Conjugation diameter of the symmetric groups
Assaf Libman and Charlotte Tarry

Conjugation diameter of the symmetric groups

Assaf Libman and Charlotte Tarry
(Communicated by Kenneth S. Berenhaut)

Abstract

The conjugation diameter of a group G is the largest diameter of its Cayley graphs with respect to conjugation-invariant generating sets. It is a strong form of the extensively studied concept of the diameter of G. We compute the conjugation diameter of the symmetric groups.

1. Introduction and main results

Let G be a finite group. Let $\operatorname{diam}(G, S)$ denote the diameter of the associated Cayley $\operatorname{graph} \Gamma(G, S)$ with respect to a generating set S. Set $\operatorname{diam}(G)=\sup \{\operatorname{diam} \Gamma(G, S)\}$, where the supremum is taken over all generating sets S. This concept has been studied for several decades and was the subject of intensive activity; see [Babai et al. 1990], which gives a good survey. Particular attention was given to the diameter of the symmetric groups [Babai and Seress 1992; Helfgott and Seress 2014] due to its relevance in computing science and networks [Preparata and Vuillemin 1981].

In this note we study the conjugation diameter of a group G, which we denote by $\Delta(G)$. That is, $\Delta(G)=\sup \{\operatorname{diam} \Gamma(G, S)\}$, where S runs through all generating sets which are conjugation-invariant and conjugation-finite, i.e., unions of finitely many conjugacy classes in G. Conjugation diameter has been studied under the name C-width by Bardakov, Tolstykh and Vershinin [Bardakov et al. 2012].

Kędra, Martin and the first author had a geometric motivation in studying conjugation diameter. Any generating set S gives rise to a word norm on G, namely the minimum length of a word in $S \cup S^{-1}$ needed to express an element of G. Then $\operatorname{diam}(G, S)$ is the diameter of G with respect to this norm and is a measure of the "efficiency" S generates. If S is conjugation-invariant then so is the associated word norm. Conjugation-invariant norms were studied by Burago, Ivanov and Polterovich [Burago et al. 2008], who introduced the concept of bounded groups, namely groups for which every conjugation-invariant norm has finite diameter. In [Kędra et al. 2018] Kędra, Martin and the first author gave several refinements of this concept for groups G which are finitely normally generated; namely there exists a finite

[^0]$X \subseteq G$ such that $\langle\langle X\rangle\rangle=G$. These refinements are defined by the diameter of G with respect to conjugation-invariant word norm and are therefore related to $\Delta(G)$.

For example, it is shown in [Kędra et al. 2018, Theorem 6.3] that all noncompact connected semisimple Lie groups G are uniformly bounded, namely $\Delta(G)<\infty$. In fact (unpublished notes) it can be shown that $\Delta(\operatorname{SL}(2, \mathbb{R}))=4$ and $\Delta(\operatorname{PSL}(2, \mathbb{R}))=3$ and $\Delta(\operatorname{SL}(2, \mathbb{C}))=3$ and $\Delta(\operatorname{PSL}(2, \mathbb{C}))=2$. The second author showed in [Tarry 2020, Chapter 7] that $\Delta(\operatorname{PSL}(n, \mathbb{C})) \leq 6(n-1)$ for all $n \geq 3$. If R is a principal ideal domain with only $d<\infty$ maximal ideals then $\Delta(\operatorname{PSL}(n, R)) \leq 12 d(n-1)$ for any $n \geq 3$ [Kędra et al. 2018, Theorem 6.3].

In general, calculating $\Delta(G)$ is difficult and the purpose of this note is to compute this invariant for some finite groups. If G is finite abelian then $\Delta(G)=\operatorname{diam}(G)$, which was calculated in [Klopsch and Lev 2003], where they showed that if $G=$ $C_{n_{1}} \times \cdots \times C_{n_{r}}$ is the canonical decomposition [Rotman 1973, Corollary 4.7], where $n_{1}|\cdots| n_{r}$, then $\Delta(G)=\sum_{i}\left\lfloor n_{i} / 2\right\rfloor$. Here $\lfloor x\rfloor$ is the floor of x.

Beyond abelian groups calculations are more involved. Let $p<q$ be distinct primes such that $p \mid(q-1)$ and let G be the unique nonabelian group of order $p q$. An easy application of Sylow's theorems gives the following theorem, which should be compared with [Babai and Seress 1992, Proposition 5.5], where it is shown that $\operatorname{diam}(G)<3 q$.
Theorem 1.1. Let $p<q$ be primes and G a nonabelian group of order pq. Then

$$
\Delta(G)=\max \left\{\frac{p-1}{2}, 2\right\}
$$

The main result of this paper is the calculation of the conjugation diameter of the symmetric groups. It should be compared with the celebrated results in [Helfgott and Seress 2014].
Theorem 1.2. Let S_{n} denote the symmetric group, $n \geq 2$. Then

$$
\Delta\left(S_{n}\right)=n-1
$$

2. Norms and conjugation diameter

Let X be a subset of a group G. Set $X^{-1}=\left\{x^{-1}: x \in X\right\}$. If $X, Y \subseteq G$ set $X Y=\{x y: x \in X, y \in Y\}$ and let X^{n} denote $X \cdots X \subseteq G$ (n factors).
Definition 2.1. Let X be a subset of a group G. Set $\operatorname{ccs}(X)=\left\{g x g^{-1}: x \in X, g \in G\right\}$, the union of the conjugacy classes of the elements of X. For any $n \geq 0$ define subsets $B_{X}(n)$ of G as follows. Set

$$
B_{X}(0)=\{1\} \quad \text { and } \quad B_{X}(1)=\{1\} \cup \operatorname{ccs}(X) \cup \cos \left(X^{-1}\right)
$$

For any $n \geq 1$ set

$$
B_{X}(n)=B_{X}(1)^{n} \subseteq G
$$

If $X=\{g\}$ is a singleton, we will often write $B_{g}(n)$.

Thus, $B_{X}(n)$ is the set of all "words" of length at most n in the conjugates of the elements of X and their inverses. The following proposition follows directly from the definitions. See [Kędra et al. 2018, Lemma 2.3] and [Tarry 2020, Lemma 1.15] for details.

Proposition 2.2. Let X, Y be subsets of G :
(i) $B_{X}(n)$ is closed under conjugation in G.
(ii) If $X \subseteq Y$ then $B_{X}(n) \subseteq B_{Y}(n)$ for all $n \geq 0$.
(iii) $B_{X}(m) \cdot B_{X}(n)=B_{X}(m+n)$.
(iv) If $Y \subseteq B_{X}(n)$ for some $n \geq 0$ then $B_{Y}(m) \subseteq B_{X}(m n)$ for all $m \geq 0$.

Definition 2.3. We say that $X \subseteq G$ normally generates G if $G=\langle\langle X\rangle$. We say that G is finitely normally generated if it contains a finite normally generating set.

Note that X normally generates G if and only if $\bigcup_{n \geq 0} B_{X}(n)=G$. Thus, the following definition makes sense (the minimum is taken over a nonempty set of integers).

Definition 2.4. Suppose that X normally generates G. Define $\|\cdot\|_{X}: G \rightarrow \mathbb{R}$ by

$$
\|g\|_{X}=\min \left\{n \geq 0: g \in B_{X}(n)\right\}
$$

Clearly $\|\cdot\|_{X}$ is a conjugation-invariant norm on G [Tarry 2020, Proposition 1.19]. We define

$$
\|G\|_{X}=\operatorname{diam}\left(G,\|\cdot\|_{X}\right)=\sup \left\{\|g\|_{X}: g \in G\right\}
$$

It is immediate from the definitions that

$$
\begin{equation*}
\|G\|_{X}=\inf \left\{n: G \subseteq B_{X}(n)\right\} \tag{1}
\end{equation*}
$$

In particular if $X \subseteq Y$ normally generate G then $\|G\|_{Y} \leq\|G\|_{X}$. Clearly, $B_{X}(n)$ is the closed ball of radius n centred at $1 \in G$ with respect to the metric $\|\cdot\|_{X}$ induces on G.

Definition 2.5. The conjugation diameter of a finitely normally generated group G is

$$
\Delta(G)=\sup \left\{\|G\|_{X}: X \subseteq G \text { normally generates } G \text { and }|X|<\infty\right\}
$$

We call G uniformly bounded if $\Delta(G)<\infty$; see [Kędra et al. 2018, Definition 2.6].

3. $p q$-groups

Proof of Theorem 1.1. Let Q be a Sylow q-subgroups of G. Then $Q \unlhd G$ since $p<q$. Since G is not abelian, no Sylow p-subgroup of G can be normal and no element of G has order $p q$.

Our first goal is to prove that any $g \in G$ of order p normally generates G and

$$
\begin{equation*}
\|G\|_{g}=\max \left\{2, \frac{p-1}{2}\right\} \tag{2}
\end{equation*}
$$

Let $C_{G}(g)$ be the centraliser of g. Then either $\left|C_{G}(g)\right|=p$ or $\left|C_{G}(g)\right|=p q$ since $g \in C_{G}(g)$. The latter is impossible since it implies that $\langle g\rangle$ is a central Sylow p-subgroup of G. We deduce that $\left|C_{G}(g)\right|=p$ and therefore

$$
|\operatorname{ccs}(g)|=\left[G: C_{G}(g)\right]=q
$$

Consider the quotient homomorphism $\pi: G \rightarrow G / Q$. Since $G / Q \cong C_{p}$ is abelian, π must be constant on conjugacy classes of G. Then $\operatorname{ccs}(g) \subseteq g Q$ since $\pi(\operatorname{ccs}(g))=\bar{g}$ and equality holds since they have the same cardinality.

By Definition 2.1, and since $Q \unlhd G$,

$$
B_{g}(1)=\{1\} \cup g Q \cup g^{-1} Q
$$

Since $Q \nsubseteq B_{g}(1)$, it follows that $\|G\|_{g}>1$. Also, $g Q \cdot g^{-1} Q=Q$, which implies that $B_{g}(2)=g^{-2} Q \cup g^{-1} Q \cup Q \cup g Q \cup g^{2} Q$. Using induction one shows that

$$
B_{g}(n)=\bigcup_{k=-n}^{n} g^{k} Q, \quad n \geq 2
$$

Now, $\langle g\rangle$ is a Sylow p-subgroup of G and its elements form a complete set of representatives for the cosets of Q. If $p=2$ or $p=3$ then $\langle g\rangle=\left\{1, g^{ \pm 1}\right\}$ and therefore $B_{g}(2)=G$ so $\|G\|_{g}=2$. If $p>3$ then p is odd and $\frac{p-1}{2} \geq 2$ and

$$
\langle g\rangle=\left\{g^{k}:-\frac{p-1}{2} \leq k \leq \frac{p-1}{2}\right\} .
$$

Therefore $B_{g}\left(\frac{p-1}{2}\right)=G$ and $B_{g}(n) \neq G$ if $n<\frac{p-1}{2}$. It follows that $\|G\|_{g}=\frac{p-1}{2}$ in this case and we have established (2). In particular

$$
\Delta(G) \geq \max \left\{\frac{p-1}{2}, 2\right\}
$$

Let $X \subseteq G$ be any normally generating subset of G. No element of order $p q$ exists and if all elements of X have order q then $\langle\langle X\rangle\rangle=Q \unlhd G$, a contradiction. So there exists $g \in X$ of order p and we have seen that g normally generates G and

$$
\|G\|_{X} \leq\|G\|_{g}=\max \left\{\frac{p-1}{2}, 2\right\}
$$

It follows that $\Delta(G) \leq \max \left\{\frac{p-1}{2}, 2\right\}$ and equality holds.

4. The symmetric groups

4.1. Notation and basic facts. Conjugation of elements $g, h \in G$ is denoted by

$$
g^{h}=h g h^{-1}
$$

Any $\sigma \in S_{n}$ can be written as a product of disjoint cycles of lengths k_{1}, \ldots, k_{r}, where $k_{i} \geq 1$ and $\sum_{i} k_{i} \leq n$. We call σ a $\left(k_{1}, \ldots, k_{n}\right)$-cycle. Cycle structure determines the conjugacy class [Hall 1959, Theorem 5.13] and we denote the conjugacy class of σ by

$$
\left[k_{1}, \ldots, k_{m}\right] .
$$

Conjugation of a k-cycle $\left(i_{1} \cdots i_{k}\right)$ by $\tau \in S_{n}$ is the k-cycle $\left(\tau\left(i_{1}\right) \cdots \tau\left(i_{k}\right)\right)$ [Rotman 1973, Lemma 3.9]. The inverse of a k-cycle is a k-cycle and hence any $\sigma \in S_{n}$ is conjugate to σ^{-1}.

Let fix (σ) denote the set of fixed points and $\operatorname{supp}(\sigma)$ denote the support. If fix (σ) is not empty then σ is conjugate to $\sigma^{\prime} \in S_{n-1}$.

Lemma 4.2. Consider $\tau \in S_{n}$. Then $B_{\tau}(n)$ is the set of elements of the form $\tau^{\lambda_{1}} \cdots \tau^{\lambda_{\ell}}$, with conjugation by $\lambda_{1}, \ldots, \lambda_{\ell} \in S_{n}$, where $\ell \leq n$.

Proof. The elements of $B_{\tau}(n)$ are products of at most n conjugates of $\tau^{ \pm 1}$. Since τ^{-1} is conjugate to τ the result follows.

Lemma 4.3. Suppose that $\tau \in S_{n}$ is a product $\tau=\alpha \beta$ of permutations with disjoint supports, where $\alpha \in S_{k}$ and $\beta \in S_{n-k}$ for some k. Then $B_{\tau}(2)$ contains all elements of the form $\alpha^{\lambda_{1}} \alpha^{\lambda_{2}}$ for any $\lambda_{1}, \lambda_{2} \in S_{k}$.
Proof. Choose $\theta \in S_{n-k}$ such that $\beta^{\theta}=\beta^{-1}$. Then $\tau^{\lambda_{1}} \tau^{\lambda_{2} \theta}=\alpha^{\lambda_{1}} \alpha^{\lambda_{2}} \beta \beta^{\theta}=\alpha^{\lambda_{1}} \alpha^{\lambda_{2}}$.
Lemma 4.4. Let $n \geq 2$:
(i) If $X \subseteq S_{n}$ normally generates S_{n} then X contains an odd permutation.
(ii) Conversely, any odd permutation normally generates S_{n}.

Proof. (i) If X contains only even permutations then $\left\langle\langle X\rangle \subseteq A_{n} \unlhd S n\right.$.
(ii) The only proper normal subgroups of S_{n} are A_{n} and the Klein group $K \subseteq A_{4}$ if $n=4$.

Obtaining a lower bound for $\Delta\left(S_{n}\right)$ is easy.
Proposition 4.5. Let $\tau \in S_{n}$ be a transposition. Then τ normally generates S_{n} and $\left\|S_{n}\right\|_{\tau}=n-1$.

Proof. Any permutation is a product of 2-cycles, so τ normally generates. Any k cycle is a product of $k-1$ transpositions; see [Rotman 1973, Proof of Theorem 3.4]. Hence any $\sigma \in\left[k_{1}, \ldots, k_{m}\right]$ is a product of $\sum_{i} k_{i}-m \leq n-m \leq n-1$ transpositions. A product of m transpositions has at least $n-m$ orbits showing that an n-cycle cannot be written as a product of less than $n-1$ transpositions. This shows that $\left\|S_{n}\right\|_{\tau}=n-1$.

Corollary 4.6. We have $\Delta\left(S_{n}\right) \geq n-1$ for any $n \geq 2$.

Our goal now is to compute $\Delta\left(S_{n}\right)$. A major role will be played by 3 -cycles and $(2,2)$-cycles. An important feature they have is that we can obtain them "cheaply" from any nonidentity permutation.

Lemma 4.7. Let $\tau \in S_{n}$ be a nonidentity element where $n \geq 4$. Then:
(i) $B_{\tau}(2)$ contains a 3-cycle if either τ is a transposition or if τ contains a cycle of length ≥ 3.
(ii) $B_{\tau}(2)$ contains $a(2,2)$-cycle if τ is a transposition or it contains $a(2,2)$-cycle or it contains a cycle of length ≥ 4.
Proof. If τ is a transposition then $(12)(23)=(123)$ and (12)(34) give the result. In the other cases, the calculations

$$
\begin{aligned}
(12)(34) \cdot(13)(24) & =(14)(23), & \\
(123 \cdots k) \cdot(k k-1 \cdots 312) & =(132), & k \geq 3, \\
(1234 \cdots k) \cdot(k k-1 \cdots 4123) & =(13)(24), & k \geq 4,
\end{aligned}
$$

together with Lemma 4.3, give the result.
4.8. The next two propositions tell us that, with some fine print, by multiplying a 3-cycle τ with a permutation σ we may either
(a) split one of the cycles of σ into three disjoint parts, or
(b) fuse two disjoint cycles in σ and split the result in two, or
(c) fuse three cycles of σ into one cycle.

Clearly operations (a) and (c) are inverse of each other and the operation (b) is inverse to itself. Similarly, subject to some fine print, by multiplying a (2, 2)-cycle τ with σ we may either
(a) split one of the cycles of σ into three disjoint cycles, or
(b1) split two cycles of σ into two cycles each or,
(b2) fuse two cycles of σ and split the result into two cycles, or
(c1) fuse three cycles of σ, or
(c2) fuse two cycles and split a third, or
(d) fuse two pairs of disjoint cycles.

Thus, 3-cycles and (2,2)-cycles provide us with a variety of "operations" on conjugacy classes in S_{n}.

The following calculations are left for the reader:

$$
\begin{array}{ll}
(12 \cdots m) \cdot(i j)=(1 \cdots i j+1 \cdots m)(i+1 \cdots j), & 1 \leq i<j \leq m \\
(12 \cdots \ell)(\ell+1 \cdots m) \cdot(\ell m)=(12 \cdots m), & 1 \leq \ell<m \tag{4}
\end{array}
$$

Proposition 4.9. Let $C=\left[k_{1}, \ldots, k_{r}\right]$ be a conjugacy class in S_{n}, where $k_{i} \geq 1$ and $\sum_{i} k_{i} \leq n$. Then $C \cdot[3]$ contains the following conjugacy classes in S_{n}, where $p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime} \geq 1$:
(a) $\left[p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}, k_{2}, \ldots, k_{r}\right]$, where $p^{\prime}+p^{\prime \prime}+p^{\prime \prime \prime}=k_{1} \geq 3$.
(b) $\left[p^{\prime}, p^{\prime \prime}, k_{3}, \ldots, k_{r}\right]$, where $r \geq 2, k_{1} \geq 2, p^{\prime}+p^{\prime \prime}=k_{1}+k_{2}$ and $p^{\prime} \neq k_{1}$.
(c) $\left[k_{1}+k_{2}+k_{3}, k_{4}, \ldots, k_{r}\right]$, where $r \geq 3$.

Proof. (a) Set $p=k_{1}$. Consider $1<j<i \leq p$ (notice that $p \geq 3$). By inspection

$$
(12 \cdots p) \cdot(1 i j)=(1 i+1 \cdots p)(2 \cdots j)(j+1 \cdots i)
$$

If $p^{\prime}+p^{\prime}+p^{\prime \prime \prime}=k_{1}$, set $j=p^{\prime}+1$ and $i=p^{\prime}+p^{\prime \prime}+1$, and check that the resulting permutation belongs to [$p^{\prime \prime \prime}, p^{\prime \prime}, p^{\prime}$].
(b) Set $p=k_{1}$ and $q=k_{2}$. For any $i \neq p, p+q$ we have

$$
(i p p+q)=(p p+q)(i p+q)
$$

so (4) and (3) imply

$$
(12 \cdots p)(p+1 \cdots p+q) \cdot(i p p+q)=(12 \cdots i)(i+1 \cdots p+q)
$$

is a product of cycles of length i and $p+q-i$.
(c) Set $p=k_{1}$ and $q=k_{2}$ and $t=k_{3}$. By inspection

$$
\begin{aligned}
(1 \cdots p)(p+1 \cdots p+q)(p+q+1 \cdots p+q+t) \cdot(p p+q p & +q+t) \\
& =(12 \cdots p+q+t)
\end{aligned}
$$

Proposition 4.10. Let $C=\left[k_{1}, \ldots, k_{r}\right]$ be a conjugacy class in S_{n}, where $k_{i} \geq 1$ and $\sum_{i} k_{i} \leq n$. Then $C \cdot[2,2]$ contains the following conjugacy classes in S_{n}, where $p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}, q^{\prime}, q^{\prime \prime} \geq 1$:
(a) $\left[p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}, k_{2}, \ldots, k_{r}\right]$, where $p^{\prime \prime \prime} \geq 2$ and $p^{\prime}+p^{\prime \prime}+p^{\prime \prime \prime}=k_{1} \geq 4$.
(b1) $\left[p^{\prime}, p^{\prime \prime}, q^{\prime}, q^{\prime \prime}, k_{3}, \ldots, k_{r}\right]$, where $r \geq 2$ and $p^{\prime}+p^{\prime \prime}=k_{1} \geq 2$.
(b2) $\left[p^{\prime}, p^{\prime \prime}, k_{3}, \ldots, k_{r}\right]$, where $r \geq 2, p^{\prime}+p^{\prime \prime}=k_{1}+k_{2} \geq 4, p^{\prime} \leq k_{1}-2$, and if $k_{1} \geq 3$ and $k_{2} \geq 2$ then $p^{\prime} \leq k_{1}-1$.
(c1) $\left[k_{1}+k_{2}+k_{3}, k_{4}, \ldots, k_{r}\right]$, where $r \geq 3$ and $k_{1} \geq 2$.
(c2) $\left[p^{\prime}+p^{\prime \prime}, k_{2}+k_{3}, k_{4}, \ldots, k_{r}\right]$, where $r \geq 3$ and $p^{\prime}+p^{\prime \prime}=k_{1} \geq 2$.
(d) $\left[k_{1}+k_{2}, k_{3}+k_{4}, k_{5}, \ldots, k_{r}\right]$, where $r \geq 4$.

Proof. (a) Set $p=k_{1}$. Choose some $1<i<j<p$ (notice that $p \geq 4$). By (3)

$$
(12 \cdots p) \cdot(1 i)(j p)=(1 i+1 \cdots j)(2 \cdots i)(j+1 \cdots p)
$$

By choosing $i=p^{\prime}+1$ and $j=p^{\prime}+p^{\prime \prime \prime}$, we obtain a ($p^{\prime \prime \prime}, p^{\prime}, p^{\prime \prime}$)-cycle.
(b1) Set $p=k_{1}$ and $q=k_{2}$. Choose $1 \leq i<j \leq p$ such that $j-i=p^{\prime}$ and $p+1 \leq k<m \leq p+q$ such that $m-k=q^{\prime}$ and apply (3) to

$$
(12 \cdots p)(p+1 \cdots p+q) \cdot(i j)(k m)
$$

(b2) Set $p=k_{1}$ and $q=k_{2}$. Choose $1 \leq i<j \leq p+q$ distinct from $p, p+q$ (notice that $p+q \geq 4$ by assumption). By (4) and (3)

$$
(12 \cdots p)(p+1 \cdots p+q) \cdot(p p+q)(i j)=(12 \cdots p+q) \cdot(i j)
$$

is a product of two cycles of lengths $j-i$ and $p+q-j+i$. If we choose $i=1$ and $2 \leq j \leq p-1$ we obtain a $\left(p^{\prime}, p+q-p^{\prime}\right)$-cycle for any $1 \leq p^{\prime} \leq p-2$. If $p \geq 3$ and $q \geq 2$ we may choose $i=2$ and $j=p+1$ to get a $(p-1, q+1)$-cycle.
(c1) Set $p=k_{1} \geq 2$ and $q=k_{2}$ and $t=k_{3}$. Check that

$$
(1 \cdots p)(p+1 \cdots p+q)(p+q+1 \cdots p+q+t) \cdot(p p+q)(1 p+q+t)
$$

is a $p+q+t$-cycle (use (4)).
(c2) Set $p=k_{1}$ and $q=k_{2}$ and $t=k_{3}$. For any $1 \leq i<p$ (note that $p \geq 2$)

$$
(1 \cdots p)(p+1 \cdots p+q)(p+q+1 \cdots p+q+t) \cdot(i p)(p+q p+q+t)
$$

is a ($i, p-i, q+t$)-cycle (use (3) and (4)).
(d) If $\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}$ is a product of disjoint cycles (possibly of length 1), use (4) twice to get an $\alpha \beta$ product of disjoint cycles of lengths $\left|\alpha_{1}\right|+\left|\alpha_{2}\right|$ and $\left|\beta_{1}\right|+\left|\beta_{2}\right|$.

Notation 4.11. In light of the discussion in 4.8 , the cases of Proposition 4.9 will be referred to $\mathrm{O}_{3}(\mathrm{a}), \mathrm{O}_{3}(\mathrm{~b})$ and $\mathrm{O}_{3}(\mathrm{c})$ and those of Proposition 4.10 as $\mathrm{O}_{2}(\mathrm{a}), \mathrm{O}_{2}(\mathrm{~b} 1)$, $\mathrm{O}_{2}(\mathrm{~b} 2)$ etc. This reminds us that we view 3-cycles and (2, 2)-cycles as "operations" on permutations which either split or fuse cycles.

Lemma 4.12. Consider $\sigma \in S_{n}$ with cycle structure $\left[k_{1}, \ldots, k_{r}\right]$, where $k_{i} \geq 1$ and $\sum_{i} k_{i}=n$. Let $1 \leq m \leq n$. Then there exist $\ell \geq 0$ and 3 -cycles $\alpha_{1}, \ldots, \alpha_{\ell}$ such that $r \geq 2 \ell+1$ and if we set $\tilde{k}=\sum_{i=1}^{2 \ell+1} k_{i}$ then the cycle structure of $\sigma \alpha_{1} \cdots \alpha_{\ell}$ is either
(i) $\left[\tilde{k}, k_{2 \ell+2}\right]$, where $r=2 \ell+2$ and $\tilde{k} \leq m-1$, or
(ii) $\left[\tilde{k}, k_{2 \ell+2}, \ldots, k_{r}\right]$ and $\tilde{k} \geq m$ and $\sum_{i=1}^{2 \ell-1} k_{i}<m$.

In fact, for any $0 \leq j \leq \ell$ the cycle structure of $\sigma \alpha_{1} \cdots \alpha_{j}$ is

$$
\left[\sum_{i=1}^{2 j+1} k_{i}, k_{2 j+2}, \ldots, k_{r}\right]
$$

(Notice that in (ii) it may happen that $r=2 \ell+1$; hence $\tilde{k}=n$ and $\sigma \alpha_{1} \cdots \alpha_{2 \ell+1}$ is an n-cycle).

Proof. Apply O_{3} (c) repeatedly to choose 3-cycles $\alpha_{1}, \ldots, \alpha_{\ell}$ that "fuse" the first cycle with the next two until the first instance when $\sum_{i=1}^{2 \ell+1} k_{i} \geq m$ or until $\sigma \alpha_{1} \cdots \alpha_{\ell}$ contains only one or two cycles (If there are three or more cycles left and $\sum_{i=1}^{2 \ell+1} k_{i}<m$, we will proceed applying $\mathrm{O}_{3}(\mathrm{c})$). In the first two cases we have established (ii) (since $\sum_{i} k_{i}=n \geq m$) and in the third case (two cycles remaining) it is (i).

Proposition 4.13. Let $\tau \in S_{n}$ be an odd permutation. Suppose that τ contains a k-cycle, where $k \geq 3$ is odd and that $n-k \geq 2$. Then

$$
\left\|S_{n}\right\|_{\tau} \leq \Delta\left(S_{n-k}\right)+k
$$

Proof. By assumption $n \geq k+2 \geq 5$. Let $\sigma \in S_{n}$ be a nonidentity element. Our goal is to prove that $\|\sigma\|_{\tau} \leq \Delta\left(S_{n-k}\right)+k$. We will do this in three steps.
Step I: There are 3 -cycles $\alpha_{1}, \ldots, \alpha_{t}$, where $t \leq \frac{k-1}{2}$ such that $\sigma \alpha_{1} \cdots \alpha_{t}$ contains a k-cycle.
Proof of Step I. Let $\left[k_{1}, \ldots, k_{r}\right]$ be the cycle structure of σ, where $\sum_{i} k_{i}=n$ and $k_{1} \geq \cdots \geq k_{r}$. Note that $k_{1} \geq 2$ since $\sigma \neq \mathrm{id}$. Recall Notation 4.11.

If σ is a transposition, its cycle structure is $[1, \ldots, 1,2]$, with $n-2 \geq k$ fixed points. Apply $\mathrm{O}_{3}(\mathrm{c})$ repeatedly $t=\frac{k-1}{2}$ times with 3-cycles $\alpha_{1}, \ldots, \alpha_{t}$ to obtain $\sigma \alpha_{1} \cdots \alpha_{t} \in[k, 1, \ldots, 1,2]$ and we are done.

Assume that σ is not a transposition. Then either $k_{1} \geq 3$ or $k_{1}, k_{2} \geq 2$. Hence, if $r \geq 2$ then $k_{1}+k_{2} \geq 4$.

Use Lemma 4.12 with $m=k$ to find 3-cycles $\alpha_{1}, \ldots, \alpha_{\ell}$ such that $\ell \geq 0$ and $r \geq 2 \ell+1$ and if we set $\tilde{k}=\sum_{i=1}^{2 \ell+1} k_{i}$ then the cycle structure of $\xi=\sigma \alpha_{1} \cdots \alpha_{\ell}$ is either
(i) $\left[\tilde{k}, k_{2 \ell+2}\right]$, where $\tilde{k} \leq k-1$, or
(ii) $\left[\tilde{k}, k_{2 \ell+2}, \ldots, k_{r}\right]$, where $\tilde{k} \geq k$ and $\sum_{i=1}^{2 \ell-1} k_{i}<k$.

Case (i): We have $\xi \in[\tilde{k}, n-\tilde{k}]$, where $\tilde{k}<k$. Use $\mathrm{O}_{3}(\mathrm{~b})$ to find a 3-cycle $\alpha_{\ell+1}$ such that $\xi \alpha_{\ell+1} \in[k, n-k]$ contains a k-cycle. It remains to show that $\ell+1 \leq \frac{k-1}{2}$. If $\ell=0$ then we are done. If $\ell \geq 1$ then $r \geq 3$ and

$$
k_{1}+k_{2}+\sum_{i=3}^{2 \ell+1} k_{i}=\sum_{i=1}^{2 \ell+1} k_{i} \leq k-1 .
$$

Since $k_{1}+k_{2} \geq 3$ and $k_{i} \geq 1$ we get $3+2 \ell-1 \leq k-1$ so $\ell \leq \frac{k-3}{2}$ and we are done. Case (ii): If $\tilde{k}=k$ then ξ contains a k-cycle. If $\tilde{k}=k+1$ then $r \geq 2 \ell+2$ since $n>k+1$ and we use $\mathrm{O}_{3}(\mathrm{~b})$ to find a 3 -cycle $\alpha_{\ell+1}$ such that $\xi \alpha_{\ell+1} \in\left[k, \tilde{k}+k_{2 \ell+2}-k, \ldots, k_{r}\right]$ contains a k-cycle. If $\tilde{k} \geq k+2$, use O_{3} (a) to find a 3 -cycle $\alpha_{\ell+1}$ such that $\xi \alpha_{\ell+1} \in[k, 1, \tilde{k}-k-1, \ldots]$ contains a k-cycle. Thus, a product of σ with at most $\ell+13$-cycles gives a permutation which contains a k-cycle.

If $\ell=0$ then $\ell+1=1 \leq \frac{k-1}{2}$ and we are done. If $\ell \geq 2$ then $r \geq 5$ and

$$
\sum_{i=1}^{2 \ell-1} k_{i}=k_{1}+k_{2}+\sum_{i=3}^{2 \ell-1} k_{i} \geq 4+(2 \ell-3)
$$

By assumption $\sum_{i=1}^{2 \ell-1} k_{i} \leq k-1$ so $\ell \leq \frac{k-2}{2}$ and since k is odd, $\ell \leq \frac{k-3}{2}$. Therefore $\ell+1 \leq \frac{k-1}{2}$ and we are done.

It remains to consider the case $\ell=1$. If $k \geq 5$ then $\ell+1 \leq \frac{k-1}{2}$ and we are done. Assume $k=3$. By assumption $k_{1}=\sum_{i=1}^{2 \ell-1} k_{i} \leq k-1=2$. Then $k_{2} \leq k_{1} \leq 2$ and since σ is not a transposition, $k_{2}=2$; namely $\sigma \in[2,2, \ldots]$. Use $\mathrm{O}_{3}(\mathrm{~b})$ to replace α_{1} with a 3 -cycle so that $\sigma \alpha_{1} \in[3,1, \ldots]$ and we are done (since $1 \leq \frac{k-1}{2}$). This completes the proof of Step I.

Step II: If $\mu \in S_{n}$ contains a k-cycle then $\|\mu\|_{\tau} \leq \Delta\left(S_{n-k}\right)+1$.
Proof of Step II. Write $\mu=\mu_{0} \mu_{k}$ as a product of disjoint permutations, where $\mu_{k} \in S_{k}$ is a k-cycle and $\mu_{0} \in S_{n-k}$. By assumption $n-k \geq 2$. Similarly, $\tau=\tau_{0} \tau_{k}$. Since τ is an odd permutation and τ_{k} is an even permutation (a cycle of odd length), τ_{0} is an odd permutation in S_{n-k} and by Lemma 4.4 it normally generates it. By Lemma 4.2 there are $\lambda_{1}, \ldots, \lambda_{\ell} \in S_{n-k}$, where $\ell \leq \Delta\left(S_{n-k}\right)$, such that

$$
\mu_{0}=\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}
$$

Choose $\theta \in S_{k}$ such that $\tau_{k}^{\theta}=\tau_{k}^{-1}$. Since k is odd, τ_{k}^{2} is a k-cycle, so there is $\pi \in S_{k}$ such that $\tau_{k}^{\pi}=\tau_{k}^{2}$.

If ℓ is odd then

$$
\tau^{\lambda_{1}} \tau^{\lambda_{2} \theta} \tau^{\lambda_{3}} \tau^{\lambda_{4} \theta} \cdots \tau^{\lambda_{\ell-2}} \tau^{\lambda_{\ell-1} \theta} \tau^{\lambda_{\ell}}=\left(\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}\right) \cdot\left(\left(\tau_{k} \tau_{k}^{\theta}\right)^{(\ell-1) / 2} \cdot \tau_{k}\right)=\mu_{0} \tau_{k}
$$

is conjugate to μ (since both μ_{k} and τ_{k} are k-cycles) so $\|\mu\|_{\tau} \leq \ell \leq \Delta\left(S_{n-k}\right)$.
Assume that ℓ is even. If $\ell=0$ then $\mu=\mu_{k}$ is a k-cycle. Choose some $\epsilon \in S_{n-k}$ such that $\tau_{0}^{\epsilon}=\tau_{0}^{-1}$ and then

$$
\tau^{\epsilon} \cdot \tau=\left(\tau_{0}^{\epsilon} \tau_{0}\right) \cdot\left(\tau_{k}^{2}\right)=\tau_{k}^{2}
$$

is a k-cycle, and hence is conjugate to μ. Now, $n-k \geq 2$ so $\|\mu\|_{\tau}=2 \leq \Delta\left(S_{n-k}\right)+1$ by Corollary 4.6 as needed. If $\ell \geq 2$ then

$$
\begin{aligned}
\tau^{\lambda_{1} \pi} \tau^{\lambda_{2} \theta} \tau^{\lambda_{3}} \tau^{\lambda_{4} \theta} \tau^{\lambda_{5}} \cdots \tau^{\lambda_{\ell-1}} \tau^{\lambda_{\ell} \theta} & =\left(\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}\right) \cdot\left(\tau_{k}^{\pi} \tau_{k}^{\theta} \tau_{k} \tau_{k}^{\theta} \cdots \tau_{k} \tau_{k}^{\theta}\right) \\
& =\mu_{0} \cdot\left(\tau_{k}^{2} \tau_{k}^{-1} \cdot\left(\tau_{k} \tau_{k}^{-1}\right)^{(\ell-2) / 2}\right)=\mu_{0} \tau_{k}
\end{aligned}
$$

is conjugate to μ so $\|\mu\|_{\tau} \leq \ell \leq \Delta\left(S_{n-k}\right)$. This completes the proof of Step II.
Step III: We show that $\|\sigma\|_{\tau} \leq \Delta\left(S_{n-k}\right)+k$.

Proof of Step III. By Step I there are 3 -cycles $\alpha_{1}, \ldots, \alpha_{t}$, where $t \leq \frac{k-1}{2}$, such that $\mu=\sigma \alpha_{1} \cdots \alpha_{t}$ contains a k-cycle. By Step II, $\|\mu\|_{\tau} \leq \Delta\left(S_{n-k}\right)+1$. Since τ contains a k-cycle of length $k \geq 3$, Lemma 4.7 shows that $\left\|\alpha_{i}\right\|_{\tau} \leq 2$. Therefore

$$
\|\sigma\|_{\tau} \leq\|\mu\|_{\tau}+\sum_{i=1}^{t}\left\|\alpha_{i}^{-1}\right\|_{\tau} \leq \Delta\left(S_{n-k}\right)+1+2 t \leq \Delta\left(S_{n-k}\right)+k
$$

There are three (2,2)-cycles in S_{4}, and the product of any two is equal to the third. Therefore if τ is a $(2,2)$-cycle in S_{n} there exists $\pi \in S_{n}$ such that $\operatorname{supp}(\pi) \subseteq \operatorname{supp}(\tau)$ and $\tau^{\pi} \tau$ is a (2,2)-cycle.

Proposition 4.14. Let $\tau \in S_{n}$ be an odd permutation, $n \geq 7$. Suppose that τ contains $a(p, q)$-cycle, where $p \geq q \geq 2$ are even and $n-(p+q) \geq p$. Then

$$
\left\|S_{n}\right\|_{\tau} \leq \Delta\left(S_{n-(p+q)}\right)+p+q
$$

Proof. We will prove that if $1 \neq \sigma \in S_{n}$ then $\|\sigma\|_{\tau} \leq \Delta\left(S_{n-(p+q)}\right)+p+q$. Throughout the proof the cycle structure of σ is $\left[k_{1}, \ldots, k_{r}\right]$ such that $k_{i} \geq 1$ and $\sum_{i} k_{i}=n$ and $k_{1} \geq \cdots \geq k_{r}$. Recall Notation 4.11.
Step I: There exist $\alpha_{1}, \ldots, \alpha_{t} \in S_{n}$ such that $t \leq \frac{p+q-2}{2}$ and such that $\xi=\sigma \alpha_{1} \cdots \alpha_{t}$ contains a (p, q)-cycle and the following hold. If $p=2$ then every α_{i} is a (2,2)cycle and if $p \geq 4$ then each α_{i} is either a 3-cycle or a (2,2)-cycle.

Proof of Step I. Assume first that $p=2$. Hence, $q=2$. If $k_{1} \geq 5$ then use $\mathrm{O}_{2}(\mathrm{a})$ to find a $(2,2)$-cycle α_{1} such that $\sigma \alpha_{1} \in\left[2, k_{1}-4,2, \ldots\right]$, i.e., $\sigma \alpha_{1}$ contains a $(2,2)$-cycle, and we are done (since $t=1 \leq \frac{p+q-2}{2}=1$).

If $k_{1}, k_{2} \geq 3$ then use $\mathrm{O}_{2}(\mathrm{~b} 1)$ to find a $(2,2)$-cycle α_{1} such that $\sigma \alpha_{1} \in\left[2, k_{1}-2\right.$, $\left.2, k_{2}-2, \ldots\right]$ and we are done.

If $k_{1}=4$ and $k_{2}=2$ then use $\mathrm{O}_{2}(\mathrm{~b} 1)$ to find a (2,2)-cycle α_{1} such that $\sigma \alpha_{1} \in$ $[2,2,1,1, \ldots]$. If $k_{1}=4$ and $k_{2}=1$ then $r \geq 3$ and $k_{3}=1$ (since $n \geq 7$) and we use O_{2} (c2) to get $\sigma \alpha_{1} \in[2,2,2, \ldots]$ and we are done.

Suppose that $k_{1}=3$ and $k_{2}=2$. Then $r \geq 3$ since $n \geq 7$. If $k_{3}=2$ then σ contains a (2,2)-cycle and we are done. Otherwise $k_{3}=1$. Then $r \geq 4$ since $n \geq 7$ and $\sigma \in[3,2,1,1, \ldots]=[3,1,1,2, \ldots]$ and we use $\mathrm{O}_{2}(\mathrm{c} 2)$ to find a $(2,2)$-cycle α_{1} such that $\sigma \alpha_{1} \in[2,1,2,2, \ldots]$ and we are done.

If $k_{1}=3$ and $k_{2}=1$ then $r \geq 4$ and $k_{3}=1$ and use $\mathrm{O}_{2}(\mathrm{c} 2)$ to get $\sigma \alpha_{1} \in[2,1,2, \ldots]$ and we are done.

If $k_{1}=2$ and $k_{2}=2$ then σ contains a $(2,2)$-cycle we are done. If $k_{1}=2$ and $k_{2}=1$ then σ is a transposition which fixes at least four points (since $n \geq 6$) and we can use them to choose a $(2,2)$-cycle α_{1} supported by fix (σ) and then $\sigma \alpha_{1} \in[2,2,2]$ and we are done. This completes the proof of Step I in the case $p=2$.

For the remainder of the proof $p \geq 4$. In particular $p+q \geq 6$. Assume first that σ is a transposition. We may assume that $\operatorname{supp}(\sigma)=\{n-1, n\}$ and notice that $n-2 \geq$ $p+q$ by the assumption. Choose a $(2,2)$-cycle $\alpha_{0} \in S_{n-2}$ arbitrarily. Use $\mathrm{O}_{3}(\mathrm{c})$ $\frac{p-2}{2}$ times to find 3 -cycles $\beta_{1}, \ldots, \beta_{(p-2) / 2} \in S_{n-2}$ such that $\theta=\alpha_{0} \beta_{1} \cdots \beta_{(p-2) / 2}$ is a $(p, 2)$-cycle. Use O_{3} (c) $\frac{q-2}{2}$ times to find 3 -cycles $\gamma_{1}, \ldots, \gamma_{(q-2) / 2} \in S_{n-2}$ such that $\theta \gamma_{1}, \ldots, \gamma_{(q-2) / 2}$ is a (p, q)-cycle. Then

$$
\sigma \alpha_{0} \beta_{1} \cdots \beta_{(p-2) / 2} \gamma_{1} \cdots \gamma_{(q-2) / 2} \in[p, q, 2]
$$

and we are done since $\frac{p-2}{2}+\frac{q-2}{2}+1=\frac{p+q-2}{2}$.
Therefore for the remainder of the proof of Step I we assume that σ is not a transposition. Hence, if $r \geq 2$ then $k_{1}+k_{2} \geq 4$.

Use Lemma 4.12 with $m=p+q+1$ to find 3 -cycles $\alpha_{1}, \ldots, \alpha_{\ell}$, where $\ell \geq 0$ and $r \geq 2 \ell+1$ such that if we set $\tilde{k}=\sum_{i=1}^{2 \ell+1} k_{i}$ and $\xi=\sigma \alpha_{1} \cdots \alpha_{\ell}$ then either
(i) $\tilde{k} \leq p+q$ and $r=2 \ell+2$ and $\xi \in\left[\tilde{k}, k_{2 \ell+2}\right]$, or
(ii) $\tilde{k} \geq p+q+1$ and $\sum_{i=1}^{2 \ell-1} k_{i} \leq p+q$ and $\xi \in\left[\tilde{k}, k_{2 \ell+2}, \ldots, k_{r}\right]$.

Case (i): Observe that $k_{2 \ell+2}=n-\tilde{k} \geq n-(p+q) \geq p \geq 4$. Therefore $k_{i} \geq 4$ for all i and therefore

$$
p+q \geq \sum_{i=1}^{2 \ell+1} k_{i} \geq 4(2 \ell+1)
$$

It follows that $\ell \leq\left\lfloor\frac{p+q-4}{8}\right\rfloor$.
Since $\xi \in[\tilde{k}, n-\tilde{k}]$, use O_{3} (b) to find a 3-cycle $\alpha_{\ell+1}$ such that $\xi \alpha_{\ell+1} \in[n-1,1]$. Since $n-1>p+q$, use O_{3} (a) to find a 3-cycle $\alpha_{\ell+2}$ such that $\xi \alpha_{\ell+1} \alpha_{\ell+2} \in$ $[p, q, n-1-p-q]$ contains a (p, q)-cycle. We are done because $\ell+2 \leq\left\lfloor\frac{p+q+12}{8}\right\rfloor$ and one checks that $\left\lfloor\frac{p+q+12}{8}\right\rfloor \leq \frac{p+q-2}{2}$ if $p+q \geq 6$.
Case (ii): If $\ell=0$ then $\sigma=\left[k_{1}, \ldots\right]$, where $k_{1} \geq p+q+1$. Then use $\mathrm{O}_{3}(\mathrm{a})$ to find a 3-cycle α_{1} such that $\sigma \alpha_{1} \in\left[p, q, k_{1}-p-q, \ldots\right]$ and we are done (since $1 \leq \frac{p+q-2}{2}$). So we only need to consider $\ell \geq 1$.

Suppose first that $\sum_{i=1}^{2 \ell-1} k_{i}=p+q$. Then $\sigma \alpha_{1} \cdots \alpha_{\ell-1} \in\left[p+q, k_{2 \ell}, k_{2 \ell+1}, \ldots\right]$. Use $\mathrm{O}_{2}(\mathrm{c} 2)$ to replace α_{ℓ} with a $(2,2)$-cycle such that $\sigma \alpha_{1} \cdots \alpha_{\ell} \in[p, q$, $\left.k_{2 \ell}+k_{2 \ell+1}, \ldots\right]$. If $\ell=1$ then $\ell \leq \frac{p+q-2}{2}$ and we are done. If $\ell \geq 2$ then

$$
p+q=\sum_{i=1}^{2 \ell-1} k_{i}=k_{1}+k_{2}+\sum_{i=3}^{2 \ell-1} k_{i} \geq 4+2 \ell-3
$$

since $k_{i} \geq 1$. Therefore $\ell \leq\left\lfloor\frac{p+q-1}{2}\right\rfloor=\frac{p+q-2}{2}$ since $p+q$ is even, and we are done.

It remains to consider the case $\sum_{i=1}^{2 \ell-1} k_{i} \leq p+q-1$. Assume first that $k_{2 \ell}=1$. This implies that $k_{2 \ell+1}=1$ and since $\sum_{i=1}^{2 \ell+1} k_{i} \geq p+q+1$ it follows that $\sum_{i=1}^{2 \ell} k_{i}=$
$p+q$, and therefore $\sigma \alpha_{1} \cdots \alpha_{\ell-1} \in[p+q-1,1,1, \ldots]$. Use O_{3} (b) to replace α_{ℓ} with a 3 -cycle such that $\sigma \alpha_{1} \cdots \alpha_{\ell} \in[p, q, 1, \ldots]$. Since $k_{1} \geq 2$ and $k_{i} \geq 1$ we get

$$
p+q=\sum_{i=1}^{2 \ell} k_{i} \geq 2+2 \ell-1
$$

and therefore $\ell \leq\left\lfloor\frac{p+q-1}{2}\right\rfloor=\frac{p+q-2}{2}$ and we are done.
Assume that $k_{2 \ell} \geq 2$. Since $\tilde{k} \geq p+q+1$, use O_{3} (a) to find a 3-cycle $\alpha_{\ell+1}$ such that $\xi \alpha_{\ell+1} \in[p, q, \tilde{k}-p-q, \ldots]$ contains a (p, q)-cycle. Since $k_{1} \geq \cdots \geq k_{2 \ell} \geq 2$ and $\sum_{i=1}^{2 \ell-1} k_{i} \leq p+q-1$ we deduce that $2(2 \ell-1) \leq p+q-1$; hence $\ell \leq\left\lfloor\frac{p+q+1}{4}\right\rfloor=\frac{p+q}{4}$. Therefore $\ell+1 \leq\left\lfloor\frac{p+q+4}{4}\right\rfloor$ and we are done since $\left\lfloor\frac{p+q+4}{4}\right\rfloor \leq \frac{p+q}{2}$ if $p+q \geq 6$. This completes the proof of Step I.

Step II: Let $\mu \in S_{n}$ contain a (p, q)-cycle. Then $\|\mu\|_{\tau} \leq \Delta\left(S_{n-p-q}\right)+2$.
Proof of Step II. We first consider the case $p=2$. Hence $q=2$. Consider $\mu \in S_{n}$, which contains a $(2,2)$-cycle. We write μ as a product of disjoint permutations $\mu=\mu_{0} \mu_{2,2}$, where $\mu_{2,2}$ is a (2,2)-cycle in S_{4} and $\mu_{0} \in S_{n-4}$. Notice that $n-4=$ $n-(p+q) \geq p=2$. Similarly we write $\tau=\tau_{0} \tau_{2,2}$. Since τ is an odd permutation and $\tau_{2,2}$ is even, $\tau_{0} \in S_{n-4}$ is an odd permutation, and by Lemma 4.4 it normally generates it. By Lemma 4.2 there are $\lambda_{1}, \ldots, \lambda_{\ell} \in S_{n-4}$, where $\ell \leq \Delta\left(S_{n-4}\right)$ such that

$$
\mu_{0}=\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}
$$

Suppose that ℓ is odd. Since $\left|\tau_{2,2}\right|=2$,

$$
\tau^{\lambda_{1}} \cdots \tau^{\lambda_{\ell}}=\left(\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}\right) \cdot\left(\tau_{2,2}\right)^{\ell}=\mu_{0} \tau_{2,2}
$$

is conjugate to μ since both $\mu_{2,2}$ and $\tau_{2,2}$ are (2,2)-cycles, so $\|\mu\|_{\tau} \leq \ell \leq \Delta\left(S_{n-4}\right)$.
Suppose that ℓ is even. If $\ell=0$ then $\mu=\mu_{2,2}$ is (2,2)-cycle. Since τ contains a $(2,2)$-cycle, $\|\mu\|_{\tau} \leq 2 \leq \Delta\left(S_{n-4}\right)+2$ and we are done. Otherwise $\ell \geq 2$. In this case we choose $\pi \in S_{4}$ such that $\tau_{2,2}^{\pi} \tau_{2,2}$ is a (2,2)-cycle. Then

$$
\tau^{\lambda_{1} \pi} \tau^{\lambda_{2}} \cdots \tau^{\lambda_{\ell}}=\left(\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}\right) \cdot\left(\tau_{2,2}^{\pi} \tau_{2,2} \cdot\left(\tau_{2,2}\right)^{\ell-2}\right)=\mu_{0} \cdot\left(\tau_{2,2}^{\pi} \tau_{2,2}\right)
$$

is conjugate to μ; hence $\|\mu\|_{\tau} \leq \ell \leq \Delta\left(S_{n-4}\right)$ and this completes the proof of Step II in the case $p=2$.

For the remainder of the proof of Step II assume $p \geq 4$. Write $\mu=\mu_{0} \mu_{p, q}$, a product of disjoint permutations with $\mu_{p, q} \in S_{p+q}$ a (p, q)-cycle and $\mu_{0} \in S_{n-p-q}$. Notice that $n-p-q \geq p \geq 4$ by assumption. Similarly write $\tau=\tau_{0} \tau_{p, q}$. Since τ is odd and $\tau_{p, q}$ is even, τ_{0} is odd and therefore normally generates S_{n-p-q}. By Lemma 4.2 there are $\lambda_{1}, \ldots, \lambda_{\ell} \in S_{n-p-q}$, where $\ell \leq \Delta\left(S_{n-p-q}\right)$, such that

$$
\mu_{0}=\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}
$$

Choose $\theta \in S_{p+q}$ such that $\tau_{p, q}^{\theta}=\tau_{p, q}^{-1}$.

If ℓ is odd then

$$
\tau^{\lambda_{1}} \tau^{\lambda_{2} \theta} \tau^{\lambda_{3}} \tau^{\lambda_{4} \theta} \cdots \tau^{\lambda_{\ell-1} \theta} \tau^{\lambda_{\ell}}=\left(\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}\right) \cdot\left(\left(\tau_{p, q} \tau_{p, q}^{-1}\right)^{(\ell-1) / 2} \cdot \tau_{p, q}\right)=\mu_{0} \tau_{p, q}
$$

is conjugate to μ so $\|\mu\|_{\tau} \leq \ell \leq \Delta\left(S_{n-p-q}\right)$.
Suppose that ℓ is even. Since both p, q are even, $\tau_{p, q}^{2}$ is a $\left(\frac{p}{2}, \frac{p}{2}, \frac{q}{2}, \frac{q}{2}\right)$-cycle. Use $\mathrm{O}_{2}(\mathrm{~d})$ to find a $(2,2)$-cycle β such that $\tau_{p, q} \beta$ is a (p, q)-cycle.

If $\ell=0$ then $\mu=\mu_{p, q}$. Choose $\pi \in S_{n-p-q}$ such that $\tau_{0}^{\pi}=\tau_{0}^{-1}$. Then

$$
\tau \tau^{\pi} \beta=\left(\tau_{0} \tau_{0}^{-1}\right)\left(\tau_{p, q}^{2}\right) \beta \in[p, q]
$$

is conjugate to μ. Since $p \geq 4$, Lemma 4.7 gives $\|\beta\|_{\tau} \leq 2$ and therefore $\|\mu\| \leq$ $\|\tau\|_{\tau}+\left\|\tau^{\pi}\right\|_{\tau}+\|\beta\|_{\tau} \leq 4$. By Corollary 4.6 and since $n-p-q \geq p \geq 4$, we get $\Delta\left(S_{n-p-q}\right)+2 \geq 3+2>\|\mu\|_{\tau}$.

If $\ell \geq 2$ is even then

$$
\begin{aligned}
\tau^{\lambda_{1}} \tau^{\lambda_{2}} \tau^{\lambda_{3} \theta} \tau^{\lambda_{4}} \tau^{\lambda_{5} \theta} \tau^{\lambda_{6}} \cdots \tau^{\lambda_{\ell-1} \theta} \tau^{\lambda_{\ell}} \cdot \beta & =\left(\tau_{0}^{\lambda_{1}} \cdots \tau_{0}^{\lambda_{\ell}}\right) \cdot\left(\tau_{p, q}^{2}\left(\tau_{p, q}^{-1} \tau_{p, q}\right)^{(\ell-2) / 2}\right) \cdot \beta \\
& =\mu_{0} \cdot \tau_{p, q}^{2} \cdot \beta
\end{aligned}
$$

is conjugate to μ since $\tau_{p, q}^{2} \beta$ is a (p, q)-cycle. Therefore

$$
\|\mu\|_{\tau} \leq \ell+\|\beta\|_{\tau}=\ell+2 \leq \Delta\left(S_{n-p-q}\right)+2 .
$$

This completes the proof of Step II.
Step III: We prove that $\|\sigma\|_{\tau} \leq \Delta\left(S_{n-p-q}\right)+p+q$.
Proof of Step III. First, consider the case $p=2$. Hence $q=2$. By Step I there are $(2,2)$-cycles $\alpha_{1}, \ldots, \alpha_{t}$ where $t \leq \frac{p+q-2}{2}$ such that $\mu=\sigma \alpha_{1} \cdots \alpha_{t}$ contains a (p, q)-cycle. By Step II, $\|\mu\|_{\tau} \leq \Delta\left(S_{n-p-q}\right)+2$. By Lemma 4.7, $B_{\tau}(2)$ contains all (2, 2)-cycles. Therefore

$$
\|\sigma\|_{\tau} \leq\|\mu\|_{\tau}+2 t \leq \Delta\left(S_{n-p-q}\right)+2+(p+q-2)=\Delta\left(S_{n-p-q}\right)+p+q
$$

If $p \geq 4$ then Lemma 4.7 implies that $B_{\tau}(2)$ contains all 3-cycles and all $(2,2)-$ cycles. By Step I there are $\alpha_{1}, \ldots, \alpha_{t}$ such that $t \leq \frac{p+q-2}{2}$ and α_{i} are either 3 -cycles or (2,2)-cycles and $\mu=\sigma \alpha_{1} \cdots \alpha_{t}$ contains a (p, q)-cycle. By Step II $\|\mu\|_{\tau} \leq \Delta\left(S_{n-p-q}\right)+2$ so

$$
\|\sigma\|_{\tau} \leq\|\mu\|_{\tau}+2 t \leq \Delta\left(S_{n-p-q}\right)+2+(p+q-2)=\Delta\left(S_{n-p-q}\right)+p+q
$$

Proposition 4.15. Let $\tau \in S_{n}$ be an n-cycle, $n \geq 4$ even. Then $\left\|S_{n}\right\|_{\tau} \leq n-1$.
Proof. First, τ is an odd permutation, and hence normally generates S_{n} by Lemma 4.4. Since $n \geq 4$, Lemma 4.7 shows that $B_{\tau}(2)$ contains all 3 -cycles and all $(2,2)$-cycles. Consider some $1 \neq \sigma \in S_{n}$ with cycle structure $\left[k_{1}, \ldots, k_{r}\right]$, where $\sum_{i} k_{i}=n$ and $k_{1} \geq \cdots \geq k_{r}$. Then $k_{1} \geq 2$ since $\sigma \neq 1$. We need to show that $\|\sigma\|_{\tau} \leq n-1$.

Suppose first that r is odd. If $r=1$ then σ is an n-cycle, $\|\sigma\|_{\tau}=1 \leq n-1$ and we are done. If $r \geq 3$, use O_{3} (a) to find a 3-cycle α_{1} such that $\sigma \alpha_{1} \in\left[k_{1}, k_{2}, k_{3}\right.$, $\left.n-\left(k_{1}+k_{2}+k_{3}\right)\right]$. Repeat this process to find 3-cycles $\alpha_{2}, \ldots, \alpha_{(r-1) / 2}$ such that $\sigma \alpha_{1} \cdots \alpha_{(r-1) / 2} \in\left[k_{1}, \ldots, k_{r}\right]$ (this is possible since r is odd). This shows that

$$
\|\sigma\|_{\tau} \leq \frac{r-1}{2} \cdot\left\|\alpha_{i}\right\|_{\tau} \leq 2 \cdot \frac{r-1}{2}=r-1 \leq n-1
$$

Suppose that r is even $(r \geq 2)$. Then σ is not a transposition (because in that case r is odd). If σ is either a 3 -cycle or a (2,2)-cycle then $\|\sigma\|_{\tau} \leq 2$ by Lemma 4.7 and we are done since $n \geq 4$. Therefore either

- $k_{1} \geq 4$, in which case $r \leq 1+\left(n-k_{1}\right) \leq n-3$, or
- $k_{1}=3$ and $k_{2} \geq 2$ in which case $r \leq 1+1+(n-5)=n-3$, or
- $k_{1}=2$ and $k_{2}, k_{3}=2$ (since σ is not a transposition nor a (2,2)-cycle), so $r \leq 3+(n-6)=n-3$.
So we may assume that $r \leq n-3$.
Since n is even, τ^{2} is an $\left(\frac{n}{2}, \frac{n}{2}\right)$-cycle. Since $k_{1} \geq \cdots \geq k_{r}$ and $r \geq 2$ and $\sum_{i} k_{i}=n$, we see that $k_{r} \leq \frac{n}{2}$. If $k_{r}=\frac{n}{2}$ then $r=2$ and σ is an $\left(\frac{n}{2}, \frac{n}{2}\right)$-cycle, so

$$
\|\sigma\|_{\tau}=\left\|\tau^{2}\right\|_{\tau}=2 \leq n-1
$$

and we are done. So assume $k_{r}<\frac{n}{2}$. Apply O_{3} (b) to τ^{2} to find a 3-cycle α_{0} such that $\tau^{2} \alpha_{0} \in\left[n-k_{r}, k_{r}\right]$. Apply O_{3} (a) $\frac{r-2}{2}$ times to find 3-cycles $\alpha_{1}, \ldots, \alpha_{t}$, where $t=\frac{r-2}{2}$, that split the $\left(n-k_{r}\right)$-cycle into $r-1$ cycles and get $\sigma \alpha_{0} \cdots \alpha_{t} \in\left[k_{1}, \ldots, k_{r}\right]$. Since $\left\|\alpha_{i}\right\|_{\tau} \leq 2$ we get

$$
\|\sigma\|_{\tau} \leq 2(t+1)=r \leq n-1
$$

(because $\sigma \neq 1$).
Proposition 4.16. Consider an odd permutation $\tau \in S_{n}$ and assume that τ fixes a point. Then $\left\|S_{n}\right\|_{\tau} \leq\left\|S_{n-1}\right\|_{\tau}+1$. In particular $\left\|S_{n}\right\|_{\tau} \leq \Delta\left(S_{n-1}\right)+1$.
Proof. Up to conjugation we may assume that τ fixes n. Any $\sigma \in S_{n}$ either fixes a point, in which case up to conjugacy $\sigma \in S_{n-1}$, or there exists τ^{\prime} conjugate to τ such that $\sigma \tau^{\prime}$ fixes a point. So up to conjugation $\sigma \tau^{\prime} \in S_{n-1}$ for some $\tau^{\prime} \in B_{\tau}(1)$. Therefore

$$
\|\sigma\|_{\tau} \leq\left\|\sigma \tau^{\prime}\right\|_{\tau}+\left\|\tau^{\prime}\right\|_{\tau} \leq\left\|S_{n-1}\right\|_{\tau}+1 \leq \Delta\left(S_{n-1}\right)+1
$$

Proof of Theorem 1.2. We use induction on $n \geq 2$. First, $\Delta\left(S_{2}\right)=1$ is a triviality and $\Delta\left(S_{3}\right)=2$ by Theorem 1.1.

Assume inductively that $\Delta\left(S_{m}\right)=m-1$ for all $2 \leq m<n$. By Corollary 4.6, $\Delta\left(S_{n}\right) \geq n-1$. To prove equality we need to show that $\left\|S_{n}\right\|_{X} \leq n-1$ for any normally generating set X. By Lemma $4.4, X$ contains an odd permutation τ which normally generates, and hence $\left\|S_{n}\right\|_{X} \leq\left\|S_{n}\right\|_{\tau}$. So it suffices to prove that $\left\|S_{n}\right\|_{\tau} \leq n-1$ for any odd permutation τ.

If τ has a fixed point then by Proposition 4.16

$$
\left\|S_{n}\right\|_{\tau} \leq \Delta\left(S_{n-1}\right)+1 \leq n-2+1=n-1
$$

and we are done. So in order to establish the induction step we need to check that $\left\|S_{n}\right\|_{\tau} \leq n-1$ for odd τ without fixed points. Recall Notation 4.11.

For $n=4$ the only fixed-point free odd permutations are the 4-cycles. If τ is one then $\left\|S_{4}\right\|_{\tau} \leq 3$ by Proposition 4.15. So $\Delta\left(S_{4}\right)=3$.

For $n=5$ the only fixed-point free odd permutations are the (3,2)-cycles. Let τ be one. Then $[3,2] \subseteq B_{\tau}(1)$ by definition and $[3] \subseteq B_{\tau}(2)$ by Lemma 4.7 . We apply Proposition 2.2 (iii) and O_{3} (a) to deduce that

$$
[2]=[1,1,1,2] \subseteq[3,2] \cdot[3] \subseteq B_{\tau}(3)
$$

and $\mathrm{O}_{3}(\mathrm{~b})$ to deduce that

$$
[4]=[1,4] \subseteq[3,2] \cdot[3] \subseteq B_{\tau}(3)
$$

Apply $\mathrm{O}_{3}(\mathrm{~b})$ to get

$$
[2,2] \subseteq[3,1] \cdot[3] \subseteq B_{\tau}(4)
$$

and O_{3} (c) to get

$$
[5] \subseteq[3,1,1] \cdot[3] \subseteq B_{\tau}(4)
$$

We have exhausted all the nontrivial conjugacy classes in S_{5} and therefore $\left\|S_{5}\right\|_{\tau} \leq 4$ as needed.

For $n=6$ the only fixed-point free odd permutations are the (2, 2, 2)-cycles and 6 -cycles. If τ is a 6 -cycle then $\left\|S_{6}\right\|_{\tau} \leq 5$ by Proposition 4.15. Consider $\tau \in[2,2,2]$. Then $[2,2,2] \subseteq B_{\tau}(1)$ by definition and $[2,2] \subseteq B_{\tau}(2)$ by Lemma 4.7. Now, [2], [6], [4] $\subseteq B_{\tau}(3)$ because

$$
\begin{array}{ll}
{[2]=[1,1,1,1,2] \subseteq[2,2,2] \cdot[2,2]} & \text { by } \mathrm{O}_{2}(\mathrm{~b} 1) \\
{[6] \subseteq[2,2,2] \cdot[2,2]} & \text { by } \mathrm{O}_{2}(\mathrm{c} 1) \\
{[4]=[1,1,4] \subseteq[2,2,2] \cdot[2,2]} & \text { by } \mathrm{O}_{2}(\mathrm{c} 2)
\end{array}
$$

Next, [5], [3], [4, 2], [3, 3] $\subseteq B_{\tau}(4)$ because

$$
\begin{array}{rlr}
{[5] \subseteq[2,2,1] \cdot[2,2]} & \text { by } \mathrm{O}_{2}(\mathrm{c} 1) \\
{[3]} & =[1,1,3] \subseteq[2,2,1] \cdot[2,2] & \text { by } \mathrm{O}_{2}(\mathrm{c} 2) \\
{[4,2]} & \subseteq[2,2,1,1] \cdot[2,2] & \text { by } \mathrm{O}_{2}(\mathrm{~d}), \\
{[3,3]} & \subseteq[2,1,2,1] \cdot[2,2] & \text { by } \mathrm{O}_{2}(\mathrm{~d})
\end{array}
$$

Finally

$$
[3,2]=[3,1,2] \subseteq[6] \cdot[2,2] \subseteq B_{\tau}(3+2)
$$

by O_{2} (a). This exhausts all the nontrivial conjugacy classes in S_{6} and therefore $\left\|S_{6}\right\|_{\tau} \leq 5$ as needed.

We now assume that $n \geq 7$ and that $\Delta\left(S_{m}\right)=m-1$ for all $2 \leq m<n$. Choose an odd permutation $\tau \in S_{n}$ without fixed points. If τ is an n-cycle then $\left\|S_{n}\right\|_{\tau} \leq n-1$ by Proposition 4.15. So we assume that τ is a product of at least two cycles each of length $k \geq 2$. If one of these cycles has odd length $k \geq 3$ then $n-k \geq 2$ (or else τ has a fixed point) and Proposition 4.13, together with the induction hypothesis, shows that

$$
\left\|S_{n}\right\|_{\tau} \leq \Delta\left(S_{n-k}\right)+k=n-k-1+k=n-1
$$

as needed. If τ contains no cycles of odd length then it is a product of cycles of even length. Since τ is odd, the number of these cycles must be odd, and since τ is not a cycle, it is a product of at least three cycles of even length. Let $p \geq q$ be the lengths of the shortest two cycles in τ. Then $q \geq 2$ and $n-(p+q) \geq p$ because τ contains a third cycle of length at least p. Appealing to Proposition 4.14 and the induction hypothesis, we deduce that

$$
\left\|S_{n}\right\|_{\tau} \leq \Delta\left(S_{n-p-q}\right)+p+q=n-1 .
$$

The induction step is complete.

References

[Babai and Seress 1992] L. Babai and A. Seress, "On the diameter of permutation groups", European J. Combin. 13:4 (1992), 231-243. MR Zbl
[Babai et al. 1990] L. Babai, G. Hetyei, W. M. Kantor, A. Lubotzky, and A. Seress, "On the diameter of finite groups", pp. 857-865 in 31st Annual Symposium on Foundations of Computer Science, Vol. II (St. Louis, MO, 1990), IEEE Comput. Soc. Press, Los Alamitos, CA, 1990. MR
[Bardakov et al. 2012] V. Bardakov, V. Tolstykh, and V. Vershinin, "Generating groups by conjugationinvariant sets", J. Algebra Appl. 11:4 (2012), art. id. 1250071. MR Zbl
[Burago et al. 2008] D. Burago, S. Ivanov, and L. Polterovich, "Conjugation-invariant norms on groups of geometric origin", pp. 221-250 in Groups of diffeomorphisms, edited by R. Penner et al., Adv. Stud. Pure Math. 52, Math. Soc. Japan, Tokyo, 2008. MR Zbl
[Hall 1959] M. Hall, Jr., The theory of groups, The Macmillan Co., New York, 1959. MR Zbl
[Helfgott and Seress 2014] H. A. Helfgott and A. Seress, "On the diameter of permutation groups", Ann. of Math. (2) 179:2 (2014), 611-658. MR Zbl
[Kędra et al. 2018] J. Kędra, A. Libman, and B. Martin, "Strong and uniform boundedness of groups", preprint, 2018. arXiv
[Klopsch and Lev 2003] B. Klopsch and V. F. Lev, "How long does it take to generate a group?", J. Algebra 261:1 (2003), 145-171. MR Zbl
[Preparata and Vuillemin 1981] F. P. Preparata and J. Vuillemin, "The cube-connected cycles: a versatile network for parallel computation", Comm. ACM 24:5 (1981), 300-309. MR
[Rotman 1973] J. J. Rotman, The theory of groups: an introduction, 2nd ed., Allyn and Bacon, Boston, MA, 1973. MR Zbl
[Tarry 2020] C. Tarry, "Strong and uniform boundedness of groups", undergraduate project, 2020.

Received: 2020-03-04 Revised: 2020-05-10 Accepted: 2020-06-25

a.libman@abdn.ac.uk
Institute of Mathematics, University of Aberdeen, King's College, Aberdeen, United Kingdom
charlotte0687@hotmail.co.uk Institute of Mathematics, University of Aberdeen, King's College, Aberdeen, United Kingdom

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Robert B. Lund	Clemson University, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Gaven J. Martin	Massey University, New Zealand
Martin Bohner	Missouri U of Science and Technology, USA	SA Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia Mo	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	University of Alabama in Huntsville, USA	A Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA
Chi-Kwong Li	College of William and Mary, USA		

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2020 is US $\$ 205 /$ year for the electronic version, and $\$ 275 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

involve
 no. 4

Structure constants of $\because\left(\mathfrak{s l}_{2}\right)$	541
Alexia Gourley and Christopher Kennedy	
Conjecture \mathfrak{O} holds for some horospherical varieties of Picard rank 1	551
Lela Bones, Garrett Fowler, Lisa Schneider and Ryan	
M. SHIFLER	
Condensed Ricci curvature of complete and strongly regular graphs	559
Vincent Bonini, Conor Carroll, Uyen Dinh, Sydney Dye,	
Joshua Frederick and Erin Pearse	
On equidistant polytopes in the Euclidean space	577
Csaba Vincze, Márk Oláh and Letícia Lengyel	
Polynomial values in Fibonacci sequences	597
Adi Ostrov, Danny Neftin, Avi Berman and Reyad A. Elrazik	
Stability and asymptotic analysis of the Föllmer-Schweizer decomposition on a finite probability space	607
Sarah Boese, Tracy Cui, Samuel Johnston, Gianmarco Molino	
and Oleksii Mostovyi	
Eigenvalues of the sum and product of anticommuting matrices	625
Vadim Ponomarenko and Louis Selstad	
Combinatorial random knots	633
Andrew Ducharme and Emily Peters	
Conjugation diameter of the symmetric groups	655
Assaf Libman and Charlotte Tarry	
Existence of multiple solutions to a discrete boundary value problem with mixed periodic boundary conditions	673
Kimberly Howard, Long Wang and Min Wang	
Minimal flag triangulations of lower-dimensional manifolds	683
Christin Bibby, Andrew Odesky, Mengmeng Wang, Shuyang	
Wang, Ziyi Zhang and Hailun Zheng	
Some new Gompertz fractional difference equations	705
Tom Cuchta and Brooke Fincham	

[^0]: MSC2010: 05E15, 20B30.
 Keywords: conjugation diameter, symmetric groups.

