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Abstract The South American rainfall Dipole (SAD) is a renowned spatial structure present in the
austral summer as part of the South American monsoon system. SAD phases have been related with
extreme precipitations and severe droughts across South America, but are yet to be predicted. Here, we
reveal two robust and reliable intraseasonal windows in the accumulated SAD index where we can forecast
its quantile-state between 5 to 15 and 60 to 70 days in advance (99% significance level). These windows are
insensitive to variations in the pole's size and accumulation window, and results are consistent across
different quantiles states (median, tercile, and quartile). Our method, which is based on analyzing the
lagged mutual information between future and present states, could be used in the development of early
warnings for extreme rainfall events. Moreover, it is unrestricted to the present analysis, being applicable
to other stationary signals where a forecast is missing.

Plain Language Summary The South American Dipole (SAD) is a spatially-extended rainfall
system present in the austral summer. Its dipole behaviour means that it is composed of two regions

(or poles): when one regions shows an increase in precipitation the other region shows a decrease in
precipitation, and vice versa. Forecasting future SAD behaviour is particularly important as its extreme
states have been associated with floods or droughts over these regions (which include highly populated
areas, such as Sdo Paulo, Brazil). Here, we introduce a method to predict the dipole's future state from
statistical and information theory analyses. Our main results show that there are two time windows where
forecasting future SAD states is possible: from 5 to 15 days and from 60 to 70 days. These windows belong
to the intraseasonal time scale (from 10 to 90 days), which is a generally challenging time scale to have
predictions and where forecasts are scarce.

1. Introduction

South America (SA) has a broad range of climate behaviors (Cavalcanti et al., 2016; Garreaud &
Aceituno, 2007), both in space and time. This stems from its latitudinal extension that covers from equa-
torial to midlatitudes, its topography and heterogeneous vegetation, as well as its dependence on multiple
modes of climate variability. Among the latter phenomena, we can highlight SA's climate dependence on El
Nifo-Southern Oscillation (ENSO) at interannual time scales (Barreiro, 2010; Barreiro & Tippmann, 2008;
Cai et al., 2020; Ropelewski & Halpert, 1987) and the Madden-Julian Oscillation (MJO) at intraseasonal (IS)
time scales (Alvarez et al., 2016, 2017; Shimizu et al., 2017). These are the leading modes on their correspond-
ing time scales and both are responsible for altering regional climate through, for example, modulating the
frequency of occurrence of frontal systems, extratropical cyclones, or mesoscale convective systems.

Recently, it has been shown that different modes characterize IS variability depending on the season (Vera
etal., 2018). The wet season (October-April) is characterized by the presence of a dipole-like spatial structure,
which can be revealed by a principal component analysis of the rainfall field. This structure is known as the
South American rainfall Dipole (SAD) (Boers et al., 2014; Nogués-Paegle & Mo, 1997), with centers located
at the South Atlantic Convergence Zone (SACZ) and over Southeastern South America (SESA). The dry
season (May-September), on the other hand, exhibits a monopole behavior centered at SESA. In our work
we will focus on the SAD during the summer season, as this is the rainy season over most of South America.

The SAD characterizes the IS variability of the South American Monsoon System (SAMS) (Barros et al., 2002;
Vera et al., 2006) and has been mainly related to the activity of the MJO (Alvarez et al., 2016, 2017;
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Veraetal., 2018). The MJO has a characteristic time scale of about 30-80 days and can impact South America
through two mechanisms: (a) a tropical-tropical pathway involving changes in the divergent circulation as
the MJO propagates eastward, and (b) a tropical-extratropical pathway taking place through the excitation
and dispersion of Rossby waves from the Indo-Pacific to the Atlantic region (Alvarez et al., 2016; Barreiro
et al., 2019; Carvalho et al., 2004; De Souza & Ambrizzi, 2006; Gelbrecht et al., 2018; Gonzalez & Vera, 2014;
Paegle et al., 2000; Shimizu & Ambrizzi, 2016). In particular, when the SACZ center is strengthened and
the SESA center is weakened, the SAD phase has been associated with Phase 8-1 of the MJO. Similarly,
when the SACZ center is weakened and the SESA center is strengthened, the SAD phase has been associated
with the Phase 3-4 of the MJO. Moreover, SAD phases have been related with extreme precipitation events
and severe droughts across SA (Boers et al., 2013; Carvalho et al., 2002), which have severe socioeconomic
impact in highly populated areas, such as Sao Paulo or Buenos Aires, and are yet to be predicted. Hence,
being able to predict SAD's behavior at the IS time scales in order to develop early warnings for extreme
rainfall events is highly important.

In this work, we reveal the existence of intraseasonal predictability windows in the Accumulated SAD
(ASAD) index during the months of December to March. Our methodology is based on defining a
quantile-state time series from the ASAD index and on using the lagged mutual information (MI) to quan-
tify the average amount of information shared by present and future quantile states. Our results show that,
from present quantile states, we can forecast at 5 to 15 and 60 to 70 days ahead—to the best of our knowl-
edge, IS forecast at 60 to 70 days has never been achieved before. These two predictability windows emerge
robustly, that is, insensitive to changes in our control parameters (accumulated window size and poles' size),
and reliably, that is, statistically significant at a 99% significance level and consistent across quantile choices
(either median, terciles, or quartiles). We also reveal a third robust IS window at approximately 45 days,
which only emerges when using quartile-states. In summary, we develop the first IS forecast for the ASAD
index based on an approach that can be also applied to find predictions of other stationary time series.

The paper is organized as follows: Section 2 describes the data and our methodology, section 3 shows the
main results and analysis, and section 4 has the conclusions.

2. Methods and Data
2.1. Data Specifics and the Construction of the SAD Index

We consider precipitation data from the Tropical Rainfall Measuring Mission (TRMM). These data con-
sist of a multisatellite observation net, created to study the rainfall field over the tropics and subtropics.
Although the mission (launched in 1997) ended in 2015, the data production was continued through the
TRMM Multisatellite Precipitation Analysis (TMPA) (Huffman et al., 2007). Here, we use daily precipita-
tion from the TMPA 3B42v7, which runs from 1 January 1998 to 31 December 2019 over a 0.25° x 0.25°
spatial grid. We only consider the months that the SAMS is in its mature stage (Vera et al., 2006), namely,
December-January-February-March (DJFM). Thus, we avoid dealing with the developing [vanishing] stages
of the transition from dry to wet [wet to dry] months, which introduce biases in the analysis.

In order to define the poles of the South American Dipole (SAD) from the precipitation anomaly fields, we
follow the locations found by Vera et al. (2018). We construct a time series for each pole by averaging the
anomalies within rectangular boxes placed at these two locations. Once both space-averaged time series are
defined, we subtract the daily climatology for each time stamp and standardize using the daily standard
deviation, resulting in a standardized anomaly time series for each pole. We then define the SAD index by
subtracting the southern pole anomaly to the northern one. We use three box sizes (left panel in Figure 1)
to carry an analysis on the sensitivity of our results to the spatial size of the poles.

In order to filter variability of the SAD on short time scales, while maintaining the intraseasonal (IS) time
scales, we construct an Accumulated SAD (ASAD) index. We do this by adding the SAD daily data within
sliding windows of 5, 7, or 9 days (making 1 day sliding translations of these windows), where we denote the
resultant ASAD indexes as accum5, accum?7, or accum9, respectively. This smoothing leaves the underlying
physics unchanged at the IS time scale, as we show by testing our results’ sensitivity to these three time scales.

2.2. Definition of Quantile States and Their IS Forecasting

The ASAD indexes (accum5, accum7, or accum9) are still too complex and insufficiently long (~2,500 data
points in 21 years) to make reliable predictions with sufficient statistics. In other words, a real-valued time
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Figure 1. South American rainfall Dipole (SAD). Panel (1) shows the boxes used to construct the SAD index. From left
to right, each panel shows the mean precipitation anomaly field of the accumulated SAD index (using 7 days
accumulation windows) for the quartile-states defined over the dash-dotted-line box. States (1) and (4) [(2) and (3)]

are extreme [neutral] SAD states.

series with 2,500 points is likely to have insufficient data for probability computations. Hence, we transform
the ASAD index into a quantized time series, where each daily data corresponds to the ASAD's quantile-state
at the time. We define a two-state time series from the distribution's median, three states from its terciles,
and four states from its quartiles. For example, Figure 1 shows the mean precipitation anomaly fields for the
region of interest corresponding to the quartile case. By doing this transformation, we can find statistically
significant transition probabilities between the quantile states; therefore, we can make reliable forecasts.
Also, we consider an IS forecast to be robust, only if it is insensitive to the choice of pole size (i.e., size of the
boxes on the left panel of Figure 1) and sliding-window size that defines the ASAD index.

The transition probability of going from state x; at time ¢ to state x; at time ¢ + 7 (7 being the time lag in days),
withi,j =1, ... ,N, (N, being the number of quantiles states, e.g., N, = 4 for quartiles), is

. o NG
P (Xiyr =X)1X, =) = Py (ili) = P,(j1) = — , ®

Q
DNl
j=1

where X is the states’ time series for one ASAD index, either accum5, accum7, or accum9. The first approxi-
mate equality (P, ,, , = P,) is the assumption of an stationary X, implying that P, ,, , is invariant under time
translations and independent of the starting time, ¢, for all i, j. We achieve this by choosing DJFM months,
when the dipole is fully developed. Moreover, our daily standardization removes possible IS cycles that can
break time translation invariance and our time series length (21 years) is insufficient to include climate
change trends. The last approximate equality is the frequentist approach, where the transition probabilities
are the frequency of appearance of state x; at time ¢+ when at time ¢ the state was x;, for all times ¢ and
fixed 7, that is, N_(j|i). We restrict N_(j|i) to consider only causal transitions, that is, transitions between
states from the same DJFM period. Overall, P,(j|i) is our forecast.

In order to reliably select only the statistically significant forecasts, we construct a proportion test for
Equation 1. The null hypothesis (NH) for it is that X, = x; and X, , = x; are statistically independent, which
implies that P_( j|i) = P() (i.e., the conditional probability is independent of the starting state and equal to
the marginal probability of the ending state, P(j)). This NH is a Bernoulli process with two states: either P(j)
or 1 — P(j). We discard the NH at the 99% significance level only when P_(j|i) falls outside the z;-score’s 99%
central values. Specifically, the z;-score for each P_(j|i) = P(j) is

P(X,, =x|X,=x)-P(X=x)

P P (x| /T

e

%

where P (X = xj) is the marginal probability for the state x;, with i, j = 1, ... , Ny, and the denominator is
the standard deviation for this Bernoulli process with T realizations. Given that z;; distributions are asymp-
totically Gaussian, our 99% significance level is the Gaussian z ~ 2.576, which is our boundary to consider

P (j|D) # P(j).
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Figure 2. Transition probabilities, P(j|i), between quartile states of the Accumulated South American rainfall Dipole (ASAD) index. P(j|i) is shown as a
function of the time difference, t, between the starting quartile state i and the ending quartile state j (i, j = 1, ..., 4). Panels are organized in rows and columns
according to the initial and final quartile-state, respectively. Window sizes of 5, 7, and 9 days used to construct the ASAD indexes, are shown by green triangles,
red squares, and blue circles, respectively. Statistical dependence of state j to state i (at the 99% significance level) are signalled by solid symbols and statistical
independence (i.e., null hypothesis) by transparent symbols.

3. Results and Analysis
3.1. Instraseasonal Predictability Windows

We begin by comparing the time series, accum, that result from using different pole sizes (see the three boxes
in Figure 1), which we define to capture the South American Dipole (SAD) variability at different spatial
scales. We quantify their similarities by the Pearson correlation coefficient (and the Spearman correlation;
not shown), using a ¢ test at a 99% significance level. This analysis holds significant correlation values (i.e.,
p values <0.01) for all accum indexes, ranging from 0.95 to 0.99—meaning that all pole sizes have similar
time series. Hence, the SAD's behavior is captured robustly with either box. In what follows, we focus on
the results from the largest (pole) box.

Without loss of generality, we show results for tercile and quartile states of the Accumulated SAD (ASAD)
indexes. In particular, tercile statistics are commonly used in operational seasonal forecasting—defining
positive, neutral, and negative dipole states. Quartile statistic's allow us to differentiate between extreme
events—defining two extreme positive and negative states and two intermediate states—as well as to com-
pare its results with the median case (see Supporting Information S1). Also, these quantile choices allows
to have enough data for all transition probabilities, P_(j|i) [Equation 1].

In Figure 2 we show P (j|i) for the quartile states (N, = 4 in Equation 1) of the ASAD indexes: accum5,
accum7, and accum9. Marginal probabilities, P(j), are signalled in all panels (as reference) by a horizontal,
black, dashed line (which happens when the starting state does not influence the ending state). Panels are
arranged from top to bottom (rows) according to the starting quartile state, x;, at time ¢, and from left to right
(columns) according to the ending quartile state, x;, at time ¢ + 7.

The significant [insignificant] P,(j|i) values are shown with solid (transparent) symbols. We can distinguish
the IS windows where a reliable forecast is possible, as the times = where all three indexes have significant
P_(j|i) values—which is discussed in section 3.2. Within these windows, we can forecast SAD quartile-states
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Figure 3. Lagged Mutual Information (MI) between quantile states of the accumulated precipitation anomalies of South American Dipole. Left (Right) panel
shows the MI for the quartile states (tercile states) as a function of the time lag, t, between starting and ending state. The symbols and colors are the same as in
Figure 2. Shaded areas at the bottom correspond to the MI values of statistically independent surrogates at a 99% significance level.

transitions robustly and reliably; namely, the P_(j|i) values that are insensitive to parameter variations and
are consistent across spatial and temporal scales.

Our main interest is to find intraseasonal (IS) predictability windows that are robust and reliable, disre-
garding the particular quartile-state (or tercile-state) transition that could be happening. In other words,
we want to know when we can forecast the SAD states for any accumulated window size or quantile state.
We do these by using the lagged Mutual Information (MI), I(X,; X, .), which measures the average shared
information between the states at time ¢ and ¢ + = and is defined by (Cover & Thomas, 2012)

Nq No P(thx.,X :x_)
IX;X,.,)= P(X,=x.,X,. =x;)log i Ntr g , 3)
Nt ;; ( t i Apy 1) 2 P(thxi)P(Xt+‘r=xj)

P(X,=x.X,., =x;) =P (X, =x) P (X,, =x;|X, = x;) being the joint probability of having state x; at time
tand state x; at time £ + 7. We note that I(X,; X,,,) = Owhen P (X, = x, X, , = x;) = P (X, =) P (X, =x;)
for all i, j, corresponding to independent starting and ending states.

+7

Figure 3 shows I(X,; X, , ,) for all accum indexes, following the symbols and colors in Figure 2. Left (right)
panel shows the resultant MI for the quartile (tercile) states. Confidence Intervals (CIs) at the 99% signifi-
cance level are shown as transparent shaded areas for each accum index, which correspond to variables X,
and X, , being statistically independent. These CIs are constructed by randomly resampling (with replace-
ment) 10° times the original time series, where the objective is to construct a surrogate X, and a X, , , time
series. Also, for each accum index, the MI starts at different time lags, =, because we discard the 7 lags
belonging to the accumulation window (namely, 5, 7, and 9 days), which naturally share information by
construction.

From both panels in Figure 3, we can highlight two robust intraseasonal predictability windows where
ASAD transitions can be predicted with 99% confidence; that is, values outside the shaded areas in either
panel. Specifically, these windows—sharing significant information between the present and future ASAD
states—are found at 7~ 5 to 15 days and at 7 =~ 60 to 70 days. We note that these windows also appear in
our median analysis (see supporting information), making them a reliable forecast. As it is explained in
section 3.2 by analyzing the specific transitions involved and taking into account previous works where pos-
sible mechanisms associated with the dipole phases were studied, we believe the first of these time windows
can be associated to the mean persistence of the dipole extreme events, while the second one could be related
to the MJO and to the presence of extratropical quasi-stationary Rossby waves.

We also note other predictability windows on the left panel of Figure 3, at IS scales of 7 = 25, ~35, and
~45 days. However, these windows are sensitive to the accumulated window size—with the exception of
the quartile-state MI at 7 ~45 days. In particular, MI values for the accum5 index at 7 ~ 25 and ~35 fall
within the shaded areas, and all accum indexes fall within shaded areas for the terciles; as can be seen on
the right panel of Figure 3. Hence, we deem these other predictability windows as unreliable indicators for
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IS forecasting. In spite of this inconsistency in the forecasts, we obtain robust results for the quartile states
at & 45 days (namely, all ASAD indexes show a significant MI value for this window), which could also be
related to the mechanisms already mentioned.

3.2. Forecasting States of the South American Rainfall Dipole

Having identified robust and reliable IS predictability windows from Figure 3, we can now critically analyze
the state transitions in Figure 2, which are the reason for having these predictability windows. This analysis
is particularly relevant when the final quartile state for which we can get information from the present is an
extreme ASAD state. Physically, the smallest (largest) quartile corresponds to the southern (northern) pole
having larger anomalies than the northern (southern) pole for about 5, 7, or 9 days (depending on the accum
index). More importantly, from a practical point-of-view, identifying the relevant predictability windows
allows to have concise forecasts for particular ASAD states. For example, by fixing = (horizontal coordinate)
and the starting quartile-state (row panels) in Figure 2, we can directly state the probability of transitioning
to any of the four possible quartiles in 7 days.

The first robust and reliable IS predictability window in Figure 3 happens at 7~ 5 to 15 days. As can be
seen from the top—and bottom—corner panels in Figure 2, this window has significant MI values because
of transitions happening between extreme quartile states, that is, States 1 and 4 (or tercile states; e.g., see
Figure S1 in the supporting information). Particularly, the top (bottom) left and bottom (top) right panels
show P(1]1) [P(1]4)] and P(4|4) [P(4]|1)] having significantly higher [lower] probabilities than the marginal
case, i.e., P(1) = P(4) = 1/4, respectively. On the other hand, all remaining transitions show an uncondi-
tional behavior, with transitions probability values similar to the marginal ones, for example, P(2|2) ~ P(2),
P(2|3)~ P(3), or P(3|4) ~ P(4). Hence, this predictability window has the following characteristics: likely per-
sistence of extreme quartile states (P(1|1) or P(4]|4) > 30%), unlikely transitioning between opposite extreme
quartile states (P(4|1) or P(1]4) < 20%), and independent behavior for all remaining transitions.

From these characteristics, it seems clear that in this time window the system shows a persistence-like behav-
ior. Once an extreme state pattern is established, it will persist for several days with the opposite state being
unlikely to occur, as expected from the dipole character. This is consistent with previous works that studied
the mean persistence of extreme events in the dipole phases. In Nogués-Paegle and Mo (1997), for example,
the authors define extreme events of the dipole's phases through a principal component analysis over OLR
data, finding mean duration times between 7 and 8 days. Taking into account that these are averages and
that our indexes accumulate data for about a week, we can establish a connection between the first time
window with the mean persistence of extreme dipole phases events.

The second robust and reliable IS predictability window in Figure 3 happens at 7 ~ 60 to 70 days. As can
be seen from the left column panels in Figure 2, this window has significant MI values, mainly, because of
transitions happening to the first quartile state, P(1|j). Another contribution to this window's predictability
comes from a decrease in the probability of transitioning from the extreme State 1 to the extreme State
4, that is, P(4|1) < 20% (top right panel in Figure 2). Secondary contributions appear inconsistently across
other quartile states, such as P(1|3) and P(3|3), where transition probabilities are significant only for specific
window-size accumulations.

Considering the first row in Figure 2, it seems that the second time window can be linked to a characteris-
tic period of the dipole. That is, after ~65 days, the dipole is likely to be in State 1 and unlikely to be in the
opposite state, 4. Vera et al. (2018) did a regression analysis between OLR anomaly data and the PC time
series corresponding to the dipole's first EOF, finding that the SESA enhanced events—corresponding to our
lower quartile state—present a characteristic period of about 50 days for DJF months. Even more, the maps
show two mechanisms that are related to the dipole's behavior: (a) a tropical eastward propagating convec-
tion pattern resembling the average MJO behavior between Phases 1 and 5 (Alvarez et al., 2016; Wheeler &
Hendon, 2004), and (b) an extratropical quasi-stationary wave train corresponding to a Rossby wave, which
depending on the phase of the pressure center located at the tip of SA, favors one or the other dipole's
phases. This last mechanism was also studied by Gelbrecht et al. (2018), where the authors found phase
coherence between time indexes representing SESA and SACZ regions with a geopotential representing
the Rossby wave train, with characteristic frequencies ranging from 1/50 to 1/10 days. Taking these studies
into account, and particularly the frequencies found, we believe that these mechanisms are related to our
second time window. Once again, the difference in the characteristic periods can be due to the accumulating
process together with our quantization of the ASAD index.
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To conclude our discussion, we illustrate how our approach allows to make forecasts. Lets consider firstaz =
10 days forecast. When the present ASAD index has a value in quartile 1, P(1|1) ~0.33 and P(4|1) ~ 0.18 after
10 days. Similarly, when the present ASAD index has a value in quartile 4, P(4|4) ~0.33 and P(1|4)~0.18
after 10 days. However, the remaining transitions in Figure 2 from and to States 2 and 3 show inconclusive
results. Similarly, we can make a forecast for r = 45 days. This particular forecast is only possible for quartile
states, but it shows some insensitivity to the accumulation window and box size. For example, when the
present ASAD index has a value in quartile 1, P(4|1) ~0.33 after 45 days. Similarly, when the ASAD index
has a value in quartile 4, P(1|4) ~0.18 after 45 days. Overall, our methodology allows for the construction
of transition probabilities, such as those in Figure 2, which allow to develop intraseasonal forecasts for the
SAD states.

4. Conclusions

We employed a methodology based on statistical and information theory analysis, with the objective of
studying intraseasonal (IS) predictability over the South American rainfall Dipole (SAD). By working with
DJFM months, we are certain that the dipole system is in its mature stage and the time series have an sta-
tionary behavior. We defined the ASAD index—for 1 day sliding windows of accumulated rainfall anomalies
of 5, 7, and 9 days—and introduced a finite set of states based on its quantiles (i.e., median, terciles, and
quartiles). By doing this, we reduced the complexity of the ASAD index and were able to study the possible
transitions between initial and final states (lagged by a time 7) with sufficient statistics.

By computing the lagged mutual information, we found that there are two IS time windows where the initial
and final states share significant information (at a 99% significance level). Both of them were found robustly
and reliably by taking into account the SAD index space variability (i.e., poles' sizes), the accumulation
window for the ASAD index construction, and the quantile states considered.

The first time window is found from 7 = 5 to 15 days. We interpret this window as a persistence-like behavior,
which extends beyond the synoptic time scale. The predictable states in this time window are the extreme
ones (both for terciles and quartiles), which can be associated with the dipole phases. Hence, the persis-
tence behavior could be interpreted as a mean-time duration of the dipole phases, which can be related to
previous results where characteristic times between 7 and 8 days were associated to the dipole's extreme
events. The second time window goes from = ~ 60 to 70 days. This result is consistent with the impact of the
Madden-Julian Oscillation (MJO) on the intraseasonal time scales variability of the SAD and also with the
presence of quasi-stationary extratropical Rossby waves and its influence on the dipole's phases.

Finally, we remark that by critically analyzing the specific transitions involved in each time window, we
can forecast future states of the SAD by operationally observing the present states of the system for about 5
to 9 days. This allows, for the first time, to develop a quantile-based operational forecast system at IS time
scales of the extreme phases of the main mode of rainfall variability in South America. In particular, we
highlight the emergence of the 60 to 70 days predictability window, which appears independently of the box
size that defines the poles, the accumulation window, or the quantile-states used to reduce the complexity
in the index time series.

Data Availability Statement

The data used in this work are available from TRMM (TMPA) products (https://doi.org/10.5067/TRMM/
TMPA/DAY/7).
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