
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Multiobjective Optimisation of Job Shop

Scheduling of Renewable Powered Machinery

Abdihakim Bokah

School of Engineering

University of Aberdeen

Aberdeen, UK

abdihakim.bokah@abdn.ac.uk

Alireza Maheri

School of Engineering

Centre for Energy Transition

University of Aberdeen

Aberdeen, UK

alireza.maheri@abdn.ac.uk

Abstract— In this paper a multiobjective job shop scheduling

(JSS) problem formulation is presented in which the machinery

load is fully or partially supplied by renewable resources. The

makespan and the unmet load are used as the optimisation

objectives. An NSGA-II is used for finding Pareto solutions. The

algorithm is integrated in the software MOHRES, which

evaluates the performance of the renewable system. Through a

case study, the performance of the algorithm is evaluated, and it

is shown how the algorithm can successfully find Pareto

solutions with minimal makespan and unmet load.

Keywords—job shop scheduling, hybrid renewable energy

systems, sustainable production, JSS, HRES, MOHRES

I. INTRODUCTION

Job shop scheduling (JSS) problem is a class of
optimisation problem with a wide range of applications in
process planning and manufacturing. More recently there has
been a growing interest in solving JSS problem in the context
of sustainable and environmental-friendly production [1-4].
One particular aspect of which, relevant to the focus of this
paper, is where the energy is supplied entirely or partially by
renewable resources [5-7].

As a well-established research area, a vast amount of
published papers on JSS problems can be found in the
literature. Irrespective of the type of JSS problem, one can
classify most of the recent works, with some overlaps, based
on their focus on the optimisation technique and the number
of optimisation objectives. References [8-15] report the
development of robust optimisation methods, including
extensions to well-known methods such as genetic algorithms
(GA), Tabu Search (TS) Particle Swarm Optimisation (PSO)
and Ant Colony (AC), as well as other meta-heuristic and
hybrid methods. Solutions to a JSS optimisation problem can
be evaluated with respect to a series of criteria. The most
commonly used assessment criterion is the overall processing
time (makespan). The minimum makespan can be found by
solving a single objective optimisation problem. While the
majority of the published work is on single objective
optimisation formulation, many published works take into
account more than one criterion for the evaluation of solutions
and solve JSS problem with multiple objectives such as
makespan, tardiness and energy consumption [16-20].

In this paper, first we present a multiobjective JSS problem
formulation with makespan and unmet load as two conflicting
objectives to be minimised. An NSGA-II developed for
multiobjective optimisation of JSS problem is then briefly

explained followed by a case study in which we evaluate the
performance of the optimisation algorithm.

II. JSS PROBLEM DEFINITION AND OPTIMISATION

FORMULATION

A vast number of real-life applications can be modelled in
the form of a classical JSS problem. In classical JSS problems,
which are the focus of this study, machines required to deliver
all tasks are of different types. For a total number of 𝑁𝑡 tasks
to be delivered, there are 𝑁𝑚 machines of 𝑁𝑚 different types.
In other words, tasks are assigned to specific machines, more
than one task cannot be processed on the same machine at the
same time and a process cannot be interrupted before
completion. Visiting the literature, one notices that many
reported formulations apply some unrealistic simplifications
such as assuming that no two tasks from the same job are
assigned to the same machine. Moreover, having a closer look
at the broadly used benchmark problems one finds two
completely unnecessary simplifications: (i) the number of
machines required to deliver a job is the same for all jobs and
(ii) all machines are required to deliver each one of the jobs in
the job set. The proposed formulation of JSS problem is more
general and allows us to solve more realistic cases. In
summary, in this formulation:

• the number of tasks in jobs can vary from one job to
another,

• the number of machines required to deliver a job can
vary from one job to another,

• the number of machines required to deliver a job can
be smaller than the number of tasks in that jobs.

Fig. 1 shows how a typical JSS problem can be defined
according to the formulation above (coded in MATLAB).
Parameter 𝑗𝑜𝑏(𝑗). 𝑡𝑎𝑠𝑘 is a vector of length 𝑛𝑡,𝑗 containing

task names (or index) in job 𝑗 with the right precedence;
𝑗𝑜𝑏(𝑗). 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 and 𝑗𝑜𝑏(𝑗). 𝑡𝑖𝑚𝑒 are also vectors of length
𝑛𝑡,𝑗 containing the name (or index) of machines associated to

the tasks in 𝑗𝑜𝑏(𝑗). 𝑡𝑎𝑠𝑘 and the processing time for each
task. Parameter 𝑚𝑎𝑐ℎ𝑖𝑛𝑒_𝑝 contains the nominal power of
each machine. As it can be observed from this example, the
six jobs on this problem contain different number of tasks. In
case of Job 1, it can be seen that both Tasks 4 and 1 are
processed on the same machine (Machine 1). That is, the
number of tasks on this job is different from the number of
required machines (4 versus 3). In this example, there are 10
machines in the workshop but only 8 of them (Machines 1 to
7 and 9) are required for delivering this set of jobs.

Fig. 1. A typical JSS problem without unnecessary constraints

In this figure the times are in minutes and powers in watt.
Fig. 2 shows an unscheduled Gant chart for the JJS Problem
of Fig. 1. In this figure each row shows a job with the tasks
from left to right in the right precedence. Machines are colour
coded.

The optimisation problem is formulated as:

𝑚𝑖𝑛 𝒀 ()

subject to:

𝑆𝑖+1,𝑗 ≥ 𝐶𝑖,𝑗(= 𝑆𝑖,𝑗 + 𝑃𝑖,𝑗) ∀𝑖 ∈ {1, 2, … , 𝑛𝑡,𝑗} ∀𝑗 ∈

{1, 2, … , 𝑁𝑗} ()

𝑚𝑖,𝑗 = 𝑚𝑘,𝑙 ⇒ (𝑆𝑖,𝑗 ≥ 𝑆𝑘,𝑙 + 𝑃𝑘,𝑙) ∨ (𝑆𝑘,𝑙 ≥ 𝑆𝑖,𝑗 +

𝑃𝑖,𝑗)  ∀𝑖 ∈ {1, 2, … , 𝑛𝑡,𝑗} ()

𝑆1,𝑗 ≥ 𝐽𝑗  ∀𝑗 ∈ {1, 2, … , 𝑁𝑗} ()

where,

𝒀 = [𝑦1, 𝑦2 , … , 𝑦𝑁𝑜𝑏𝑗
] is the vector of 𝑁𝑜𝑏𝑗 objectives;

𝑁𝑗 is the number of jobs;

𝑛𝑡,𝑗 is the number of tasks on job 𝑗

𝑆𝑖,𝑗 , 𝑃𝑖,𝑗 and 𝐶𝑖,𝑗 are the start time, processing time and

completion time of task 𝑖 on job 𝑗 (task 𝑡𝑖,𝑗);

𝑚𝑖,𝑗 is the machine associated to task 𝑡𝑖,𝑗;

𝐶𝑛𝑡,𝑗,𝑗 is the completion time of the last task of job 𝑗;

𝐽𝑗 is the arrival time of job 𝑗;

𝑁𝑚 is the number of machines required to deliver all jobs.

Objectives 𝑦𝑖 can be defined as the overall makespan (𝐿 =

max {𝐶𝑛𝑡,𝑗,𝑗} , ∀ 𝑗 ∈ {1, 2, … , 𝑁𝑗}), and the renewable power

deficit or the unmet load 𝑃𝑢, which represents the reliability of
renewable power supply in a standalone hybrid renewable

energy system (HRES) or the cost of energy from the grid, in
case of grid-connected HRES.

The unmet load 𝑃𝑢 depends on the HRES configuration
(the combination of renewable/storage/backup components),
size of each component in the HRES, renewable resources
(e.g. wind and solar irradiance profiles), and the load profile.
The load profile in industrial applications can be divided into
two parts (i) primary load and (ii) machinery load. The
primary load profile is due to facilities in the workshop such
as lighting and HVAC systems. The primary load profile is
fixed and independent of job scheduling. On the other hand,
the machinery load profile depends on how the jobs are
scheduled. The unmet load can be calculated using the
following equations:

𝑃𝑢 = 𝑃𝑅 + 𝑃𝑠 − 𝑝′ − 𝑝′′ ()

in which, 𝑃𝑅 is the renewable power (e.g. wind, PV, fuel cell),
𝑃𝑠 is the extractable power from storage system (e.g. battery
bank or hydrogen tank), 𝑝′ is the primary load and 𝑝′′ is the
machinery load. In an hourly averaged basis, the daily unmet
load is given by:

𝑃𝑢 = ∑ (𝑃𝑅 + 𝑃𝑠 − 𝑝′ − 𝑝′′)𝑡
24
𝑡=1 ()

𝑝𝑡
′′ = [∑ 𝑝𝑚

𝑁𝑚
𝑚=1]

𝑡
 ()

in which, 𝑝𝑚 is the power consumption of machine 𝑚 and
[𝑝𝑚]𝑡 is the power consumption of machine 𝑚 during hour 𝑡.

Hourly averaged renewable power 𝑃𝑅 depends on the
hourly averaged renewable resources and the type, size and
power model of renewable components. The hourly averaged
renewable resources depend on the site and is a given input.
Similarly, the primary load 𝑝′ depends on the site and is a
given input. The hourly averaged extractable power from the
storage system 𝑃𝑠 during hour 𝑡 depends on the size and type
of the storage system as well as the history of renewable
production and power consumption during hours 1 to 𝑡 − 1 .

III. NSGA-II FOR MULTIOBJECTIVE OPTIMISATION OF JSS

PROBLEM

A nondominated sorting genetic algorithm (NSGA-II) is
developed specifically for solving JSS problems formulated as
above. The chromosome is a matrix of size 𝑁𝑚 × 𝑛𝑡,𝑚,𝑚𝑎𝑥 ,

where 𝑛𝑡,𝑚,𝑚𝑎𝑥 is the maximum number of tasks on each

machine given by Equation 8. It should be noted that in the
generalised JSS formulation, the number of tasks assigned to
a machine, 𝑛𝑡,𝑚, can vary from one machine to another.

𝑛𝑡,𝑚,𝑚𝑎𝑥 = 𝑚𝑎𝑥 {𝑛𝑡,𝑚 , ∀𝑚 ∈ {1, 2, … , 𝑁𝑚}} ()

Fig. 3 shows a typical chromosome, here populated with a
sampler solution of the JSS problem of Fig. 1. In this
chromosome, each gene refers to a task number (or name).
Genes with values 0 are blank tasks, allowing different jobs
have different number of tasks. Each row of this matrix
represents a machine and the set of tasks, which are allocated
to that machine in the right order of operation. Using a 2D
chromosome allows us to benefit from the advantages of
geometric crossover in boosting the performance of the GA.
The crossover operator is shown in Fig. 4.

job(1).task=[4,9,1,6];

job(1).machine=[1,2,1,4];

job(1).time=[20,30,20,30];

job(2).task=[2,5,7];

job(2).machine=[2,5,3];

job(2).time=[10,20,30];

job(3).task=[103,108,110,111,112];

job(3).machine=[1,7,3,5,4];

job(3).time=[40,30,30,30,20];

job(4).task=[203,208,210,211,212];

job(4).machine=[1,9,3,5,4];

job(4).time=[20,10,30,20,10];

job(5).task=[22,25,27];

job(5).machine=[2,5,3];

job(5).time=[30,20,40];

job(6).task=[301,302,303,304,305,306,307,308,309,310];

job(6).machine=[7,9,3,5,4,2,9,5,6,7];

job(6).time=[40,20,10,20,30,20,20,20,40,30];

machine_p=[700,900,1100,1300,700,1900,1400,800,1100,15

00,1600,1800,400,1500];

Fig. 2. Unscheduled Gant chart of JJS Problem of Fig. 1 on jobs

Machine 1 103 203 4 1 0 0

Machine 2 2 9 22 306 0 0

Machine 3 7 303 210 27 110 0

Machine 4 305 6 212 112 0 0

Machine 5 5 304 25 211 308 111

Machine 6 309 0 0 0 0 0

Machine 7 301 108 310 0 0 0

Machine 9 302 208 307 0 0 0

Fig. 3. A typical 2D chromosome representing solutions of JSS problem.

Fig. 4. Geometric crossover of JSS 2D chromosomes

Fig. 5. Mutation-swapping tasks on a randomly selected machine

Using a tournament selection two parents are randomly
selected. A randomly cut point divides the parents into upper
and lower parts. The upper and lower parts from two parents
are then recombined to make two new children. By doing so,
children inherent part of the machines from one parent and the
other part from another parent.

The mutation operation consists of two steps. In the first
step a machine (a row in the 2D chromosome) is randomly
selected for mutation and then in the second step two
randomly selected genes (tasks on that machine) are swapped
to form a new solution (see Fig. 5). Blank tasks (identified by
0 in the chromosome) are excluded from selection.

Within the optimisation process, once an individual is
generated, whether as a randomly generated member of the
initial population, or as the result of the crossover and
mutation operations, a repair algorithm is called. The repair
algorithm first checked for the Constraints 2 to 4 above. If any
of them are contradicted, the algorithm, where possible,
heuristically fixes the individual towards satisfying all the
constraints, otherwise rejects the solution. To allow shifting
the whole scheduling within the scheduling period, a starting
time is also added to the chromosome. Once a correct solution
is generated an evaluator is called. Each individual is
evaluated against its JSS performance measures (here, the
makespan) as well as its HRES performance measures (here,
the unmet load). The optimisation programme is integrated to
MOHRES, which delivers the evaluation against HRES
performance measures.

IV. CASE STUDY

In this case study we aim at the performance evaluation of
the optimisation algorithm above in terms of its capability of
(i) finding the solution with minimum makespan, (ii) finding
the solution with minimum unmet load, and (iii) producing a
relatively well populated Pareto front. For this purpose, we
assume a PV renewable system without any storage. It should
be noted that the algorithm has no restriction on the
configuration of the renewable energy system and MOHRES
can deal with a generic wind-PV-battery-fuel cell-
electrolyser-diesel configuration. The system is connected to
the grid and any unmet load is supplied by the grid.

For a PV system the renewable power 𝑃𝑅 during hour 𝑡 is
given by:

𝑃𝑅𝑡
= 𝑃𝑃𝑉 = 𝜂𝑃𝑉𝐴𝑃𝑉𝐼𝑡 ()

Parents Children

where, 𝐼𝑡 in 𝑊/𝑚2 is the hourly averaged solar irradiance
during hour 𝑡, 𝐴𝑃𝑉 is the total area of the solar panels, and 𝜂𝑃𝑉
is the overall efficiency of the of the PV panels.

We assume the site has a solar irradiance and primary load
profiles as shown in Fig. 6. With a PV size of 𝐴𝑃𝑉 = 300 𝑚2
and a nominal efficiency of 𝜂𝑃𝑉 = 14%, we see the unmet
load (negative values) and excess power (positive values)
profiles due to the primary load in Fig. 7. The overall unmet
load due to the primary load without the machinery load is
𝑃𝑢 = 17600 𝑊. The total machinery load is 13067 W.

Based on these figures, any additional machinery load
before 9:00 and after 19:00 hours will lead to an increase in
the unmet load. That is, we expect to see that a successful
optimisation algorithm produces a number of Pareto solution
with two extreme solutions, one with the minimum makespan
in which all jobs are scheduled at the beginning of the analysis
period (here 00:01 min) and another extreme solution with
minimum unmet load, in which all jobs are scheduled
somewhere between 9:00 and 19:00 hours, where there is
excess power.

We use the example of Fig. 1 as our JSS problem case.
This problem has a known minimum makespan of 250
minutes (Job 6 starting at t=0 has a makespan of 250 minutes
for back to back tasks).

The optimisation problem of Equation 1 becomes:

𝑚𝑖𝑛{𝐿, 𝑃𝑢} ()

subject to Constraints 2 to 4.

Fig. 6. Solar irradiance and primary load profiles

Fig. 7. Unmet load (negative values) and excess power (positive values)

profiles

TABLE I. PARETO SOLUTIONS OF OPTIMISATION PROBLEM (9)

Sol

Start of

Operation

(min)

Makespan/End

of Operation

(min)

Operation

Time

(min)

Overall

Unmet

Load

(W)

Added

Unmet Load

due to

Machinery

Load (W)

1 0 250 250 30667 13067

2 0 260 260 30667 13067

3 0 350 350 30667 13067

4 200 490 290 30433 12833

5 110 500 390 30200 12600

6 0 510 510 29967 12367

7 220 520 300 29650 12050

8 230 530 300 29333 11733

9 250 540 290 28833 11233

10 250 550 300 28117 10517

11 210 560 350 27600 10000

12 310 570 260 26200 8600

13 300 600 300 25783 8183

14 330 620 290 25067 7467

15 330 630 300 24300 6700

16 350 640 290 23900 6300

17 350 650 300 23383 5783

18 370 670 300 22683 5083

19 380 680 300 22283 4683

20 400 690 290 21717 4117

21 440 700 260 19833 2233

22 440 730 290 19600 2000

23 450 740 290 19100 1500

24 470 760 290 18100 500

25 480 770 290 17600 0

In this case study, any solution satisfying these constraints
is a feasible solution. However, it should be noted that a
correct solution (a solution satisfying Constraints 2 to 4) is not
necessarily a feasible solution if we include HRES-
performance related constraints to this optimisation problem.
The optimisation NSGA II algorithm was tuned and the
optimisation parameters 𝑃𝑐 = 0.3, 𝑃𝑚 = 0.8, 𝑁𝑝𝑜𝑝 = 50 and

𝑁𝑔𝑒𝑛 = 50 were found to lead to identical extreme solutions

in five consecutive runs.

Table I shows the makespan and the added unmet load of
the 25 nondominated solutions as well as their start of
operation time, total operation time and the overall unmet
load. The makespan is measured from 00:01 minutes to the
time when all tasks are completed, while the total operation
time is the actual time taken to deliver the tasks. Fig. 8 shows
the Pareto front, in which Solution #1 is the best in terms of
the makespan and Solution #25 is the best solutions with
respect to the unmet load.

Fig. 8. Pareto front solutions

0

100

200

300

400

500

600

700

800

900

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23

So
la

r
Ir

ra
d

ia
n

ce
 (

W
/m

2
)

P
ri

m
ar

y
Lo

ad
 (

W
)

Hours

Primary Load

Solar Irradiance

-5000

0

5000

10000

15000

20000

25000

30000

35000

1 3 5 7 9 11 13 15 17 19 21 23

U
n

m
et

 L
o

ad
/E

xc
es

s
P

o
w

er
 (

W
)

Hours

Fig. 9. Gant chart and load distribution of Solution #1, the optimum solution w. r. t. makespan 𝐿

Fig. 10. Gant chart and load distribution of Solution #25, the optimum solution w. r. t. unmet load 𝑃𝑢

The extreme solution w. r. t. the first objective, makespan,

has a makespan of 250 minutes which is the known minimum
makespan for this JSS problem. The extreme solution w. r. t.
the second objective, unmet load, produces no more unmet
load besides the already existing one due to the primary load.
That is, the unmet load stays at 17600 W. Also, since this
solution is a nondominated solutions, it must have the
minimum possible makespan. Starting from hours 9:00 it has
a makespan of 290 minutes.

Fig. 9 and Fig. 10 show the Gant chart of the extreme
solutions (Solutions #1 and #25), as well as their machine load
profiles and the overall demand load profiles. In these figures
the Gant chart are defined on machines. Each row shows a

machine operation with tasks colour coded depending on
which job they belong to.

V. CONCLUSION

Solving JSS problem in the context of renewable-powered
manufacturing and sustainable and environmental-friendly
production has received an increasing interest in the recent
years. The multiobjective JSS problem formulation presented
in this paper employs an NSGA-II algorithm for solving JSS
problem with two objectives of minimising the makespan and
minimising the dependency of the process on the grid
electricity. Integrating the optimisation algorithm with the
software tool MOHRES allows for evaluation of the
performance of the renewable system in supplying the

machinery demand load. The case study reported in this paper
proves the performance of the optimisation algorithm in terms
of its capability of finding the solution with minimum
makespan, finding the solution with minimum unmet load,
and producing a relatively well populated Pareto front.

REFERENCES

[1] R. Menghi, A. Papetti, M. Germani and M. Marconi
“Energy efficiency of manufacturing systems: A review
of energy assessment methods and tools,” Journal of Cleaner
Production, vol. 240, 2019, 118276, ISSN 0959-6526,
https://doi.org/10.1016/j.jclepro.2019.118276.

[2] L. Jenny, C. Diaz and C. Ocampo-Martinez, “Energy efficiency in
discrete-manufacturing systems: Insights, trends, and control
strategies,” Journal of Manufacturing Systems, vol. 52, pp. 131-145,
2019.

[3] O. Biel and C.H. Mlock, “Systematic literature review of decision
support models for energy-efficient production planning,” Computers
& Industrial Engineering, vol. 101, pp. 243–259, 2016.

[4] L. Gan, P. Jiang, B. Lev and X. Zhou, “Balancing of supply
and demand of renewable energy power system: A review and
bibliometric analysis,” Sustainable Futures, vol. 2, 2020, 100013, ISSN
2666-1888, https://doi.org/10.1016/j.sftr.2020.100013.

[5] A. Nayak, S. Lee and J. W. Sutherland, “Dynamic Load Scheduling for
Energy Efficiency in a Job Shop with On-site Wind Mill for Energy
Generation,” Procedia CIRP, vol. 80, pp. 197-202, 2019,
https://doi.org/10.1016/j.procir.2018.12.003.

[6] S. Wang, S. J. Mason and H. Gangammanavar, “Stochastic
optimization for flow-shop scheduling with on-site renewable energy
generation using a case in the United States,” Computers & Industrial
Engineering, vol. 149, 2020, 106812, ISSN 0360-8352,
https://doi.org/10.1016/j.cie.2020.106812.

[7] R. Ramezanian, M. M. Vali-Siar and M. Jalalian, “Green permutation
flowshop scheduling problem with sequence-dependent setup times: a
case study,” International Journal of Production Research, vol. 57, pp.
3311-3333, 2019.

[8] L. Asadzadeh, “A parallel artificial bee colony algorithm for the job
shop scheduling problem with a dynamic migration strategy,”
Computers & Industrial Engineering, vol. 102, pp. 359-367, 2016.

[9] A. Jamili, “Robust job shop scheduling problem: Mathematical
models, exact and heuristic algorithms,” Expert Systems with
Applications, vol. 55, pp. 341-35015, 2016.

[10] W.Y. Ku and J. C. Beck, “Mixed Integer Programming models for job
shop scheduling: A computational analysis,” Computers & Operations
Research, vol. 73, pp. 165-173, 2016.

[11] M. Saidi-Mehrabad, S. Dehnavi-Arani, F. Evazabadian and V.
Mahmoodian, “An Ant Colony Algorithm (ACA) for solving the new
integrated model of job shop scheduling and conflict-free routing of
AGVs,” Computers & Industrial Engineering, vol. 86, pp. 2-13, 2015.

[12] A. Ponsich and C. A. Coello Coello, “A hybrid Differential
Evolution—Tabu Search algorithm for the solution of Job-Shop
Scheduling Problems,” Applied Soft Computing, vol. 13, pp. 462-474,
2013

[13] N. Kundakcı and O. Kulak, “Hybrid genetic algorithms f.or minimizing
makespan in dynamic job shop scheduling problem,” Computers &
Industrial Engineering, vol 96, pp. 31-51, 2016.

[14] X. Li and L. Gao, “An effective hybrid genetic algorithm and tabu
search for flexible job shop scheduling problem,” International Journal
of Production Economics, vol. 174, pp. 93-110, 2016.

[15] W. Sukkerd and T. Wuttipornpun, “Hybrid genetic algorithm and tabu
search for finite capacity material requirement planning system in
flexible flow shop with assembly operations,” Computers & Industrial
Engineering, vol. 97, pp. 157-169, 2016.

[16] R. Zhang and R. Chiong, “Solving the energy-efficient job shop
scheduling problem: a multi-objective genetic algorithm with enhanced
local search for minimizing the total weighted tardiness and total
energy consumption,” Journal of Cleaner Production, vol 112, pp.
3361-3375, 2016.

[17] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol 54, pp. 453-473, 2008

[18] J.Q. Li, Q. K. Pan and M. F. Tasgetiren, “A discrete artificial bee
colony algorithm for the multi-objective flexible job-shop scheduling
problem with maintenance activities,” Applied Mathematical
Modelling, vol. 38, pp. 1111-1132, 2014.

[19] V. Kaplanoğlu, “An object-oriented approach for multi-objective
flexible job-shop scheduling problem,” Expert Systems with
Applications, vol. 45, pp. 71-84, 2016.

[20] V. Majazi Dalfard and G. Mohammadi, “Two meta-heuristic
algorithms for solving multi-objective flexible job-shop scheduling
with parallel machine and maintenance constraints,” Computers &
Mathematics with Applications, vol. 64, pp. 2111-2117, 2012.

[21] MOHRES documents. www.mohres.com

[22] A. Maheri, "Multi-objective design optimisation of standalone hybrid
wind-PV-diesel systems under uncertainties," Renewable Energy, vol.
66, pp. 650-661, 2014.

[23] A. Maheri, "A critical evaluation of deterministic methods in size
optimisation of reliable and cost effective standalone hybrid renewable
energy systems," Reliab. Eng. Syst. Saf., vol. 130, pp. 159-174, 2014.

https://doi.org/10.1016/j.jclepro.2019.118276
https://doi.org/10.1016/j.sftr.2020.100013
https://doi.org/10.1016/j.cie.2020.106812
http://www.mohres.com/

