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Abstract The cytokine, GDF15, is produced in pathological states which cause cellular stress,

including cancer. When over expressed, it causes dramatic weight reduction, suggesting a role in

disease-related anorexia. Here, we demonstrate that the GDF15 receptor, GFRAL, is located in a

subset of cholecystokinin neurons which span the area postrema and the nucleus of the tractus

solitarius of the mouse. GDF15 activates GFRALAP/NTS neurons and supports conditioned taste and

place aversions, while the anorexia it causes can be blocked by a monoclonal antibody directed at

GFRAL or by disrupting CCK neuronal signalling. The cancer-therapeutic drug, cisplatin, induces

the release of GDF15 and activates GFRALAP/NTS neurons, as well as causing significant reductions

in food intake and body weight in mice. These metabolic effects of cisplatin are abolished by pre-

treatment with the GFRAL monoclonal antibody. Our results suggest that GFRAL neutralising

antibodies or antagonists may provide a co-treatment opportunity for patients undergoing

chemotherapy.

Introduction
The cytokine, GDF15 (a member of the TGF-b cytokine family, also known as MIC-1 and NAG-1), is

expressed in several tissues throughout the body and circulates in the bloodstream of healthy

humans (Bootcov et al., 1997; Tsai et al., 2018; Patel et al., 2019). Plasma levels increase dramati-

cally in a number of pathological states associated with cellular stress, including cancers, cardiac fail-

ure, chronic kidney disease, infection and obesity (Patel et al., 2019; Welsh et al., 2003;

Kempf et al., 2007; Ho et al., 2013; Bauskin et al., 2006; Luan et al., 2019). Furthermore, over

expression of GDF15 causes a dramatic reduction in food intake and weight loss (Tsai et al., 2018;

Johnen et al., 2007; Macia et al., 2012; Chrysovergis et al., 2014; Xiong et al., 2017). Together,

this has led to the supposition that GDF15 does not have a normal, physiological role but is, instead,

secreted as an adaptive response to disease (Patel et al., 2019; Luan et al., 2019). This said, the

transgenic knock out of GDF15 from the germline results in obesity, which could be interpreted that

the cytokine has an alternative physiological function to regulate body weight (Tsai et al., 2013;

Low et al., 2017; Tran et al., 2018).

The GDF15 receptor, GFRAL (GDNF-family receptor a-like) is located exclusively in a small popu-

lation of cells in the in the area postrema (AP) and nucleus of the tractus solitarius (NTS) of the
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mouse dorsomedial medulla oblongata, (Mullican et al., 2017; Yang et al., 2017; Emmerson et al.,

2017; Hsu et al., 2017) a brainstem region containing a number of characterised neurons that previ-

ously have been linked with appetite regulation (Luckman, 1992; Rinaman et al., 1993;

Larsen et al., 1997; Lawrence et al., 2000; Luckman and Lawrence, 2003; Ellacott et al., 2006;

D’Agostino et al., 2016; Roman et al., 2016; Frikke-Schmidt et al., 2019). Administration of

recombinant GDF15 reduces food intake, but not in GFRAL knock-out mice (Mullican et al., 2017;

Yang et al., 2017; Emmerson et al., 2017; Hsu et al., 2017). It also induces the cellular activation

marker, Fos protein, in GFRAL-positive cells in the AP/NTS, and in putative downstream targets in

the pons and amygdala, (Xiong et al., 2017; Hsu et al., 2017; Frikke-Schmidt et al., 2019),

whereas selective surgical lesioning of the AP/NTS blocks the anorexic effects of the peptide

(Tsai et al., 2014). The absolute identity of the primary responsive neurons has not been deter-

mined. Although a small number of GFRAL-positive neurons contain immunoreactivity for the cate-

cholaminergic marker, tyrosine hydroxylase (TH), (Yang et al., 2017) relatively few TH-positive

neurons are activated by exogenous GDF15 (Tsai et al., 2014). We have extended these investiga-

tions and found that the highest proportion of GFRAL-positive neurons contain the neuropeptide

transmitter, cholecystokinin (CCK). We demonstrate that GFRAL cells are a sub-population of CCK

neurons, which respond to administration of GDF15 or the cancer therapeutic drug, cisplatin, but

not to other anorectic signals. Additionally, the effect of GDF15 to inhibit food intake is abrogated

by the targeted deletion of CCK-containing neurons in the AP/NTS or by pre-administration of a

CCK receptor antagonist. A single injection of GDF15 causes marked conditioned taste and place

aversions, suggesting a strong negative affect, as well as activating downstream pathways previously

described as mediating anorexia. Lastly, since we can block GDF15- or cisplatin-induced anorexia by

neutralising the GFRAL receptor with a selective monoclonal antibody, we suggest that the anorectic

responses to disease and, potentially, their therapeutic treatment may be mediated by this distinct

signalling pathway.

Results

GFRAL is localised to CCK-positive neurons in the AP/NTS
Mice expressing Cre recombinase under the control of neuropeptide genes, were crossed with a

reporter mouse expressing enhanced Yellow Fluorescent Protein in a Cre-dependent fashion

(Rosa26-eYFP), so that the double mutants expressed eYFP in discrete populations of CCK

(Taniguchi et al., 2011), glutamate (VGlut2; gene Slc17a6), preproglucagon (PPG; gene Gcg)

(Parker et al., 2012) or prolactin-releasing peptide (PrRP; gene Prlh) (Dodd et al., 2014) neurons in

the AP/NTS. Using antibodies against GFRAL, eYFP and TH, we were able to characterise putative,

GDF15-sensitive cells. In the mouse, GFRAL was expressed in a continuous grouping of cells in the

AP, extending into the medial region of the NTS (Figure 1A), as noted previously by others

(Mullican et al., 2017; Yang et al., 2017; Emmerson et al., 2017; Hsu et al., 2017). Although

dense within the AP and more sparsely distributed in the NTS, there were similar numbers of GFRAL

neurons in the two structures (20 ± 1 per section in both the AP and the NTS). 60% of GFRAL-immu-

noreactive cells in the AP co-localised with CckCre::eYFP, though this proportion was 31% in the NTS

(Figure 1B and summary in Supplementary file 1). We confirmed this pattern using RNAScope in

situ hybridisation histology, which provided slightly higher values of 69% and 35% overlap in the AP

and NTS, respectively (Figure 1—figure supplement 1A and Supplementary file 1). Thus, overall,

the majority of GFRAL neurons are CCKergic. By comparison, dual immunohistochemistry revealed

that 27% of GFRAL neurons in the AP and 45% in the NTS contained TH (Figure 1B). Overall,

approximately, 15% of GFRAL neurons contained both CCK and TH (Figure 1—figure supplement

1B). At least 54% GFRAL neurons in the AP co-localised with Slc17a6Cre::eYFP, which fits with the

consensus that CCK neurons in this brain region are glutamatergic (Figure 1—figure supplement

1C). Finally, GFRAL cells were distinct from other NTS populations which contain either PrRP or PPG

(Figure 1B), which themselves either form a separate sub-population of TH neurons (Dodd and

Luckman, 2013) or overlap with other CCK cells (Garfield et al., 2012; Figure 1—figure supple-

ment 1D), respectively. In conclusion, GFRAL cells appear to form a distinct subset of CCK neurons,

a proportion of which also contain TH.

Worth et al. eLife 2020;9:e55164. DOI: https://doi.org/10.7554/eLife.55164 2 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.55164


GDF15 produces anorexia and a negative affective valence
A single injection of GDF15 (2–8 nmol/kg, subcutaneous; s.c.) at lights-out produced a significant

and dose-dependent decrease in normal, night-time feeding within 2 hr (hr) of administration

(Figure 2A). Cumulative food intake had mostly recovered by 24 hr. This is within the range used by

others who report dose-dependent effects of single, systemic injections of GDF15 in mice

(Patel et al., 2019; Mullican et al., 2017). Doses of 4–8 nmol/kg were required to see a significant

effect on fast-induced, day-time feeding (Figure 2B), and were the doses used in later experiments.

Administration of GDF15 was associated with a negative affective valence, since a single injection

supported a strong conditioned taste aversion (CTA) when paired with sucrose (see also Patel et al.,

2019), and a conditioned place aversion (CPA) in mice (Figure 2C and D). In addition, pica behav-

iour, in which kaolin clay is consumed to remedy gastric malaise, was used as a measure of sickness

given that rodents cannot vomit. Administration of GDF15 to rats on 3 consecutive days induced

pica behaviour – a proxy for sickness behaviour – to an extent comparable to that seen following

injection of the nausea-inducing toxin, lithium chloride (LiCl; Figure 2—figure supplement 1).
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Figure 1. GFRAL-positive neurons in the AP and NTS co-localise with CCK. (A) Schematic describing the distribution of GFRAL-immunoreactive cell

bodies in the AP and dorsal NTS at different rostrocaudal levels relative to bregma. (B) Dual-fluorescence labelling for GFRAL (magenta) with TH or

eYFP (staining using antibody raised against green fluorescent protein) in three reporter mice, CckCre::eYFP, PrlhCre::eYFP or GcgCre::eYFP. GFRAL co-

localised with CCK and TH, but not PrRP or PPG (the latter being located more caudal to the majority of GFRAL neurons). White arrows in higher

magnification inset indicate co-labelled cells. AP (area postrema), cc (central canal), DMX (dorsal motor nucleus of the tenth cranial nerve, vagus), NTS

(nucleus of the tractus solitarius).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Further histological analysis of GFRAL/CCK neurons.
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Together, these and recently published data (Borner et al., 2020a; Borner et al., 2020b) suggest

that GDF15 is probably not a natural satiety factor, but exerts a pathophysiological action to cause

anorexia. This conclusion is supported by the findings that circulating GDF15 levels do not correlate

with meal times in humans, (Patel et al., 2019; Tsai et al., 2015) and that GDF15 knock out in mice

does not result in significant changes in normal chow intake (Tsai et al., 2013; Tran et al., 2018).
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Figure 2. GDF15 produces anorexia and a negative affective valence. (A) Subcutaneous administration of GDF15, just before ‘lights out,’ decreased

normal, night-time feeding (n = 6 per group; *p<0.05, **p<0.01, ***p<0.001, compared with 0 nmol/kg group; two-way ANOVA followed by Tukey’s

multiple comparison test). (B) GDF15 also decreased fast-induced, day-time re-feeding (n = 5–6 per group; **p<0.01, ***p<0.001, compared with 0

nmol/kg group). (C) GDF15 supported a conditioned taste aversion in mice when paired with sucrose as the conditioned stimulus. Data show two-

bottle fluid intake 24 hr following a single conditioning to GDF15 (n = 6 per group; ***p<0.001, water versus sucrose intake for saline- and GDF15-

treated groups; two-way ANOVA followed by Sidak’s multiple comparison test). (D) GDF15 supported a conditioned place aversion in mice. Mice

showed a preference for one side of the arena measured as time spent (seconds) in preferred side. During conditioning, mice received an injection of

GDF15 on their preferred (dark) side and saline on their non-preferred side. On the test day, the mice displayed a decreased preference for the side on

which they received GDF15 (n = 12; **p<0.01, time spent in preferred side; paired t-test).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. GDF15 supports sickness behaviour in rats.
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GDF15 activates CCKAP/NTS neurons
Next, we determined the identity of GDF15-activated neurons by carrying out Fos-activity mapping

in CckCre::eYFP, PrlhCre::eYFP, GcgCre::eYFP or PomceGFP mice. A single, low-anorectic dose of

GDF15 activated GFRAL+ve/CCK and TH neurons in the AP/NTS, as well as GFRAL-ve neurons at

the same level of both the AP and NTS (Figure 3A; Figure 3—figure supplement 1A and B). Nei-

ther PrRP, PPG nor POMC neurons are activated significantly by GDF15 (Figure 3—figure supple-

ment 1B). Thus, a very obvious group of GFRAL-ve cells in the medial NTS, that are activated by

GDF15, remain unidentified (Figure 3A, arrow head). GFRAL cells are not activated by natural sati-

ety signals acting after meal intake (Figure 3—figure supplement 1C); that is, following fast-induced

re-feeding, the infusion of lipid directly into the stomach (300 ml Intralipid by gavage) or a low-dose

of satiety-inducing, systemic CCK (6 mg/kg body weight, intraperitoneal; i.p.). Perhaps surprisingly,

only a small number are activated by LiCl (128 mg/kg body weight, i.p.). This contrasts with the gen-

eral activation profile of CCK neurons in the AP/NTS, which respond to different anorectic stimuli

and which underlines that they are probably a mixed population (D’Agostino et al., 2016;

Roman et al., 2017).

In terms of potential downstream mediators of the GDF15 signal, in addition to the non-GFRAL

cells in the NTS and AP, significant increases in Fos staining were recorded in the lateral parabrachial

nucleus of the pons (PBN), the paraventricular nucleus of the hypothalamus (PVH), the oval sub-

nucleus of the bed nucleus of the stria terminalis (ovBNST) and in the central nucleus of the amyg-

dala (CeA; Figure 3—figure supplement 1D). Using CalcaCre::eYFP or CrhCre::eYFP mice, we show

that some neurons in the PBN activated by GDF15 express calcitonin gene-related peptide (CGRP),

while many in the PVH, but not the CeA and ovBNST, express corticotrophin-releasing hormone

(CRH; Figure 3B and Figure 3—figure supplement 1E). Instead, within the ovBNST and CeA, a

large proportion of Fos-positive cells contained PKC-d immunoreactivity (Figure 3B). CCKNTS neu-

rons project directly to the PBN, including to cells containing CGRP (Roman et al., 2016;

Roman et al., 2017); and, CCK1 receptors in the PBN have been proposed to modulate information

flow from gut to brain (Mercer and Beart, 2004; Saleh et al., 1997). CGRPPBN neurons respond to

a number of anorectic signals and may act as a point of convergence for different signalling path-

ways, themselves projecting forward to the CeA and elsewhere (Wu et al., 2012; Carter et al.,

2013). Therefore, we used dual-fluorescence RNAScope to demonstrate the expression of Cckr1 in

the lateral PBN, but found the receptor mRNA in relatively few CGRP (Calca mRNA-expressing) cells

(Figure 3—figure supplement 1F). Thus, CGRP neurons are unlikely to be the only target in the

PBN for GFRAL neurons.

By repeating our Fos experiment but in mice previously injected with the retrograde tracer, Flu-

oro-Gold, into the lateral PBN, we demonstrate that both GFRAL and CCK neurons activated by

GDF15 project directly to the PBN (Figure 3C). Likewise, CCKNTS neurons also send direct projec-

tions to the PVH (D’Agostino et al., 2016). We confirmed this projection pattern using retrograde

tracing, however, we showed that almost no GDF15-activated, GFRAL+ve or GFRAL-ve AP/NTS cells

project directly to the PVH or to the ovBNST (Figure 3—figure supplement 1G and H). The most

parsimonious conclusion is that GFRAL cells activated by GDF15 project directly to the PBN, which

then activates downstream targets in the CeA, ovBNST and PVH. GFRAL cells may also synapse

locally to activate other neuronal populations, including cells in the medial NTS. A very small number

of these synaptically activated cells contain CCK or TH, and because almost none contain either

PrRP, PPG or POMC, they may represent another distinct NTS phenotype. These GDF15-activated

cells do not project to either the PBN or the ovBNST, but a few do project to the PVH. The others

may represent local interneurons or potentially be responding to descending pathways.

Blocking CCK signalling attenuates the anorexia caused by GDF15
To confirm the importance of GFRAL/CCKAP/NTS neurons in mediating the anorectic effects of

GDF15, we used a recombinant adeno-associated virus (AAV) expressing a Cre-dependent designer

pro-caspase and its activator, the Tobacco Etch Protease (flex-taCasp3-TEVp) to commit CCKAP/NTS

neurons to cell-autonomous apoptosis. CckCre::eYFP mice were injected into the AP/NTS with the

AAV-caspase or an AAV expressing mCherry to control for viral load and transduction efficiency.

Post hoc examination confirmed that the designer caspase achieved an effective ablation of CCKAP/

NTS neurons, assessed by immunostaining for eYFP and also GFRAL (Figure 4A and Figure 4—
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Figure 3. GDF15 activates GFRAL+ve/CCK neurons in the AP/NTS. (A) Fluorescence photomicrographs showing Fos expression (magenta) in GFRAL

and CCK-positive neurons (green) in the AP/NTS following a minimal effective dose of GDF15. For triple labelling, see Figure 3—figure supplement

1A. The percentage of activated GFRAL-immunopositive or CckCre::eYFP neurons is presented on the right (n = 6–7 per group). White arrows in higher

magnification insets indicate co-labelled cells. Note that GDF15 administration activated a group of cells in the medial NTS which are GFRAL-ve and

Figure 3 continued on next page
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figure supplement 1). Over the 10-week period following viral injection, there was no significant dif-

ference in body weight between groups (Figure 4—figure supplement 1). However, whereas mice

transduced with control AAV-mCherry responded to GDF15 with a significant decrease in night-time

food intake, those bearing cell-specific ablation of CCKAP/NTS neurons showed an abrogated

response (Figure 4B). We further injected GDF15 into mice which had been pre-treated with the

CCK receptor antagonist, devazepide. Compared with mice receiving a vehicle control injection,

those receiving devazepide displayed an attenuated anorectic response to a subsequent single injec-

tion of GDF15 (Figure 4C). At early time points, the anorectic effect of GDF15 was reduced by

approximately half.

GFRAL receptor blockade with a monoclonal antibody alleviates the
adverse side effects of the cancer therapeutic drug, cisplatin
Finally, the platinum-based therapeutic drug, cisplatin, causes a long-term reduction in food intake,

which can have a major contribution to mortality in cancer patients treated with the drug

(Dasari and Tchounwou, 2014). There is recent evidence that cisplatin acts through the NTS !

CGRPPBN axis in both rats (Alhadeff et al., 2015; Alhadeff et al., 2017) and mice, (Hsu et al.,

2017) and the latter study indicates that GFRAL knock-out mice are protected against the anorexic

effects of cisplatin. In our hands, a single injection of cisplatin (4 mg/kg, i.p.) at the beginning of the

dark phase, led to a reduction in both food intake and body weight which lasted for three days

(Figure 5A and B). In the same animals, there was a significant increase in circulating GDF15, which

also lasted for between 2 and 3 days (Figure 5C). After 1 day, GDF15 levels were 45 pg/ml and 270

pg/ml in vehicle- and cisplatin-treated mice, respectively. Food intake and weight loss at 2 days cor-

related directly with the plasma level of GDF15 (Figure 5—figure supplement 1). In a separate

experiment, we found also that cisplatin at the same dose activated GFRALAP/NTS neurons, as

assessed by Fos immunoreactivity (Figure 5D).

We have shown previously that weight loss induced in rats by a long-lasting recombinant GDF15

protein can be blocked by the single, subcutaneous administration of a selective monoclonal anti-

body raised against its receptor (GFRAL mAb) (Emmerson et al., 2017). Further, here we show that

the reduction in food intake and body weight in mice, caused by three daily doses of native GDF15,

is blocked by pre-administration of 10 mg/kg of the GFRAL mAb (Figure 5E and F). Importantly,

this high dose of GFRAL mAb which effectively blocks GDF15 signalling, did not affect either food

intake or body weight when injected alone, signifying that GFRAL is unlikely to have a role in either

satiety signalling or normal energy balance (for full mAb dose-response data see Figure 5—figure

supplement 1). Having determined an effective dose of the GFRAL mAb in mice, this was then used

to investigate the role of GDF15/GFRAL signalling in mediating the effects of cisplatin. The GFRAL

mAb was administered 1 day before cisplatin and, as before, by itself did not affect either food

intake (Figure 5G) or body weight (Figure 5H). However, pre-administration of the GFRAL mAb

completely blocked the anorectic action of cisplatin (Figure 5G) and prevented the cisplatin-induced

body weight loss (Figure 5H).

Figure 3 continued

CCK-ve (large arrow head). (B) Dual-label immunofluorescence for Fos and downstream neuronal targets. CGRP neurons were visualised by injecting

CalcaCre mice with AAV-DIO-mCherry (Fos green; CGRP magenta). In the other pictures, PKC-d+ or CrhCre::eYFP cells are coloured green.

Quantification is provided below the relevant photomicrographs (CalcaCren = 4 per group; CrhCren = 6–7 per group; PKC-d+n = 6–7 per group). (C)

GFRAL neurons, which were activated by GDF15, project directly to the parabrachial nucleus, as demonstrated using Fluoro-Gold retrotracing. White

arrows in higher magnification insets indicate triple-labelled cells. aca (anterior part of the anterior commissure), AP (area postrema), BLA (basolateral

amygdala), ovBNST (bed nucleus of the stria terminalis, oval sub-nucleus), cc (central canal), CeA (central nucleus of the amygdala), DMX (dorsal motor

nucleus of the tenth cranial nerve, vagus), ic (internal capsule), LV (lateral ventricle), NTS (nucleus of the tractus solitarius), PBN (parabrachial nucleus),

PVH (paraventricular nucleus of the hypothalamus), scp (superior cerebellar peduncle), 3V (third ventricle). *p<0.05, **p<0.01, ***p<0.001; unpaired

t-test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Neuronal activation by GDF15.

Worth et al. eLife 2020;9:e55164. DOI: https://doi.org/10.7554/eLife.55164 7 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.55164


Discussion
The recent identification of the receptor for GDF15 and its localisation to a small population of cells

in the dorsomedial medulla oblongata, an area involved in gut-brain signalling, ignited interest in

the cytokine as having a potential role in body-weight regulation (Mullican et al., 2017; Yang et al.,

2017; Emmerson et al., 2017; Hsu et al., 2017). Over expression of GDF15 leads to large reduc-

tions in both food intake and body weight (Tsai et al., 2018; Johnen et al., 2007; Macia et al.,

2012; Chrysovergis et al., 2014; Xiong et al., 2017), whilst the obese phenotype reported for both

the GDF15 and GFRAL knock-out mice is supporting evidence for a homeostatic role in normal

body-weight regulation and, perhaps, satiety signalling (Tsai et al., 2013; Low et al., 2017;

Tran et al., 2018; Mullican et al., 2017; Hsu et al., 2017). Careful examination of these null animals

also provides results which would not be expected if this were the case. Thus, increases in food

intake are either sex specific or only clearly apparent in mice fed high-energy diet. However, one of

the more obvious phenotypes is a significant reduction in overall locomotor activity, which might

explain a major part of the obesity (Tsai et al., 2013; Tran et al., 2018). Furthermore, the measure-

ment of plasma levels of GDF15 in humans or mice does not correlate with meal times or nutritional

status, which again would argue against it being a circulating satiety factor (Patel et al., 2019;

Tsai et al., 2015). By contrast, GDF15 levels are greatly enhanced in a number of disease states,
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Figure 4. GDF15-induced anorexia is dependent on CCK signalling. (A) Injection of AAV-caspase into the AP and dorsal NTS of CckCre::eYFP mice

caused a reduction in the number of eYFP cells as assessed by immunohistochemistry (n = 7 per group; **p<0.01, unpaired t-test). (B) CckCre::eYFP

mice transduced with control AAV displayed a significant decrease in food intake following GDF15 administration, while those transduced with AAV-

caspase showed reduced anorexia (n = 7 per group; *p<0.05; two-way ANOVA, followed by a post hoc Tukey test). (C) Pre-administration of the CCK

receptor antagonist, devazepide, attenuated the anorectic response to GDF15 (n = 6 per group; *p<0.05, **p<0.01, ***p<0.001; two-way ANOVA,

followed by a post hoc Tukey test).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Treatment with caspase leads to a significant loss of GFRAL neurons.
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including cancer, cardiovascular disease and chronic kidney disease, pointing towards a more obvi-

ous role as a non-physiological anorectic signal (Patel et al., 2019; Welsh et al., 2003;

Kempf et al., 2007; Ho et al., 2013; Bauskin et al., 2006; Luan et al., 2019). In fact, the only non-

chronic disease situation described, in which GDF15 is up regulated, is hyperemesis gravidarum

associated with intense nausea and vomiting in early pregnancy (Fejzo et al., 2018; Petry et al.,

2018). Thus, while we will not rule out a physiological role for GDF15, most of the literature seems

to point towards it having a more significant role in sickness behaviour. This is strongly supported by

our results that show that systemic administration of GDF15 causes robust conditioned taste
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Figure 5. The anorectic action of the cancer therapeutic drug, cisplatin, is blocked by inhibition of signalling through GFRAL. (A) A single dose of

cisplatin reduced food intake and (B) body weight over the following 3 days (n = 6 per time point; *p<0.05, **p<0.01, ***p<0.001; two-way ANOVA,

followed by a post hoc Tukey test). (C) This corresponded with an increase in circulating GDF15 (n = 6 per time point, ***p<0.001, unpaired t-test) and

(D) induction of Fos (magenta) in immunopositive GFRAL neurons (green) at 24 hr after administration (n = 5–6 per group; ***p<0.001, unpaired t-test).

(E) Three injections of GDF15, on days 2–4, led to a decrease in cumulative food intake and (F) body weight (n = 6 per group; *p<0.05, **p<0.01;

repeated measures ANOVA, followed by a post hoc Tukey test, control Ab + GDF15 versus all other groups). The actions of GDF15 were blocked

completely by pre-administration of a monoclonal antibody against GFRAL (10 mg/kg) on day 1. The GFRAL mAb had no effect on food intake or body

weight by itself. For full data set, using different concentrations of GFRAL mAb, see Figure 5—figure supplement 1B and C. (G) Pre-administration of

10 mg/kg GFRAL mAb the day before, completely blocked the reduction of food intake and (H) body weight caused by cisplatin (n = 5–6 per group;

*p<0.05, **p<0.01, ***p<0.001; repeated measures ANOVA, followed by a post hoc Tukey test).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The anorectic action of the cancer therapeutic drug, cisplatin, is blocked by inhibition of signalling through GFRAL.
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aversion, conditioned place aversion and pica behaviour, and that blocking endogenous GFRAL sig-

nalling with a selective monoclonal antibody does not affect baseline food intake or body weight.

GFRAL-positive neurons span the AP and the inner border with the NTS, a region synonymous

with responses to toxins and other nausea-inducing agents, and which lacks a blood-brain barrier

(Miller and Leslie, 1994). The AP and NTS are also part of the dorsal vagal complex, which responds

to gut-brain signalling. GFRAL is not expressed in the gut or in the vagus nerve, and since GDF15 is

still effective at inducing anorexia in vagotomised rats, (Yang et al., 2017) the simplest conclusion is

that circulating GDF15 acts directly on GFRAL expressed in the AP/NTS. We and others have argued

for the existence of specific neuron types in this region of the brainstem which respond selectively to

different sensory modalities (for example satiety versus nausea) in order to reduce food intake

(Luckman and Lawrence, 2003; Kreisler et al., 2014). Thus, it is important to identify the pheno-

type of GFRAL cells. Although evidence has been provided that GFRAL is expressed in TH-positive

catecholaminergic neurons, until now this has not been accurately quantified (Yang et al., 2017;

Tsai et al., 2014). Here, using a variety of models, we conclude that the major, identifiable popula-

tion of GFRAL neurons contain the neuropeptidergic transmitter, CCK. GFRAL-positive neurons

respond to GDF15, but not with many other stimuli, and the action of GDF15 can be abrogated

either by genetically ablating CCK neurons selectively in this region or by blocking CCK transmission.

Thus, we propose that the primary target for GDF15 is a distinct population of GFRAL/CCK neurons

which span the AP/NTS to engage well-characterised circuitry involved in anorexia and conditioned

aversion (Wu et al., 2012; Carter et al., 2013; Chen et al., 2018). We have found that CCK neurons

activated by GDF15 project directly to the PBN, and that other downstream targets, in the PVH,

CeA and ovBNST are also involved. There is ample evidence for anorectic signals to utilise parallel

downstream pathways, but with convergence at specific nodes which we demonstrate are activated

by GDF15, including CGRP neurons in the PBN (D’Agostino et al., 2016; Roman et al., 2016;

Roman et al., 2017) and/or PKC-d+ neurons in both the CeA and ovBNST (Cai et al., 2014;

Wang et al., 2019). There is still much to learn about these pathways, not least because we have

shown that GFRAL neurons are not activated by the archetypal nausea-inducing agent LiCl, nor does

GDF15 activate PPG (here) or GLP-1 receptor neurons (Welsh et al., 2003; Frikke-Schmidt et al.,

2019), both capable of transmitting nauseous signals. Recently, bacterial or viral infections have

been associated with secretion of GDF15 and an adaptive response in order to increase pathogen

tolerance (Luan et al., 2019). In this ground-breaking paper, it was demonstrated that GDF15/

GFRAL signalling increases triglyceride production by the liver in order to protect tissues, which are

dependent on triglycerides for fuel, from metabolic damage due to inflammation. Also, the loss of

appetite and weight caused by metformin in diet-induced obese mice is dependent on GDF15/

GFRAL signalling, as is the accompanying increase in insulin sensitivity (Coll et al., 2020).

It is interesting to note that increased GDF15 has been measured in the circulation of human can-

cer subjects (Welsh et al., 2003; Bauskin et al., 2006; Brown et al., 2003) and, recently an NTS !

CGRPPBN ! CeA/ovBNST axis has been implicated in mediating the anorexia associated with cancer

models in mice (Campos et al., 2017). Likewise, work in rats has demonstrated that this pathway

appears also to be activated by the platinum-based, cancer therapeutic drug, cisplatin

(Alhadeff et al., 2015; Alhadeff et al., 2017). Although in neither case has the primary brainstem

neuron been identified (Hsu et al., 2017), it is reported that weight loss caused by cisplatin is

reduced in GFRAL knock-out mice, and we now show that this is true also if wild-type mice are pre-

treated with a neutralising GFRAL antibody. Although it is yet to be verified, the possibility exists

that both a disease state (cancer) and the treatment (cisplatin) may exacerbate anorexia through the

same brainstem pathway. If this is the case, then either GFRAL neutralising antibodies or GFRAL

antagonists may provide a possible co-treatment opportunity for patients suffering with cancer-

related anorexia/cachexia. The caveat to this is that the secretion of GDF15 during cancer, as it

appears so for inflammatory infections, is presumably an adaptive response, so blocking GDF15/

GFRAL signalling may worsen the disease and other symptoms. GDF15 has been located in different

tissues when they become cancerous (Welsh et al., 2003; Buckhaults et al., 2003). If GDF15 has an

adaptive systemic effect, then it may be possible to bypass this and, instead, selectively target the

central pathways downstream of brainstem GFRAL.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Mus musculus)

C57Bl/6J
(Mouse, male)

Envigo Stock #057 MGI:2164189

Genetic reagent
(Mus musculus)

C57Bl/6NHsd
(Mouse, male)

Envigo Stock #044 MGI:2161078

Genetic reagent
(M. musculus)

C57Bl/6J
(Mouse, male)

Charles River Stock #632 MGI:3028467

Genetic reagent
(M. musculus)

C57Bl/6J
(Mouse, male)

Janvier labs N/A MGI:2670020

Genetic reagent
(M. musculus)

PomceGFP

(Mouse, male)
Jackson Laboratories Stock #: 009593 MGI:3851684

Genetic reagent
(M. musculus)

Cckires-Cre

(Mouse, male)
Jackson Laboratories Stock #: 012706 MGI:5014249

Genetic reagent
(M. musculus)

Crhires-Cre

(Mouse, male)
Jackson Laboratories Stock #: 012704 MGI:4452101

Genetic reagent
(M. musculus)

Slc17a6ires-Cre

(Mouse, male)
Jackson Laboratories Stock #: 016963 MGI:5300532

Genetic reagent
(M. musculus)

Rosa26-loxSTOPlox-
eYFP (Mouse, male)

Jackson Laboratories Stock #: 006148 MGI:3621481

Genetic reagent
(M. musculus)

GcgiCre

(Mouse, male)
Parker et al., 2012
PMID:22638549

N/A MGI:5432481

Genetic reagent
(M. musculus)

Prlhires-Cre

(Mouse, male)
Dodd et al., 2014
PMID:25176149

N/A MGI:5634277

Genetic reagent
(M. musculus)

CalcaCre

(Mouse, male)
Carter et al., 2013
PMID:24121436

N/A MGI:5559692

Genetic reagent
(Rattus norvegicus)

Sprague Dawley
(Rat, male)

Envigo Stock #: SD-002 N/A

Antibody anti-cFos
(Rabbit polyclonal)

Santa Cruz Cat.# SC52
RRID:AB_2106783

Primary antibody
(1:500) IHC

Antibody anti-DS Red
(Goat polyclonal)

Santa Cruz Cat.# 33353
RRID:AB_639924

Primary antibody
(1:500) IHC

Antibody anti-GFP
(Chicken polyclonal)

Abcam Cat.# 13970
RRID:AB_300798

Primary antibody
(1:2000) IHC

Antibody anti-GFRAL
(Sheep polyclonal)

Thermofisher Cat.# PA5-47769
RRID:AB_2607220

Primary antibody
(1:200) IHC

Antibody anti-GLP1
(Rabbit polyclonal)

PenLabs Cat.#. T-4363
RRID:AB_518978

Primary antibody
(1:2000) IHC

Antibody anti-PKCd
(Mouse monoclonal)

BD Biosciences Cat.#. 610398
RRID:AB_397781

Primary antibody
(1:500) IHC

Antibody anti-TH
(Rabbit polyclonal)

AbCam Cat.# AB112
RRID:AB_297840

Primary antibody
(1:2000) IHC

Antibody anti-TH
(Sheep polyclonal)

Millipore Cat.# AB1542
RRID:AB_90755

Primary antibody
(1:1000) IHC

Antibody anti-chicken, Alexa Fluor
488 (Donkey polyclonal)

Jackson Immuno
Research

Cat.# 703-545-155
RRID:AB_2340375

Secondary antibody
(1:1000) IHC

Antibody anti-mouse, Alexa Fluor
594 (Donkey polyclonal)

Jackson Immuno
Research

Cat.# 715-585-150
RRID:AB_2340854

Secondary antibody
(1:1000) IHC

Antibody anti-rabbit, Alexa Fluor
350 (Donkey polyclonal)

Molecular Probes Cat.# A10039
RRID:AB_2534015

Secondary antibody
(1:1000) IHC

Antibody anti-Sheep, Alexa Fluor
350 (Donkey polyclonal)

Molecular Probes Cat.# A21097
RRID:AB_10376162

Secondary antibody
(1:1000) IHC

Continued on next page

Worth et al. eLife 2020;9:e55164. DOI: https://doi.org/10.7554/eLife.55164 11 of 19

Research article Neuroscience

https://www.ncbi.nlm.nih.gov/pubmed/22638549
https://www.ncbi.nlm.nih.gov/pubmed/25176149
https://www.ncbi.nlm.nih.gov/pubmed/24121436
https://scicrunch.org/resolver/AB_2106783
https://scicrunch.org/resolver/AB_639924
https://scicrunch.org/resolver/AB_300798
https://scicrunch.org/resolver/AB_2607220
https://scicrunch.org/resolver/AB_518978
https://scicrunch.org/resolver/AB_397781
https://scicrunch.org/resolver/AB_297840
https://scicrunch.org/resolver/AB_90755
https://scicrunch.org/resolver/AB_2340375
https://scicrunch.org/resolver/AB_2340854
https://scicrunch.org/resolver/AB_2534015
https://scicrunch.org/resolver/AB_10376162
https://doi.org/10.7554/eLife.55164


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody anti-sheep, Alexa Fluor
594 (Donkey polyclonal)

Molecular Probes Cat.# A11016
RRID:AB_10562537

Secondary antibody
(1:1000) IHC

Antibody Anti-GFRAL
(Mouse monoclonal)

Emmerson et al., 2017
PMID:28846098

mIgG1 GFRAL 8A2 Subcutaneous injection
(0–10 mg/kg)

Recombinant
DNA reagent

AAV8-hSyn-
DIO-mCherry

Dr Bryan Roth
Addgene

Cat.# 50459-AAV8 N/A

Recombinant
DNA reagent

AAV5-flex-taCasp3-TEVp Dr Nirao Shah
University of North
Carolina Vector Core

N/A PMID:23663785

Sequence-
based reagent

Gfral Advanced Cell
Diagnostics

Cat.# 417021-C3 RNAScope
mRNA probe

Sequence-
based reagent

Cck Advanced Cell
Diagnostics

Cat.# 402271-C1 RNAScope
mRNA probe

Sequence-
based reagent

Cckr1 Advanced Cell
Diagnostics

Cat.# 313751-C1 RNAScope
mRNA probe

Sequence-
based reagent

Calca Advanced Cell
Diagnostics

Cat.# 420361-C2 RNAScope
mRNA probe

Peptide,
recombinant protein

GDF15 R and D Systems Cat.# 9279-GD (4 nmol/kg)

Peptide,
recombinant protein

Streptavadin 488 Jackson Immuno
Research

Cat.# 016-540-084
RRID:AB_2337249

(1:1000) IHC

Peptide,
recombinant protein

Streptavadin 594 Jackson Immuno
Research

Cat.# 016-580-084
RRID:AB_2337250

(1:1000) IHC

Commercial
assay or kit

Mouse/rat GDF15 ELISA R and D Systems Cat.# MGD-150 N/A

Commercial
assay or kit

RNAscope Multiplex
Fluorescent Assay

Advanced Cell
Diagnostics

Cat # 323100

Chemical
compound, drug

Devazepide Tocris Bioscience Cat.# 2304 (1 mg/kg)

Chemical
compound, drug

Lithium chloride (LiCl) Sigma Cat # L9650 (mouse)
Cat.# 73036 (rat)

Mouse (128 mg/kg)
Rat (128 mg/kg)

Chemical
compound, drug

Hydroxystibamidine
(Fluoro-Gold)

Invitrogen,
Thermofisher

Cat.# H22845 4% in H2O

Chemical
compound, drug

Cisplatin Sigma Aldrich Cat.# PHR1624 (4 mg/kg)

Software,
algorithm

Prism GraphPad RRID:SCR_002798 Version 7

Software,
algorithm

Fiji ImageJ RRID:SCR_002285 Version 2.0.0-rc-69/1.52 p

Software,
algorithm

Micromanager ImageJ RRID:SCR_016865 Version 1.4.23

Software,
algorithm

Smart Panlab, Harvard
Biosciences/Biochrom Ltd

RRID:SCR_002852 Version 3.0

Animals
Non-transgenic C57Bl/6 mice were obtained from Charles River (Manston, Kent, UK), Envigo (Hun-

tingdon, UK and Indianapolis IN) or Janvier Labs (Le Genest-Saint-Isle, France). PomceGFP, Cckires-Cre,

Crhires-Cre (Taniguchi et al., 2011), Slc17a6ires-Cre and Rosa26-loxSTOPlox-eYFP were all purchased

from Jackson Laboratories (stock numbers 009593, 012706, 012704, 016963 and 006148, respec-

tively; Bar Harbor, ME). We have described the generation of the PPG (GcgCre) and PrRP (Prlhires-Cre)

mice (Parker et al., 2012; Dodd et al., 2014). Calcaires-Cre mice (Carter et al., 2013) were a kind

gift from Prof Richard Palmiter (Howard Hughes Medical Institute, University of Washington).
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Drugs and viruses
Recombinant human GDF15 was either made in house as described (Emmerson et al., 2017) or pur-

chased from R and D Systems (Abingdon, UK). GDF15 was initially dissolved in 15 mM HCl, neutral-

ised and diluted in saline. Devazepide was purchased from Tocris Bioscience (Bristol, UK) and

dissolved in 40% DMSO. Cisplatin (Sigma-Aldrich, Gillingham, UK) was dissolved directly in saline.

Fluoro-Gold (hydroxystilbamidine, 4% w/v solution in water; Invitrogen, ThermoFisher, MA) was

injected into mice anaesthetised with isoflurane (2–3% in oxygen) and placed in a stereotaxic frame.

The skull was exposed and holes drilled at the site of injection. Fluoro-Gold was delivered unilater-

ally via a glass micropipette affixed to a Nanoject II Auto Nanoliter Injector (Drummond Scientific

Company, PA) using co-ordinates as determined in the Mouse Brain Atlas: (Paxinos and Franklin,

2004) elPBN, �4.9 mm A/P, �1.4 mm M/L, �3.8 mm D/V from bregma (12 nl); ovBNST, +0.3 mm

A/P, �1.0 mm M/L, �4.5 mm D/V (18 nl); PVH, - 0.7 mm A/P; �0.3 mm M/L; �5.5 mm D/V (18 nl).

All animals were left to recover for 2 weeks to allow axonal transport before being transcardially per-

fused (see below).

Viral injections into the AP/NTS were performed as described previously with minor modifications

(D’Agostino et al., 2016; D’Agostino et al., 2018). Briefly, 9- to 11-week-old male mice were

anaesthetised with a mixture of ketamine and xylazine dissolved in saline (80 and 10 mg/kg, respec-

tively; 10 ml/kg i.p.). Mice were placed in a stereotaxic frame, an incision was made at the level of

the cisterna magna, and neck muscles were carefully retracted. Following dura incision, the obex

served as reference point for injections with a glass micropipette. AP/NTS coordinates were approxi-

matively 0.2 mm A/P, 0 and ±0.2 mm M/L, �0.2 mm D/V from obex. About 150 nl of virus were

delivered during each of the three microinjections. Animals were administered analgesia (5 mg/kg

Carprofen, s.c.) for 2 days post-operatively and given a minimum of 14 days recovery before night-

time feeding measurement. AAV5-mCherry and AAV5-flex-taCasp3-TEVp were obtained from

Addgene (Watertown, MA) and the University of North Carolina Vector Core (Chapel Hill, NC),

respectively.

Tissue preparation and histology
For all immunohistochemical experiments, animals were deeply anaesthetised with 4% isoflurane in

oxygen and transcardially perfused with heparinsed saline (20,000U per litre in 0.9% NaCl) followed

by 4% paraformaldehyde in 0.1 M phosphate buffer. Brains were dissected and post-fixed overnight

at 4˚C and then cryoprotected in 30% sucrose. Brains were cut into 30-mm-thick coronal sections

using a freezing sledge microtome (Bright 8000, Cambridge, UK) and either processed immediately

or stored in cryoprotectant solution at �20˚C.

Immunohistochemistry was performed on free-floating sections at room temperature unless

stated otherwise. All antibodies are listed in the Key Resource Table. Brain sections were washed in

0.2% Triton X-100 in 0.1 M phosphate buffer and blocked in 5% normal serum for 1 hr, before being

incubated in primary antibody (made up in to 1% normal serum) overnight at 4˚C. The next day, sec-

tions were washed again and then incubated in secondary antibody for 2 hr. Sections were washed

and, where biotinylated secondary antibodies were used, incubated for a further hour in streptavi-

din-conjugated fluorophores diluted in phosphate buffer. Finally, sections were washed in water,

mounted onto glass slides, air-dried overnight and coverslipped with ProLong Gold (Thermo Fisher

Scientific, MA). Sections were visualised on a Zeiss Axiomanager.D2 upright microscope (Zeiss,

Oberkochen, Germany) and images captured using a Coolsnap HQ1 camera (Photometics, AZ)

through Micromanager software v1.4.23 (https://imagej.net/Micro-Manager). Specific band pass fil-

ter sets for DAPI, FITC and Texas Red were used to prevent bleed through from one channel to the

next. All images were processed and analysed in Fiji ImageJ (https://fiji.sc/).

Eight-week-old C57BL/6J mice (n = 3) were anaesthetised by CO2, decapitated, and the brains

removed and snap frozen on crushed dry ice. Four or five 10-mm-thick tissue sections at the level of

the AP or PBN were collected for RNA in situ hybridisation histology for Gfral (cat#417021-C3) and

Cck (cat# 402271-C1) or Cckr1 (cat#313751-C1) and Calca (cat#420361-C2), respectively. mRNA was

detected using RNAscope Multiplex Fluorescent Assay reagent kits (Advanced Cell Diagnostics, Inc,

Newark, CA), according to the manufacturer’s instructions, at Gubra (Hørsholm, Denmark). Slides

were counter stained with DAPI to identify cellular nuclei. Slides were scanned under a 20X objective

in an Olympus VS120 Fluorescent scanner.
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Feeding and body-weight studies
For GDF15 night-time feeding experiments, food was removed from the animals for 2 hr before

lights out. At lights out, mice were administered GDF15 subcutaneously and food was returned at

the same time. Food intake was recorded at 0, 1, 2, 4, and 24 hr after injection of GDF15. Devaze-

pide (1 mg/kg, i.p) was administered 45 min before GDF15. For the fast-refeeding experiment, food

was removed from the mice at lights out on the night before the experiment. After a 16.5 hr fast,

mice were administered GDF15 and food returned. Food intake was measured at the same time

points (n = 5–7 per group).

C57Bl/6J male mice (aged 10 = 18 weeks; n = 6 for each group) were administered a single, intra-

peritoneal dose of saline or cisplatin (4 mg/kg). Food intake and body weight were monitored daily.

At 24, 48, and 72 hr, n = 6 mice from each group were sacrificed with CO2 inhalation and blood was

collected with cardiac puncture. Plasma was taken with Approtinin and DPP4 inhibitors. GDF15 lev-

els are measured using a mouse specific ELISA, according to manufacturer’s directions (R and D Sys-

tems, MGD150). A dose-finding experiment for GFRAL mAb (mIgG1 GFRAL 8A2, Lilly Indianapolis,

USA) was performed. Briefly, 1 day prior to GDF15 administration at 4 nmol/kg for 3 consecutive

days, the mice were subcutaneously dosed once either with control antibody (mIgG1 antibody, Lilly

Indianapolis) at 10 mg/kg or ascending doses of antibody at 0.3, 1, 3 and 10 mg/kg of GFRAL mAb.

Daily food intake and body weight were measured for three days. In a different experiment, control

antibody or GFRAL mAb (both 10 mg/kg) were subcutaneously dosed once 1 day prior to intraperi-

toneal dose of cisplatin at 4 mg/kg.

Conditioned taste and place aversion tests, pica behaviour
For conditioned taste aversion, C57Bl/6J mice were housed in cages that permitted ad libitum

access to water from two bottles, side-by-side, for at least 1 week before the experiment. On day 1

of the study, animals were water deprived overnight for 16.5 hr. The following morning (day 2),

water-deprived animals were provided with two bottles of a novel 15% sucrose solution (dissolved in

drinking water) for 30 min. At the end of the 30 min sucrose exposure, animals received an s.c. injec-

tion of either saline or GDF15 (4 nmol/kg, 4 ml/kg; n = 6 per group). Two water bottles were

returned immediately and mice had unlimited access to water for one night. On day 3, mice were

again water deprived overnight. On day 4, water-deprived animals were provided with one bottle of

15% sucrose and one bottle of water for a period of 24 hr. Volumes of sucrose and water intake

were measured at 2 hr and 24 hr and used to calculate sucrose preference (sucrose intake/total fluid

intake * 100). Food was available ad libitum throughout the study. The positioning of the sucrose

and water bottles (left or right) was randomised within treatment groups.

Conditioned place aversion was performed using an apparatus composed of two chambers with

distinct visual and tactile qualities, connected by a brightly lit corridor (Harvard Biosciences/Bio-

chrom Ltd., Cambridge, UK). The darker chamber consisted of a rough black floor and black spotted

walls, whereas the lighter chamber consisted of a smooth grey floor and grey striped walls. Time

spent in each chamber was monitored by video cameras mounted directly above the apparatus, con-

nected to a computer running tracking software (Smart v3.0, Panlab, Harvard Biosciences/Biochrom

Ltd.). All procedures were carried out between three and five hours after lights on. On day 1, C57Bl/

6J mice (n = 12) were given free access to the full apparatus and allowed to freely explore both

chambers for 30 min. Their initial pre-test preference was calculated from the time spent in each

chamber. A biased design was used, whereby GDF15 was associated with the most-preferred cham-

ber, which was the darker chamber for all mice. On days 2 and 3, a conditioning session was per-

formed, where mice were restricted to one chamber following administration of either GDF15 (4

nmol/kg, injected s.c. on day 2) or saline (0.9% NaCl injected s.c. on day 3). Following each injection,

mice were returned to their home cage for 10 min and then placed in the relevant chamber for 30

min. On day 4, a test session was performed in identical fashion to day 1, and their post-conditioning

preference was calculated from the time spent in each chamber. Food and water was available ad

libitum throughout the study, except for when mice were in the conditioning apparatus.

To measure pica behaviour, male Sprague-Dawley rats (Envigo, Indianapolis, IN) were acclimated

with kaolin pellets available ad libitum in a hopper placed continuously in the home cage. Rats were

assigned randomly to three groups (n = 9–10 per group) and treated on 3 consecutive days with

vehicle (acetate buffer, pH 5.5, 1 ml/kg, s.c.), human recombinant GDF15 (0.2 mg/kg, s.c.) or LiCl
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(0.3 M in water, 1% body weight, equivalent to 128 mg/kg, i.p.). Body weight, chow and kaolin

intake were determined daily.

Statistics
Statistical analyses were performed using Prism 7 (Graphpad Software, La Jolla, CA). Data were ana-

lysed using t-test, one-way ANOVA, two-way or repeated measures ANOVA with post hoc compari-

sons. When appropriate, non-parametric equivalents were used. N represents independent

biological replicates. No statistical methods were used to predetermine sample sizes. Sample size

was computed based on pilot data and published literature. Data are presented as mean ± SEM and

statistical significance was set at p<0.05.
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