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There are different measures to classify a network’s data set that, depending on the problem, have
different success rates. For example, the resistance distance and eigenvector centrality measures
have been successful in revealing ecological pathways and differentiating between biomedical images
of patients with Alzheimer’s disease, respectively. The resistance distance measures an effective
distance between two nodes of a network taking into account all possible shortest paths between them
and the eigenvector centrality measures the relative importance of each node in a network. However,
both measures require knowing the network’s eigenvalues and eigenvectors. Here, we show that we
can closely approximate [find exactly] the resistance distance [eigenvector centrality] of a network
only using its eigenvalue spectra, where we illustrate this by experimenting on resistor circuits, real
neural networks (weighted and unweighted), and paradigmatic network models — scale-free, random,
and small-world networks. Our results are supported by analytical derivations, which are based on
the eigenvector-eigenvalue identity. Since the identity is unrestricted to the resistance distance or
eigenvector centrality measures, it can be applied to most problems requiring the calculation of
eigenvectors.
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I. INTRODUCTION

From human brain studies to social network analyses,
we have seen enormous improvements in terms of data
availability and accuracy. High-resolution brain scans
are allowing us to study the brain’s functional connectiv-
ity with increasing detail [1-3], which in turn, helps us
to understand cognitive processes or the effects that dis-
eases cause to the brain’s connectivity. Social network
platforms, such as Twitter and Facebook, produce un-
precedented data streams, which, for example, allows us
to study how information is shared among different com-
munities [4, 5]. However, with an increasing ability to
obtain larger and more reliable data sets, we also need to
improve our data mining abilities. In this mining process,
network analysis has proven useful [6].

Network science provides us with different measures
to characterise, classify, and extract information from
network data sets [7, 8]. Namely, measurable quantities
that highlight the most relevant relationships appearing
within the elements of the data set. In general, rele-
vant measures are typically the invariant ones [9], i.e.,
those that when nodes (elements in the data set) are re-
labelled, the measure remains unchanged. In particular,
the eigenvalue spectra and eigenvector set are such mea-
sures. Moreover, these spectral characteristics have been
shown to relate with other topological measures, such
as the degree distributions [10-12], centrality measures
[13-15], and modularity [16-18].
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An important measure to quantify distance between
nodes in a network is the resistance distance [21-24],
which is found from the network’s eigenvalues and eigen-
vectors. This measure includes more information than
the shortest-path joining two nodes, which is defined
by the minimum number of edges (links) necessary to
connect the nodes in a series path. The resistance dis-
tance also takes into account all other (non-repeating)
paths connecting the two nodes to add them as paral-
lel paths [21, 24-27]. Hence, shortest-paths are relevant
when there is a known corpuscular communication along
the edges of the network, whilst the resistance distance is
relevant when communication along the edges is spread
like a wave pattern (as it happens in several extended
systems). For example, the resistance distance has been
used to detect communities (i.e., group nodes into mod-
ules) [28-30], explain transport phenomena [31-34], anal-
yse the global robustness of a network [35, 36], describe
stochastic growth processes [37-39], and reveal gene flows
[40] or ecological pathways [41, 42].

Another relevant measure is the eigenvector centrality,
which quantifies the relative importance of each node in a
network and is based on the network’s Perron-Frobenius
eigenvector [43]. This measure provides a score to each
node according to the positive entries of the eigenvec-
tor associated to the largest eigenvalue of the adjacency
matrix [15, 44-46]. The eigenvector centrality has been
particularly useful in biomedical image analysis [47, 48]
for a broad range of studies, such as, Alzheimer’s disease
[49, 50], type-1 diabetes [51], and ageing [52]. Also, it
has been used for community detection [53], characterise
protein pathways [54], and measure the elastic modulus
of materials [55]. Nevertheless, as with the resistance



distance, the eigenvector centrality depends on finding
eigenvectors, which for large networks can be computa-
tionally demanding. For example, in a QR decomposi-
tion, finding all eigenvalues of a size N x N matrix has a
computational cost of O(N?), whilst finding its eigenvec-
tors costs O(N?) [56]. Basically, the reason behind this
is that eigenvectors are found from solving N linear alge-
braic equations, whilst eigenvalues are found from solving
an N-degree polynomial.

Here we show that, we can closely approximate the
resistance distance and exactly find the eigenvector cen-
trality of weighted or unweighted networks with their
eigenvalue spectra. Our method is based on the recent
works by Denton et al. [19, 20], who recently recovered
an algebraic relationship to find the magnitudes of eigen-
vector’s components from their eigenvalue spectra. Our
results include analytical expressions that we apply in
small-sized resistor circuits (N ~ O(10')), cortical con-
nectivity networks [57] (N ~ O(10?)), and synthetically
generated network-models (N ~ O(10%)). Specifically,
we generate scale-free [58], random [59], and small-world
networks [60]. We note that, aside cases where the net-
work has a degenerate eigenvalue spectra, our conclu-
sions are general and unrestricted to these topological
measures and examples.

II. METHODS

Denton et al. [19, 20] have recently shown that the com-
ponents of eigenvectors can be recovered from the eigen-
value spectra, which they name as eigenvector-eigenvalue
identity, and is valid for any Hermitian matrix (i.e., a ma-
trix A whose identical to its conjugate transpose) with
non-degenerate eigenvalues (i.e., repeated eigenvalues,
which span an eigenspace with more than 1 eigenvector).
This identity has been discovered and rediscovered in lin-
ear algebra for almost two centuries, with Jacobi (1834)
being one of the earliest references [61]. Specifically,

2 L5 Pa(A) = A (M)
T, ien [An(A) = A (A)]

where [¢,,]; is the i-th component (i = 1,...,N) of the
n-th eigenvector of matrix A associated to the eigen-
value A,(A) (with n = 1,...,N modes), such that
AJn = )\n(A)lzm and A(M;) is the k-th eigenvalue
(k=1,...,N —1) of matrix M;, which is obtained from
A by removing the i-th row and column. Also, without
loss of generality, it can be assumed that the eigenvalue
spectra in Eq. (1) is ordered non-decreasingly; that is,
A1(A) < A2(A) < -+- < An(A). Consequently, Eq. (1)
allows to find the magnitudes for all the eigenvector com-
ponents of matrix A from its eigenvalues.

In this work, matrix A is the network’s adjacency ma-
trix. We restrict ourselves to analyse undirected net-
works, which correspond to having Hermitian adjacency
matrices, i.e., symmetric and with non-negative entries.

[thn]:

(1)

Namely, A(i,7) = A(j,i) > 0 for all entries (A = AT),
where A(i,7) > 0 if node ¢ is connected to node j, and
A(i,j) = 0 otherwise. In particular, we construct small-
sized resistor networks in almost ring-like structures with
N = 6, 12, 18, and 24 nodes [25, 26]. These adjacency
matrices are such that, A(7,7) = (1.00 £ 0.01) £Q [Ohm]
(1% accurate according to the manufacturer) if j =i +1
(modulus N) and 0 otherwise, with an extra edge (resis-
tor) connecting nodes 1 and 3 which break the ring sym-
metry, i.e., A(1,3) = (1.00 £ 0.01) kQ = A(3,1). We add
this edge in order to lift the degenerate eigenvalues that
are always present in circulant networks [9, 23]. Also, we
consider cortical networks from the Brain Connectivity
Toolbox [57] data-set, which contain weighted (symme-
try is imposed by A = (A + AT)/2) and unweighted
adjacency matrices. Also, we generate different ran-
dom networks for our analysis, using the Barabasi-Albert
model [58] for scale-free networks, the Erdés-Rényi model
[59] for homogeneously random networks, and the Watts-
Strogatz model [60] for small-world networks [62].

In order to find the main network-characteristics, such
as the average shortest-path and clustering coefficient,
we use the Brain Connectivity Toolbox [57]. We find
the resistance distance between nodes i and j, p(i, j), by
using the eigenvalues and eigenvectors of the network’s
Laplacian matrix, L = D — A, where D is a diagonal
matrix containing all the node degrees (i.e., the number
of neighbours) and A is the network’s adjacency matrix.
Specifically, ptheo(i, ) can be found from [21-24]

N

1
ptheo(iaj) = Z
n=2 )\n <L)

where L(En = An(L)$n forn=1,...,N. It is worth not-
ing that when A = A7 the Laplacian matrix is positive
semi-defined [9], implying that the eigenvalues, A, (L),
are always such that 0 = A\ (L) < Ao(L) < --- < An(L).
The resultant pipeo(i,7) is identical to the one that can
be found by applying Kirchhoff’s circuit laws, considering
all serial and parallel paths between nodes i and j.

IIT. RESULTS

Here, we derive an approximate value for the resistance
distance by finding upper and lower bounds from Eq. (1).
We show that our approximation for the resistance dis-
tance closely matches the theoretical value [Eq. (2)] in
different real-world and synthetic networks. Then, we
use Eq. (1) to exactly find the eigenvector centrality mea-
sure, which implies that any difference in the numerical
calculations appearing in practical applications are due
to numerical errors (such as round-off and truncation er-
rors) and can be neglected.

The resistance distance, piheo, requires knowing the
eigenvalue spectra and all eigenvector components’ mag-
nitudes and signs. Since the eigenvalue-eigenvector iden-
tity of Eq. (1) only allows for the calculation of magni-



tudes, we are unable to know exactly how the differences
in Eq. (2) are contributing to the overall pspeo (4, 7) value.
However, we can use the eigenvector magnitudes from
Eq. (1) to find upper and lower bounds. Specifically, we

use Eq. (1) to write the i-th component of 1/_;” as

Hk: 1k7£n[/\n( ) Ak( )

where matrix M, is now obtained from the network’s
Laplacian matrix, L, by removing its i-th row and col-
umn. On the other hand, the difference between the i-th
and j-th coordinates for the n-th mode in Eq. (2) is

2
+
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where the last cross-product term has an unknown sign
— it can be either positive or negative, depending on the
components’ sign of each eigenvector.

We use Eq. (3) to approximate pipe, as follows. We
do the summation in Eq. (2) as if it contain only posi-
tive or negimtive cross—prodllcts tgrms, i.e., either we use
+2|[G]ill[dul;] or use ~2{[Gulil|[Bul;]. When only adding
[subtracting] these cross-product terms, we are effectively
generating an upper [a lower] bound for the resistance
distance, which we note as pup(i,7) [Pdown (4, 4)]. We
propose to use these bounds to approximate the exact
p(%, ) theo value by their average, namely,

1

papproa:(i7j) = 5 [pup(iyj) + pdown(iaj)] , Vi, 7, (5)

which effectively cancels the cross-product terms,

+‘[¢n]j’2> _—

Pappros(i:4) = )

n=2

In order to quantify how closely pgppros is to the exact
resistance distance value, piheo [Eq. (2)], we find the av-
erage relative error,

A(N):#ii 1_p“p?m’w(i’j>‘ (7)
r N(N-1) & & ptheo(ir ) |

A. Approximate resistance distance for circuits
and cortical networks

As an experimental illustration of how Eq. (6) works,
we design resistor circuits for quasi-ring structures (de-
tails in Sect. II), measure their equivalent resistance,
Pequiv, and compare them with theoretical resistance-
distance values [Eq. (2)] and with our approximation
[Eq. (6)]. Results can be seen on Fig. 1. We use an
ohmmeter to measure pequip for all pairs of nodes in the
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FIG. 1. Resistance distance values for quasi-ring re-
sistor networks. Top [Bottom] panel shows the results for
N = 6 [N = 24] nodes, where edges are resistors connected in
a ring structure with an extra resistor between nodes 1 and 3.
Filled (red online) circles show the ohmmeter readings, filled
black squares show the theoretical resistance distance values,
Ptheo [Eq. (2)] (assuming identical 1 k€ resistors), and unfilled
(green online) diamonds show our approximate resistance dis-
tance [Eq. (6)]. Edges are ordered according to increasing
Ptheo values and are unlabelled in the bottom panel.

circuits, where the ohmmeter’s resolution is set to &~ 12
[Ohm] (=~ 0.1%). Also, we define synthetic circuits for the
theoretical calculations assuming identical 1 k€2 resistors
with a 1% uncertainty for all edges (similar to the 1% un-
certainty given by the manufacturer), where we compute
the uncertainty in pgpeo(i, j) by error propagation (result-
ing in a 1% uncertainty for all ptpeo (%, j) values). These
experimental and theoretical measures should be same
[29], which we corroborate by finding negligible relative-
difference between them; Ap = 1 x 1074 for N = 6 and
2 x 1079 for N = 24. These negligible differences can be
appreciated in the insets of Fig. 1.

As our experimental resistor circuits have a nearly pris-
tine regular-structure (i.e., a ring network with an ex-



tra edge), the approximation fails to follow the exact
resistance-distance values, psheo. The reason being that
pristine networks have degenerate eigenvalues, making
Eq. 1 invalid. Both panels of Fig. 1 show that intermedi-
ate values of pipe, — measured from an ohmmeter (filled
circles) or calculated from Eq. (2) (filled squares) — are
closely approximated by pappros (unfilled diamonds), but
their extreme values are not (i.e., either for small p(i, j) or
for large p(i,7)). In particular, we find that Ap ~ 0.25
for N = 6 (top panel) and =~ 0.5 for N = 24 (bottom
panel). As we show in what follows, the average relative
error, Ap, decreases significantly for complex networks,
such as real neural networks (see Fig. 2) and synthetically
generated models (see Figs. 4 and 5), where we show that
Papproz follows closely pineo-

Figure 2 shows the results for 3 cortical networks taken
from the BCT [57] data-set: the Cat’s cortical and tha-
lamic areas (top panel), the Macaque’s large-scale visual
sensorimotor areas (middle panel), and the Macaque’s
cortical connectivity. We can see in each panel how the
approximate pgppros (unfilled diamonds) follows closely
the pipeo values (filled circles), which are ordered accord-
ing to the pipe, magnitudes. More importantly, we note
that the Cat’s network is weighted (top panel), showing
that the approximation also holds for weighted networks.
We find that Ap = 3.01% for the top panel, 5.68% for the
middle panel, and 5.92% for the bottom panel, showing
that pappror can effectively approximate the exact pipeo
value in complex cortical networks.
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FIG. 2. Resistance distance for symmetrical cortical
networks. From top to bottom, the panels show the exact,
Ptheo (filled circles), and approximate (unfilled diamonds) re-
sistance distance values between all N N(N — 1)/2 pairs of
nodes of the Cat’s cortical and thalamic areas (N = 95 nodes
and 1085 weighted links), the Macaque’s large-scale visual and
sensorimotor areas (N = 47 nodes and 313 unweighted links),
and the Macaque’s cortical connectivity (N = 71 nodes and
438 unweighted links) [57]. Edges are ordered according to
increasing piheo values.

B. Approximate resistance distance for synthetic
networks

In order to quantify the effectiveness of the resistance
distance approximation, peppros, in larger networks, we
do the same analysis to scale-free Barabasi-Albert (BA)
networks [58], random Erdds-Renyi (ER) networks [59],
and small-world Watts-Strogatz (WS) networks [60].

The results for a BA network realisation with 1000
nodes and exponent, o ~ 2.5, where P(k) o< k=% is the
degree distribution, are shown in Fig. 3. We can see that
Papprox (unfilled diamonds) follows closely the ordered
values of the exact resistance distance, pipeo, (filled cir-
cles) — as in the cortical networks of Fig. 2. We note
that we get nearly identical curves (not shown here) for
20 realisations of BA networks with the same topological
characteristics (i.e., N and «). For these BA networks,
we find that the average relative difference is Ap ~ 0.5%,
showing a remarkable agreement between the approxi-
mate and exact values. The few exceptions appearing in
Fig. 3, seem to be almost irrelevant; the reason being the
large number of node pairs, which is 3 orders of magni-
tude larger than the cortical networks. Moreover, using
other exponents for BA networks (not shown here), i.e.,
2.2 < a < 3.1, we find similar results, where the approx-
imated resistance distance follows the exact value for all
node pairs in the networks. Overall, the scale-free char-
acteristics of the degree distribution appear to improve
the success rate of our approximation in all BA networks.
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FIG. 3. Resistance distance for an scale-free network
of N = 1000 nodes. The exact and approximate resistance
distance values are signalled as in Fig. 2. The degree distri-
bution of this network has a power-law with exponent 2.5.

For the ensemble of ER and WS networks,
we compute the normalised average shortest-path,
(LY (p)/ max{(L) (p)}, average clustering coefficient,
(C) (p)/ max{{C) (p)}, and resistance distance relative
error, Ap(p), as a function of the attachment or rewiring
probability, p, for random networks or small-world net-



works, respectively. The resultant measures are shown
in Figs. 4 and 5 by the filled blue (online) squares, black
triangles, and red (online) circles, respectively. The nor-
malised average shortest-paths and average clustering co-
efficient are shown to identify the rewiring probability
region where small-world properties emerge [60]; namely,
large average-clustering with small average shortest-
paths. This region can be seen in Fig. 5, where the small-
world characteristics emerge for 1073 < p <1071

We note from Fig. 4 that random networks of N = 500
(left panel) and 1000 (right panel) nodes have partic-
ularly small resistance distance relative errors, Ap <
1%V p, for all attachment probabilities, p. In particu-
lar, we observe that as the random network gets more
connected, starting from a giant component at p, =
In(N)/N and up to the complete graph at p = 1, the
average shortest-path (blue squares) decreases steadily,
non-trivially (it forms a broken monotonically decreas-
ing curve), but only slightly (1 order of magnitude less
than (L(p.))), and that the average clustering coefficient
(black triangles) increases as a power-law (increasing 2
orders of magnitude from (C(p.))). More importantly,
as the random network gets more connected, the distance
between papprox and pireo [Eq. (2)] decreases (in average)
steadily below 1%. Overall, we can conclude that ran-
dom networks have a resistance distance measure that is
excellently approximated by Eq. (6).
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FIG. 4. Erdoés-Rényi network properties as a func-
tion of the attachment probability, p. Panels show the

normalised average shortest-path, <<LL>>((ch>), average clustering
(C)(p)

coefficient, IOk and resistance distance relative error, Ap,

in blue (online) squares, black triangles, and red (online) cir-
cles, respectively. These random networks [59] are defined by
the attachment probability, p (starting at p 2 p. = In(N)/N),
and the number of nodes, N, where N = 5x10% and N = 103
for the left and right panels, respectively. These panels are
constructed from the average over 10 realisations per p.

On the other hand, from Fig. 5 we observe that small-
world networks of N = 500 (left panel) and 1000 (right
panel) nodes — with initial regular node degree k = 10
[60] — have an overall higher Ap than the random net-
works. We particularly note this difference in the small-
world region, where Ap only decreases below 10% af-
ter the rewiring probability, p, is higher than the one
needed for having small-world characteristics. This end-
ing behaviour can be expected, since for p = 1 the
Watts-Strogatz model is similar to an ER random net-

1.0 1.0 ﬁ..‘“% I
] 4 ™ L
- — ‘A‘ =
"
i 4 N L
- a |-
T - AA
0.5 05, N =
- — e - =
-
4 R - “A L
- - T T r
- 4 "'"""'=======::==::==u;‘l2"‘
0.0 T T 0.0 T T it
103 102 10t 10° 102 102 10! 10°

rewiring probability, p rewiring probability, p

FIG. 5. Watts-Strogatz network properties as a func-
tion of the rewiring probability, p. Panels show the same
metrics and symbols as in Fig. 4. These networks [60] are
constructed by an initial regular network with node degree,
K = 10, and then rewired with probability, p; where the num-
ber of nodes, N, is 5x10% and 103 for the left and right panels,
respectively. Small-world characteristics can be identified in
the range 1072 < p <1071,

work. The main difference between random networks and
small-world networks is the degree regularity. This stems
from the initial network, having a uniform node degree of
K =10 at p = 0, which is maintained for small rewiring
probabilities, p < 1072. In particular, we can see that
Ap(p) tends to 50% for p ~ 1073, as in the resistor net-
works of Fig. 1, which are also nearly regular graphs.
Meaning that, networks with small-world characteristics
that are closer to regularity than to randomness hinder
the success rate of our approximation.

C. Resistance Distance discussion

Our results show that our approximation for the re-
sistance distance between any two nodes in a network
improves with degree-heterogeneity and network size. A
heuristic reason for this improvement can be found from
analysing the properties of the cross-term from Eq. (2),
which is removed in Eq. (6) to obtain our approximate
resistance-distance. Namely, we state that

N - -

[¢7t]i[ n]; —00
cross term = Z () N 0. (8)

n=2

This term is an inner product between the Laplacian
spanning eigenvectors (i.e., for n > 1) i-th and j-
th coordinates, normalised by the corresponding eigen-
VaLue. That iSL the inner produgt between tl}e vectors
{[@2]i/ A2, ..., [On]i/ AN} and {[da];/ A2, ..., [onN]i/ AN}
We also note that the spanning eigenvectors have zero-
mean due to orthonormality and fulfil the completeness
property [34]; as we show in what follows. Hence, the
product between 2 coordinates of any given mode n is
likely to change sign for different modes and also add to
0 when all modes are taken into account (completeness).
Consequently, these reasons make the sum in Eq. (8) to
become approximately null.

For a connected network, the Laplacian eigenvectors

are orthonormal, i.e., ¢, - ¢y = dpm, Where d,,, = 1 for



any n and 0, = 0 for n # m. In particular, we know
that 51 = T/ V/N, which is the eigenvector associated
to the null eigenvalue spanning the kernel. Hence, for
n>1,0= ¢, d = XN, [dn)i/VN ¥n > 1, which
means that all (En>1 have zero mean. This means that
the coordinates of any spanning eigenvector must have
different signs. We also note that by completeness,

Z[(En]l[d_;n}; = 0ij, (9)

which means that 2522[(5'”}1[5”];‘ =0;; — 1/N. Overall,
Eq. (8) then is a variation of this completeness equation,
that due to the eigenvalue modulations — 1/A, in Eq. (8))
—and large N, tends to be close to zero.

D. Obtaining the eigenvector centrality from
eigenvalues

We now briefly show how to find the network’s eigen-
vector centrality, V(¢ = Py = {wic),...,wg\?)}, from
Eq. (1). J(C) is the Perron-Frobenius eigenvector as-
sociated to the maximum eigenvalue [43] of the adja-
cency matrix, max,=1,.. n{A\(A)} = A, This means
that QZ(C)’S components are non-negative, i.e., Aﬁ(c) =
NGO with [J(C)]i = wgc) > 0 Vi, and they represent
the relative importance that each node has in the net-
work. More importantly, this means that Eq. (1) can be
used directly to find its components by

*_ ot P(A) - MM -
por W (A) = Ae(A))

[[@)] = 1w

where we assume (without loss of generality) that the
eigenvalue spectra ordering is non-decreasing; that is,
A1(A) < A(A) < --- < An(A). Consequently, Eq. (10)
gives the exact eigenvector centrality measure for any
Hermitian adjacency matrix (i.e., for any weighted or un-
weighted networks) only using its eigenvalue spectra.

IV. CONCLUSIONS

In this work, we use the eigenvector-eigenvalue identity
to express network measures that are based on eigen-
vectors and/or eigenvalues, only in terms of the eigen-
values. Although our works focuses on the resistance
distance and on how to use the identity to obtain the
eigenvector centrality, it is unrestricted to these measures
and can be directly extended to any topological measure
that requires knowing eigenvector sets. The only limit to
our approach is having a connected network without de-
generate eigenvalues (or closely degenerate eigenvalues).
This implies that we cannot obtain approximations for

the resistance distance (or the exact central eigenvector)
for directed networks, where eigenvalues become complex
numbers, or regular networks, such as crystalline struc-
tures, where degenerate eigenvalues are present.

On the one hand, we derive an expression to approx-
imate the resistance distance, peppros [Eq. (6)], values
of a network from its Laplacian matrix eigenvalue spec-
tra. We first use experimentally implemented, small-
sized, resistor networks to explain how our approxima-
tion works [see Fig. 1]. We then show how efficiently
our approximation matches the exact resistance distance
values. Specifically, we test it on real-world connectivity
networks [Fig. 2] and on synthetically generated scale-
free [Fig. 3|, random [Fig. 4], and small-world networks
[Fig. 5]. From these numerical experiments, we conclude
that pappros in scale-free and random networks typically
misses the exact value by less than 1%, regardless of the
attachment probability [see Figs. 3 and 4]. More im-
portantly, we can successfully approximate the resistance
distance of the cortical networks analysed, with smaller
relative differences than 5%. For small-world networks,
the approximation misses by 50% when the network is al-
most regular (p ~ 0), decreasing its relative error steadily
from 50% to 10% during the small-world region as edges
are rewired [see Fig. 5]. These ineffective approxima-
tions are due to the inherent regularity of small-world
networks, which have an initial regular structure that
contains degenerate eigenvalues, making the eigenvector-
eigenvalue identity a false approximation for the eigen-
vector magnitudes. Consequently, we expect that our
Papproz Will always work better for networks that have
an heterogeneous (and broad) degree distribution — such
as those from real-world complex systems — than for those
with a narrow degree distribution.

On the other hand, we show that the eigenvector cen-
trality of a network can have an expression that only de-
pends on the eigenvalues of its adjacency matrix. When
eigenvalues are non-degenerate, our expression allows to
find the eigenvector centrality measure without the need
to find the adjacency matrix eigenvectors, which is com-
putationally demanding for large-sized networks. Conse-
quently, and given the current relevance that the eigen-
vector centrality measure is having in current biomedi-
cal research, such as in [47-52] (e.g., in Network Neuro-
science), we believe our expression will become increas-
ingly useful as larger cortical networks are analysed.
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