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Sexual reproduction and related processes play a somewhat limited but important role in gen-

erating genetic diversity in Candida species and other fungal pathogens. These processes are

also thought to be an important contributor to the evolution of pathogenicity and drug resis-

tance. Candida auris is a recently emerged, human-pathogenic yeast causing nosocomial out-

breaks all over the globe [1]. It can cause serious blood stream infections with the

complication that isolates are typically resistant to the available antifungal therapies; mortality

rates are approximately 60% [2]. Genetic diversity is likely a major driver of its pathogenesis

and virulence features. Here, we discuss which mechanisms could be behind the genetic diver-

sity observed between C. auris isolates. Specifically, our review examines the evidence around

sexual reproduction in this fungus.

How do fungal pathogens create genetic diversity?

Fungal pathogens are able to create genetic diversity in multiple ways. Some have true meiotic

cycles that generate diversity via homologous recombination, while others have evolved mech-

anisms of producing diverse offspring that do not depend on meiosis.

Candida albicans has a parasexual cycle, where fusion (mating) of 2 diploid cells is followed

by concerted chromosome loss, rather than meiosis, to result in viable, but often aneuploid,

progeny. Parasex generates genetic diversity and enables adaptation to stressful environments

[3–5]. Although meiosis has not been observed in C. albicans, a complete meiotic cycle has

been identified in the distantly related Candida (Clavispora) lusitaniae, a haploid yeast that can

form spores through mating and meiosis [6]. C. lusitaniae often produces aneuploid progeny

during meiosis, which most likely confer a selective advantage [6]. The pathogenic basidiomy-

cete Cryptococcus neoformans is also capable of generating genetic diversity via chromosome

copy number variations and ploidy changes, as unisexual meiosis (see below) often results in

aneuploid and diploid spores [7]. Chromosome copy number variation (aneuploidies) are a

means of creating diversity, as has been found in many fungal species [3,6,8]. Aneuploidies

can arise by parasexual, asexual, and sexual mechanisms [7,9]. Importantly, aneuploidies can

confer resistance to antifungal drugs by altering gene dosage, e.g., copy number variations (of

the left arm) of chromosome 5 in C. albicans confer resistance to fluconazole [10]. The higher

dosage of 2 genes on chromosome 5, ERG11 and TAC1, contributes to an increase in produc-

tion of the azole drug target Erg11, and higher drug efflux activity via increased expression of

Tac1-regulated efflux pumps; notably some, but not all, copies of TAC1 also were mutant

expressing a hyperactive allele [10].

Karyotype variability, including chromosome rearrangements, is common in fungi and

could be a basis for genetic diversity leading to phenotypes with enhanced fitness. A wide

range of species, including Malassezia spp., Fusarium spp., and Candida glabrata, have highly

variable karyotypes that are apparently well tolerated [11–13]. Genetically identical C. auris
isolates from a hospital outbreak had very similar karyotypes (except for chromosomes bearing
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the rRNA gene arrays which showed some size differences), suggesting that genome rearrange-

ments do not play a major role in quickly establishing genetic variability within individual out-

breaks [14]. However, passaging C. auris through several rounds of various stresses generated

massive karyotype changes [14]. Moreover, the variation in karyotype between C. auris isolates

from different clades would indicate that genome rearrangements are indeed a potential mech-

anism to generate variation (Fig 1A), as has been described for other Candida species. For

example, studies in C. albicans have shown that chromosome rearrangements occurring after

1 passage through a mouse model are able to generate genetic and phenotypic diversity [15].

Similarly, chromosome rearrangements have also been identified in C. glabrata from sequen-

tial blood stream isolates [16].

The C. auris clades differ from each other genetically by thousands of single nucleotide

polymorphisms (SNPs), yet within each clade, independent clonal expansions typically take

place within an outbreak [2]. This population structure, characterised by distinct and highly

variable clades that are distributed worldwide and clonal expansions of a single genotype

within individual outbreaks, is puzzling and suggests that the clades emerged independently.

The C. auris clades also differ in genome organisation as structural rearrangements have been

Fig 1. Chromosomal and genetic features of C. auris related to sexual reproduction. (A) Length and number of chromosomes of 1 isolate from each of the 4 main C.

auris clades as measured by pulsed-field gel electrophoresis (strains representing clades are: clade I, UACa1/470026; clade II, UACa18/B11220; clade III, UACa20/B11221;

clade IV, UACa22/B11244) [14]. (B) The mating type locus regions MTLa and MTLα are conserved between C. auris and C. lusitaniae [26]. (C) ClustalO (https://www.

ebi.ac.uk/Tools/msa/clustalo/) [38] alignments of the STE6 nucleotide sequences (top) from a clade I and a clade IV isolate, showing the 2-nucleotide deletion in clade I;

and of the translated sequences (bottom) showing the premature stop codon in the clade I isolate at position 421 generated by the 2-nt deletion [36].

https://doi.org/10.1371/journal.ppat.1009094.g001
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identified between the clades [17]. The origins of the variability seen within C. auris are not yet

known. Importantly, determining the origins of genetic diversity in this dangerous human

pathogen will potentially elucidate evolutionary mechanisms behind its virulence and antifun-

gal drug resistance. This raises the question whether this is potentially related to (para)sexual

outcrossing of strains to generate new genotypes.

Does C. auris have a complete mating type locus?

Mating types are the sex-determining genetic loci of fungi. Most fungi, including the Candida
clade, have a mating type locus (MAT) or mating type-like locus (MTL) that occurs in 2 idio-

morphs, MATa and MATα (or MTLa and MTLα). Generally, mating is only possible between

cells of opposite mating types. However, there are exceptions to this rule.

The MTL loci in most diploid C. albicans isolates are heterozygous (a/α); therefore, these

isolates were thought to never sexually reproduce as phenotypic switching from a ‘white’ to the

mating-competent ‘opaque’ form is blocked in these isolates. Usually, only isolates that are

homozygous at the MTL locus are able to switch into the opaque form [18], although MTL-

heterozygous isolates can switch under certain conditions [19]. It was later discovered that the

rare isolates that were homozygous at the MTL locus could form cell fusion products with iso-

lates homozygous for the opposite mating type [18,20]. After mating, the resulting tetraploid

C. albicans fusion products undergo concerted chromosome loss instead of meiosis to generate

progeny often harbouring complex aneuploidies [5]. Parasex in C. albicans has the capability

to produce progeny that have enhanced virulence and, in some cases, increased resistance to

fluconazole, making this a clinically relevant process [4].

Cryptococcus neoformans was described as capable of forming basidia (the generative cell

type of Basidiomycetes) more than 40 years ago [21]. However, almost all Cryptococcus neofor-
mans isolates are MATα (>99%); its mating type locus covers >100 kb of sequence, making it

one of the largest in the fungal kingdom. Importantly, unisexual reproduction (a.k.a. haploid

fruiting) between 2 MATα isolates apparently plays a major role, indicating that an unequal

distribution of mating type idiomorphs in a population or species does not preclude sexuality

[7,22]. It is speculated that unisexual reproduction in Cryptococcus neoformans benefits the

species as it prevents deleterious mutations from accumulating and can also yield progeny

with enhanced fitness [8,23]. Unisexual mating can also occur in C. albicans and Candida tro-
picalis, but only in the presence of the opposite mating pheromone [24,25].

Investigation into the MTL loci of C. lusitaniae and C. auris revealed a highly conserved

gene order, orientation, and synteny between these 2 closely related species (Fig 1B) [26,27].

Genome annotations have identified both mating types in C. auris and they appear to be

clade-specific. So far, all sequenced clade I and clade IV isolates are MTLa and all clade II and

III isolates are MTLα [26]. Isolates of opposite mating types are yet to be found within the

same clade. However, occasionally C. auris strains with opposite mating types are found in the

same location, namely Canada, Kenya, the United Kingdom, and the United States of America

[28,29]. The latter finding suggests that there could be a clinically relevant danger of sexual

interaction producing a super-resistant or super-virulent strain.

What is the evidence for sexuality in C. auris?

Genome sequencing data revealed that C. albicans has orthologs for most of the genes involved

in mating and sporulation in Saccharomyces cerevisiae [30]. This raised the question whether

C. albicans may be sexual and resulted in the discovery of parasex (see above). C. lusitaniae is

able to carry out meiosis despite missing a full ‘meiosis toolkit’ [6,31]. Key meiotic genes are

conserved between the species of the Candida haemulonii complex (C. haemulonii, Candida
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duobushaemulonii, Candida pseudohaemulonii, C. auris) and C. lusitaniae [26]. Thus, C. auris
and its closest relatives should have sufficient mating and meiosis factors to support a sexual

cycle. Indeed, a complete mating locus and both mating types exist in C. auris, strengthening

the evidence that C. auris may be capable of mating and meiosis, or at least mating and con-

certed chromosome loss (parasex). So far, mating could not be observed in C. haemulonii and

C. duobushaemulonii [32]. Intriguingly, an investigation into transporter family proteins in C.

auris identified a mutation in STE6 in clade I isolates. Ste6 (Hst6 in C. albicans) is an ABC fam-

ily transporter which is only expressed in MATa (MTLa) strains and exports the a-factor pher-

omone in S. cerevisiae and C. albicans [33–35]. In S. cerevisiae, the a-factor and its export via

Ste6 is essential for mating [33]. The STE6 homolog in C. auris MTLa clade I isolates is missing

2 nucleotides at positions 3,309 and 3,310, while in MTLa clade IV isolates and MTL⍺ strains,

this open reading frame is complete [36]. The 2 missing nucleotides result in a premature stop

codon at AA421 of AA1,225 and therefore, a truncated and likely nonfunctional protein (Fig

1C). This would render clade I MTLa strains sterile due to an inability to export a-factor. We

cannot exclude the possibility that C. auris, similar to C. albicans and C. tropicalis [24,25],

could undergo unisexual reproduction with isolates from within the same clade.

Furthermore, for meiosis to produce viable progeny, pairing and recombination of homolo-

gous chromosomes is required [37]. Therefore, any karyotypical changes (chromosome rear-

rangements) between isolates will likely have a negative impact on the viability of any progeny.

The karyotype differences between C. auris clades (Fig 1A) [14,26] make it unlikely that the

extant clinical strains of C. auris successfully intermingle. However, these differences might

not restrict parasexual mechanisms. To determine whether C. auris is sexual, it is of the utmost

importance to identify its environmental reservoirs, where different MTL idiomorphs within a

population might exist. It would appear that, based on current data, there is no threat to

healthcare of C. auris mating and creating diversity in a clinical context.
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