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Abstract

Deep learning methods have already enjoyed an unprecedented success in medical imaging problems. Similar

success has been evidenced when it comes to the detection of COVID-19 from medical images, therefore

deep learning approaches are considered good candidates for detecting this disease, in collaboration with

radiologists and/or physicians. In this paper, we propose a new approach to detect COVID-19 via exploiting

a conditional generative adversarial network to generate synthetic images for augmenting the limited amount

of data available. Additionally, we propose two deep learning models following a lightweight architecture,

commensurating with the overall amount of data available. Our experiments focused on both binary clas-

sification for COVID-19 vs Normal cases and multi-classification that includes a third class for bacterial

pneumonia. Our models achieved a competitive performance compared to other studies in literature and

also a ResNet8 model. Our binary model achieved 98.7% accuracy, 100% sensitivity and 98.3% specificity,

while our three-class model achieved 98.3% accuracy, 99.3% sensitivity and 98.1% specificity. Moreover,

via adopting a testing protocol proposed in literature, our models proved to be more robust and reliable in

COVID-19 detection than a baseline ResNet8, making them good candidates for detecting COVID-19 from

posteroanterior chest X-ray images.

Keywords: generative adversarial networks, deep neural networks, COVID-19, bacterial pneumonia,

medical informatics, chest x-rays.

1. Introduction

Over the last couple of months, the world has been confronted by the rapid spread of COVID-19 resulting

from the novel coronavirus, the SARS-CoV-2, which has already been named as one of the major events in

the modern history. Part of the mitigation plans implemented across the globe has been the development of

novel approaches to tackle the disease from a medical perspective, as well as to employ AI technologies to

help to detect the disease from medical images, such as Chest X-Ray Images (CXR).

This paper concerns the latter and specifically the development of a deep learning-based algorithm for

accurate detection of Covid-19 from CXR. Arguably, various implementations have already been proposed
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that use deep learning approaches as an attempt to address the detection of the COVID-19 from CXR.

Deep learning algorithms are highly efficient on image acquisition which they can provide reliable results.

[1] introduced a convolutional neural network namely COVID-Net to investigate how COVID-Net can make

predictions using an explainability method, whereas [2] proposed three different convolutional neural networks

models that achieved a 98% accuracy. Although more background information will be provided below, it is

worth pointing out that one of the main limitations with the majority of the implementations proposed in

literature is the limited amount of related COVID-19 data that are publicly available to use, which makes it

significantly challenging to create generalisable models with overall high performance. Maguolo and Nanni

[3] in their study presented a testing protocol that evaluates the bias of the model.

1.1. Research Contributions and Objectives

Our contributions can be outlined as follows:

• Considering that availability of CXR data for COVID-19 remains a challenge, one might need to

resort to synthetic data to develop bespoke models that can generalise better to unseen examples,

including different protocols. To this direction, in this paper we present a method for generating

synthetic medical images using a previously presented deep learning Conditional Generative Adversarial

Networks, adapted for our purpose (cGANs) [4]. Our main objective is to generate synthetic images to

overcome the dataset limitation that lead to over-fitting.

• Implement two lightweight architectures that can detect the disease effectively with high accuracy and

robustness, and compare them with other state of the art models presented in literature.

• we follow the testing protocol proposed by Maguolo and Nanni [3] for evaluating our models in COVID-

19 detection, which we find it to be important for the reliability of results.

Specifically, in this paper we implemented two deep neural networks; the first for detecting COVID-

19 vs normal cases (no disease present), with the second targeting three different cases, namely bacterial

pneumonia, COVID-19 and normal. Ultimately, we make comparison of our models with other state-of-

the art models presented in literature.

2. Background

Among others, computer science researchers have been able to use AI technologies to early diagnose

patients with COVID-19, employing methods that can process and interpret medical imaging data, such as

X-ray images and computed tomography (CT) scans. An example of such technology is being experimentally

used in hospitals to screen mild cases, triage new infections, and monitor the progression of the disease [5]

through the use of deep learning techniques.

However, numerous studies have shown that such AI tools perform inadequately and come with various

limitations. [5] mention in their study ” This review indicates that proposed models are poorly reported, at
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high risk of bias, and their reported performance is probably optimistic.” Additionally, one of the biggest

limitations of implementing a prediction model for medical image detection and especially for COVID-19

disease is data availability.

Being aware of these constrains, in this paper we adopt the protocol mentioned by Maguolo and Nanni [3]

and take the advantage of state-of-the-art techniques in order to overcome the above mentioned limitations

and perform detection more effectively and reliably.

2.1. Literature Review

There exists a very large dataset with chest X-rays for pneumonia disease, released by Kermani et al. [6].

On the other hand, information for COVID-19 has been very limited and the amount of images corresponding

to this virus is limited. Therefore, developing robust techniques to detect COVID-19 from CXR remains an

open challenge; nevertheless a comprehensive body of literature has already been proposed, which we aim at

summarising below.

2.1.1. Transfer Learning

An established method to address the issue of limited data has been the use of transfer learning approaches,

which can improve the learning process in a new problem through the transfer of knowledge from a related

problem that has already been learned and solved.

Narin et al. [2] constructed a small dataset of 50 COVID-19 cases collected from Cohen et al. [7] repository

and 50 normal cases extracted from Kaggle [8]. They utilised a five fold cross validation, a re-sampling method

that evaluates machine learning models on a limited data sample, to train and test a ResNet50 [9] model,

achieving an accuracy of 98%.

Castiglioni et al. [10] presented an entirely different approach and collecting a dataset that was not made

public. Their train set included 250 COVID-19 cases and 250 normal (no disease present) images while the

test set comprised 74 COVID-19 cases and 36 normal ones unrelated from the train set. Various 10 ResNet

models [9] were trained on this dataset and obtained a ROC-AUC of 0.80 for the classification task. The

performance of the model was much lower in comparison to the other studies reported in literature. Moreover,

the authors applied classification in both CXR projections (e.g anteroposterior and posteroanterior), which

makes it more robust according to the critical appraisal of Maguolo and Nanni testing protocol [3].

Soares et al. [11] used convolutional neural networks to detect COVID-19 cases. The dataset comprised

175 COVID-19, 100 normal and 100 pneumonia annotated CXR images. Moreover, they utilised transfer

learning technique with ImageNet [12] on three different architectures, Xception [13], ResNet [9], and VGG-16

[14]. Their results show that all models performed well with high accuracy, especially the VGG-16 model.

However, upon reflection they observed that their models require further improvement, suggesting as future

directions to ” evaluate models with different architectures, parameters, and datasets that use augmentation

techniques.”
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Wang and Wong [1] introduced a new architecture named Covid-Net. They used transfer learning [15]

on ImageNet [12] as well. Furthermore, they created a large dataset with 183 COVID-19 cases, 5,538 with

Pneumonia and 8,066 normal ones. They produced a test set of 100 images with pneumonia and normal

lungs but only 31 of COVID-19 cases. In their work, they made explicit that there is no overlap between

the test and the training set of the patients. That is of great importance in tasks of this manner. Wang and

Wong [1] mentioned that Covid-Net achieved 92% accuracy.

2.1.2. Augmentation and Generation Techniques

A study presented in [16] described an efficient multi-class deep learning method for detecting COVID-19

vs normal vs pneumonia from CXR. They collected a total of 295 images of COVID-19. Additionally, they

collected 65 examples of normal cases as well as 98 cases showing pneumonia. With the purpose of overcoming

the limitation of the COVID-19 dataset, they restructured the data classes of the dataset by employing a

Fuzzy Color technique as a pre-processing step and the images that were organised together with the original

ones were stacked. In their results they demonstrated 100% success in the classification of COVID-19 images,

and 99.27% success for the classification of Normal and Pneumonia images.

Generative Adversarial Networks (GANs) have demonstrated remarkable performance in various settings,

including healthcare. The main idea in training a GAN is in the form of a zero-sum game, in which one

network tries to discriminate between real and synthetic images, with the other one - generator - trying to fool

the discriminator by producing artificial images that the discriminator considers as real, therefore creating

images similar to real ones.

Loey et al. [17] motivated from the lack of the data, utilised GAN architecture [18] to synthesise auxiliary

images to support in the detection of this disease from the available CXR images in the interest of achieving

high performance. Additionally, they employed three different deep learning models with transfer learning

[15]. Initially, the dataset comprised 306 CXR images across four categories, i.e. COVID-19, normal, bacterial

pneumonia and viral pneumonia. By employing a GAN architecture, they increased the dataset images to

be 30 times larger than the original set. That led to a total of 8100 images across four classes. The training

set consisted of the 70% of the data, with validation and test sets the rest 20% and 10% respectively. The

authors mentioned that they achieved 100% in testing accuracy and 99.9% in the validation accuracy.

In table 1 we present the summary of the aforementioned models.

2.2. Dataset Evaluation

As previously mentioned, Maguolo and Nanni [3] made an evaluation of numerous of models that are

primarily developed for COVID-19 auto detection. Their evaluation was based on the testing protocols

of those models’ detection performance. In addition, it was mentioned that those testing protocols are

inequitable thereby, the neural networks are learning patterns in the dataset which are not correlated to the

presence of COVID-19. The results of their study shown that ”these protocols might be biased and learn to
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Table 1: Summary of state of the art deep learning models for COVID-19 detection

Literature Number of Cases Architecture Accuracy

Narin et al. [2] 50 COVID-19, 50 Normal ResNet50 98.0%

Castiglioni et al. [10] 250 COVID-19 , 250 normal

images

10 ResNets 80.0%

Soares et al. [11] 175 COVID-19, 100 VGG-16 97.3%

normal, 100 pneumonia

Wang et al. [1] 183 COVID-19, 5,538 pneu-

monia , 8,066 normal

CovidNet 92.0%

Toğaçar et al. [16] 295 COVID-19, 65 normal,

50 pneumonia

MobileNet V2 [19] 97.06%

Loey et al. [17] 69 COVID-19, 79 Normal,

79 Bacterial, 79 Viruses

GoogLeNet [20] 100%

predict features that depend more on the source dataset than they do on the relevant medical information”

[3].

Regardless the method that has been used in pursuit of detecting COVID-19, none of all the afore-

mentioned techniques used such a testing protocol to validate the model learning patterns in the dataset.

Therefore, [3] recommended that proposed solutions have to adopt a testing protocol and methodology to

evaluate how bias they are when it comes to classifying the images based on the presence of the disease or

the underlying characteristics of the image, i.e. capturing device and/or protocols, given that the released

dataset of COVID-19 CXR is a product of aggregating data across several hospitals.

2.3. Description of Datasets

In this study, we utilise datasets that are publicly available as mentioned above. We evaluate our proposed

methods in two settings, one considering the detection of COVID-19 vs Normal cases with the other one

focusing on a three-class problem, adding a third class, namely pneumonia. The COVID-19 dataset has been

made available to the community via a GitHub repository by a researcher named Joseph Paul [7] based at the

Montreal University. This dataset is the main source of data across most of the papers addressing COVID-19

detection and is being regularly updated with new images shared by researchers from different domains.

The second dataset consists of normal CXR cases and pneumonia CXR cases and was obtained from a

Kaggle [8] that includes 5856 grey-scaled images, containing train, validation and test sets.

In figure 1 one can see examples of the data used in our studies. The annotation with ’A’ is obtained

from the COVID-19 [7] while the ’B’ and ’C’ extracted from the second dataset by [8].
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Figure 1: Illustration of the classes from both datasets [7] & [8].

3. Methodology

3.1. Dataset

For the implementations presented in this paper we utilised all the available COVID-19 CXR in pos-

teroanterior (PA) chest view (145 images). The Kaggle [8] dataset is structured into two folders (normal,

pneumonia) and contains sub-folders for each image set (train/val/test). Considering the large amount of

data found in the two classes, normal and pneumonia, we randomly extracted the same amount of images

as in the COVID-19 cases so that we end up with a balanced dataset. Considering our experiments concern

the use of synthetic images and also comparing the performance against models that have not made use of

synthetic images, our datasets have as follows:

• Without Synthetic Images: 145 with COVID-19, 145 with Bacterial Pneumonia and 145 Normal

• With Synthetic Images: 275 with COVID-19 (130 synthetic), 275 with Bacterial Pneumonia (only real

images) and 270 Normal (only real images)

3.2. Image data augmentation

We utilise image data augmentation techniques on the training set to mitigate the dataset limitation

issue. Such an approach has been found to improve a model’s performance and generalisation capabilities

when tested against new images. The purpose of this process is to create new plausible versions of CXR that

can help to improve the representation learning process via having more examples in place during training.

Besides in this specific problem we are tackling, it is not uncommon CXR to be misaligned or slightly rotated.

3.3. Image synthesis

A second approach to address the problem of low data (and overfitting) resulting from the limited number

of images in the dataset, can be achieved by utilising a cGAN [4] architecture. As will be shown later, via

employing such an approach we managed to generate realistic synthetic images, which helped to improve the

performance of our models extensively (Figure 3).
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Across the board, we adopted a cGAN architecture and performed fine-tuning for synthesising high quality

CXR for the Covid-19 class. The reason is that there exist a plethora of normal and bacterial pneumonia CXR

images, hence it would be unnecessary to generate synthetic images for those classes. Initially, we performed

image pre-processing to ensure that all CXR images have equal size and aspect ratio. Following extensive

experimentation and tuning of our cGan model, we present the setup of the architecture (discriminator,

generator) used in this study, that led to a considerable increase in performance.

Discriminator: The discriminator network has a standard CNN formation that receives the input image of

size 446x446x1 (lesion ROI), and produces a binary decision: whether the image is real or fake. The network

is composed of four dense layers and a final output layer. Drop out layers are also applied after every dense

layer. Embedded layer is applied as a lookup table to map from integer indices to dense vectors and then is

flattened to be equal to the amount of elements contained in tensor. Lastly, Leaky ReLU activation functions

are employed to all layers apart from the output layer which utilises the Sigmoid function for the likelihood

of a range between 0 and 1 [0,1] score of the image.

Generator: The generator network receives a vector of 100 random numbers (latent space) pulled from a

uniform distribution as input and outputs a lungs lesion image of size 446x446x1. The network architecture

consists of a fully connected layer reshaped to size 4x4x128 and four dense neurons to up-sample the image.

Convolution over the up-sampled image provides a larger output image. Batch-normalization is applied to

each layer of the network with momentum of 0.8 value, except for the output layer. Normalising the outputs

of each neuron as an effect of zero mean and unit variance through the entire mini-batch levels off the cGAN

learning process and avoids the generator from collapsing all samples to a singular point [18]. Nevertheless,

GANs and its variations cannot be in an absolute convergence. ReLU activation functions are used to all

layers except the output layer which utilises the hyperbolic tangent (tanh) activation function and inputs to

the generator and discriminator are scaled to the range between -1 and 1 [-1,1].

We trained the cGAN by setting the slope of the curve of the Leaky ReLU to alpha = 0.2. Furthermore

weights were initiated to a zero-centered normal distribution. We employed Adam optimizer for stochastic

gradient descent [21], an adaptive moment estimation that embeds the initial and second moments of the

gradients, handled by parameters p = 0.5 and learning rate of 0.0002 for 4000 epochs.

3.3.1. Evaluation

In terms of evaluating the cGAN model, we conducted research of couple of qualitative and quantitative

techniques. This is due to the fact that, it is not possible to objectively assess the progress of the training or

to measure the quality of the model from the loss function alone. Hence, we visually examined the resulting

images, that is, a human expert assessed the quality of the images compared to the distribution of examples

found in real images.

During the training process, various models were saved systematically across training epochs (e.g. 50,

100, 200) and generating a sample image of the three cases (COVID-19, Bacterial Pneumonia and Normal)

to observe the output of the generator along with the performance plot, as there is no objective measure
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Figure 2: cGAN Generated COVID-19 samples after 3230 epochs.

Figure 3: A sample of cases pertaining to bacterial pneumonia, COVID-19 and Normal conditions from the mask dataset.

of model performance. This enables for the post-hoc evaluation of every saved generated model from its

generated sample images.

Figure 2 show examples of generated images after 3230 epochs. All the images have the size of 446x446,

which is the default output size of our cGAN architecture.

3.4. Masked Images

Aiming at testing our model bias in the dataset used based on the study by Maguolo and Nanni [3],

we created a second version of our entire dataset, but with a different image pre-processing technique. The

variation in this dataset is that the center of each image contains a black rectangle shape object in such

way that removes the anatomical structure in the chest and lungs. Figure 3 provides an example of how the

masked dataset looks like.

3.5. Models

For the detection process in the binary classification setting, we employed one of the most popular –

relatively shallow – architectures for image detection: ResNet8 [9] appended with small modification and we

compared it with our proposed model. Furthermore, we proposed an additional approach in a multi-class

setting, which performs detection across the three conditions we are focusing on: COVID-19 vs bacterial

pneumonia vs normal, and it is compared with other implementations proposed in literature.
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Figure 4: Architecture of the proposed binary model.

3.5.1. ResNet8

In binary classification we adopted a popular lightweight architecture ResNet8 [9] pre-trained in the

defacto ImageNet dataset [12]. This architecture is selected as a base model due to its small size and reflects

the decreased complexity, memory consumption and duration.

In our case we used CNN structure that receives input image of size 224 x 224 x 3 and outputs a binary

decision COVID-19 or Normal. The network consists of seven convolutional layers with filter size of 64, kernel

3 x 3 and ReLU for activation function. At the end of the convolutional layers we used global average pooling

[22] for minimising overfitting. Finally, a dense layer along with ReLU is added followed by a dropout layer.

3.5.2. Proposed models

For the binary classification case (Figure 4), we propose a deep convolutional neural network (CNN) for the

detection of COVID-19. The model has been designed in a form to support a lightweight architecture without

transfer learning, whilst performing well. It can deal with any non-uniformity in the data distribution and the

limited accessibility of training images in the classes. It consists of a single convolutional layer with filter size

32 and kernel 4x4, followed by ReLU [23] activation function and Max Pooling layer for down-sampling the

image (input representation) and enabling feature extraction. After a flatten layer there exists a dense layer of

size 128, followed by dropout and a final dense layer with softmax activation function for a binary output. The

total number of trainable parameters of our proposed binary model is 49,058. For comparison the ResNet8

model used has 221,186. Similarly to the binary classification case, our multi-class architecture (Figure 5)

follows analogous lightweight design, albeit adapted to accommodate three classes. The architecture consists

of five Convolutional layers, all with ReLU activation function. The first convolutional layer uses two strides,

a filter size of 32 and kernel 4x4, while the second one uses one stride to perform convolution with 64 filters

and 4x4 kernel. After performing a max pooling operation, three additional convolutional layers are added,
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Figure 5: Architecture of the proposed multi-class model.

with 128, 128 and 256 filters respectively and same kernel size. This is then followed by a max pooling layer

and a flatten layer. Finally, the model includes two dense layers with ReLU activation function (512 and 128

size respectively) and the final dense layer with softmax activation function for the three-class output. The

total number of parameters of our proposed multi-class model - excluding the Grad-CAM layers - is 87,171.

3.5.3. Training process

First phase involves the pre-processing method which primarily concerns the augmentation and artificial

data generation processes. The former, refers to the creation of new image variations such as flip and rotate

while the latter to generating new images by using Conditional Generative Adversarial Networks (cGAN).

Second phase concerns the training and hyperparametrisation process on both approaches adopted in this

study, i.e. masked images and unmasked images. The ResNet8 model utilises pre-trained weights that are

loaded from the ImageNet [12] dataset over the transfer learning method. The Proposed models do not

use transfer learning technique as they are prioritising lightweight architecture. For the binary classification

model, categorical crossentropy and Adam are used as loss and optimisation functions respectively. Further-

more, loss function for both ResNet8 and proposed multi-class model is the categorical cross entropy.

The CXR images are used to train the models with certain size of 224 x 224 pixels and three channels

of colour (RGB). In training process it is used 20% of the images for validation/test data and the rest 80%

for training data. The results presented below are organised in a confusion matrix and Tables, and are also

examined using a class activation map (Grad-CAM heatmap [11]) for visual inspection. The models were

developed and trained on Google Co-laboratory Virtual Environment utilising TensorFlow [24], Keras [25]

and visualisation Python libraries. The implementation proposed in this paper will be openly released via a

github repository.
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Figure 6: Grad-CAM heatmap on three models with COVID-19 unmodified images

4. Models Evaluation

Considering that most of the COVID-19 implementations were performed with inadequate evaluation

as very nicely described in [3], we decided to adopt the principles outlined in this study and introduce

several evaluation approaches in order to provide more reliable results and strengthen findings. We generated

confusion matrices and employed the Grad-CAM method as well that provides a visual illustration on the

areas that contributed to the models’ outcome. Ultimately, we corroborate that generated medical images

can be employed for synthetic data augmentation, contributing to an increased performance of CNN models

for medical image classification in the presence of limited data.

4.1. Grad-CAM heatmap

In our evaluation we present results of our models’ detection performance, whereby Grad-CAM [26]

approach is used as a means to provide visual explanation of the decision. As shown in figure 6, both our

proposed models highlighted as more important region (red color shades) the area around the lungs; our

multi-class model also demonstrated that some areas around thorax are important for the decision making

process.

By employing the testing protocol outlined in [3], our binary model demonstrated very poor and random

results on the actual image by highlighting random regions on the image. Similarly, our proposed multi-class

model showed interest in random regions on the image. On the other hand, ResNet8 demonstrated interest

in the left side of the image, which according to the study by Maguolo and Nanni, it indicates bias on the

COVID-19 dataset, something that our proposed models have been shown to be more robust. Figure 7 shows

an example of Grad-CAM on masked images.

4.2. Confusion Matrix

With the intention to provide more information on the performance of our classifiers on test images we

provide a series of confusion matrices below. Such a matrix shows the number of true and false predictions
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Figure 7: Grad-CAM heatmap on three models with COVID-19 masked images.

and how they are distributed across each class and scenario.

Looking at figure 8 it is evident that our proposed binary model identified all of the 59 real COVID-19

images correctly while only 3 out of 59 normal cases were misidentified as COVID-19. This shows that our

model is highly accurate in COVID-19 detection. Similarly, our proposed multi-class model for bacterial

pneumonia vs COVID-19 vs normal cases indicates that in the bacterial pneumonia cases 97% of them were

classified correctly with only a 3% percent being misclassified as normal. Across the COVID-19 cases only 1%

were wrongly detected as normal, while the 99% of them was classified correctly. Along the same lines, 98%

of the normal cases were identified properly and just 2% of them were misclassified as bacterial pneumonia. It

is Worth mentioning that our proposed multi-class model detected with 99% accuracy the cases of COVID-19

from the test set, which is of significant importance in a medical disease detection context. Furthermore, in

ResNet8 it is apparent that from the total of 59 COVID-19 CXR images, the 47 were correctly classified as

COVID-19 while the remaining 12 were misclassified as normal. On the other hand, all the normal cases were

classified correctly. All the above numbers and the ones found in 2 refer to the dataset that included real

and synthetic images – about double the size of the one with only real images. Nevertheless, the performance

difference has been about 2% for the binary classification setting and 4% for the multi-class classification,

both in favour of the models augmented with synthetic images. It is worth clarifying that for the sake of

fairness, the test set (real images) has been the same in both synthetic / real and real-only settings.

We perform similar to [3] technique to assess our models’ performance in classifying the different condi-

tions, while the region with the particular anatomical information being obscured. In figure 9 we illustrate

the performance on this testing protocol. It is clear that our proposed binary model performs poorly across

the whole COVID-19 CXR dataset, as the model classified correctly just 47 images. Similarly, our proposed

multi-class model presents a similar trend. For instance, in COVID-19 images the model was not able to

detect any COVID-19 cases. In contrast, the model classified 23% of them wrongly as bacterial pneumonia

while the remaining 77% were detected incorrectly as normal. Furthermore, 21% of the normal cases were

identified properly, with 79% misclassified as bacterial pneumonia. By comparison, ResNet8 model demon-

strated that from the whole COVID-19 CXR dataset, all of them were correctly classified as COVID-19. In
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Figure 8: Confusion Matrix of our three models for unmodified test set.

Figure 9: Confusion Matrix of our three models for masked test set.

addition, all normal cases were also classified as COVID-19 ones.

It is apparent that both of our proposed models – in contrast to the pre-trained ResNet8 model – were

not able to identify the majority of COVID-19 images correctly when following the testing protocol with

masked images. Therefore, it can be inferred that our models are not biased in favour of COVID-19 dataset,

which is one of the main strengths of this study.

4.3. Discussion on Results

Table 2 presents an overall comparison of the models on each of the two evaluation settings, namely the

unmodified dataset and also the masked one. It can be observed that the highest performance overall in binary

classification was achieved by our proposed model, which achieved a 98.7% accuracy and 100% sensitivity,

which means that our model predicted all COVID-19 cases correctly. In addition, specificity was very high

as well at 98.3%, meaning that all normal cases were identified correctly. We believe this performance to be

highly desirable in a healthcare setting, because it is more preferable to misclassify normal cases as COVID-19
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Table 2: Comparing performance across ResNet8, ResNet16 and proposed models with and without synthetic Covid-19 images

Metric ResNet8 ResNet16 P. Binary
P. Binary

with cGAN
P. Multi

P. Multi

with cGAN

Unmodified Dataset

Accuracy 89.8% 93.1% 96.5% 98.7% 94.3% 98.3%

Specificity 100% 97.4% 94.2% 98.3% 93.1% 98.1%

Sensitivity 76.2% 89.8% 95.3% 100% 95.6% 99.3%

Masked Dataset

Accuracy 50% 50% 14.2% 13.5% 45.0% 42.9%

Specificity 100% 100% 24.5% 22.1% 34.4% 31.1%

Sensitivity 0.0% 0.0% 4.0% 3.9% 12.3% 11.2%

– whereby the person will undergo further examinations – than missing out COVID-19 cases. In essence, if

the sensitivity of our model had been lower, our model would have misclassified COVID-19 cases as normal

and the patient would not have been considered for additional testing, which is not desirable. In addition, our

multi-classification model performed well too, with accuracy of 98.3%. Moreover, sensitivity and specificity

were very high at 99.3% and 98.1% respectively, which makes it very robust and reliable. Furthermore,

ResNet8 performed well in detecting normal but performed poorly in identifying COVID-19 cases.

Finally, our proposed models demonstrated a very poor and random performance – as expected – when

it came to classifying the masked dataset. By comparison, ResNet8 classified the entire set of COVID-19

correctly which implies, as reported earlier and in literature, that some pretrained models might be biased

and prone to overfitting the COVID-19 dataset, by learning features that correspond to the image itself

rather than the anatomical structure they represent (see Table 2). This needs to be considered along with

Figures 8 and 9.

4.4. Comparison with state-of-the-art models

In this last section, we make comparisons between pre-trained deep neural networks that have been

proposed for detecting COVID-19 to date against our proposed models in binary and multi-classification

settings.

In table 3 we are showing results from some of the latest approaches that have been proposed for COVID-

19 detection. The highest score was achieved by a ResNet18 model [27], which demonstrated a 99% accuracy

in a binary classification setting for Normal and Pneumonia conditions. The most interesting component

in this study is that they synthesised new images in order to improve the performance of their pre-trained

model. However, this score refers only to those two cases excluding COVID-19. On the other hand, Narin et

al. [2] modified a pre-trained ResNet which was trained on only 50 images of COVID-19 and 50 of Normal
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Table 3: Comparison of state of the art models with our cGAN-based proposed models

Literature Subjects Task Method Accuracy

Proposed (binary) 275 COVID-19, 275

Normal

Detection CNN 98.7%

Proposed (multi-

class)

275 COVID-19, 275

Bacteria, 275 Normal

Detection CNN 98.3%

Resnet18 [27] 624 Images for Nor-

mal and COVID-19

Image Generation

and Detection

ResNet18, GAN 99.0%

COVIDx [28] 45 COVID-19, 1203

Normal, 931 Bacte-

rial, 660 Viral

Detection ResNet-50 96.23%

Narin et al. [2] 50 COVID-19, 50

Normal

Detection ResNet 98.0%

COVIDNet [29] 183 COVID-19, 551

Pneumonia, 8066

Normal

Detection COVIDNet-CXR

Small and COVID-

Net-CXR Large

92.6%

images. They acquired 98% accuracy which was compared to other models (i.e. AlexNet). Additionally,

COVIDx [28] demonstrated a similar performance of 96% achieved with a pre-trained ResNet50 model in a

four-class setting, including a set of 45 COVID-19 CXR images.

By comparison, our models perform similar to the aforementioned models but are evaluated on the testing

protocol in [3] as well, along with the standard evaluation process that all the other studies have employed

that is common in machine learning settings. Moreover, we did not use any pre-trained weights to our

models but only real and synthetic/artificial images from the cGAN method we developed, primarily because

of the nature of medical images which are distinctly different to the images found in the ImageNet database.

Therefore, we consider both models to be competitive with respect to the state of the art models for COVID-

19 detection, but being more robust and reliable given the results we demonstrated using the testing protocol

in [3]. Besides, a ResNet18 model used in previous studies has a considerably higher number of trainable

parameters (11M [30]) than our proposed models.

5. Conclusion and Future Work

Arguably, this current pandemic has transformed our lives to an unprecedented extent. However, the effort

of the research community has been immense across various fronts and to this direction this paper proposed
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a simple approach for reliably detecting COVID-19 across various scenarios. We showed how robust our

method is via experimenting with a masked dataset based on the protocol proposed by Maguolo and Nanni

[3], demonstrating that our approach learns proper features and not features pertaining to the image protocol

itself or other irrelevant information, which would denote a biased model. In addition, via employing a GAN

[18] approach we were able to improve the performance of our approaches, given the very limited amount of

real data available.

From our results, we demonstrated that simple models, such as our proposed models for binary and

multi-classification, in conjunction with conditional generated adversarial networks (cGANs) for synthetic

image generation, can achieve high performance and accuracy in COVID-19 detection, without requiring to

utilise pre-trained weights in the model, which can increase a model’s size, parameters and complexity. Our

proposed (binary) and proposed (multi) demonstrated no bias in COVID-19 detection and therefore are the

optimal deep learning networks for detection of COVID-19 in posteroanterior CXR images. In conclusion,

rapid, accurate and accessible tools are required to assist detection and management of COVID-19 from

CXR. Furthermore, adaptation of new testing protocols on new or existing models might be recommended.

We hope that in the near future we will be able to improve our techniques and propose new ones, as more

real data become available. Relying solely on synthetic data might not be the way forward as capturing all

the variability found in medical images might require larger amounts of real data.
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