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Abstract

Data sharing is often hindered by a number of real word challenges caused by

a mixture of technological and social factors. To date, the agri-food sector

significantly lags behind other sectors in overcoming these challenges. However,

the benefits of data sharing are too great to be ignored as they have a potential to

address many historical failings such as issues related to food safety, traceability

and transparency, and must be carefully considered as the sector is undergoing

a widespread digitalisation. In this article, we explore the potential of different

technologies in addressing the challenges presented by data sharing in the agri-

food sector, and how the use of these technologies in the narrative of a Data

Trust may address many of these obstacles. We argue the importance of utilising

semantic web technologies, distributed ledger technologies, machine learning,

and privacy preserving technologies to enable future transformative data sharing

infrastructures in the agri-food sector. The utilisation of holistic statistical

analysis of the shared data is also discussed, vital in supporting many of the

sectors optimisation and sustainability goals.
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Chains

1. Introduction

Data sharing poses many opportunities to address the historical failings im-

pacting the agri-food supply chain, such as traceability and transparency in

cases of food fraud [63, 56]. Many domains have seen great success from data

sharing, notably genomic research, which for the last two decades have shared

large quantities of data enabling extensive analysis of rare diseases, only possible

through collaborative sharing [69, 13]. Other domains, in particular ones that

have a more sensitive commercial component, such as drug discovery and phar-

maceuticals, could also benefit from data sharing (e.g. in the need for rapid

solutions to the Covid-19 pandemic); however, in such commercial settings,

where intellectual property might be worth hundred of millions of pounds, shar-

ing data might be seen as a less attractive aspect, resulting in reluctance to

adopt data sharing principles.

In addition, data sharing mechanisms are easily impeded by technical is-

sues related to e.g. data quality, transparency and privacy protection concerns,

and interoperability issues, as well as a host of social considerations including

inequality and complex power dynamics [66, 37, 72]. Data sharing therefore

presents both a challenge and an opportunity to the agri-food sector. Opportu-

nities include increased transparency and traceability (whether to address food

safety concerns or to meet consumer demand) [29], the potential for increased

overall system efficiency via data science insights [60], and a general increase

in cooperation and decrease in administrative friction. Beyond the technical

challenges, which are the focus of this article, there are other major blockers in

understanding ownership of data and correctly incentivising sharing by provid-

ing significant benefits. For example, reluctant partners can easily stymie data

sharing, particularly if they are powerful actors in the food system [38].

The primary gains possible from data sharing depend on the style and pur-

pose of the sharing. One model to help support sharing is that of a Data Trust,
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in which independent, fiduciary stewardship of data is provided [39]. In a reg-

ulatory setting where data sharing is required for compliance purposes, Data

Trusts could remove some data maintenance and storage burden from indus-

trial actors. However, perhaps more importantly Data Trusts could increase

the speed of traceability for food safety related incidents and product recalls.

In a wider setting of sharing production or pre-competitive data, there is sig-

nificant potential for improved efficiency and profit, both for the sector as a

whole and for individual operators. To focus our discussion more concretely

and meet our objectives, we consider two particular use-cases for data sharing

within agri-food, aligning with these two example types of gains, and outline

some associated challenges and opportunities. Finally, the objectives of this ar-

ticle are a) to explore the potential of different technologies – some established

and others emerging – in addressing the challenges presented by data sharing in

the agri-food sector; and b) to discuss how these technologies, within the context

of a Data Trust, can be used in practice to overcome the obstacles associated

with data sharing.

1.1. Food and Drink Sector

The UK Food and Drink sector is the largest manufacturing sector in the

whole country, valued at about £100bn [62]; it is larger than automotive and

aerospace combined. In 2018, total food and drink export figures were worth

more than £23bn, with the top three export markets being Ireland, USA and

France. The food supply chain employs about 4 million people and generated

over £121bn of added value for the economy each year. It is largely a small

and medium enterprises (SME) sector, as 97% of food and drink businesses are

SMEs [62]. Although the effect of Brexit is still unclear, it is estimated that

more than 100,000 new recruits will be needed by 2024 to feed the ever-growing

population and meet market demand.

UK Food and Drink sector includes several sub-sectors, e.g. animal feeds,

bakery, confectionary, dairy, fish, fruit and vegetables, meat, etc., with the top

10 export products being whisky, salmon, chocolate, wine, cheese, gin, beef,
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pork, breakfast cereals and beer. Such is the growth of the sector that several

of these products have seen more than a 10% increase on export demand in the

last couple of years [62].

1.2. Use Case 1: Traceability beyond one-up and one-down

Traceability of goods within the food system is desireable from a number

of perspectives, including regulatory requirements (e.g. in the case of bovine

livestock in Europe [19]), for food safety monitoring, and to satisfy consumer

demand. Currently, apart from systems where central government reporting is

required, a system of ’one-up-one-down’ traceability is the norm [73]: here each

actor in a supply chain will know the source and the destination of their products

or goods, but will not know the next eventual destination or the original source.

While this system does preserve the necessary information to reconstruct a

product history through contacting all actors in the chain, it is cumbersome

and may be too slow in a food safety emergency.

1.3. Use Case 2: Sharing data for production optimisation

Insights leading to improved production efficiency may be possible from data

analytic approaches on production data either from learned insights from the

overall data or by an actor comparing their efficiency directly to their peers in

an effort to identify areas of possible improvement [79]. Both of these would

naively seem to require direct pooling of data between competitors, which data

holders may be uncomfortable with. However, as we expand on below, there are

a number of technological approaches that may allow some of this advantage to

be gained while protecting individual commercial sensitivities.

1.4. Challenges to data sharing

Several social challenges to data sharing are reported in an Open Data In-

stitute report describing a pilot study of a Data Trust for reducing food waste

[37]. In particular, they report that businesses feared that sharing data might

reveal commercially sensitive information to competitors, or that it might result
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in bad publicity for the sharer, and hence pose a reputational risk. Overall, they

noted that manufacturers and retailers saw little value in sharing data about

food waste, feeling that the benefits were insufficient to justify the competitive

and reputational risks and the effort required to prepare the data.

Trust and power between actors play a significant role in the uptake and eth-

ical value of data sharing, even where legislation designed to support equitable

sharing is in place [72]. Where legislation is limited or absent, the situation

may be even more untenable - agricultural actors have sometimes been reluc-

tant to share data over a lack of trust with those who are gathering, collating,

and sharing the data, and uncertainty about how data will be used and shared

eventually [78, 40]. It is clear that if actors in agri-food systems are to willingly

participate in data sharing (via Data Trusts or otherwise) we must mitigate

these concern, and the benefits of the sharing must be sufficient to overcome

these social challenges.

In addition to critical social challenges, there are a variety of technological

challenges to effective data sharing [29, 15, 33]. These span the entire data

lifecycle and relate to the data format and encryption levels used by Data Trusts,

security and transparency of data access, and ultimately the utilisation of data

assets through analysis and as evidence. A pre-agreed data sharing system for

traceability could significantly improve the efficiency and reliability of product

tracing, regardless of whether the data required resided in a central location or

locally with actors under careful federated agreements. However, widespread

adoption of digital technologies including data sharing in sectors such as Agri-

Food have yet to materialise; indeed almost 60% of UK farm data are paper-

based [3].

In this paper, we expand on opportunities and challenges of Data Trusts, in

particular discussing how Data Trusts and various technological approaches to

data integration might address them.
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2. Related work on data trusts and data sharing

Data sharing has been largely enabled through the advent of cloud-based

technologies, with the competition between large players pushing the limits in

infrastructural capabilities and costs. Across Microsoft Azure 1, Amazon Web

Services 2 and Google Cloud Computing 3, one can find a plethora of cloud-based

solutions spanning end-to-end pipelines, i.e. from data input and aggregation

to model development and business intelligence. Such pipelines allow for a

streamlined process of keeping data in remote locations - in a fault tolerant

manner - enabling companies to rely less on local infrastructure.

Along the lines of automation and cloud computing, cloud manufacturing

has become popular over the past few years, as a resource sharing paradigm [54].

Through cloud manufacturing, businesses can have remote access to a pool of

manufacturing resources and capabilities, akin to other cloud-based resources.

This new paradigm enables businesses to leverage the Industrial Internet of

Things (IIoT) and its underlying infrastructure as a service including architec-

ture models, and data and information exchange protocols. In this process, in-

teroperability is a key component as it allows the implementation of vertically or

horizontally integrated cyber-physical systems for production engineering [54].

In 2018, the EU launched the EU code of conduct for agricultural data shar-

ing by contractual agreement, which encourages transparency about data use

[72]. The scope of this EU code has been to enable trust through the establish-

ment of contractual agreements between the parties concerned with the data

exchange process. In such cases, fostering trust goes beyond contractual agree-

ments, whereby power relationships might be influencing the direction these

agreements might take, as argued in [72]. Therefore contractual agreements

are only one small component of the processes needed to accommodate data

sharing.

1https://azure.microsoft.com/en-gb/industries/discrete-manufacturing/
2https://aws.amazon.com/
3https://cloud.google.com/solutions
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ODI [39] have made significant progress in standardising concepts and pro-

cesses around Data Trusts through their engagement with various stakeholders

and UK universities. For example, the UK Biobank [10] has collected and

maintained data since 2006; stewardship is achieved via its status as a char-

itable company with a board of directors that “act as charity trustees under

UK charity law and company directors under UK company law” [39]. Other

similar examples provided by ODI revolve around data stewardship within the

context of a Trust: an independent legal entity requiring a careful framework

of agreements. For small enterprises in particular the complexity of the legal

framework required can be daunting, and discourage involvement.

Within agri-food, many of the efforts in organised data sharing have in-

cluded only an informal Data Trust, often within one organisation or company

and focussing around one product or chain e.g. multi-IoT based sensor data

aggregation as a systems approach [16, 35], with [28] providing a comprehensive

overview of how modern IoT and data analytics approaches can enable smart

agriculture towards boosting productivity and sustainability. Blockchain tech-

nologies have contributed to a number of agri-food data sharing systems [59],

and have shown potential value when coupled with other technologies such as

IoTs [71] and machine learning [44]. Machine learning approaches and ontologies

have been primarily used in the context of agri-food data analytics for precision

agriculture [53, 4, 18, 8].

In this diverse technological landscape, privacy preserving approaches have

started gaining momentum as components of larger pipelines that might also

include blockchain [48] or machine learning [7]. The appeal of privacy preserving

technologies is clear: they enable computation despite the fact that raw data

are obscured, hence any data exchange occurs with encrypted data. This could

be invaluable in overcoming concerns about data privacy, competitiveness, and

reputational risk.

Despite existing and emerging technologies, we are still far from converging

on an established model of a Data Trust - either legally or technologically. Some

reasons that might have led to this are touched upon in [21], where among
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others, the concept about “one size fits all” in data governance is considered

as a hindering factor, going on to suggest that a “plurarity of Trusts” could be

a way forward. Regulatory concerns and how personal data can be protected

within a Data Trust are essential to their adoption, where [66] identifies the

necessity of legal and social foundations implementing a ’data protection by

design’ philosophy into Data Trusts. This is also considered in [21], which

builds upon the “Growing the Artificial Intelligence Industry in the UK” report

published by the UK Government in 2017 [32].

Another direction to Data Trust in agri-food revolves around approaches

that increase transparency and availability of information as a means to increase

trust [61, 40]. In particular, the concept around transparency is considered in the

context of sociotechnical factors and conditions that influence the development

of smart farming [40], touching upon issues around use of data, sceptisism about

the value of smart technologies and balancing expectations within the farming

industry. It becomes evident that data sharing quickly becomes a very complex

problem when considering all factors involved, let alone in the context of Data

Trusts. Regarding adoption issues and lack of a universally accepted Data

Trust system, we speculate that the complexity of data collected across sectors,

interoperability issues, analytics as a knowledge extraction process, and business

intelligence as a decision making mechanism for improving performance, could

mean that multiple Data Trusts might need to be proposed to accommodate

the specific needs found within individual sectors, along the lines discussed in

[21]. As data control processes become more and more complex, Data Trust

systems could be developed and tailored to a sub-sector level, adopting some

components and/or implementing new ones.

3. Role of technology

A wide variety of technological approaches may be useful in overcoming the

aforementioned challenges to data sharing previously outlined, thus allowing the

agri-food sector to best take advantage of the opportunities available. Below we

8



mention a number of technologies that we believe have potential to address a

spectrum of technological and social complexities at various stages of the data

lifecycle.

At the most basic level, data interoperability and reuse will require agree-

ment on data formats and reproducible data pipelines. A suitable for-

mat for incoming data is crucial; while this point may seem very straightforward,

it really is critical to enable value-adding data processing or inference to occur.

Machine-readable data that can be accessed by a programmatic interface will

allow best value: that is, a structured filetype (e.g. YAML, JSON, HDF5) with

an agreed format will allow smoother updates and quicker use of new data than

a non-readable or changing format (e.g. a scanned pdf or a spreadsheet with a

non-agreed format).

Semantic web technologies can take the description of machine-readable

data even further. Data is represented in a form of a graph described using

the Resource Description Framework (RDF) [58] and ontology languages such

as OWL [34] are used to produce formal models of semantic annotations for a

specific domain. Applying such annotations to raw data will produce semantic

metadata that can formally describe the types of individual data elements and

their relationships to other data represented within the same or any other data

set, thus forming a knowledge graph. Data described using standard semantic

frameworks may be further processed using automated pipelines to infer new

knowledge, to integrate with other datasets, or to validate for missing infor-

mation. For example, SPARQL query language [36] can be used to query and

transform data stored in multiple distributed repositories and recently devel-

oped standards such as SHACL [45] can be used to define data quality rules to

support management of knowledge graphs.

Recently, distributed ledger technologies (DLTs) have been gaining

traction in agrifood through both commercial platforms (e.g. Food Trust from

IBM4) and proposed research prototypes and pilot systems [14, 68, 41]. Key

4https://www.ibm.com/uk-en/blockchain/solutions/food-trust
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characteristics of DLT solutions include the immutability of stored records (i.e.,

records cannot in retrospect be falsified), transparency of data operations, and

decentralised data access and storage. These characteristics make DLTs a strong

candidate for applications where data availability is crucial and data is con-

tributed by a range of third parties with varying levels of trust (e.g. within a

traceability scenario where there is risk of retrospective record fraud). However,

it is important to note that DLTs on their own are not a complete solution to

data sharing challenges, which is further discussed in section 4.4.

In the presence of ingested and structured data, machine learning ap-

proaches can be very good candidates to perform analyses and extract knowl-

edge. Such analyses have shown much success in agri-food, ranging from yield

prediction [4] to disease detection [64]. Federated computing and federated ma-

chine learning address one of the resulting challenges from the holistic view of

data analysis, seeing vast adoption in big data to maintain local ownership [11].

Under such federated computing models, standard data analysis methodolo-

gies can be undertaken, sharing only model updates of the training procedure

rather than the raw data itself. Additionally, machine learning can assist in

the earlier and fundamental stage of interoperability. Outlier detection [24]

and imputation [47] are a few proven machine learning methodologies mod-

elling high-dimensional data input to provide high quality and error free data

for further analysis.

Privacy preserving technologies (PPT) are emerging technologies that

have gained momentum recently and which have the ability to allow knowl-

edge extraction and machine learning without compromising privacy. Various

cryptographic schemes have been developed that can accommodate the analysis

of data even without revealing information about the raw data at the individ-

ual level. Techniques such as fully homomorphic encryption (FHE) [30], secure

multiparty computation (SMPC) [74], order preserving encryption (OPE) [2]

and differential privacy [1] can be used as part of machine learning end-to-end

pipelines, albeit carrying a large overhead. While many of these techniques are

still in their early days of application and so the technological barriers could be
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significant, their potential to contribute to data sharing is very high: they pro-

vide a way in which any party in the trust or federation could share encrypted

data and compute functions on aggregated data without anyone ever holding

enough information to infer any other party’s individual data.

4. A call for technologically-mediated data sharing in agri-food

We believe that the advantages of data sharing across a variety of use cases

within agri-food justify pursuing Data Trusts for data sharing within the sector,

and that technologies can help overcome the challenges associated with trust,

data formatting and understanding, and data privacy. As examples of possi-

ble systems, we refer back to our two use-cases. Within our traceability use

case, we can imagine the use of a number of different technologies depending

on the regulatory framework and the motivation for tracing. Our production

optimisation would benefit from a variety of technologies, with the focus de-

pending on the preferences of data sharers and the sensitivity of the data. In

the following sections we expand on the potential of several different approaches

and technologies, making reference to our use cases throughout.

4.1. From Data Sharing to Model Sharing?

In the context of Data Trusts, the data shared typically takes the form of raw

or pre-processed data (transformed, aggregated, cleansed, etc.), but not models

derived from those data. If our goal is not the data sharing in itself but instead

the use case of production optimisation (Section 1.3) via collective intelligence

to improve productivity, performance, sustainability, etc. one wonders whether

this can be achieved via means other than data sharing, e.g. sharing trained

models instead. This process is akin to sharing physical models of a system

that describes its behaviour and can be used as a data generation mechanism

(simulation systems, see [5]).

Along these lines machine learning approaches and particularly a sub-domain

called Deep Learning, have enabled the transfer of knowledge between and
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within domains through the exchange of trained models. As Deep Learning

approaches are based on Artificial Neural Networks, which are high dimensional

non-linear models, there has been an abundance of approaches concerning trans-

fer learning and domain adaptation that allow the transfer of knowledge through

sharing learned parameters [70, 77].

Figure 1: Visual depiction of the model sharing methodology. Model Y is trained with

data Y, but its parameters are initialised with those of model X. Black lines represent

the statistical model, black crosses represent local data.

In various real-life problems, there exist many high level concepts that are

consistent across various domains, e.g. shapes, texture, spatial distribution, etc.

Therefore, extracting representations for such concepts from domain X can be

very relevant to a cognate domain Y. This line of thinking can be extrapolated to

our specific use cases, investigating production optimisation via crop yield data.

In this case, data from Farm X can be used to develop a machine learning-based

yield forecasting model for Farm X. This high dimensional complex system can

be used as a surrogate model, which upon fine-tuning it with data from Farm

Y (hence incorporating knowledge from Farm X as well), Farm Y can gain an

advantage over Farm X, which has only used its own data (Farm X’s data). At

no point in this process has Farm Y seen any of the raw data used by Farm

X to develop the initial model, which was shared with Farm Y. This process

is visually depicted in Figure 1. In addition, given the non-linearities involved

along with extensive hyperparametrisation, it becomes a non-trivial problem to

reconstruct the exact raw data given that the parameters one is sharing (model
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sharing) are highly sensitive to hyperparametrisation.

We believe model sharing to be another exciting possibility, that when think-

ing of Data Trusts as a more holistic approach, could actually be one direction

that organisations can take to accommodate knowledge exchange rather than

solely focusing on data sharing. That aligns with our earlier statement that

“one size fits all” approach might not be the way forward and that agri-food

organisations should be aware of the various ways available that can allow for

a step-change to occur within this industry. Besides going from 0% to 100%

(with 0% being no data/Knowledge sharing/exchange at all, and 100% being

fully open data) is a continuum, in that step-wise improvement can take various

shapes and make use of the whole spectrum of possible adoption levels that can

suit the organisational needs.

4.2. Federated learning for decentralised analysis

Following from model sharing, yet maintaining the concept of our produc-

tion optimization for actors across the supply chain via a holistic view of data,

we return to the notion of more traditional and alternative view of data ana-

lytics from a collection of data. We therefore ponder the idea of performing

machine learning training to produce one model on a number of independent

and decentralised datasets simultaneously, without the exchange of raw data.

On the contrary to model sharing, it is simpler to gain a holistic analysis of

data when presented with all available data during training, so we ask, can we

leverage multiple independent, distributed datasets in the training procedure to

produce one model encapsulating data from multiple sources at scale?

This approach, commonly known as federated learning, have shown vast

success in large scale industry applications, trained with highly sensitive data,

most notably powering predictive texting in our phones [11]. Conceptually,

rather than data being centralised, data analysis is performed across all decen-

tralised data stores/nodes simultaneously via aggregation and dissemination of

model updates. Such a technological implementation fits hand-in-hand with the

proposition of decentralised models of Data Trusts, providing holistic analysis
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that leverages data across sources whilst maintaining privacy and eliminating

raw data sharing.

The previous example of production optimisation via crop yield forecast

(Section 1) can be also be applied to here, where Farm X and Farm Y each

have their own data, we follow the regime presented in [80] and represented in

Figure 2. To train the model, a central node which we will call C, controls the

communication and computes the model updates. For each step in the training

procedure, C will send a copy of the model parameters to each of the Farm

nodes X and Y, each farm node will then perform a forward step on the model

(each node has identical models) and the resulting variables are sent to back

to C. The C node will aggregate these variables and compute a set of updates

based on the data from X and Y, the updates are sent back to each node X and

Y to update each model.

(a) Central node

initialises the

statistical model.

(b) Each node receives

the initialised model

from the central node.

(c) Each node trains

the model locally on

their own data.

(d) The individual

models are aggregated

by the central node to

generate one model.

Figure 2: Depiction of centralised federated learning in which no access or sharing of

data between nodes is undertaken. The temporal process moves left to right (a-d).

Black lines represent the statistical model, and black crosses the local data on each

node [76].

This entire procedure eliminates raw data sharing, and allows a single model

to be developed leveraging data from all participating datastores. Privacy has

been at the forefront of the design and implementation of federated learning,

differential privacy and encryption has played a key role in securing individual’s

data [46], the former of which is elaborated on in Section 4.3. Additionally, the

introduction of blockchain technologies have allowed for improved accountability
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reducing the effectiveness of malicious attacks [22]. Furthermore, scalability is

a driving factor, where continuous and low compute updates to the model are

trivial, essential in sectors that record frequently. Consequently, this opens the

possibility of Internet of Things (IoT) devices (the collection, processing and

analysis of data from interconnected devices within a system, for the provision

of smart solutions in the argi-food supply chain[42]) being integrated into the

federated network seamlessly.

Federated learning and federated computing in general could power the data

analytics behind decentralised Data Trusts, operating across all participating or-

ganisations and even on IoT devices directly, potentially reducing management

impacts on actors [12]. The scalability and adaptability of federated models

lends itself to the advancements in technology, not only providing solutions to

data sharing issues that have arisen now, but providing a proven platform for

expansion as the adoption of data acquisition increases and subsequent tech-

nological challenges arise. Additionally, leading from the belief that the “one

size fits all” approach may not be the ideal solution, federated learning can be

implemented into the argi-food supply chain one step and one model at a time,

expanding to new organisational challenges as trust in the Data Trust develops.

4.3. Privacy Preserving Technologies

Regardless of which technologies help achieve traceability and transparency,

or improve product optimisation, all beneficiaries gain from increased privacy

to help develop trust within data sharing. Simply ensuring that data privacy

is maintained addresses the most apparent social implication of commercial

sensitivity [37], both between actors within a data sharing environment, but

also from malicious actors outside.

Previous technologies in Section 4.1 and 4.2 can be seen as privacy pre-

serving technologies (PPT), following a more implicit approach decoupling data

analysis from traditional data centralisation. Yet it is common for more explicit

methodologies to preserve privacy to be blended alongside. Differential privacy

operates under the notion that the addition of noise to a statistical model of
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data inhibits an adversary to exactly reverse-engineer sensitive data of an indi-

vidual [27, 1]. This concept has seen a recent re-emergence in deep learning [6],

while it has been commonplace and the forefront of development of federated

learning algorithms [17, 75], where the process defining federated learning lends

itself to the implementation of differential privacy [31]. As such, the implemen-

tation of differential privacy is not only achievable but practical in terms of

computational overhead, yet the benefits to ensuring trust in knowledge sharing

can be significant.

Extending the concept of privacy preserving statistical data analysis to the

most complete case, Fully Homomorphic Encryption (FHE) aims to extract

knowledge through statistical models like the former, yet doing so on fully en-

crypted data without decryption the data first. This maintains privacy through-

out the entire process of knowledge extraction, data to result. Successful im-

plementations have shown the potential applicability of FHE in industrial set-

tings [52], with a recent toolkit by IBM providing a platform for development5.

However, FHE for complex tasks comes with large computational overhead, and

subsequent loss of performance due to the necessity of approximation [23], re-

ducing the attractiveness of an approach in its current state. Although the

applicability of FHE is non-trivial and still a major research topic, the funda-

mental principle is very attractive for our propositions, all whilst being easily

explainable, assisting in knowledge dissemination and understanding, therefore

eliciting trust between actors within a data sharing model.

PPT are not only essential in building trust for data sharing, but also a

necessary precaution in a modern world of data sensitivity and regulatory obli-

gations. As such, we believe that PPT lies at the heart of all data sharing,

where privacy can be maintained between individuals data whilst holistic and

novel knowledge extraction can be achieved assisting in our ongoing challenges

related to traceability and product optimisation.

5https://fhe-website.mybluemix.net/
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4.4. Leveraging Semantic Technologies and Blockchain to Facilitate Centralised

and Federated Data Sharing

Whether it is raw data or data models that are to be shared, a suitable

underlining data sharing infrastructure must exist. Following from our earlier

discussions such infrastructure should support automation based on machine-

readable data formats, and secure and trusted data assessment mechanisms.

Blockchain networks (a type of DLT) can be formed to hold data about arbi-

trary domains [81]. For example, a single transaction recorded on a blockchain

can describe an exchange of money between two parties trading an item, but

it can also record results of sensor readings such as location of an animal.

Blockchain networks have gained popularity for their ability to deliver im-

mutability of shared data, transparency of data transactions, and high data

availability due to data duplication across multiple nodes. Certain blockchains

such as Ethereum6 and Hyperledger7 also allow for deployment of decentralized

applications (DApps) where data input and retrieval is managed via so called

smart contracts [55], which is an implementation of an idea originally proposed

by Nick Szabo in 19978. Smart contracts are programs that can execute on the

blockchain network and define, for example, the structure of transactions that

participating entities can complete on the network (e.g. to record purchase and

sale of assets as they are moving through a supply chain). Business blockchain

networks also provide functionalities for permissioned data access where actors

can be restricted from accessing different parts of the blockchain functionalities

and the data it stores. Given our traceability use case scenario, blockchain tech-

nologies possess an obvious advantage over the existing systems. For example,

in case of an outbreak of a food borne disease such as that caused by E. coli, the

real-time availability of data across the whole supply chain is important in or-

der to identify potentially contaminated products and issue recalls. Transparent

6https://ethereum.org/en/
7https://www.hyperledger.org
8https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/idea.html
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records of transactions between different food supply actors and the immutabil-

ity of records may be also useful for regulators in aiding discovery of potential

cases of food fraud.

However, several challenges relating to the use of blockchain have been high-

lighted to date, including scalability and negative environmental impact due

to high carbon footprint [59, 81, 43, 67]. In addition, the blockchains tech-

nologies typically operate with only simple data types such as string, integer,

date, etc. As such, it may be difficult to integrate data represented by dif-

ferent blockchain data models without further knowledge that is not captured

in a machine-understandable form, hence hindering an effective automation of

such processes. Given such limitations, it is therefore unfeasible to expect that,

for example, a very complex description of a product and the full context in

which such product was produced, transported, or stored would be stored on

a blockchain. This may prevent traceabillity systems from realising their full

potential by aiding investigations, for example, through discovery of common

factors (e.g. use of river water) in processing workflows of the entities affected

by an outbreak. Similar challenges will apply in case of model sharing and fed-

erated learning discussed in previous sections. The shared models and data may

be too large to be shared via blockchain networks as well as additional metadata

descriptions (e.g., model limitations, biases, algorithms used, etc.) which are

required for effective reuse. However, such information may still exist within

company records, possibly in a proprietary format and requiring a human expert

to be retrieved.

On the other hand, semantic web technologies that exist today stemmed

from the idea of the Semantic Web which envisioned a globally interconnected

web of data where much of the meaning is machine-readable [9]. This resulted

in creation of data sharing protocols for RDF graphs, distributed graph repos-

itories, and standards for federated data querying [57], paving a way towards

generic data sharing infrastructures based on web technologies. Such technology

could then support the traceability scenario in both directions: as a centralised

repository where all data is stored within a single knowledge graph; and also as
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a collection of distributed repositories, each under the control of individual data

owners and publishing only a portion of a knowledge graph. Many semantic

resources such as vocabularies, ontologies, and taxonomies already exist for dif-

ferent parts of the agri-food sector [26, 25, 51, 50]. However, these are currently

mostly used by the research community while the industry actors are influenced

by, for example, GS1 family of standards9. While data sharing systems based on

distributed semantic repositories and federated queries for traceability in food

supply chains have been proposed in the past [65], such approaches, on their

own, do not address challenges related to trust, transparent data access, and

performance including data availability from remote repositories.

We believe that Data Trust solutions for agri-food sector may benefit from

both blockchain and semantic technologies. In fact, as we outlined in this

sub-section, a certain level of symbiosis between these technologies will be re-

quired to deliver effective data sharing mechanisms in the agri-food domain.

Immutability of blockchain records may support trust in data sharing mecha-

nisms while semantic web technologies are used to describe the data in machine-

understandable form. In order to reduce the amount of data stored on blockchain

networks to address scaleability challenges, semantically annotated raw data

may be automatically abstracted to form more concise reports [51, 49], or the

data may include only digital signatures required to validate less critical data

stored as external resources (e.g., large RDF datasets accessed from distributed

repositories) [20]. For example, a traceability system may store the most crit-

ical information regarding the product on a blockchain to enable basic trace-

ability functionality and also provide information to discover and validate more

elaborate description of a production context stored in a third party semantic

repository. Blockchains could also store information relating to data access for

external semantic repositories and thus increasing transparency of data sharing

in agri-food domain.

9https://www.gs1.org/standards/barcodes
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5. Conclusion

Given the central importance of food systems to global heath, economy, and

culture, it is no surprise that vast quantities of data are meticulously collected

and collated by a wide variety of actors within these systems. While the volume

of data collection within food systems is extensive, data sharing and integration

has lagged behind, limiting the added-value that could be made available. Both

social and technological challenges have contributed to this lag, and we have

discussed the potential for technological approaches to overcome these obstacles.

In addition, given the inherent structure of food supply chains with mul-

tiple actors present, then the various challenges mean that it is unlikely that

physical data will ever be conveniently co-located and that whatever the over-

arching legal structure, one would still need technologies to address sharing and

interoperability considerations.

While the potential is clear, much work remains to be done to allow the

agri-food sector to unlock the value of its collective data. This work will in-

clude further investigations into the drivers of data sharing and the key benefits

within particular systems, as well as engineering work in building systems that

trial data sharing via appropriate technologies. The most exciting future work

may combine these two strands of research and involve both study of the actors

in these systems and the regulatory frameworks in which they operate, along-

side implemented prototypes of systems allowing these actors to understand

the benefits of data sharing and contribute to design that fits their needs and

priorities. As argued in this article, data sharing is a complex technical and

social challenge and each of the technologies discussed in this article has a po-

tential to contribute towards solving only part of this challenge. Therefore, it

is very likely that any future data sharing solutions will utilise a combination

of multiple technologies resulting in complex socio-technical systems requiring

interdisciplinary expertise from various disciplines including computer science,

social sciences, and business.
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