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Abstract— This paper presents a multiobjective load 

planning algorithm for industrial applications with integrated 

hybrid renewable energy systems (HRES). The focus of the 

paper is on the planning of loads with time-dependent duration. 

In some cases, the duration of the machinery operation depends 

on the external parameters and can vary depending on what 

time of the day they are operating. The presented algorithm, 

implemented in the software MOHRES, is based on the multi-

criteria assessment of the system against several performance 

measures. Through a case study, the performance of the 

algorithm is evaluated. It is shown how the algorithm can 

successfully find Pareto solutions with minimal production cost 

and optimal HRES performance measures.    
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I. INTRODUCTION 

In industrial applications, load shifting, more known as 
load planning/scheduling, is established as one the pillars of 
energy efficiency.  Menghi et al [1], in their review paper, 
argue that manufacturing as the largest end-use sector in terms 
of both final energy demand and greenhouse gas emissions 
need to mitigate the environmental impacts of manufacturing 
processes via implementing energy efficiency. The review 
paper [2] outline and discuss most of the research reported 
during the last decade regarding energy efficiency in 
manufacturing systems. Energy-oriented production planning 
research is mainly focused on energy-efficient master 
production scheduling and capacity planning, energy-efficient 
lot-sizing, as well as energy-efficient machine scheduling [3]. 

Hybrid renewable energy systems (HRES) are 
implemented to overcome the challenge imposed by the 
energy fluctuation where more than one primary energy 
source, with at least one renewable energy source, are used 
(e.g. wind-diesel system) [4]. Consequently, HRES have large 
penetration in power generation due to their capability to meet 
the electricity demand in a reliable and relatively more 
environmentally friendly way for both grid-connected and 
standalone applications [5-7].  

While  in most of load planning related works (for instance 
see [8-12]) the load duration is known and fixed and the 
objective of the load planning is to reduce the emission or 
minimise the cost of operation, in some cases the actual 
duration of machinery load is unknown and depends on the 
external factors. The focus of this paper is on energy 
efficiency, reducing carbon footprint as well as the production 
cost while dealing with these types of loads. The next two 

sections elaborate on how a flexible load with time-dependent 
duration can be formulated and how a multiobjective 
optimisation approach can be used to minimise the production 
cost and maximise the HRES performance measures. It is 
followed by a section containing a real-world case study 
showing the performance of the load planning algorithm.   

II. FORMULATION OF FLEXIBLE LOADS WITH UNKNOWN 

DURATION  

Figure 1 shows a typical real-world example of a demand 
load with flexibility in scheduling while the duration is also 
unknown and dependent on the timing. Here, a water maker 
of 𝑃𝑛𝑜𝑚  is used to produce drinking water for a camp. The 
water maker is required to operate sufficiently to produce a 
targeted amount of water per day 𝑊𝑑,𝑡𝑎𝑟𝑔𝑒𝑡(𝑙𝑖𝑡/𝑑𝑎𝑦). Here, 

the duration of the operation for producing the required water 
is unknown. The production depends on the ambient 
temperature and the relative humidity, which vary throughout 
the day, hence the duration can vary depending on the time of 
operation. In the rest of this section, without loss of generality, 
we use this flexible load examples to explain the flexible load 
formulation.  

Using hourly averaged data and keeping in mind that the 
scheduling window is 24 hours, we divide the operation to 24 
separate 1-hour operations, all with fixed times 𝑡1 through 𝑡24 
which are known. At each time 𝑡𝑗  ( 𝑗 = 1,2, … ,24 ), the 

machine can be off: 𝐿𝑗 = 0  or on: 𝐿𝑗 = 𝑃𝑛𝑜𝑚 , as given in 

Equations (1) and (2) below: 

 𝐿𝑗 ∈ {0, 𝑃𝑛𝑜𝑚};  𝑗 = 1,2, … ,24 () 

 𝑡1 = 1; 𝑡𝑗 = 𝑡𝑗−1 + 1;  𝑗 = 2,… ,24 () 

III. OPTIMISATION PROBLEM FORMULATION 

Normally, when dealing with load planning problems in 
HRES, we take the advantage of the flexibility in the demand 
load to plan it in such a way to optimise the performance of 
the system via:  

 Water Maker 𝑃𝑛𝑜𝑚   

                

1…    …?...    …24 

hours 

Fig. 1. Example of a flexible load: water maker with unknown operation 

time to deliver a certain amount of production 



• Reducing the unmet load 𝑃𝑢  or equivalently, 
improving the reliability of the system if the HRES is 
standalone, or decreasing the dependency on the grid 
in case of on-grid HRES 

• Increasing the excess power, 𝑃𝑒𝑥 , to increase the profit 
of selling electricity to the grid or using it for another 
purpose, e.g. hydrogen production 

• Where applicable, increasing the battery life index 
𝐿𝐼𝑏𝑎𝑡 , and improving the performance of the battery 
bank in long run. This can be achieved by decreasing 
the depth of discharge and/or reducing the number of 
charge/discharge cycles and hence increasing the 
system lifespan and the replacement cost.  

• Increasing the stored energy at the end of the period, 
for instance, the state of charge of the battery bank at 
the end of the day, 𝑆𝑂𝐶24. 

• Decreasing 𝐶𝑂2  emission in a HRES with diesel 
generator as backup or auxiliary power system. 

In systems that deal with production we can also improve 
the performance by: 

• Increasing the production, 𝑝  where applicable (i.e. 
HRES-powered systems that operate to produce a 
targeted production) 

• Decreasing the production cost, 𝐶𝑝 where applicable 

In view of the above the vector of performance measures 
becomes:  

�⃗� = {𝑃𝑢 , 𝑃𝑒𝑥 , 𝐿𝐼𝑏𝑎𝑡 , 𝑆𝑂𝐶24, 𝐶𝑂2, 𝑝, 𝐶𝑝} () 

In the context of multiobjective constrained optimisation 
problem formulation, each one of these performance measures 
can be treated as an objective to be minimised/maximised or 
as a constraint:  

𝑚𝑖𝑛/max �⃗� O(𝐿𝑗)    () 

𝑠. 𝑡. 

�⃗�  C,𝑙 ≤ �⃗� C ≤ �⃗�  C,𝑢   () 

In the above optimisation problem, �⃗� 𝑂 is a subset of �⃗�  and 
stands for the objectives which have been selected to be 
optimised through an multiobjective optimisation process: 

�⃗� O ⊆ {𝑃𝑢 , 𝑃𝑒𝑥 , 𝐿𝐼𝑏𝑎𝑡 , 𝑆𝑂𝐶24, 𝐶𝑂2, 𝑝, 𝐶𝑝}   ()  

and �⃗� C is a subset of  �⃗� − �⃗� O  which stands for the constraints.  

The performance measures for a generic hybrid wind-PV-
battery-fuel cell/electrolyser-diesel configuration are given by 
Equations 7 to 19. These equations are implemented in 
MOHRES and reported in [13-16].  

The unmet load is the amount of demand load that is not 
being supplied by the HRES. The hourly averaged unmet load 
𝑃𝑢 is defined as: 

𝑃𝑢 = {
𝐿 − 𝑃𝑎            𝑖𝑓  𝐿 > 𝑃𝑎

0                     𝑖𝑓  𝐿 ≤ 𝑃𝑎  
   () 

where, 𝐿 is the hourly averaged demand load and 𝑃𝑎  is the 
hourly averaged available power from renewable, storage and 
backup components. For a generic wind-PV-battery-fuel cell-
diesel configuration, 𝑃𝑎 is given by: 

𝑃𝑎 = 𝑃𝑊𝑇 + 𝑃𝑃𝑉 + 𝑃𝐵,𝑒   + 𝑃𝐹𝐶,𝑒 + 𝑃𝐷,𝑛𝑜𝑚  () 

in which, 𝑃𝐷,𝑛𝑜𝑚 is the nominal power of the diesel generator, 

and the rest of the terms on the right hand side of the equation 
are given as follows. 

The power produced by a wind turbine 𝑃𝑊𝑇  is given by: 

𝑃𝑊𝑇 =
1

2
𝜋𝜌𝑉ℎ𝑢𝑏

3𝑅𝑊𝑇
2 𝐶𝑝𝜂𝐸𝐺   () 

where, 𝑉ℎ𝑢𝑏  is the wind speed at the hub height, 𝑅𝑊𝑇  is the 
rotor radius, 𝐶𝑝 is the rotor  power coefficient, and 𝜂𝐸𝐺 is the 

overall efficiency of the mechanical and electrical 
components of wind turbine.   

The power produced by the PV panels 𝑃𝑃𝑉 is given by: 

𝑃𝑃𝑉 = 𝐼𝐴𝑃𝑉𝜂𝑃𝑉   () 

where, 𝐼  is the hourly averaged solar irradiance in 𝑊/𝑚2  , 
𝐴𝑃𝑉 is the total area of the solar panels, and 𝜂𝑃𝑉 is the overall 
efficiency of the of the PV panels.   

For a battery bank with 𝑛𝐵  batteries of each 𝑐𝐵 (𝐴ℎ) 
nominal capacity, current state of charge of 𝑆𝑂𝐶 , and 
discharging efficiency of 𝜂𝐵, the extractable power from the 
battery bank 𝑃𝐵,𝑒  is given by: 

𝑃𝐵,𝑒 = (𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑚𝑖𝑛)𝑛𝐵𝑐𝐵𝑉𝐵𝜂𝐵  () 

The extractable power from a fuel cell over a period of one 
hour, 𝑃𝐹𝐶,𝑒  depends on its nominal power 𝑃𝐹𝐶,𝑛𝑜𝑚  and the 

extractable mass of hydrogen from the hydrogen tank: 

𝑃𝐹𝐶,𝑒 = 𝑚𝑖𝑛{𝑃𝐹𝐶,𝑛𝑜𝑚, 𝑀𝐻2,𝑒𝑚𝐻2
𝐿𝐻𝑉𝜂𝐹𝐶}   () 

where,  𝑚𝐻2
= 2.016 × 10−3 𝑘𝑔/𝑚𝑜𝑙 is the molar mass of 

hydrogen, 𝐿𝐻𝑉 = 33000 Wh/kg is the lower heating value 
of hydrogen, and 𝜂𝐹𝐶  is the fuel cell efficiency. The 
extractable mass of hydrogen from hydrogen tank 𝑀𝐻2,𝑒  is 

given by: 

𝑀𝐻2,𝑒 = 𝑀𝐻2
− 𝑀𝐻2,𝑚𝑖𝑛  () 

in which, 𝑀𝐻2
 is the mass of stored hydrogen in the tank at the 

beginning of the one hour period and 𝑀𝐻2,𝑚𝑖𝑛 is the mass of 

hydrogen unextractable from the tank due to drop in the tank 
pressure.   

The excess power 𝑃𝑒𝑥  is given by: 

𝑃𝑒𝑥 = {

𝑃𝑊𝑇 + 𝑃𝑃𝑉 − 𝐿 − 𝑃𝐵,𝑐 − 𝑃𝐸𝐿,𝑐                                 

 𝑖𝑓  𝑃𝑊𝑇 + 𝑃𝑃𝑉 − 𝐿 > 𝑃𝐵,𝑐 + 𝑃𝐸𝐿,𝑐

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

 () 

where, 𝑃𝐵,𝑐 is the required charging power to reach the state 

of charge of battery to 100%, and 𝑃𝐸𝐿,𝑐  is the electrolyser 

power required to fill the hydrogen tank. 𝑃𝐵,𝑐 is given by: 



𝑃𝐵,𝑐 =
(1−𝑆𝑂𝐶)𝑛𝐵𝑐𝐵𝑉𝐵

𝜂𝐵,𝑐
   () 

where, 𝜂𝐵,𝑐  is the battery’s charging efficiency, and 𝑃𝐸𝐿,𝑐  is 

given by: 

𝑃𝐸𝐿,𝑐 = 𝑚𝑖𝑛 {𝑃𝐸𝐿,𝑛𝑜𝑚, (𝑀𝐻2,𝑚𝑎𝑥 − 𝑀𝐻2
)

𝑚𝐻2𝐿𝐻𝑉

𝜂𝐸𝐿
}   () 

where, 𝑃𝐸𝐿,𝑛𝑜𝑚 is the nominal power of the electrolyser, 𝜂𝐸𝐿 

is the efficiency of the electrolyser, and  𝑀𝐻2,𝑚𝑎𝑥 is the mass 

of the hydrogen in the tank when the tank is fully charged.  

The actual life of batteries is the minimum of the nominal 
lifespan 𝑁𝑛𝑜𝑚,𝐵  and the equivalent life 𝑁𝑒𝑞,𝐵  in years. The 

nominal life of lead-acid batteries is about 4 to 5 years. The 
equivalent life of the battery is calculated using the number of 
charge-discharge cycles and the depth of discharge for each 
cycle: 

𝑁𝑒𝑞,𝐵 =
1

∑
1

[𝑛𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙]𝑘

𝑛𝑑
𝑘=1

   () 

where, 𝑛𝑑  is the number of charge-discharge cycles of the 

battery bank per year, and [𝑛𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙]𝑘 is the number of 

cycles that leads to battery failure depending on the depth of 
discharges. The number of cycles to failure depends on the 
type of the battery. For deep-cycle lead acid batteries, the 
number of cycles to failure is given by [14]: 

[𝑛𝑐𝑦𝑐𝑙𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙]𝑘 = 540.1𝐷𝑂𝐷𝑘
−0.991  () 

Here 𝐿𝐼𝑏𝑎𝑡 = 𝑁𝑒𝑞,𝐵 , assuming that the system operates 

continuously in identical and repeating loading/renewable 
resource conditions for comparison purpose.  

State of charge of the battery bank at the end of each hour 
can be calculated based on the SOC at the beginning of that 
hour and the amount of charge/discharge during that hour, 
depending on the difference between the renewable power and 
load (𝑃𝑅 − 𝐿). Parameter 𝑆𝑂𝐶24 therefore can be calculated 
using the recursive equation below:  

𝑆𝑂𝐶𝑖=24 = 𝑆𝑂𝐶𝑖−1(1 − 𝛿) +
(𝑃𝑅−𝐿)𝑖

𝑛𝐵𝑐𝐵𝑉𝐵
𝜂𝐵  () 

where, 𝑆𝑂𝐶1 = 1 (fully charged batteries at the beginning of 
the scheduling period), 𝛿  is the self-discharge rate, 𝜂𝐵 is 
charge/discharge efficiency, 𝑛𝐵 is the number of batteries in 
the battery bank, and 𝑐𝐵(𝐴ℎ)  and 𝑉𝐵  are the battery unit 
capacity and voltage respectively. 

IV.  CASE STUDY 

The 𝑃𝑛𝑜𝑚 = 9.6 𝑘𝑊  water maker of Section 2 (operating 
in a camp near Abu Dhabi) is powered by a PV-battery system 
of 𝐴𝑃𝑉 =  350 𝑚2 with a PV efficiency of 𝜂𝑃𝑉 =  16% and a 
battery bank of  𝑛𝐵 = 150  deep cycle 24 𝑉 −  80 𝐴ℎ  lead 
acid batteries with a minimum permissible depth of discharge 
of 50%. The water maker is normally in operation 24/7. This 
water maker produces up to 688 litres of water in a typical day 
of September. For a typical day of September the ambient 
temperature, humidity and hourly water production are shown 
in Figure 2 and the solar irradiance is shown in Figure 3. The 
solar irradiance is also shown on this figure.  

 

Fig. 2. Ambinent temperature, relative humidity and hourly production of 

water for a typical day of September  

 

Fig. 3. Solar irradiance for a typical day of September  

The production model as a function of the ambient air 
temperature 𝑇(℃)  and relative humidity 𝜑(%) is given by: 

𝑊ℎ = 0.086(𝑒0.0531𝑇)𝜑   () 

  We want to use this water maker for generating only 350 
litre of water due to a change in the number of workers in the 
camp (change in production target). The lifespan of the water 
maker, hence the cost of production, depends on the total 
number of hours of operation. Now the question is what time 
of the day the water maker should operate to produce the target 
amount of water while operating the minimum number of 
hours. Also, we are looking for those solutions in which the 
water maker is fully powered by renewables without any 
unmet load (𝑃𝑢 = 0), while the state of charge of the battery 
bank remains above or at least equal to the minimum 
permissible state of charge ( 𝑆𝑂𝐶𝑗 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛 ). Moreover, 

ideally, we are looking for solutions in which the battery bank 
is fully charged at the end of the day, making the system ready 
for operation at the start of the next day. The general 
optimisation problem above is therefore converted to the 
following optimisation problem: 
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𝑚𝑖𝑛{𝐶𝑝}  𝑎𝑛𝑑 𝑚𝑎𝑥  { 𝑃𝑒𝑥 , 𝐿𝐼𝑏𝑎𝑡}  () 

𝑠. 𝑡. 

𝑝 ≥ 350 𝑙𝑖𝑡  () 

𝑆𝑂𝐶24 = 1  () 

𝑃𝑢 = 0   () 

Implementing the optimisation problem above in 
MOHRES and using its integrated NSGA-II multiobjective 
optimisation algorithm, 9 Pareto solutions satisfying the 
constraints above are obtained. These solutions are shown in 
Figure 4. Figure 5 shows the operation scheduling of these 
solutions and Table I shows their performance measures. 

 

  

Fig. 4. Pareto solutions of multiobjective optimisation problem (8) 

 

Fig. 5. Load planning Pareto solutions: Schedulling  

TABLE I.  LOAD PLANNING PARETO SOLUTIONS: PERFORMANCE 

MEASURES  

# Sol 𝑷𝒆𝒙 (kW) 𝑳𝑰𝒃𝒂𝒕(𝒅𝒂𝒚)  𝒑 (𝒍𝒊𝒕)  
# Hours of 

Operation

 ~𝑪𝒑 

1 239 1782 354 12 

2 229 1782 378 13 

3 224 2663 376 14 

4 219 1782 400 14 

5 210 1782 421 15 

6 210 1782 422 15 

7 203 1782 431 16 

8 200 1782 443 16 

9 191 1782 464 17 

 

 

Fig. 6. Solution #1-top: operation scheduling, bottom:  24-hour period 

power balance  

The operation duration of these solutions varies between 
12 and 17 hours. Solution #1 with the lowest operation 
duration of 12 hours has the highest lifespan of the water 
maker. Moreover, this solution has the highest excess power, 
which can be turned into an advantage if utilised for supplying 
other loads such as lighting or cooling.  Figure 6 shows the 
operation scheduling and the 24-hour period power balance of 
the water maker system with operation scheduling #1. As it 
can be seen from this figure the system runs on renewables 
only (𝑃𝑢 = 0), the system is ready for operation at the start of 
the next day (𝑆𝑂𝐶24 = 1), and the 𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑚𝑖𝑛 by a good 
margin. 

Although operation scheduling #9 is one of the Pareto 
solutions, one could identify this solution as a good solution 
even without conducting the optimisation, just by referring to 
the water production curve in Figure 1 (more water production 
rates at early hours of the day and charging the battery bank 
towards the end of the daylight). Taking operation scheduling 
#9 as the base solution and comparing that to solutions #1, we 
see a 5 hours reduction in the water maker operation time, 
which is equivalent to 29% longer lifespan. Comparing 
solution #9 with solution #3, we observe 49% longer lifespan 
(𝐿𝐼𝑏𝑎𝑡=2663 versus 𝐿𝐼𝑏𝑎𝑡=1782) for the battery bank.   
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One may argue that since we are looking for the solution 
with minimum production cost there is no need for a 
multiobjective optimisation, and a single objective 
optimisation will be adequate to deliver the problem at hand. 
However, by adopting a multiobjective optimisation approach 
we obtain other nondominated solutions which may be of 
interest to us. For example, by taking a closer look at the other 
scheduling scenarios, we see that, for instance, the second-best 
solution in terms of the production cost (operation scheduling 
#2) produces about 8% more water than the target value. This 
can be seen as an advantage for this solution compared to the 
operation scheduling #1 due to uncertainties in influencing 
parameters (ambient temperature and humidity) and 
renewable resources data (solar irradiance). Although all 
solutions produce enough water satisfying the constraint 𝑝 ≥
350 𝑙𝑖𝑡 , solution #9 produces the highest amount of water 
which can be seen as an advantage if the storage of the water 
is an option. Operation scheduling #3 is the best solution in 
terms of the life index of the battery bank leading to longer 
lifespan for the battery bank and therefore smaller 
replacement cost.  

V. CONCLUSION 

There are load-planning problems in which the flexible 
loads have time-dependent duration due to their dependency 
on the external parameters. The problem formulation and 
multiobjective optimisation algorithm presented in this paper 
allows us to deal with this kind of problems and to find the 
Pareto solutions with respect to multiple criteria related to the 
power system performance and the production. The real-life 
case study presented in this paper shows how the algorithm 
successfully finds Pareto solutions and why adapting a 
multiobjective optimisation instead of a single objective one 
provides us with more options to select from depending on the 
operating conditions.    
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