
inv lve
a journal of mathematics

msp

Conjugation diameter of the symmetric groups
Assaf Libman and Charlotte Tarry

2020 vol. 13, no. 4





msp
INVOLVE 13:4 (2020)

https://doi.org/10.2140/involve.2020.13.655

Conjugation diameter of the symmetric groups
Assaf Libman and Charlotte Tarry

(Communicated by Kenneth S. Berenhaut)

The conjugation diameter of a group G is the largest diameter of its Cayley graphs
with respect to conjugation-invariant generating sets. It is a strong form of the
extensively studied concept of the diameter of G. We compute the conjugation
diameter of the symmetric groups.

1. Introduction and main results

Let G be a finite group. Let diam(G, S) denote the diameter of the associated Cayley
graph0(G, S)with respect to a generating set S. Set diam(G)= sup{diam0(G, S)},
where the supremum is taken over all generating sets S. This concept has been
studied for several decades and was the subject of intensive activity; see [Babai et al.
1990], which gives a good survey. Particular attention was given to the diameter of
the symmetric groups [Babai and Seress 1992; Helfgott and Seress 2014] due to its
relevance in computing science and networks [Preparata and Vuillemin 1981].

In this note we study the conjugation diameter of a group G, which we denote by
1(G). That is, 1(G) = sup{diam0(G, S)}, where S runs through all generating
sets which are conjugation-invariant and conjugation-finite, i.e., unions of finitely
many conjugacy classes in G. Conjugation diameter has been studied under the
name C-width by Bardakov, Tolstykh and Vershinin [Bardakov et al. 2012].

Kędra, Martin and the first author had a geometric motivation in studying conju-
gation diameter. Any generating set S gives rise to a word norm on G, namely the
minimum length of a word in S ∪ S−1 needed to express an element of G. Then
diam(G, S) is the diameter of G with respect to this norm and is a measure of the
“efficiency” S generates. If S is conjugation-invariant then so is the associated word
norm. Conjugation-invariant norms were studied by Burago, Ivanov and Polterovich
[Burago et al. 2008], who introduced the concept of bounded groups, namely groups
for which every conjugation-invariant norm has finite diameter. In [Kędra et al.
2018] Kędra, Martin and the first author gave several refinements of this concept
for groups G which are finitely normally generated; namely there exists a finite
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X ⊆ G such that 〈〈X〉〉 = G. These refinements are defined by the diameter of G
with respect to conjugation-invariant word norm and are therefore related to 1(G).

For example, it is shown in [Kędra et al. 2018, Theorem 6.3] that all noncompact
connected semisimple Lie groups G are uniformly bounded, namely1(G) <∞. In
fact (unpublished notes) it can be shown that1(SL(2,R))=4 and1(PSL(2,R))=3
and 1(SL(2,C))= 3 and 1(PSL(2,C))= 2. The second author showed in [Tarry
2020, Chapter 7] that 1(PSL(n,C)) ≤ 6(n− 1) for all n ≥ 3. If R is a principal
ideal domain with only d <∞ maximal ideals then 1(PSL(n, R))≤ 12d(n− 1)
for any n ≥ 3 [Kędra et al. 2018, Theorem 6.3].

In general, calculating1(G) is difficult and the purpose of this note is to compute
this invariant for some finite groups. If G is finite abelian then 1(G)= diam(G),
which was calculated in [Klopsch and Lev 2003], where they showed that if G =
Cn1×· · ·×Cnr is the canonical decomposition [Rotman 1973, Corollary 4.7], where
n1 | · · · | nr , then 1(G)=

∑
ibni/2c. Here bxc is the floor of x .

Beyond abelian groups calculations are more involved. Let p < q be distinct
primes such that p | (q − 1) and let G be the unique nonabelian group of order pq .
An easy application of Sylow’s theorems gives the following theorem, which should
be compared with [Babai and Seress 1992, Proposition 5.5], where it is shown that
diam(G) < 3q.

Theorem 1.1. Let p < q be primes and G a nonabelian group of order pq. Then

1(G)=max
{ p−1

2 , 2
}
.

The main result of this paper is the calculation of the conjugation diameter of the
symmetric groups. It should be compared with the celebrated results in [Helfgott
and Seress 2014].

Theorem 1.2. Let Sn denote the symmetric group, n ≥ 2. Then

1(Sn)= n− 1.

2. Norms and conjugation diameter

Let X be a subset of a group G. Set X−1
= {x−1

: x ∈ X}. If X, Y ⊆ G set
XY = {xy : x ∈ X, y ∈ Y } and let Xn denote X · · · X ⊆ G (n factors).

Definition 2.1. Let X be a subset of a group G. Set ccs(X)={gxg−1
: x ∈ X, g∈G},

the union of the conjugacy classes of the elements of X . For any n ≥ 0 define
subsets BX (n) of G as follows. Set

BX (0)= {1} and BX (1)= {1} ∪ ccs(X)∪ ccs(X−1).

For any n ≥ 1 set
BX (n)= BX (1)n ⊆ G.

If X = {g} is a singleton, we will often write Bg(n).
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Thus, BX (n) is the set of all “words” of length at most n in the conjugates of the
elements of X and their inverses. The following proposition follows directly from
the definitions. See [Kędra et al. 2018, Lemma 2.3] and [Tarry 2020, Lemma 1.15]
for details.

Proposition 2.2. Let X, Y be subsets of G:

(i) BX (n) is closed under conjugation in G.

(ii) If X ⊆ Y then BX (n)⊆ BY (n) for all n ≥ 0.

(iii) BX (m) · BX (n)= BX (m+ n).

(iv) If Y ⊆ BX (n) for some n ≥ 0 then BY (m)⊆ BX (mn) for all m ≥ 0.

Definition 2.3. We say that X ⊆ G normally generates G if G = 〈〈X〉〉. We say
that G is finitely normally generated if it contains a finite normally generating set.

Note that X normally generates G if and only if
⋃

n≥0 BX (n) = G. Thus, the
following definition makes sense (the minimum is taken over a nonempty set of
integers).

Definition 2.4. Suppose that X normally generates G. Define ‖ · ‖X : G→ R by

‖g‖X =min{n ≥ 0 : g ∈ BX (n)}.

Clearly ‖·‖X is a conjugation-invariant norm on G [Tarry 2020, Proposition 1.19].
We define

‖G‖X = diam(G, ‖ · ‖X )= sup{‖g‖X : g ∈ G}.

It is immediate from the definitions that

‖G‖X = inf {n : G ⊆ BX (n)}. (1)

In particular if X ⊆ Y normally generate G then ‖G‖Y ≤ ‖G‖X . Clearly, BX (n) is
the closed ball of radius n centred at 1 ∈ G with respect to the metric ‖ · ‖X induces
on G.

Definition 2.5. The conjugation diameter of a finitely normally generated group G
is

1(G)= sup{‖G‖X : X ⊆ G normally generates G and |X |<∞}.

We call G uniformly bounded if 1(G) <∞; see [Kędra et al. 2018, Definition 2.6].

3. pq-groups

Proof of Theorem 1.1. Let Q be a Sylow q-subgroups of G. Then Q E G since
p < q. Since G is not abelian, no Sylow p-subgroup of G can be normal and no
element of G has order pq .
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Our first goal is to prove that any g ∈ G of order p normally generates G and

‖G‖g =max
{
2, p−1

2

}
. (2)

Let CG(g) be the centraliser of g. Then either |CG(g)| = p or |CG(g)| = pq since
g ∈ CG(g). The latter is impossible since it implies that 〈g〉 is a central Sylow
p-subgroup of G. We deduce that |CG(g)| = p and therefore

|ccs(g)| = [G : CG(g)] = q.

Consider the quotient homomorphism π :G→G/Q. Since G/Q∼=C p is abelian, π
must be constant on conjugacy classes of G. Then ccs(g)⊆ gQ since π(ccs(g))= ḡ
and equality holds since they have the same cardinality.

By Definition 2.1, and since Q E G,

Bg(1)= {1} ∪ gQ ∪ g−1 Q.

Since Q * Bg(1), it follows that ‖G‖g > 1. Also, gQ · g−1 Q = Q, which implies
that Bg(2)= g−2 Q ∪ g−1 Q ∪ Q ∪ gQ ∪ g2 Q. Using induction one shows that

Bg(n)=
n⋃

k=−n

gk Q, n ≥ 2.

Now, 〈g〉 is a Sylow p-subgroup of G and its elements form a complete set of
representatives for the cosets of Q. If p = 2 or p = 3 then 〈g〉 = {1, g±1

} and
therefore Bg(2)= G so ‖G‖g = 2. If p > 3 then p is odd and p−1

2 ≥ 2 and

〈g〉 =
{
gk
: −

p−1
2 ≤ k ≤ p−1

2

}
.

Therefore Bg
( p−1

2

)
= G and Bg(n) 6= G if n < p−1

2 . It follows that ‖G‖g =
p−1

2
in this case and we have established (2). In particular

1(G)≥max
{ p−1

2 , 2
}
.

Let X ⊆ G be any normally generating subset of G. No element of order pq
exists and if all elements of X have order q then 〈〈X〉〉 = Q E G, a contradiction.
So there exists g ∈ X of order p and we have seen that g normally generates G and

‖G‖X ≤ ‖G‖g =max
{ p−1

2 , 2
}
.

It follows that 1(G)≤max
{ p−1

2 , 2
}

and equality holds. �

4. The symmetric groups

4.1. Notation and basic facts. Conjugation of elements g, h ∈ G is denoted by

gh
= hgh−1.
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Any σ ∈ Sn can be written as a product of disjoint cycles of lengths k1, . . . , kr , where
ki ≥ 1 and

∑
i ki ≤ n. We call σ a (k1, . . . , kn)-cycle. Cycle structure determines

the conjugacy class [Hall 1959, Theorem 5.13] and we denote the conjugacy class
of σ by

[k1, . . . , km].

Conjugation of a k-cycle (i1 · · · ik) by τ ∈ Sn is the k-cycle (τ (i1) · · · τ(ik)) [Rotman
1973, Lemma 3.9]. The inverse of a k-cycle is a k-cycle and hence any σ ∈ Sn is
conjugate to σ−1.

Let fix(σ ) denote the set of fixed points and supp(σ ) denote the support. If
fix(σ ) is not empty then σ is conjugate to σ ′ ∈ Sn−1.

Lemma 4.2. Consider τ ∈ Sn . Then Bτ (n) is the set of elements of the form
τ λ1 · · · τ λ` , with conjugation by λ1, . . . , λ` ∈ Sn , where `≤ n.

Proof. The elements of Bτ (n) are products of at most n conjugates of τ±1. Since
τ−1 is conjugate to τ the result follows. �

Lemma 4.3. Suppose that τ ∈ Sn is a product τ = αβ of permutations with disjoint
supports, where α ∈ Sk and β ∈ Sn−k for some k. Then Bτ (2) contains all elements
of the form αλ1αλ2 for any λ1, λ2 ∈ Sk .

Proof. Choose θ ∈ Sn−k such that βθ =β−1. Then τ λ1τ λ2θ=αλ1αλ2ββθ=αλ1αλ2. �

Lemma 4.4. Let n ≥ 2:

(i) If X ⊆ Sn normally generates Sn then X contains an odd permutation.

(ii) Conversely, any odd permutation normally generates Sn .

Proof. (i) If X contains only even permutations then 〈〈X〉〉 ⊆ An E Sn.

(ii) The only proper normal subgroups of Sn are An and the Klein group K ⊆ A4 if
n = 4. �

Obtaining a lower bound for 1(Sn) is easy.

Proposition 4.5. Let τ ∈ Sn be a transposition. Then τ normally generates Sn and
‖Sn‖τ = n− 1.

Proof. Any permutation is a product of 2-cycles, so τ normally generates. Any k-
cycle is a product of k−1 transpositions; see [Rotman 1973, Proof of Theorem 3.4].
Hence any σ ∈ [k1, . . . , km] is a product of

∑
i ki−m≤ n−m≤ n−1 transpositions.

A product of m transpositions has at least n −m orbits showing that an n-cycle
cannot be written as a product of less than n− 1 transpositions. This shows that
‖Sn‖τ = n− 1. �

Corollary 4.6. We have 1(Sn)≥ n− 1 for any n ≥ 2.
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Our goal now is to compute 1(Sn). A major role will be played by 3-cycles and
(2, 2)-cycles. An important feature they have is that we can obtain them “cheaply”
from any nonidentity permutation.

Lemma 4.7. Let τ ∈ Sn be a nonidentity element where n ≥ 4. Then:

(i) Bτ (2) contains a 3-cycle if either τ is a transposition or if τ contains a cycle
of length ≥ 3.

(ii) Bτ (2) contains a (2, 2)-cycle if τ is a transposition or it contains a (2, 2)-cycle
or it contains a cycle of length ≥ 4.

Proof. If τ is a transposition then (1 2)(2 3)= (1 2 3) and (1 2)(3 4) give the result.
In the other cases, the calculations

(1 2)(3 4) · (1 3)(2 4)= (1 4)(2 3),

(1 2 3 · · · k) · (k k− 1 · · · 3 1 2)= (1 3 2), k ≥ 3,

(1 2 3 4 · · · k) · (k k− 1 · · · 4 1 2 3)= (1 3)(2 4), k ≥ 4,

together with Lemma 4.3, give the result. �

4.8. The next two propositions tell us that, with some fine print, by multiplying a
3-cycle τ with a permutation σ we may either

(a) split one of the cycles of σ into three disjoint parts, or

(b) fuse two disjoint cycles in σ and split the result in two, or

(c) fuse three cycles of σ into one cycle.

Clearly operations (a) and (c) are inverse of each other and the operation (b) is
inverse to itself. Similarly, subject to some fine print, by multiplying a (2, 2)-cycle τ
with σ we may either

(a) split one of the cycles of σ into three disjoint cycles, or

(b1) split two cycles of σ into two cycles each or,

(b2) fuse two cycles of σ and split the result into two cycles, or

(c1) fuse three cycles of σ , or

(c2) fuse two cycles and split a third, or

(d) fuse two pairs of disjoint cycles.

Thus, 3-cycles and (2, 2)-cycles provide us with a variety of “operations” on
conjugacy classes in Sn .

The following calculations are left for the reader:

(1 2 · · ·m) · (i j)= (1 · · · i j + 1 · · ·m)(i + 1 · · · j), 1≤ i < j ≤ m, (3)

(1 2 · · · `)(`+ 1 · · ·m) · (`m)= (1 2 · · ·m), 1≤ ` < m. (4)
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Proposition 4.9. Let C = [k1, . . . , kr ] be a conjugacy class in Sn , where ki ≥ 1
and

∑
i ki ≤ n. Then C · [3] contains the following conjugacy classes in Sn , where

p′, p′′, p′′′ ≥ 1:

(a) [p′, p′′, p′′′, k2, . . . , kr ], where p′+ p′′+ p′′′ = k1 ≥ 3.

(b) [p′, p′′, k3, . . . , kr ], where r ≥ 2, k1 ≥ 2, p′+ p′′ = k1+ k2 and p′ 6= k1.

(c) [k1+ k2+ k3, k4, . . . , kr ], where r ≥ 3.

Proof. (a) Set p = k1. Consider 1< j < i ≤ p (notice that p ≥ 3). By inspection

(1 2 · · · p) · (1 i j)= (1 i + 1 · · · p)(2 · · · j)( j + 1 · · · i).

If p′+ p′+ p′′′= k1, set j = p′+1 and i = p′+ p′′+1, and check that the resulting
permutation belongs to [p′′′, p′′, p′].

(b) Set p = k1 and q = k2. For any i 6= p, p+q we have

(i p p+q)= (p p+q)(i p+q),

so (4) and (3) imply

(1 2 · · · p)(p+ 1 · · · p+q) · (i p p+q)= (1 2 · · · i)(i + 1 · · · p+q)

is a product of cycles of length i and p+ q − i .

(c) Set p = k1 and q = k2 and t = k3. By inspection

(1 · · · p)(p+ 1 · · · p+q)(p+q+1 · · · p+q+t) · (p p+q p+q+t)

= (1 2 · · · p+q+t). �

Proposition 4.10. Let C = [k1, . . . , kr ] be a conjugacy class in Sn , where ki ≥ 1
and

∑
i ki ≤ n. Then C ·[2, 2] contains the following conjugacy classes in Sn , where

p′, p′′, p′′′, q ′, q ′′ ≥ 1:

(a) [p′, p′′, p′′′, k2, . . . , kr ], where p′′′ ≥ 2 and p′+ p′′+ p′′′ = k1 ≥ 4.

(b1) [p′, p′′, q ′, q ′′, k3, . . . , kr ], where r ≥ 2 and p′+ p′′ = k1 ≥ 2.

(b2) [p′, p′′, k3, . . . , kr ], where r ≥ 2, p′+ p′′ = k1+ k2 ≥ 4, p′ ≤ k1− 2, and if
k1 ≥ 3 and k2 ≥ 2 then p′ ≤ k1− 1.

(c1) [k1+ k2+ k3, k4, . . . , kr ], where r ≥ 3 and k1 ≥ 2.

(c2) [p′+ p′′, k2+ k3, k4, . . . , kr ], where r ≥ 3 and p′+ p′′ = k1 ≥ 2.

(d) [k1+ k2, k3+ k4, k5, . . . , kr ], where r ≥ 4.

Proof. (a) Set p = k1. Choose some 1< i < j < p (notice that p ≥ 4). By (3)

(1 2 · · · p) · (1 i)( j p)= (1 i + 1 · · · j)(2 · · · i)( j + 1 · · · p).

By choosing i = p′+ 1 and j = p′+ p′′′, we obtain a (p′′′, p′, p′′)-cycle.



662 ASSAF LIBMAN AND CHARLOTTE TARRY

(b1) Set p = k1 and q = k2. Choose 1 ≤ i < j ≤ p such that j − i = p′ and
p+ 1≤ k < m ≤ p+ q such that m− k = q ′ and apply (3) to

(1 2 · · · p)(p+ 1 · · · p+q) · (i j)(k m).

(b2) Set p = k1 and q = k2. Choose 1 ≤ i < j ≤ p+ q distinct from p, p + q
(notice that p+ q ≥ 4 by assumption). By (4) and (3)

(1 2 · · · p)(p+ 1 · · · p+q) · (p p+q)(i j)= (1 2 · · · p+q) · (i j)

is a product of two cycles of lengths j− i and p+q− j+ i . If we choose i = 1 and
2 ≤ j ≤ p− 1 we obtain a (p′, p+q−p′)-cycle for any 1 ≤ p′ ≤ p− 2. If p ≥ 3
and q ≥ 2 we may choose i = 2 and j = p+ 1 to get a (p−1, q+1)-cycle.

(c1) Set p = k1 ≥ 2 and q = k2 and t = k3. Check that

(1 · · · p)(p+ 1 · · · p+q)(p+q+1 · · · p+q+t) · (p p+q)(1 p+q+t)

is a p+q+t-cycle (use (4)).

(c2) Set p = k1 and q = k2 and t = k3. For any 1≤ i < p (note that p ≥ 2)

(1 · · · p)(p+ 1 · · · p+q)(p+q+1 · · · p+q+t) · (i p)(p+q p+q+t)

is a (i, p−i, q+t)-cycle (use (3) and (4)).

(d) If α1α2β1β2 is a product of disjoint cycles (possibly of length 1), use (4) twice
to get an αβ product of disjoint cycles of lengths |α1| + |α2| and |β1| + |β2|. �

Notation 4.11. In light of the discussion in 4.8, the cases of Proposition 4.9 will be
referred to O3(a), O3(b) and O3(c) and those of Proposition 4.10 as O2(a), O2(b1),
O2(b2) etc. This reminds us that we view 3-cycles and (2, 2)-cycles as “operations”
on permutations which either split or fuse cycles.

Lemma 4.12. Consider σ ∈ Sn with cycle structure [k1, . . . , kr ], where ki ≥ 1 and∑
i ki = n. Let 1≤m ≤ n. Then there exist `≥ 0 and 3-cycles α1, . . . , α` such that

r ≥ 2`+1 and if we set k̃ =
∑2`+1

i=1 ki then the cycle structure of σα1 · · ·α` is either

(i) [k̃, k2`+2], where r = 2`+ 2 and k̃ ≤ m− 1, or

(ii) [k̃, k2`+2, . . . , kr ] and k̃ ≥ m and
∑2`−1

i=1 ki < m.

In fact, for any 0≤ j ≤ ` the cycle structure of σα1 · · ·α j is[2 j+1∑
i=1

ki , k2 j+2, . . . , kr

]
.

(Notice that in (ii) it may happen that r = 2`+ 1; hence k̃ = n and σα1 · · ·α2`+1 is
an n-cycle).
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Proof. Apply O3(c) repeatedly to choose 3-cycles α1, . . . , α` that “fuse” the
first cycle with the next two until the first instance when

∑2`+1
i=1 ki ≥ m or until

σα1 · · ·α` contains only one or two cycles (If there are three or more cycles left
and

∑2`+1
i=1 ki <m, we will proceed applying O3(c)). In the first two cases we have

established (ii) (since
∑

i ki = n ≥ m) and in the third case (two cycles remaining)
it is (i). �

Proposition 4.13. Let τ ∈ Sn be an odd permutation. Suppose that τ contains a
k-cycle, where k ≥ 3 is odd and that n− k ≥ 2. Then

‖Sn‖τ ≤1(Sn−k)+ k.

Proof. By assumption n ≥ k + 2 ≥ 5. Let σ ∈ Sn be a nonidentity element. Our
goal is to prove that ‖σ‖τ ≤1(Sn−k)+ k. We will do this in three steps.

Step I: There are 3-cycles α1, . . . , αt , where t ≤ k−1
2 such that σα1 · · ·αt contains

a k-cycle.

Proof of Step I. Let [k1, . . . , kr ] be the cycle structure of σ , where
∑

i ki = n and
k1 ≥ · · · ≥ kr . Note that k1 ≥ 2 since σ 6= id. Recall Notation 4.11.

If σ is a transposition, its cycle structure is [1, . . . , 1, 2], with n− 2 ≥ k fixed
points. Apply O3(c) repeatedly t = k−1

2 times with 3-cycles α1, . . . , αt to obtain
σα1 · · ·αt ∈ [k, 1, . . . , 1, 2] and we are done.

Assume that σ is not a transposition. Then either k1 ≥ 3 or k1, k2 ≥ 2. Hence, if
r ≥ 2 then k1+ k2 ≥ 4.

Use Lemma 4.12 with m = k to find 3-cycles α1, . . . , α` such that ` ≥ 0 and
r ≥ 2`+ 1 and if we set k̃ =

∑2`+1
i=1 ki then the cycle structure of ξ = σα1 · · ·α` is

either

(i) [k̃, k2`+2], where k̃ ≤ k− 1, or

(ii) [k̃, k2`+2, . . . , kr ], where k̃ ≥ k and
∑2`−1

i=1 ki < k.

Case (i): We have ξ ∈ [k̃, n− k̃], where k̃ < k. Use O3(b) to find a 3-cycle α`+1

such that ξα`+1 ∈ [k, n−k] contains a k-cycle. It remains to show that `+1≤ k−1
2 .

If `= 0 then we are done. If `≥ 1 then r ≥ 3 and

k1+ k2+

2`+1∑
i=3

ki =

2`+1∑
i=1

ki ≤ k− 1.

Since k1+ k2 ≥ 3 and ki ≥ 1 we get 3+2`−1≤ k−1 so `≤ k−3
2 and we are done.

Case (ii): If k̃=k then ξ contains a k-cycle. If k̃=k+1 then r ≥2`+2 since n>k+1
and we use O3(b) to find a 3-cycle α`+1 such that ξα`+1 ∈ [k, k̃+k2`+2−k, . . . , kr ]

contains a k-cycle. If k̃ ≥ k + 2, use O3(a) to find a 3-cycle α`+1 such that
ξα`+1 ∈ [k, 1, k̃ − k − 1, . . . ] contains a k-cycle. Thus, a product of σ with at
most `+ 1 3-cycles gives a permutation which contains a k-cycle.
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If `= 0 then `+ 1= 1≤ k−1
2 and we are done. If `≥ 2 then r ≥ 5 and

2`−1∑
i=1

ki = k1+ k2+

2`−1∑
i=3

ki ≥ 4+ (2`− 3).

By assumption
∑2`−1

i=1 ki ≤ k−1 so `≤ k−2
2 and since k is odd, `≤ k−3

2 . Therefore
`+ 1≤ k−1

2 and we are done.
It remains to consider the case `= 1. If k ≥ 5 then `+1≤ k−1

2 and we are done.
Assume k = 3. By assumption k1 =

∑2`−1
i=1 ki ≤ k− 1= 2. Then k2 ≤ k1 ≤ 2 and

since σ is not a transposition, k2 = 2; namely σ ∈ [2, 2, . . . ]. Use O3(b) to replace
α1 with a 3-cycle so that σα1 ∈ [3, 1, . . . ] and we are done

(
since 1≤ k−1

2

)
. This

completes the proof of Step I. �

Step II: If µ ∈ Sn contains a k-cycle then ‖µ‖τ ≤1(Sn−k)+ 1.

Proof of Step II. Write µ = µ0µk as a product of disjoint permutations, where
µk ∈ Sk is a k-cycle and µ0 ∈ Sn−k . By assumption n− k ≥ 2. Similarly, τ = τ0τk .
Since τ is an odd permutation and τk is an even permutation (a cycle of odd length),
τ0 is an odd permutation in Sn−k and by Lemma 4.4 it normally generates it. By
Lemma 4.2 there are λ1, . . . , λ` ∈ Sn−k , where `≤1(Sn−k), such that

µ0 = τ
λ1
0 · · · τ

λ`
0 .

Choose θ ∈ Sk such that τ θk = τ
−1
k . Since k is odd, τ 2

k is a k-cycle, so there is π ∈ Sk

such that τπk = τ
2
k .

If ` is odd then

τ λ1τ λ2θτ λ3τ λ4θ · · · τ λ`−2τ λ`−1θτ λ` = (τ
λ1
0 · · · τ

λ`
0 ) · ((τkτ

θ
k )
(`−1)/2

· τk)= µ0τk

is conjugate to µ (since both µk and τk are k-cycles) so ‖µ‖τ ≤ `≤1(Sn−k).
Assume that ` is even. If `= 0 then µ= µk is a k-cycle. Choose some ε ∈ Sn−k

such that τ ε0 = τ
−1
0 and then

τ ε · τ = (τ ε0 τ0) · (τ
2
k )= τ

2
k

is a k-cycle, and hence is conjugate to µ. Now, n−k≥ 2 so ‖µ‖τ = 2≤1(Sn−k)+1
by Corollary 4.6 as needed. If `≥ 2 then

τ λ1πτ λ2θτ λ3τ λ4θτ λ5 · · · τ λ`−1τ λ`θ = (τ
λ1
0 · · · τ

λ`
0 ) · (τ

π
k τ

θ
k τkτ

θ
k · · · τkτ

θ
k )

= µ0 · (τ
2
k τ
−1
k · (τkτ

−1
k )(`−2)/2)= µ0τk

is conjugate to µ so ‖µ‖τ ≤ `≤1(Sn−k). This completes the proof of Step II. �

Step III: We show that ‖σ‖τ ≤1(Sn−k)+ k.
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Proof of Step III. By Step I there are 3-cycles α1, . . . , αt , where t ≤ k−1
2 , such

that µ= σα1 · · ·αt contains a k-cycle. By Step II, ‖µ‖τ ≤1(Sn−k)+ 1. Since τ
contains a k-cycle of length k ≥ 3, Lemma 4.7 shows that ‖αi‖τ ≤ 2. Therefore

‖σ‖τ ≤ ‖µ‖τ +

t∑
i=1

‖α−1
i ‖τ ≤1(Sn−k)+ 1+ 2t ≤1(Sn−k)+ k. �

There are three (2, 2)-cycles in S4, and the product of any two is equal to the third.
Therefore if τ is a (2, 2)-cycle in Sn there exists π ∈ Sn such that supp(π)⊆ supp(τ )
and τπτ is a (2, 2)-cycle.

Proposition 4.14. Let τ ∈ Sn be an odd permutation, n≥7. Suppose that τ contains
a (p, q)-cycle, where p ≥ q ≥ 2 are even and n− (p+ q)≥ p. Then

‖Sn‖τ ≤1(Sn−(p+q))+ p+ q.

Proof. We will prove that if 1 6= σ ∈ Sn then ‖σ‖τ ≤ 1(Sn−(p+q)) + p + q.
Throughout the proof the cycle structure of σ is [k1, . . . , kr ] such that ki ≥ 1 and∑

i ki = n and k1 ≥ · · · ≥ kr . Recall Notation 4.11.

Step I: There exist α1, . . . , αt ∈ Sn such that t ≤ p+q−2
2 and such that ξ = σα1 · · ·αt

contains a (p, q)-cycle and the following hold. If p = 2 then every αi is a (2, 2)-
cycle and if p ≥ 4 then each αi is either a 3-cycle or a (2, 2)-cycle.

Proof of Step I. Assume first that p = 2. Hence, q = 2. If k1 ≥ 5 then use O2(a)
to find a (2, 2)-cycle α1 such that σα1 ∈ [2, k1 − 4, 2, . . . ], i.e., σα1 contains a
(2, 2)-cycle, and we are done (since t = 1≤ p+q−2

2 = 1).
If k1, k2 ≥ 3 then use O2(b1) to find a (2, 2)-cycle α1 such that σα1 ∈ [2, k1−2,

2, k2− 2, . . . ] and we are done.
If k1 = 4 and k2 = 2 then use O2(b1) to find a (2, 2)-cycle α1 such that σα1 ∈

[2, 2, 1, 1, . . . ]. If k1 = 4 and k2 = 1 then r ≥ 3 and k3 = 1 (since n ≥ 7) and we
use O2(c2) to get σα1 ∈ [2, 2, 2, . . . ] and we are done.

Suppose that k1= 3 and k2= 2. Then r ≥ 3 since n≥ 7. If k3= 2 then σ contains
a (2, 2)-cycle and we are done. Otherwise k3 = 1. Then r ≥ 4 since n ≥ 7 and
σ ∈ [3, 2, 1, 1, . . . ] = [3, 1, 1, 2, . . . ] and we use O2(c2) to find a (2, 2)-cycle α1

such that σα1 ∈ [2, 1, 2, 2, . . . ] and we are done.
If k1=3 and k2=1 then r ≥4 and k3=1 and use O2(c2) to get σα1∈[2, 1, 2, . . . ]

and we are done.
If k1 = 2 and k2 = 2 then σ contains a (2, 2)-cycle we are done. If k1 = 2

and k2 = 1 then σ is a transposition which fixes at least four points (since n ≥ 6)
and we can use them to choose a (2, 2)-cycle α1 supported by fix(σ ) and then
σα1 ∈ [2, 2, 2] and we are done. This completes the proof of Step I in the case
p = 2.
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For the remainder of the proof p≥ 4. In particular p+q ≥ 6. Assume first that σ
is a transposition. We may assume that supp(σ )= {n−1, n} and notice that n−2≥
p+ q by the assumption. Choose a (2, 2)-cycle α0 ∈ Sn−2 arbitrarily. Use O3(c)
p−2

2 times to find 3-cycles β1, . . . , β(p−2)/2 ∈ Sn−2 such that θ = α0β1 · · ·β(p−2)/2

is a (p, 2)-cycle. Use O3(c) q−2
2 times to find 3-cycles γ1, . . . , γ(q−2)/2 ∈ Sn−2 such

that θγ1, . . . , γ(q−2)/2 is a (p, q)-cycle. Then

σα0β1 · · ·β(p−2)/2γ1 · · · γ(q−2)/2 ∈ [p, q, 2]

and we are done since p−2
2 +

q−2
2 + 1= p+q−2

2 .
Therefore for the remainder of the proof of Step I we assume that σ is not a

transposition. Hence, if r ≥ 2 then k1+ k2 ≥ 4.
Use Lemma 4.12 with m = p+ q + 1 to find 3-cycles α1, . . . , α`, where `≥ 0

and r ≥ 2`+ 1 such that if we set k̃ =
∑2`+1

i=1 ki and ξ = σα1 · · ·α` then either

(i) k̃ ≤ p+ q and r = 2`+ 2 and ξ ∈ [k̃, k2`+2], or

(ii) k̃ ≥ p+ q + 1 and
∑2`−1

i=1 ki ≤ p+ q and ξ ∈ [k̃, k2`+2, . . . , kr ].

Case (i): Observe that k2`+2 = n− k̃ ≥ n− (p+ q)≥ p ≥ 4. Therefore ki ≥ 4 for
all i and therefore

p+ q ≥
2`+1∑
i=1

ki ≥ 4(2`+ 1).

It follows that `≤
⌊ p+q−4

8

⌋
.

Since ξ ∈ [k̃, n− k̃], use O3(b) to find a 3-cycle α`+1 such that ξα`+1 ∈ [n−1, 1].
Since n − 1 > p + q, use O3(a) to find a 3-cycle α`+2 such that ξα`+1α`+2 ∈

[p, q, n−1− p−q] contains a (p, q)-cycle. We are done because `+2≤
⌊ p+q+12

8

⌋
and one checks that

⌊ p+q+12
8

⌋
≤

p+q−2
2 if p+ q ≥ 6.

Case (ii): If ` = 0 then σ = [k1, . . . ], where k1 ≥ p+ q + 1. Then use O3(a) to
find a 3-cycle α1 such that σα1 ∈ [p, q, k1− p− q, . . . ] and we are done

(
since

1≤ p+q−2
2

)
. So we only need to consider `≥ 1.

Suppose first that
∑2`−1

i=1 ki = p+q . Then σα1 · · ·α`−1 ∈ [p+q, k2`, k2`+1, . . . ].
Use O2(c2) to replace α` with a (2, 2)-cycle such that σα1 · · ·α` ∈ [p, q,
k2` + k2`+1, . . . ]. If ` = 1 then ` ≤ p+q−2

2 and we are done. If ` ≥ 2 then

p+ q =
2`−1∑
i=1

ki = k1+ k2+

2`−1∑
i=3

ki ≥ 4+ 2`− 3

since ki ≥ 1. Therefore ` ≤
⌊ p+q−1

2

⌋
=

p+q−2
2 since p+ q is even, and we are

done.
It remains to consider the case

∑2`−1
i=1 ki ≤ p+ q − 1. Assume first that k2` = 1.

This implies that k2`+1= 1 and since
∑2`+1

i=1 ki ≥ p+q+1 it follows that
∑2`

i=1 ki =
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p+ q , and therefore σα1 · · ·α`−1 ∈ [p+ q − 1, 1, 1, . . . ]. Use O3(b) to replace α`
with a 3-cycle such that σα1 · · ·α` ∈ [p, q, 1, . . . ]. Since k1 ≥ 2 and ki ≥ 1 we get

p+ q =
2∑̀

i=1

ki ≥ 2+ 2`− 1

and therefore `≤
⌊ p+q−1

2

⌋
=

p+q−2
2 and we are done.

Assume that k2`≥2. Since k̃≥ p+q+1, use O3(a) to find a 3-cycle α`+1 such that
ξα`+1 ∈ [p, q, k̃− p−q, . . . ] contains a (p, q)-cycle. Since k1 ≥ · · · ≥ k2` ≥ 2 and∑2`−1

i=1 ki ≤ p+q−1 we deduce that 2(2`−1)≤ p+q−1; hence `≤
⌊ p+q+1

4

⌋
=

p+q
4 .

Therefore `+ 1≤
⌊ p+q+4

4

⌋
and we are done since

⌊ p+q+4
4

⌋
≤

p+q
2 if p+ q ≥ 6.

This completes the proof of Step I. �

Step II: Let µ ∈ Sn contain a (p, q)-cycle. Then ‖µ‖τ ≤1(Sn−p−q)+ 2.

Proof of Step II. We first consider the case p = 2. Hence q = 2. Consider µ ∈ Sn ,
which contains a (2, 2)-cycle. We write µ as a product of disjoint permutations
µ= µ0µ2,2, where µ2,2 is a (2, 2)-cycle in S4 and µ0 ∈ Sn−4. Notice that n− 4=
n−(p+q)≥ p=2. Similarly we write τ =τ0τ2,2. Since τ is an odd permutation and
τ2,2 is even, τ0∈ Sn−4 is an odd permutation, and by Lemma 4.4 it normally generates
it. By Lemma 4.2 there are λ1, . . . , λ` ∈ Sn−4, where `≤1(Sn−4) such that

µ0 = τ
λ1
0 · · · τ

λ`
0 .

Suppose that ` is odd. Since |τ2,2| = 2,

τ λ1 · · · τ λ` = (τ
λ1
0 · · · τ

λ`
0 ) · (τ2,2)

`
= µ0τ2,2

is conjugate to µ since both µ2,2 and τ2,2 are (2, 2)-cycles, so ‖µ‖τ ≤ `≤1(Sn−4).
Suppose that ` is even. If `= 0 then µ= µ2,2 is (2, 2)-cycle. Since τ contains

a (2, 2)-cycle, ‖µ‖τ ≤ 2≤1(Sn−4)+ 2 and we are done. Otherwise `≥ 2. In this
case we choose π ∈ S4 such that τπ2,2τ2,2 is a (2, 2)-cycle. Then

τ λ1πτ λ2 · · · τ λ` = (τ
λ1
0 · · · τ

λ`
0 ) · (τ

π
2,2τ2,2 · (τ2,2)

`−2)= µ0 · (τ
π
2,2τ2,2)

is conjugate to µ; hence ‖µ‖τ ≤ ` ≤ 1(Sn−4) and this completes the proof of
Step II in the case p = 2.

For the remainder of the proof of Step II assume p ≥ 4. Write µ = µ0µp,q , a
product of disjoint permutations with µp,q ∈ Sp+q a (p, q)-cycle and µ0 ∈ Sn−p−q .
Notice that n− p− q ≥ p ≥ 4 by assumption. Similarly write τ = τ0τp,q . Since
τ is odd and τp,q is even, τ0 is odd and therefore normally generates Sn−p−q . By
Lemma 4.2 there are λ1, . . . , λ` ∈ Sn−p−q , where `≤1(Sn−p−q), such that

µ0 = τ
λ1
0 · · · τ

λ`
0 .

Choose θ ∈ Sp+q such that τ θp,q = τ
−1
p,q .
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If ` is odd then

τ λ1τ λ2θτ λ3τ λ4θ · · · τ λ`−1θτ λ` = (τ
λ1
0 · · · τ

λ`
0 ) · ((τp,qτ

−1
p,q)

(`−1)/2
· τp,q)= µ0τp,q

is conjugate to µ so ‖µ‖τ ≤ `≤1(Sn−p−q).
Suppose that ` is even. Since both p, q are even, τ 2

p,q is a
( p

2 ,
p
2 ,

q
2 ,

q
2

)
-cycle.

Use O2(d) to find a (2, 2)-cycle β such that τp,qβ is a (p, q)-cycle.
If `= 0 then µ= µp,q . Choose π ∈ Sn−p−q such that τπ0 = τ

−1
0 . Then

ττπβ = (τ0τ
−1
0 )(τ 2

p,q)β ∈ [p, q]

is conjugate to µ. Since p ≥ 4, Lemma 4.7 gives ‖β‖τ ≤ 2 and therefore ‖µ‖ ≤
‖τ‖τ +‖τ

π
‖τ +‖β‖τ ≤ 4. By Corollary 4.6 and since n− p− q ≥ p ≥ 4, we get

1(Sn−p−q)+ 2≥ 3+ 2> ‖µ‖τ .
If `≥ 2 is even then

τ λ1τ λ2τ λ3θτ λ4τ λ5θτ λ6 · · · τ λ`−1θτ λ` ·β = (τ
λ1
0 · · · τ

λ`
0 ) · (τ

2
p,q(τ

−1
p,qτp,q)

(`−2)/2) ·β

= µ0 · τ
2
p,q ·β

is conjugate to µ since τ 2
p,qβ is a (p, q)-cycle. Therefore

‖µ‖τ ≤ `+‖β‖τ = `+ 2≤1(Sn−p−q)+ 2.

This completes the proof of Step II. �

Step III: We prove that ‖σ‖τ ≤1(Sn−p−q)+ p+ q .

Proof of Step III. First, consider the case p = 2. Hence q = 2. By Step I there
are (2, 2)-cycles α1, . . . , αt where t ≤ p+q−2

2 such that µ= σα1 · · ·αt contains a
(p, q)-cycle. By Step II, ‖µ‖τ ≤1(Sn−p−q)+ 2. By Lemma 4.7, Bτ (2) contains
all (2, 2)-cycles. Therefore

‖σ‖τ ≤ ‖µ‖τ + 2t ≤1(Sn−p−q)+ 2+ (p+ q − 2)=1(Sn−p−q)+ p+ q.

If p ≥ 4 then Lemma 4.7 implies that Bτ (2) contains all 3-cycles and all (2, 2)-
cycles. By Step I there are α1, . . . , αt such that t ≤ p+q−2

2 and αi are either
3-cycles or (2, 2)-cycles and µ = σα1 · · ·αt contains a (p, q)-cycle. By Step II
‖µ‖τ ≤1(Sn−p−q)+ 2 so

‖σ‖τ ≤ ‖µ‖τ + 2t ≤1(Sn−p−q)+ 2+ (p+ q − 2)=1(Sn−p−q)+ p+ q. �

Proposition 4.15. Let τ ∈ Sn be an n-cycle, n ≥ 4 even. Then ‖Sn‖τ ≤ n− 1.

Proof. First, τ is an odd permutation, and hence normally generates Sn by Lemma 4.4.
Since n≥ 4, Lemma 4.7 shows that Bτ (2) contains all 3-cycles and all (2, 2)-cycles.
Consider some 1 6= σ ∈ Sn with cycle structure [k1, . . . , kr ], where

∑
i ki = n and

k1 ≥ · · · ≥ kr . Then k1 ≥ 2 since σ 6= 1. We need to show that ‖σ‖τ ≤ n− 1.



CONJUGATION DIAMETER OF THE SYMMETRIC GROUPS 669

Suppose first that r is odd. If r = 1 then σ is an n-cycle, ‖σ‖τ = 1≤ n− 1 and
we are done. If r ≥ 3, use O3(a) to find a 3-cycle α1 such that σα1 ∈ [k1, k2, k3,

n− (k1+ k2+ k3)]. Repeat this process to find 3-cycles α2, . . . , α(r−1)/2 such that
σα1 · · ·α(r−1)/2 ∈ [k1, . . . , kr ] (this is possible since r is odd). This shows that

‖σ‖τ ≤
r−1

2 · ‖αi‖τ ≤ 2 · r−1
2 = r − 1≤ n− 1.

Suppose that r is even (r ≥ 2). Then σ is not a transposition (because in that case
r is odd). If σ is either a 3-cycle or a (2, 2)-cycle then ‖σ‖τ ≤ 2 by Lemma 4.7
and we are done since n ≥ 4. Therefore either

• k1 ≥ 4, in which case r ≤ 1+ (n− k1)≤ n− 3, or

• k1 = 3 and k2 ≥ 2 in which case r ≤ 1+ 1+ (n− 5)= n− 3, or

• k1 = 2 and k2, k3 = 2 (since σ is not a transposition nor a (2, 2)-cycle), so
r ≤ 3+ (n− 6)= n− 3.

So we may assume that r ≤ n− 3.
Since n is even, τ 2 is an

( n
2 ,

n
2

)
-cycle. Since k1 ≥ · · · ≥ kr and r ≥ 2 and∑

i ki = n, we see that kr ≤
n
2 . If kr =

n
2 then r = 2 and σ is an

( n
2 ,

n
2

)
-cycle, so

‖σ‖τ = ‖τ
2
‖τ = 2≤ n− 1

and we are done. So assume kr <
n
2 . Apply O3(b) to τ 2 to find a 3-cycle α0 such

that τ 2α0 ∈ [n− kr , kr ]. Apply O3(a) r−2
2 times to find 3-cycles α1, . . . , αt , where

t= r−2
2 , that split the (n−kr )-cycle into r−1 cycles and get σα0 · · ·αt ∈[k1, . . . , kr ].

Since ‖αi‖τ ≤ 2 we get
‖σ‖τ ≤ 2(t + 1)= r ≤ n− 1

(because σ 6= 1). �

Proposition 4.16. Consider an odd permutation τ ∈ Sn and assume that τ fixes a
point. Then ‖Sn‖τ ≤ ‖Sn−1‖τ + 1. In particular ‖Sn‖τ ≤1(Sn−1)+ 1.

Proof. Up to conjugation we may assume that τ fixes n. Any σ ∈ Sn either fixes
a point, in which case up to conjugacy σ ∈ Sn−1, or there exists τ ′ conjugate to τ
such that στ ′ fixes a point. So up to conjugation στ ′ ∈ Sn−1 for some τ ′ ∈ Bτ (1).
Therefore

‖σ‖τ ≤ ‖στ
′
‖τ +‖τ

′
‖τ ≤ ‖Sn−1‖τ + 1≤1(Sn−1)+ 1. �

Proof of Theorem 1.2. We use induction on n ≥ 2. First, 1(S2)= 1 is a triviality
and 1(S3)= 2 by Theorem 1.1.

Assume inductively that 1(Sm) = m − 1 for all 2 ≤ m < n. By Corollary 4.6,
1(Sn) ≥ n − 1. To prove equality we need to show that ‖Sn‖X ≤ n − 1 for any
normally generating set X . By Lemma 4.4, X contains an odd permutation τ
which normally generates, and hence ‖Sn‖X ≤ ‖Sn‖τ . So it suffices to prove that
‖Sn‖τ ≤ n− 1 for any odd permutation τ .
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If τ has a fixed point then by Proposition 4.16

‖Sn‖τ ≤1(Sn−1)+ 1≤ n− 2+ 1= n− 1

and we are done. So in order to establish the induction step we need to check that
‖Sn‖τ ≤ n− 1 for odd τ without fixed points. Recall Notation 4.11.

For n = 4 the only fixed-point free odd permutations are the 4-cycles. If τ is one
then ‖S4‖τ ≤ 3 by Proposition 4.15. So 1(S4)= 3.

For n = 5 the only fixed-point free odd permutations are the (3, 2)-cycles. Let
τ be one. Then [3, 2] ⊆ Bτ (1) by definition and [3] ⊆ Bτ (2) by Lemma 4.7. We
apply Proposition 2.2(iii) and O3(a) to deduce that

[2] = [1, 1, 1, 2] ⊆ [3, 2] · [3] ⊆ Bτ (3)

and O3(b) to deduce that

[4] = [1, 4] ⊆ [3, 2] · [3] ⊆ Bτ (3).

Apply O3(b) to get
[2, 2] ⊆ [3, 1] · [3] ⊆ Bτ (4)

and O3(c) to get
[5] ⊆ [3, 1, 1] · [3] ⊆ Bτ (4).

We have exhausted all the nontrivial conjugacy classes in S5 and therefore ‖S5‖τ ≤ 4
as needed.

For n = 6 the only fixed-point free odd permutations are the (2, 2, 2)-cycles
and 6-cycles. If τ is a 6-cycle then ‖S6‖τ ≤ 5 by Proposition 4.15. Consider
τ ∈ [2, 2, 2]. Then [2, 2, 2] ⊆ Bτ (1) by definition and [2, 2] ⊆ Bτ (2) by Lemma 4.7.
Now, [2], [6], [4] ⊆ Bτ (3) because

[2] = [1, 1, 1, 1, 2] ⊆ [2, 2, 2] · [2, 2] by O2(b1),

[6] ⊆ [2, 2, 2] · [2, 2] by O2(c1),

[4] = [1, 1, 4] ⊆ [2, 2, 2] · [2, 2] by O2(c2).

Next, [5], [3], [4, 2], [3, 3] ⊆ Bτ (4) because

[5] ⊆ [2, 2, 1] · [2, 2] by O2(c1),

[3] = [1, 1, 3] ⊆ [2, 2, 1] · [2, 2] by O2(c2),

[4, 2] ⊆ [2, 2, 1, 1] · [2, 2] by O2(d),

[3, 3] ⊆ [2, 1, 2, 1] · [2, 2] by O2(d).

Finally
[3, 2] = [3, 1, 2] ⊆ [6] · [2, 2] ⊆ Bτ (3+ 2)



CONJUGATION DIAMETER OF THE SYMMETRIC GROUPS 671

by O2(a). This exhausts all the nontrivial conjugacy classes in S6 and therefore
‖S6‖τ ≤ 5 as needed.

We now assume that n ≥ 7 and that 1(Sm)=m−1 for all 2≤m < n. Choose an
odd permutation τ ∈ Sn without fixed points. If τ is an n-cycle then ‖Sn‖τ ≤ n− 1
by Proposition 4.15. So we assume that τ is a product of at least two cycles each
of length k ≥ 2. If one of these cycles has odd length k ≥ 3 then n− k ≥ 2 (or else
τ has a fixed point) and Proposition 4.13, together with the induction hypothesis,
shows that

‖Sn‖τ ≤1(Sn−k)+ k = n− k− 1+ k = n− 1

as needed. If τ contains no cycles of odd length then it is a product of cycles of
even length. Since τ is odd, the number of these cycles must be odd, and since τ is
not a cycle, it is a product of at least three cycles of even length. Let p ≥ q be the
lengths of the shortest two cycles in τ . Then q ≥ 2 and n− (p+ q)≥ p because τ
contains a third cycle of length at least p. Appealing to Proposition 4.14 and the
induction hypothesis, we deduce that

‖Sn‖τ ≤1(Sn−p−q)+ p+ q = n− 1.

The induction step is complete. �
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