constraints in the interpolation of the input parameters, which 668 

produced a spatial distribution consistent with the conceptual models. As demonstrated by Chen et al. 669 

(2019) using structural constraints in the interpolation helped to achieve a much more realistic 670 

distribution of the parameters (CEC, m, ρg, Rw, and T) that follows the geological structures of the 671 

study site than a non-structurally constrained interpolation. The difference between the two 672 

structurally-constrained models is only observable in the area surrounding GO3 borehole, where 673 

glacial deposits and alluvium are present. It is however important to note that despite being 674 

geologically more realistic, structurally-constrained interpolations also likely exacerbate the contrasts 675 

in petrophysical properties, and ultimately in the final computed porosities, between the different 676 

conceptual bedrock units as compared to a possible smoother reality. 677 

 678 

5.2. Importance of accounting for clay minerals and related uncertainties 679 

Results of this study show that Archie’s porosity values (1.7 x 10-1, i.e. 17%, in average) are 680 

unrealistic because well above (1) expected porosities for weathered/fractured basement rock aquifers 681 

and (2) independent geophysics data (MRS) and borehole hydraulic data obtained on the site. 682 

According to Palacky (1988), hard rock aquifers are characterized by an average porosity < 4% (4 x 683 

10-2). Porosity ranging between 2-4% were reported by laboratory tests carried out by Bagde (2000) in 684 

three types of schists (quartz mica schist, quartz mica schist with quartz veins and biotite schist), a 685 

range of porosities that matches the ERT porosities derived in this work from the Waxman & Smits 686 

model. Johnson (1983) reported low porosity (3%) for metamorphic rocks, and particularly mica 687 

schists with values < 1% (Elbra et al., 2011), which is again consistent with the porosity values 688 

predicted by Waxman & Smits. Nevertheless, the most important distinction between the two models 689 

(Archie and W&S) is that the latter accounts for the effect of clays minerals, which significantly 690 

contribute to the measured resistivity similarly as pore fluid. In this study, Waxman & Smits model 691 

shows that the clay in the bedrock aquifer reduces the porosity predicted from Archie’s model by an 692 

order of magnitude, decreasing with depth as fracture density reduces.    693 
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Sensitivity and uncertainty analysis were only performed for the 3-units conceptual model for both 694 

Archie and Waxman & Smits. The low variability of the results and small areas that represents the 695 

glacial deposits and alluvium which were accounted for in the 5-unit conceptual model do not have a 696 

considerable influence in the final porosity models. The sensitivity analysis demonstrates that Archie 697 

is less affected by variations in the input petrophysical parameters than Waxman & Smits. Despite 698 

both being more sensitive to changes in the cementation exponent (Chen & Fang, 1986), Waxman & 699 

Smits overall has higher sensitivity due to the additional factors in the equation accounting for the 700 

clay content (CEC), a product of the bedrock weathering. Therefore, to build an accurate model, it is 701 

necessary to well constrain the estimates for the cementation exponent for both models and the 702 

influence of clay for Waxman & Smits in order to reduce uncertainty in the results. In the present 703 

analysis, the large uncertainty relating to clay properties (CEC) has a large impact on the porosity 704 

estimate uncertainty in the Waxman & Smits model, whereas, with the Archie model, all parameters 705 

have an equivalent contribution to porosity uncertainty. At shallow depth within the unsaturated zone 706 

(< 10 m), high uncertainty in the values of saturation also largely contributed to porosity uncertainty 707 

for both models. However, as the unsaturated zone is relatively thin in the study area, it did not have a 708 

large impact on the overall relative uncertainty.  709 

 710 

5.3. Reconciling the different types of storage properties to which the different methods (ERT, 711 

MRS, hydraulic tests) are sensitive 712 

The predicted 2D porosity distributions were further verified through comparison to independent 713 

subsurface water content data provided by MRS surveys (Legchenko et al., 2017) (Fig. 11). The water 714 

content estimates provided by MRS are considered to reflect a part of the effective saturated porosity 715 

of a reservoir corresponding to mobile water (close to the storativity) (Legchenko et al., 2002; 716 

Vouillamoz et al., 2012), whereas resistivity-derived porosities are widely considered as reflecting the 717 

total saturated porosity of the aquifer including mobile and bound water (Turesson, 2006). This 718 

implies that the ERT-porosity estimate cannot be expected to be lower than the storativity, and the 719 

MRS water content estimates can be equal or lower than the ERT-derived porosities. Johnson (1983) 720 
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reported from laboratory experiments implemented on several samples of metamorphic rocks (mica 721 

schist, muscovite schists, gneiss, etc.) an average total porosity 35% higher than the connected 722 

effective porosity. The Waxman & Smits model produced overall porosity values closer to the MRS 723 

water content estimates, though generally higher by about 40% on average, which is consistent with 724 

the findings by Johnson (1983). The agreement between W&S and MRS porosities is particularly 725 

good for soundings F1, F2, and JV1 (Fig. 11). These specific locations are characterized by areas with 726 

relatively higher porosity (> 4%) and thicker BB (12-25 m) and FB (10-30 m) units associated with 727 

regional fracture systems (Comte et al., 2012a, 2019). At larger depths (MB) for these locations, the 728 

uncertainty of MRS water content (but also of ERT-derived porosity) increased and the correlation 729 

between the two is poor, with ERT porosity significantly higher than MRS water content. This 730 

deviation could be attributed to the decrease in fracture connectivity with depth in the massive 731 

bedrock resulting in a more rapid decrease in effective porosity and/or storativity versus total porosity 732 

and associated loss of sensitivity of the MRS method (Legchenko et al., 2002). In the other 5 profiles 733 

(D1, D2, D3, F4, and JV3), there are some incongruities between the ERT-porosities and MRS water 734 

content. These locations were further away from deeper weathered/fractured zones and characterized 735 

by overall lower water content close to or lower than 1%. There, MRS water content appeared 736 

relatively constant or increasing with depth and was much higher than ERT-derived porosities. 737 

However, the MRS method is known to rapidly lose sensitivity below 1% water content where data 738 

inversion becomes unreliable (Legchenko et al., 2006). Similarly, ERT-derived porosities could be 739 

underestimated in these areas particularly for the massive bedrock due to the ERT inversion tending to 740 

overestimate resistivities below conductive material (FB). Both could explain the large deviation at 741 

depth at these locations.  742 

The overall comparison is consistent with current knowledge that resistivity-derived porosity provides 743 

a close estimate of total porosity (Ellis and Singer, 2007; He et al., 2018) and as such should be higher 744 

than or equal to the aquifer’s effective groundwater storage (storativity). For most of our presented 745 

results, the ERT-derived porosities are indeed equal to or higher than the MRS water content known 746 

to be reflective of aquifer storativity rather than total saturated porosity. More specifically the 747 
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porosities obtained from the application of the Waxman & Smits model are consistent with the 748 

expected difference between effective and total porosity in fractured rocks of about a factor of 2 749 

(Aguilera and Aguilera, 2003; Tiab et al., 2006); whereas Archie’s model is shown to massively 750 

overestimate this difference by a factor of 10 (an order of magnitude) demonstrating that clay 751 

minerals cannot be neglected in the analysis of similar metamorphic rock aquifer settings. 752 

Further comparison of the results with actual aquifer storativity values previously obtained from 753 

hydraulic testing at borehole locations by Comte et al. (2012a) confirmed Archie´s model poor 754 

predicting ability of storage properties. Waxman & Smits porosities in contrast show a good match 755 

with storativities obtained in the broken and fissured bedrock (the weathered-fractured part of the 756 

system). This would suggest either that the porosity derived from this model in this upper part of the 757 

bedrock is reflective of the aquifer’s effective storage capacity rather than the total porosity (including 758 

bound and unconnected groundwater), or that storativity and total porosity are not significantly 759 

different in these horizons. However, it is also likely that storativity values obtained from hydraulic 760 

testing are providing an overestimation of the actual aquifer storativity due to being representative of 761 

a small area abound the boreholes (because of the low pumping rates applicable for hydraulic testing 762 

such low productivity hydrogeological environment) affected by locally increased porosity associated 763 

to the downhole hammer drilling technique (Kirlas and Katsifarakis, 2020; Pongmanda and Suprapti, 764 

2020). Such artificially increased porosity and storativity would have relatively more effect on deeper 765 

(more massive) than shallower bedrock horizons. In the MB specifically, WS-derived porosities 766 

appeared much lower than storativity values. This difference could indeed be due to; (1) as also 767 

discussed above when comparing ERT porosity and MRS water content, an underestimation of 768 

porosity in the MB due to overestimation of inverted resistivities below the lower resistivity FB 769 

together with the uncertainty attributed to the selection of m for the MB; or (2) overestimated 770 

storativities values from hydraulic testing in the MB (artificially increased porosity in the borehole 771 

walls, and local preferential pathways possible due to the large uncased interval characterizing MB 772 

boreholes). MRS water content on another hand is relatively close to storativity values in the FB and 773 

MB. Based on discussions above, the good match for MB might be coincidental due to both (1) a 774 
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possible overestimation of MRS water content in the MB, where MRS profiles often showed illogical 775 

increasing water content with depth likely resulting from lack of accuracy of the MRS inversions 776 

(Legchenko et al., 2017) for low water content values; (2) a possible overestimation of storativity 777 

from hydraulic tests in the MB. MRS water content also appeared slightly lower than storativities in 778 

the BB. Overall, it can be reasonably concluded that the WS porosity provides an upper estimate of 779 

groundwater storage in the weathered/fractured aquifer units (BB and FB). 780 

 781 

5.4. Limitations associated to field measurements and geophysical inversion errors and wider 782 

application to 3D heterogeneous hard rock aquifer settings 783 

Modelling petrophysical properties is a challenging process. The high heterogeneity of 784 

weathered/fractured aquifers complicates any attempt to estimate properties, as in this study porosity 785 

(Paillet and Reese, 2000; Doetsch et al., 2010; Whitman and Yeboah-Forson, 2015). This study 786 

encountered limitations typical to field studies in heterogeneous subsurface systems, attributed to: (1) 787 

uncertainties in point-based measurements of parameters used to parameterize the porosity models 788 

(cementation exponent and clay volumes); (2) uncertainty and representativity issues relating to 789 

storativities values obtained from low rate hydraulic testing used for verification, which are likely 790 

overestimations increasing with depth (i.e. with decreasing porosity) (3) poor spatial density of 791 

borehole data providing the petrophysical input parameters and storativity verification data; (4) spatial 792 

distortions and errors relating to inverted geophysical data used as model input parameters (different 793 

averaging between ERT and MRS; ERT use 2-D inversion and MRS 1-D inversion, both in 3-D 794 

geological settings); and (5) possible additional uncertainty attributed to the geophysical measures 795 

errors (noise) prior to geophysical inversion (negligible in this work but potentially significant in 796 

other, more noisy conditions, e.g. drier/more resistant soils and anthropogenic noise). Addressing 797 

some of these limitations would reduce uncertainty, providing more accurate values in porosity 798 

models. Acquiring more data does not always translate into better results, but in this study having 799 

additional borehole data in a reduced spacing would help to control the spatial distribution and 800 

increase the resolution of the models, along with providing additional verification dataset. 801 
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The one- and two- dimensionalities of data and models used might be insufficient in some strongly 802 

three-dimensional settings, which would require 3D ERT acquisition. In this case study, however, 803 

previous hydrogeological studies (Comte et al., 2012a, 2019) suggest lateral continuity of structures 804 

perpendicular to the ERT profile justifying the use of 2D ERT data. Similarly, more confident 805 

validation with borehole and MRS data would be obtained from denser 2D borehole coverage and 2D 806 

MRS acquisition and inversion, with 3D borehole and 3D MRS analyses required for other strongly 807 

3D basement settings. The approach developed overall is applicable to most basement aquifer settings 808 

and bedrock lithologies subject to a certain degree of weathering. Some challenges would arise in; (1) 809 

deeply weathered, argillized basement rocks such as clay rich metamorphic rocks subject to deep 810 

tropical weathering, where ERT inversion would be inaccurate below highly conductive weathering 811 

clays (Bazin and Pfaffhuber, 2013) resulting in poor delineation of weathered vs. fractured vs. 812 

massive bedrock and inaccurate quantification of storage properties (2) unweathered, poorly fractured 813 

basement rocks such as crystalline rocks subject to glacial erosion preventing development of 814 

significant weathering and weathering-aided open fracture networks. Nevertheless, the flexibility of 815 

the ERT methods allowing adjusting its resolution to the expected scale of heterogeneity (Chambers 816 

et al., 2010; Cheng et al., 2019) makes it a useful technique for a range of heterogeneous basement 817 

settings from local-scale variations of fracture density and weathering to regional fault zones. 818 

The higher uncertainty in the approach is attributed to the clay content of the aquifer with limited data 819 

from boreholes to directly estimate mineralogy and clay volume spatial variability in the subsurface 820 

with high accuracy. Implementing an alternative geophysical method (e.g., induced polarization) 821 

providing additional constraints on clay content and/or electrical properties could improve the 822 

outcome of the Waxman & Smits model (Binley et al., 2015; Revil et al., 2019). 823 

 824 

5.5. Transferability of methods and findings 825 

Although the methodology developed in this study was applied to a specific location, the approach 826 

can be extended to most basement rock aquifer settings. All basement rocks (intrusive igneous and 827 
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metamorphic rocks such as gneiss, granite, schist) are affected by carriable degree of weathering and 828 

fracturing responsible to a weathering profile as described in Fig. 2, and more generically by e.g. 829 

Lachassagne et al. (2011), which is globally ubiquitous. A possible exception are basement rocks 830 

freshly exposed after deep glacial erosion, which may have been completely removed of their 831 

weathering profile at the exception of the bottommost fresh massive bedrock. Electrical (e.g. ERT) 832 

and electromagnetic geophysical methods are well-established techniques effective to delineate these 833 

weathering patterns in various basement rock types and climate setting (Beauvais et al., 2004; Undul 834 

et al., 2011; Belle et al., 2019). Consequently, the present approach may be potentially implemented 835 

in most basement settings. In addition, the approach can also be applied to any other resistivity 836 

map/models obtained from other electromagnetic survey methods e.g. frequency and time domain 837 

electromagnetics FEM/TEM, magneto-telluric MT (Descloitres et al., 2000; El-Kaliouby, 2009). This 838 

includes data from airborne TEM whose popularity is rapidly increasing for large-scale 839 

hydrogeological mapping including in basement rocks (Chandra et al., 2019). A limitation of the 840 

approach however is the need for data on bedrock clay content and mineralogy, and importantly their 841 

spatial variations, necessary for CEC estimation required for the Waxman & Smits model. While 842 

some data may be obtained from literature for the considered site or extrapolated from other regions, 843 

additional in situ investigations are recommended. This include analysis of core sample and borehole 844 

geophysics to estimate vertical clay properties variation along the weathering profile. Alternative 845 

geophysical methods (e.g. induced polarization) may profile information on clay content and CEC 846 

(Revil et al., 2019). The present work also shows that the MRS method (distributed vertical sounding 847 

or tomography) could also be used to calibrate either the Waxman and Smits model, or directly the 848 

porosity/water content, within or across lithotypes, for subsequent large-scale porosity modelling 849 

using high resolutions resistivity data. 850 

 851 

6. Conclusions 852 

This study explored the qualitative and quantitative the use of electrical resistivity tomography to 853 

assess groundwater storage variations at high spatial resolution in a weathered/fractured basement 854 
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rock aquifer in Ireland, using the two most commonly applied petrophysical models to relate 855 

resistivity to porosity: Waxman and Smits (1968), which accounts for the influence of clay minerals 856 

produced by weathering processes, and Archie (1942), which disregards clays. 857 

Results show that ERT was capable of qualitatively delineating at high (2D vertical) spatial resolution 858 

the variability in porosity associated to depth-decreasing weathering and fracturing and as well as 859 

local deeper weathered/fracture zones. On a quantitative level, the use of the WS model with ERT 860 

data provided a reasonable upper-bound estimate of storage properties values (storativities) in the 861 

weathered/fractured parts of the bedrock (~5 to 50+ m in the studied area). These values were shown 862 

to range across 2 to 3 orders of magnitude from typically 1-10% in the uppermost weathered ‘broken 863 

bedrock’ to 0.1-1% in the underlying fissured bedrock, and further down by another order of 864 

magnitude lower in the deep massive bedrock. These values were broadly consistent with independent 865 

storativities estimates for the weathered/fractured aquifer levels provided by magnetic resonance 866 

soundings (at 8 locations) and borehole hydraulic testing (9 data including 3 different depths at 3 867 

sites). These values are consistent with reported typical values for hard rock settings. This work 868 

further resolves the large spatial (including depth) variability in storage properties that may be 869 

encountered in basement aquifer settings, at high spatial resolution and with reasonable uncertainties, 870 

i.e. an overall exponential decrease in storativity with depth and with distance to valley bottom to 871 

which superimposes smaller, meter to 100-meter scale, variability related to deep weathering 872 

corridors associated with fault lines. Some inconsistencies however were found in the storativities 873 

values provided by all three methods in the deep massive bedrock owing to limitations and 874 

inaccuracies specific to each method, which prevented any reliable quantification in this deepest unit. 875 

More specifically, the study highlighted the inadequacy of Archie’s model to derive porosity from 876 

resistivity in weathered/fractured aquifers, for which Waxman and Smits model, which accounts for 877 

the major effect of clay mineral on resistivity data, must be preferred. 878 

The choice of the method of interpolation of point (borehole) input parameters for the petrophysical 879 

models, along with the use of structural constraints in the interpolation based on hydrogeological 880 

conceptual interpretation of ERT data, also proved crucial to obtaining realistic porosity distributions. 881 
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Both petrophysical models were found to be highly sensitive to the cementation factor, however, 882 

because of its reported low variability for basement settings this did not have the highest impact on 883 

porosity prediction uncertainties. Instead, the clay content and CEC (for WS model) were responsible 884 

for the largest source of uncertainty in predicting porosity from resistivity highlighting the need for in 885 

situ data on bedrock mineralogy (including clay content and minerals). Relative uncertainty increased 886 

in two directions, vertically with depth, and laterally from downhill to uphill, and this concurrently to 887 

porosity decrease due to increasing relative importance of uncertainties of cementation factor and in 888 

clay properties. 889 

This study also provides an example of how the combination of near surface geophysical methods 890 

(here ERT and MRS), can contribute to achieving a better interpretation of the storage properties 891 

values and spatial variability of low storage weathered/fractured hard rock aquifers. The approach can 892 

be extended to resistivity imaging methods in a wide sense, i.e. not only ERT but by extension also 893 

electromagnetic methods (e.g. frequency/time domain EM) that yield resistivity models, which can be 894 

used with WS to derive porosity models. 895 

Characterizing hard rock aquifers remains challenging, and the limited number of published in situ 896 

quantitative research suggests that more work needs to be done to understand these groundwater 897 

resources and specifically the in situ spatial variability of hydrogeological properties. Estimating 898 

spatial porosity patterns is a crucial step in quantifying the distribution and volume of groundwater 899 

resources in hard rock aquifers required to support sustainable potable water supplies, 900 

agriculture/livestock farming, environmental flows and groundwater dependent ecosystems, 901 

geothermal applications, etc., but also to predict the response of these resources to short and long term 902 

changes in climate, including climate variability and human exploitation. 903 
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