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Abstract— In this paper a multiobjective job shop scheduling 

(JSS) problem formulation is presented in which the machinery 

load is fully or partially supplied by renewable resources. The 

makespan and the unmet load are used as the optimisation 

objectives. An NSGA-II is used for finding Pareto solutions. The 

algorithm is integrated in the software MOHRES, which 

evaluates the performance of the renewable system.  Through a 

case study, the performance of the algorithm is evaluated, and it 

is shown how the algorithm can successfully find Pareto 

solutions with minimal makespan and unmet load.  
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I. INTRODUCTION 

Job shop scheduling (JSS) problem is a class of 
optimisation problem with a wide range of applications in 
process planning and manufacturing. More recently there has 
been a growing interest in solving JSS problem in the context 
of sustainable and environmental-friendly production [1-4]. 
One particular aspect of which, relevant to the focus of this 
paper, is where the energy is supplied entirely or partially by 
renewable resources [5-7].   

As a well-established research area, a vast amount of 
published papers on JSS problems can be found in the 
literature. Irrespective of the type of JSS problem, one can 
classify most of the recent works, with some overlaps, based 
on their focus on the optimisation technique and the number 
of optimisation objectives. References [8-15] report the 
development of robust optimisation methods, including 
extensions to well-known methods such as genetic algorithms 
(GA), Tabu Search (TS) Particle Swarm Optimisation (PSO) 
and Ant Colony (AC), as well as other meta-heuristic and 
hybrid methods. Solutions to a JSS optimisation problem can 
be evaluated with respect to a series of criteria. The most 
commonly used assessment criterion is the overall processing 
time (makespan). The minimum makespan can be found by 
solving a single objective optimisation problem.  While the 
majority of the published work is on single objective 
optimisation formulation, many published works take into 
account more than one criterion for the evaluation of solutions 
and solve JSS problem with multiple objectives such as 
makespan, tardiness and energy consumption [16-20]. 

In this paper, first we present a multiobjective JSS problem 
formulation with makespan and unmet load as two conflicting 
objectives to be minimised. An NSGA-II developed for 
multiobjective optimisation of JSS problem is then briefly 

explained followed by a case study in which we evaluate the 
performance of the optimisation algorithm. 

II. JSS PROBLEM DEFINITION AND OPTIMISATION 

FORMULATION  

A vast number of real-life applications can be modelled in 
the form of a classical JSS problem. In classical JSS problems, 
which are the focus of this study, machines required to deliver 
all tasks are of different types. For a total number of  𝑁𝑡  tasks 
to be delivered, there are 𝑁𝑚   machines of 𝑁𝑚 different types.  
In other words, tasks are assigned to specific machines, more 
than one task cannot be processed on the same machine at the 
same time and a process cannot be interrupted before 
completion. Visiting the literature, one notices that many 
reported formulations apply some unrealistic simplifications 
such as assuming that no two tasks from the same job are 
assigned to the same machine. Moreover, having a closer look 
at the broadly used benchmark problems one finds two 
completely unnecessary simplifications: (i) the number of 
machines required to deliver a job is the same for all jobs and 
(ii) all machines are required to deliver each one of the jobs in 
the job set. The proposed formulation of JSS problem is more 
general and allows us to solve more realistic cases. In 
summary, in this formulation: 

• the number of tasks in jobs can vary from one job to 
another, 

• the number of machines required to deliver a job can 
vary from one job to another, 

• the number of machines required to deliver a job can 
be smaller than the number of tasks in that jobs. 

Fig. 1 shows how a typical JSS problem can be defined 
according to the formulation above (coded in MATLAB). 
Parameter 𝑗𝑜𝑏(𝑗). 𝑡𝑎𝑠𝑘  is a vector of length 𝑛𝑡,𝑗  containing 

task names (or index) in job 𝑗  with the right precedence; 
𝑗𝑜𝑏(𝑗). 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 and 𝑗𝑜𝑏(𝑗). 𝑡𝑖𝑚𝑒 are also vectors of length  
𝑛𝑡,𝑗 containing the name (or index) of machines associated to 

the tasks in 𝑗𝑜𝑏(𝑗). 𝑡𝑎𝑠𝑘  and the processing time for each 
task. Parameter 𝑚𝑎𝑐ℎ𝑖𝑛𝑒_𝑝  contains the nominal power of 
each machine. As it can be observed from this example, the 
six jobs on this problem contain different number of tasks. In 
case of Job 1, it can be seen that both Tasks 4 and 1 are 
processed on the same machine (Machine 1). That is, the 
number of tasks on this job is different from the number of 
required machines (4 versus 3). In this example, there are 10 
machines in the workshop but only 8 of them (Machines 1 to 
7 and 9) are required for delivering this set of jobs. 



 

Fig. 1. A typical JSS problem without unnecessary constraints 

In this figure the times are in minutes and powers in watt.  
Fig. 2 shows an unscheduled Gant chart for the JJS Problem 
of Fig. 1. In this figure each row shows a job with the tasks 
from left to right in the right precedence. Machines are colour 
coded. 

The optimisation problem is formulated as: 

𝑚𝑖𝑛 𝒀  () 

subject to: 

𝑆𝑖+1,𝑗 ≥ 𝐶𝑖,𝑗(= 𝑆𝑖,𝑗 + 𝑃𝑖,𝑗) ∀𝑖 ∈ {1, 2, … , 𝑛𝑡,𝑗} ∀𝑗 ∈

{1, 2, … , 𝑁𝑗}  () 

𝑚𝑖,𝑗 = 𝑚𝑘,𝑙 ⇒ (𝑆𝑖,𝑗 ≥ 𝑆𝑘,𝑙 + 𝑃𝑘,𝑙) ∨ (𝑆𝑘,𝑙 ≥ 𝑆𝑖,𝑗 +

𝑃𝑖,𝑗)  ∀𝑖 ∈ {1, 2, … , 𝑛𝑡,𝑗}  () 

𝑆1,𝑗 ≥ 𝐽𝑗  ∀𝑗 ∈ {1, 2, … , 𝑁𝑗}  () 

where, 

𝒀 = [𝑦1, 𝑦2 , … , 𝑦𝑁𝑜𝑏𝑗
] is the vector of 𝑁𝑜𝑏𝑗 objectives; 

𝑁𝑗 is the number of jobs; 

𝑛𝑡,𝑗 is the number of tasks on job 𝑗 

𝑆𝑖,𝑗 , 𝑃𝑖,𝑗  and 𝐶𝑖,𝑗  are the start time, processing time and 

completion time of task 𝑖 on job 𝑗 (task 𝑡𝑖,𝑗); 

𝑚𝑖,𝑗 is the machine associated to task 𝑡𝑖,𝑗; 

𝐶𝑛𝑡,𝑗,𝑗 is the completion time of the last task of job 𝑗; 

𝐽𝑗 is the arrival time of job 𝑗; 

𝑁𝑚 is the number of machines required to deliver all jobs. 

Objectives 𝑦𝑖  can be defined as the overall makespan (𝐿 =

max {𝐶𝑛𝑡,𝑗,𝑗} , ∀ 𝑗 ∈ {1, 2, … , 𝑁𝑗}), and the renewable power 

deficit or the unmet load 𝑃𝑢, which represents the reliability of 
renewable power supply in a standalone hybrid renewable 

energy system (HRES) or the cost of energy from the grid, in 
case of grid-connected HRES.   

The unmet load 𝑃𝑢  depends on the HRES configuration 
(the combination of renewable/storage/backup components), 
size of each component in the HRES, renewable resources 
(e.g. wind and solar irradiance profiles), and the load profile. 
The load profile in industrial applications can be divided into 
two parts (i) primary load and (ii) machinery load. The 
primary load profile is due to facilities in the workshop such 
as lighting and HVAC systems. The primary load profile is 
fixed and independent of job scheduling.  On the other hand, 
the machinery load profile depends on how the jobs are 
scheduled. The unmet load can be calculated using the 
following equations: 

𝑃𝑢 = 𝑃𝑅 + 𝑃𝑠 − 𝑝′ − 𝑝′′    () 

in which, 𝑃𝑅 is the renewable power (e.g. wind, PV, fuel cell), 
𝑃𝑠 is the extractable power from storage system (e.g. battery 
bank or hydrogen tank), 𝑝′ is the primary load and 𝑝′′ is the 
machinery load. In an hourly averaged basis, the daily unmet 
load is given by: 

𝑃𝑢 = ∑ (𝑃𝑅 + 𝑃𝑠 − 𝑝′ − 𝑝′′)𝑡
24
𝑡=1    () 

𝑝𝑡
′′ = [∑ 𝑝𝑚

𝑁𝑚
𝑚=1 ]

𝑡
    () 

in which, 𝑝𝑚  is the power consumption of machine 𝑚  and 
[𝑝𝑚]𝑡 is the power consumption of machine 𝑚 during hour 𝑡. 

Hourly averaged renewable power 𝑃𝑅  depends on the 
hourly averaged renewable resources and the type, size and 
power model of renewable components. The hourly averaged 
renewable resources depend on the site and is a given input. 
Similarly, the primary load 𝑝′ depends on the site and is a 
given input. The hourly averaged extractable power from the 
storage system 𝑃𝑠 during hour 𝑡  depends on the size and type 
of the storage system as well as the history of renewable 
production and power consumption during hours 1 to 𝑡 − 1 . 

III. NSGA-II FOR MULTIOBJECTIVE OPTIMISATION OF JSS 

PROBLEM 

A nondominated sorting genetic algorithm (NSGA-II) is 
developed specifically for solving JSS problems formulated as 
above. The chromosome is a matrix of size 𝑁𝑚 × 𝑛𝑡,𝑚,𝑚𝑎𝑥 , 

where 𝑛𝑡,𝑚,𝑚𝑎𝑥  is the maximum number of tasks on each 

machine given by Equation 8. It should be noted that in the 
generalised JSS formulation, the number of tasks assigned to 
a machine, 𝑛𝑡,𝑚, can vary from one machine to another. 

𝑛𝑡,𝑚,𝑚𝑎𝑥 = 𝑚𝑎𝑥 {𝑛𝑡,𝑚 , ∀𝑚 ∈ {1, 2, … , 𝑁𝑚}} () 

Fig. 3 shows a typical chromosome, here populated with a 
sampler solution of the JSS problem of Fig. 1. In this 
chromosome, each gene refers to a task number (or name). 
Genes with values 0 are blank tasks, allowing different jobs 
have different number of tasks. Each row of this matrix 
represents a machine and the set of tasks, which are allocated 
to that machine in the right order of operation. Using a 2D 
chromosome allows us to benefit from the advantages of 
geometric crossover in boosting the performance of the GA. 
The crossover operator is shown in Fig. 4. 

job(1).task=[4,9,1,6]; 

job(1).machine=[1,2,1,4]; 

job(1).time=[20,30,20,30]; 

  

job(2).task=[2,5,7]; 

job(2).machine=[2,5,3]; 

job(2).time=[10,20,30]; 

  

job(3).task=[103,108,110,111,112]; 

job(3).machine=[1,7,3,5,4]; 

job(3).time=[40,30,30,30,20]; 

  

job(4).task=[203,208,210,211,212]; 

job(4).machine=[1,9,3,5,4]; 

job(4).time=[20,10,30,20,10]; 

  

job(5).task=[22,25,27]; 

job(5).machine=[2,5,3]; 

job(5).time=[30,20,40]; 

  

job(6).task=[301,302,303,304,305,306,307,308,309,310]; 

job(6).machine=[7,9,3,5,4,2,9,5,6,7]; 

job(6).time=[40,20,10,20,30,20,20,20,40,30]; 

 

machine_p=[700,900,1100,1300,700,1900,1400,800,1100,15

00,1600,1800,400,1500];  

 



 

 

 

 

Fig. 2. Unscheduled Gant chart of JJS Problem of Fig. 1 on jobs 

Machine 1 103 203 4 1 0 0 

Machine 2 2 9 22 306 0 0 

Machine 3 7 303 210 27 110 0 

Machine 4 305 6 212 112 0 0 

Machine 5 5 304 25 211 308 111 

Machine 6 309 0 0 0 0 0 

Machine 7 301 108 310 0 0 0 

Machine 9 302 208 307 0 0 0 

Fig. 3. A typical 2D chromosome representing solutions of JSS problem. 

 

Fig. 4. Geometric crossover of JSS 2D chromosomes 

 

Fig. 5. Mutation-swapping tasks on a randomly selected machine 

Using a tournament selection two parents are randomly 
selected. A randomly cut point divides the parents into upper 
and lower parts. The upper and lower parts from two parents 
are then recombined to make two new children. By doing so, 
children inherent part of the machines from one parent and the 
other part from another parent.   

The mutation operation consists of two steps. In the first 
step a machine (a row in the 2D chromosome) is randomly 
selected for mutation and then in the second step two 
randomly selected genes (tasks on that machine) are swapped 
to form a new solution (see Fig. 5). Blank tasks (identified by 
0 in the chromosome) are excluded from selection. 

Within the optimisation process, once an individual is 
generated, whether as a randomly generated member of the 
initial population, or as the result of the crossover and 
mutation operations, a repair algorithm is called. The repair 
algorithm first checked for the Constraints 2 to 4 above. If any 
of them are contradicted, the algorithm, where possible, 
heuristically fixes the individual towards satisfying all the 
constraints, otherwise rejects the solution. To allow shifting 
the whole scheduling within the scheduling period, a starting 
time is also added to the chromosome. Once a correct solution 
is generated an evaluator is called. Each individual is 
evaluated against its JSS performance measures (here, the 
makespan) as well as its HRES performance measures (here, 
the unmet load). The optimisation programme is integrated to 
MOHRES, which delivers the evaluation against HRES 
performance measures.  

IV. CASE STUDY 

In this case study we aim at the performance evaluation of 
the optimisation algorithm above in terms of its capability of  
(i) finding the solution with minimum makespan, (ii) finding 
the solution with minimum unmet load, and (iii) producing a 
relatively well populated Pareto front. For this purpose, we 
assume a PV renewable system without any storage. It should 
be noted that the algorithm has no restriction on the 
configuration of the renewable energy system and MOHRES 
can deal with a generic wind-PV-battery-fuel cell-
electrolyser-diesel configuration. The system is connected to 
the grid and any unmet load is supplied by the grid.  

For a PV system the renewable power 𝑃𝑅 during hour 𝑡 is 
given by: 

𝑃𝑅𝑡
= 𝑃𝑃𝑉 = 𝜂𝑃𝑉𝐴𝑃𝑉𝐼𝑡     () 

Parents Children 



where, 𝐼𝑡  in 𝑊/𝑚2  is the hourly averaged solar irradiance 
during hour 𝑡, 𝐴𝑃𝑉 is the total area of the solar panels, and 𝜂𝑃𝑉 
is the overall efficiency of the of the PV panels.   

We assume the site has a solar irradiance and primary load 
profiles as shown in Fig. 6. With a PV size of 𝐴𝑃𝑉 = 300 𝑚2 
and a nominal efficiency of  𝜂𝑃𝑉 = 14%,  we see the unmet 
load (negative values) and excess power (positive values) 
profiles due to the primary load in Fig. 7. The overall unmet 
load due to the primary load without the machinery load is 
𝑃𝑢 = 17600 𝑊. The total machinery load is 13067 W.  

Based on these figures, any additional machinery load 
before 9:00 and after 19:00 hours will lead to an increase in 
the unmet load. That is, we expect to see that a successful 
optimisation algorithm produces a number of Pareto solution 
with two extreme solutions, one with the minimum makespan 
in which all jobs are scheduled at the beginning of the analysis 
period (here 00:01 min) and another extreme solution with 
minimum unmet load, in which all jobs are scheduled 
somewhere between 9:00 and 19:00 hours, where there is 
excess power.  

We use the example of Fig. 1 as our JSS problem case. 
This problem has a known minimum makespan of 250 
minutes (Job 6 starting at t=0 has a makespan of 250 minutes 
for back to back tasks). 

The optimisation problem of Equation 1 becomes: 

𝑚𝑖𝑛{𝐿, 𝑃𝑢}  () 

subject to Constraints 2 to 4. 

 

Fig. 6. Solar irradiance and primary load profiles 

 

Fig. 7. Unmet load (negative values) and excess power (positive values) 

profiles 

TABLE I.  PARETO SOLUTIONS OF OPTIMISATION PROBLEM (9) 

Sol 

# 

Start of 

Operation 

(min) 

Makespan/End 

of Operation 

(min) 

Operation 

Time 

(min) 

Overall 

Unmet 

Load 

(W) 

Added 

Unmet Load 

due to 

Machinery 

Load (W) 

1 0 250 250 30667 13067 

2 0 260 260 30667 13067 

3 0 350 350 30667 13067 

4 200 490 290 30433 12833 

5 110 500 390 30200 12600 

6 0 510 510 29967 12367 

7 220 520 300 29650 12050 

8 230 530 300 29333 11733 

9 250 540 290 28833 11233 

10 250 550 300 28117 10517 

11 210 560 350 27600 10000 

12 310 570 260 26200 8600 

13 300 600 300 25783 8183 

14 330 620 290 25067 7467 

15 330 630 300 24300 6700 

16 350 640 290 23900 6300 

17 350 650 300 23383 5783 

18 370 670 300 22683 5083 

19 380 680 300 22283 4683 

20 400 690 290 21717 4117 

21 440 700 260 19833 2233 

22 440 730 290 19600 2000 

23 450 740 290 19100 1500 

24 470 760 290 18100 500 

25 480 770 290 17600 0 

 

In this case study, any solution satisfying these constraints 
is a feasible solution. However, it should be noted that a 
correct solution (a solution satisfying Constraints 2 to 4) is not 
necessarily a feasible solution if we include HRES-
performance related constraints to this optimisation problem. 
The optimisation NSGA II algorithm was tuned and the 
optimisation parameters 𝑃𝑐 = 0.3, 𝑃𝑚 = 0.8, 𝑁𝑝𝑜𝑝 = 50 and 

𝑁𝑔𝑒𝑛 = 50 were found to lead to identical extreme solutions 

in five consecutive runs. 

Table I shows the makespan and the added unmet load of 
the 25 nondominated solutions as well as their start of 
operation time, total operation time and the overall unmet 
load. The makespan is measured from 00:01 minutes to the 
time when all tasks are completed, while the total operation 
time  is the actual time taken to deliver the tasks. Fig. 8 shows 
the Pareto front, in which Solution #1 is the best in terms of 
the makespan and Solution #25 is the best solutions with 
respect to the unmet load.  

 

Fig. 8. Pareto front solutions 
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Fig. 9. Gant chart and load distribution of Solution #1, the optimum solution w. r. t. makespan 𝐿 

 

Fig. 10. Gant chart and load distribution of Solution #25, the optimum solution w. r. t. unmet load 𝑃𝑢 

 
The extreme solution w. r. t. the first objective, makespan, 

has a makespan of 250 minutes which is the known minimum 
makespan for this JSS problem. The extreme solution w. r. t. 
the second objective, unmet load, produces no more unmet 
load besides the already existing one due to the primary load. 
That is, the unmet load stays at 17600 W. Also, since this 
solution is a nondominated solutions, it must have the 
minimum possible makespan. Starting from hours 9:00 it has 
a makespan of 290 minutes.  

Fig. 9 and Fig. 10 show the Gant chart of the extreme 
solutions (Solutions #1 and #25), as well as their machine load 
profiles and the overall demand load profiles. In these figures 
the Gant chart are defined on machines. Each row shows a 

machine operation with tasks colour coded depending on 
which job they belong to. 

V. CONCLUSION 

Solving JSS problem in the context of renewable-powered 
manufacturing and sustainable and environmental-friendly 
production has received an increasing interest in the recent 
years. The multiobjective JSS problem formulation presented 
in this paper employs an NSGA-II algorithm for solving JSS 
problem with two objectives of minimising the makespan and 
minimising the dependency of the process on the grid 
electricity. Integrating the optimisation algorithm with the 
software tool MOHRES allows for evaluation of the 
performance of the renewable system in supplying the 



machinery demand load. The case study reported in this paper 
proves the performance of the optimisation algorithm in terms 
of its capability of finding the solution with minimum 
makespan, finding the solution with minimum unmet load, 
and producing a relatively well populated Pareto front. 
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