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Machine learning prediction of critical transition and system collapse
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To predict a critical transition due to parameter drift without relying on a model is an outstanding problem in
nonlinear dynamics and applied fields. A closely related problem is to predict whether the system is already in
or if the system will be in a transient state preceding its collapse. We develop a model-free, machine-learning-
based solution to both problems by exploiting reservoir computing to incorporate a parameter input channel. We
demonstrate that, when the machine is trained in the normal functioning regime with a chaotic attractor (i.e.,
before the critical transition), the transition point can be predicted accurately. Remarkably, for a parameter drift
through the critical point, the machine with the input parameter channel is able to predict not only that the system
will be in a transient state, but also the distribution of the transient lifetimes and their average before the final
collapse, revealing an important physical property of transient chaos.
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I. INTRODUCTION

In nonlinear and complex dynamical systems, a catas-
trophic collapse is often preceded by transient chaos. For
example, in electrical power systems, voltage collapse can
occur after the system enters into the state of transient chaos
[1]. In ecology, slow parameter drift caused by environmental
deterioration can induce a transition into transient chaos, after
which species extinction follows [2,3]. A common route to
transient chaos is a global bifurcation termed crisis [4,5], at
which a chaotic attractor collides with its own basin bound-
ary, is destroyed, and becomes a chaotic transient. In the
real world, the accurate system equations are often unknown
and only measured time series are available. Model-free and
data-driven prediction of the critical transition and system
collapse in advance of its occurrence, while the system is
currently operating in a normal regime with a chaotic attractor,
has been an outstanding problem. If the underlying equations
of the system have a sparse representation in some suitable
mathematical basis, then sparse optimization methods such as
compressive sensing can be exploited to find the system equa-
tions [6,7] and consequently to predict the critical transition.

A closely related problem is to determine if the system is
already in a transient state: the question “How do you know
you are in a transient?” In nonlinear dynamics, this is one of
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the most difficult questions because the underlying system can
be in a long transient in which all measurable physical quan-
tities exhibit essentially the same behaviors as if the system
were still in a sustained state with a chaotic attractor. Applying
the traditional method of delay coordinate embedding [8] to
such a case would yield estimates of dynamical invariants
such as the Lyapunov exponents and fractal dimensions, but
it would give no indication that the system is already in a
transient and so an eventual collapse is inevitable. Develop-
ing a model-free, purely data-driven predictive paradigm to
address this problem is of considerable value to solving some
of the most pressing problems in modern times. Due to global
warming and climate change, some natural systems may have
already been in a transient state awaiting a catastrophic col-
lapse to occur. A reliable determination at the present that the
system has already passed the critical transition or a “tipping”
point to a transient state would send a clear message to policy
makers and the general public that actions must be taken
immediately to avoid the otherwise inevitable catastrophic
collapse.

In recent years, machine learning techniques have been
proven useful for many tasks in the field of nonlinear dy-
namics. A research area based on reservoir computing, a class
of recurrent neural networks [9–12], has gained considerable
momentum as a powerful paradigm for model-free prediction
of nonlinear and chaotic dynamical systems [13–29]. There
have also been efforts in reconstructing the bifurcation dia-
grams of nonlinear dynamical systems using machine learning
[30–32].

In this paper, we develop a machine learning framework
based on reservoir computing to predict critical transition
and transient chaos in nonlinear dynamical systems. Our
articulated reservoir computing structure differs from the
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FIG. 1. Modified reservoir computing scheme and illustration of
the idea to predict critical transition and collapse. (a) Structure of
the modified reservoir computing machine with an input parameter
channel. The system consists of three layers: the input layer, the
hidden layer, and the output layer. Vectors u(t ), r(t ), and v(t ) denote
the set of input signals (measured time series from the dynamical
variables of the target system), the dynamical state of the reservoir
network (hidden layer), and the set of output signals representing the
machine’s prediction. The bifurcation parameter is designated as an
additional input. (b) The reservoir computing machine is trained with
time series taken from a few parameter values in the green regime in
which the system operates normally, indicated by the three vertical
blue dashed lines. After training, prediction can be made either for
parameter values before the critical point (still in the green regime)
or after, where in the former, the machine will predict that the system
is safe (b1) but, importantly, for the latter, the machine will predict
that the system will eventually collapse after transient chaos (b2).

conventional one in that we designate an additional input
channel for the bifurcation parameter, as shown in Fig. 1(a).
The basic idea of our framework is explained in Fig. 1(b),
a schematic bifurcation diagram of a typical nonlinear sys-
tem. In the green region, there is a chaotic attractor together
with periodic windows, in which the system functioning is
normal. A catastrophic bifurcation occurs at the critical pa-
rameter value defining the end of the green region, where the
chaotic attractor is destroyed through a crisis transition. For
a parameter value slightly beyond the critical point, there is
transient chaos leading to collapse. Suppose that, currently,
the system operates in the normal regime. Given a certain
amount of parameter drift, the two goals are (i) to predict
the transition point so as to determine whether the system
will be in a transient chaotic regime heading to collapse and
(ii) if yes, on average how long the system could survive,
i.e., to predict the average lifetime of the chaotic transient.
Because time-series data from multiple parameter values are
needed, it is necessary to specify the parameter value at which

the data are taken—a task that can be accomplished by in-
putting the parameter value to all nodes in the underlying
neural network. We demonstrate that our proposed machine
learning framework can accomplish the two goals with three
examples: a three-species food chain model [2] in ecology
in which a catastrophic transition leads to transient chaos
and then species extinction, an electrical power system sus-
ceptible to voltage collapse through transient chaos [1], and
the Kuramoto-Sivashinsky system [33,34] in the regime of
transient spatiotemporal chaos [35]. We show that, training a
reservoir network of reasonable size, e.g., 1000 nodes, with
time-series data taken from three parameter values in the
normal chaotic regime, the machine is able to predict not
only the collapse point but also transient chaos for parame-
ter values beyond the critical point. A remarkable feature is
that, after the critical transition, the probability distribution of
the transient lifetimes of the machine generated trajectories
from an ensemble of initial conditions agrees with the true
distribution, indicating that, for a given parameter drift into
the transient chaos regime, the machine is able to predict, on
average, how long the system can “survive” before collapse.
Thus, not only can the machine predict that the system does
exhibit a critical transition, it is also capable of revealing some
basic physics about the system, i.e., the nature of transient
chaos as characterized by the lifetime distribution.

II. RESERVOIR COMPUTING WITH AN ADDITIONAL
PARAMETER CHANNEL

A reservoir computing system consists of three layers: the
input layer, the hidden layer, and the output layer. As shown
in Fig. 1(a), the input layer maps the low-dimensional time-
series data u(t ) into the high-dimensional hidden state r(t )
through a matrix Win, and the output layer maps r(t ) back into
the low-dimensional time series v(t ) through another matrix
Wout. An additional input parameter channel is connected
to every node of the reservoir network via the matrix Wb.
For simplicity, we consider a catastrophic transition caused
by variations in a single parameter. The reservoir network
adjacency matrix A transfers information from the hidden
states r(t ) at t to the next time step r(t + �t ). The dynamical
evolution of the reservoir computing machine is described by

r(t + �t ) = (1 − α)r(t ) + α tanh[A · r(t )

+Win · u(t ) + kbWb(b + b0)], (1)

v(t ) = Wout · r(t ), (2)

where b is the bifurcation parameter, α is the leakage param-
eter, and kb and b0 are two hyperparameters determining the
scaling and the bias of the input of the bifurcation parameter
b into the reservoir network.

The elements of the two input matrices Win and Wb as
well as those of the reservoir network matrix A are gen-
erated randomly a priori and fixed during the training and
prediction phases. Training is administered to adjust only
the output matrix Wout to minimize the difference between
v(t ) and u(t ), so that the reservoir can predict the evo-
lution of the target system into the future with input of
the dynamical variables from the past. (A more detailed
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description of the training and predicting processes is pro-
vided in Appendix A.) We train the reservoir machine using
time series from a few distinct parameter values—all in the
normal or safe regime where the system still possesses a
chaotic attractor, as shown in Fig. 1(b). Because of the addi-
tional parameter input channel, the machine trained with data
at different parameter values will gain the ability to “sense”
the variation in the parameter and the associated changes in
the time-series data from different parameter values. Such a
well-trained machine is a high-dimensional representation of
the original dynamical system. Finally, to predict with what
parameter drift the system will exhibit transient chaos and
then collapse, we simply input the parameter value of interest
into the parameter input channel. Then, at each time step, we
collect the one-step prediction from the output layer v(t ) and
feed it back to the input layer u(t ) = v(t ). Now the reservoir
machine in the predicting phase is a closed-loop dynamical
system with one constant external drive—the bifurcation pa-
rameter of interest. The machine in the predicting phase will
be able to predict the system collapse preceded by transient
chaos for the input value of the bifurcation parameter.

To enable reliable predictions outside the training parame-
ter region, a reservoir machine needs to be “well trained” in
the sense that it can learn the different dynamical behaviors
of the target system at all the training bifurcation parameter
values. The goals of training are to make the reservoir machine
learn the different attractors of the target system and to “teach”
the machine to associate an attractor with a specific value
of the bifurcation parameter. We find that, for a number of
representative target systems described by nonlinear ordinary
or partial differential equations, a reservoir machine so trained
not only is able to predict the dynamics at all the training
parameter points accurately (with relative errors less than 5%)
for about four or five Lyapunov times, but also can predict
the critical point and transient chaos reliably and accurately.
It is thus reasonable to impose this requirement of prediction
accuracy for all training parameter values as a criterion for
estimating the hyperparameter values based on the training
data. As will be demonstrated in Sec. III below, insofar as the
training parameter values are reasonably close to the critical
transition point to transient chaos, their occurrences can be
predicted accurately.

To achieve accurate prediction within four or five Lya-
punov times for all the training parameter values, hyperparam-
eter optimization is required as it is significantly more difficult
for a reservoir machine to learn several different attractors
simultaneously than to learn a single attractor. Using Bayesian
optimization [25], we optimize seven of the hyperparameters
of the reservoir computing machine, which are the average
degree d of the reservoir hidden network, the spectral radius
ρ of the reservoir hidden network, the scaling factor kin of the
input matrix Win, the regularization parameter β used during
the training of the output matrix Wout, and parameters kb, b0,
and α. (A more detailed description of these hyperparameters
and their optimization can be found in Appendixes A and
B.) In addition, the random nature of the input and hidden
layers can cause fluctuations in the validation and prediction
performance. We thus train five different random realizations
of the reservoir machines at a time and keep the one with the
lowest validation error only. (A more detailed discussion of
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FIG. 2. Bifurcation diagram of the food chain system. The verti-
cal black dashed line indicates the critical point Kc = 0.99976. The
three vertical blue dashed lines specify the three values of bifurcation
parameter K used for training the reservoir machine, which are
K = 0.97, 0.98, and 0.99.

the effects of input and reservoir matrices can be found in
Appendix C.)

III. RESULTS

We demonstrate our machine learning approach to pre-
dicting critical transition and system collapse using three
target systems: a chaotic food chain system, a power model
system, and the spatiotemporal one-dimensional Kuramoto-
Sivashinsky system.

A. Chaotic food chain system

Sudden extinction of species in ecological systems [36] has
been occurring at an alarming rate. A possible reason for local
extinction can be attributed to changes in environmental fac-
tors that lead to a shift in the system parameters. We consider
a three-species food chain model [2]:

dR

dt
= R

(
1 − R

K

)
− xcycCR

R + R0
, (3)

dC

dt
= xcC

[
ycR

R + R0
− 1

]
− xpypPC

C + C0
, (4)

dP

dt
= xpP

(
ypC

C + C0
− 1

)
, (5)

where R, C, and P are the population densities of the resource,
consumer, and predator species, respectively. K is a parame-
ter characterizing the environmental capacity of the resource
species and is chosen to be the bifurcation parameter. xc, yc,
xp, yp, R0, and C0 are other parameters in the system we
assume to be constants. A bifurcation diagram of this food
chain system is shown in Fig. 2.

As the environmental capacity K of the resource species
is varied, a catastrophic bifurcation and subsequent transient
chaos leading to sudden species extinction occurs. A boundary
crisis occurs at the critical value K = Kc = 0.99976. Fig-
ures 3(a1) and 3(a2) show typical behaviors of the predator
density P for K < Kc and K > Kc, where there is sustained
chaos in the former and transient chaos leading to species
extinction in the latter.

013090-3



KONG, FAN, GREBOGI, AND LAI PHYSICAL REVIEW RESEARCH 3, 013090 (2021)

0 1000 2000 3000
0

0.5

1

0 1000 2000 3000
0

0.5

1

0 1000 2000 3000
0

0.5

1

0 1000 2000 3000
0

0.5

1

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000

-2

-1.5

-1

lo
g 10

F
re

qu
en

cy

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e)

FIG. 3. Predicting transient chaos and collapse of a food chain
system. (a1), (a2) Typical time series of the predator density P in
the normal and transient regimes, respectively, for K = 0.997 < Kc

and K = 1.01 > Kc. (b1), (b2) Predicted time series of P for the
same values of K as in (a1) and (a2), respectively. The machine
predicts correctly the sudden collapse for K > Kc. (c1), (c2) Return
maps constructed from the local minima of P(t ) from the true time
series, where the red dashed squares define an interval in which an
invariant set exists: (c1) a chaotic attractor at K = 0.997 < Kc or
(c2) a nonattracting chaotic set at K = 1.01 > Kc due to the escaping
region about the critical point leading to transient chaos. (d1), (d2)
Predicted return maps for the same values of K as in (c1) and (c2),
respectively. (e) Actual (black) and predicted (red) transient lifetime
distributions at K = Kc + 2 × 10−4.
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FIG. 4. Histogram of the predicted critical point K∗
c for the

chaotic food chain system. The number of random realizations is
500. The black and red vertical dashed lines show the true value
of the critical point Kc = 0.99976 and the average predicted value
〈K∗

c 〉 = 0.99970, respectively.

We train the reservoir machine at three different values of
the bifurcation parameter: K = 0.97, 0.98, and 0.99, all in the
sustained chaos regime (Fig. 2). For each K value, training is
done such that the reservoir machine is able to predict the ex-
act state evolution of the original system for several Lyapunov
times. After training, we apply some parameter change �K
and test, for each resulting parameter value, whether the pre-
dicted system state is a chaotic attractor or a chaotic transient.
An exemplary pair of the predicted state for K < Kc and K >

Kc is shown in Figs. 3(b1) and 3(b2), respectively. It is remark-
able that the reservoir machine is able to predict the collapse
after a chaotic transient, as shown in Fig. 3(b2). Examining the
prediction results for a set of systematically varied �K val-
ues enables determination of the predicted critical bifurcation
point, denoted as K∗

c . Averaging over an ensemble of 500 dif-
ferent random reservoir realizations, we obtain the value of the
critical point as K∗

c = 0.9997 ± 4 × 10−4, as shown in Fig. 4,
which agrees well with the actual value Kc = 0.99976. Our
machine learning framework can also predict a basic statistical
characteristic of transient chaos: the lifetime distribution. To
demonstrate this, we set the control parameter of the reservoir
to be K = K∗

c + 2 × 10−4 so that the system is in the transient
chaos regime and the distribution of transient lifetime in the
target system is exponential. The reservoir system predicts
correctly the exponential distribution, as shown in Fig. 3(e),
where 100 stochastic realizations of the reservoir machines
and 400 random initial conditions with each machine are used.
The predicted average transient lifetime is about 1.35 × 103,
which agrees well with the true value (1.33 × 103), demon-
strating the power of our reservoir computing scheme for
predicting transient chaos and system escape (collapse).

The values of the constant parameters in the food chain
system are [1,2] xc = 0.4, yc = 2.009, xp = 0.08, yp = 2.876,
R0 = 0.16129, and C0 = 0.5. The hyperparameters of the
reservoir system are n = 900, d = 4, ρ = 2.3, kin = 3.6, kb =
0.5, b0 = −2.2, α = 0.30, and β = 3 × 10−5. The time step is
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FIG. 5. Power system model in which a voltage collapse follow-
ing transient chaos can occur. The bifurcation parameter is Q1, a load
parameter.

�t = 1, and the training length for each value of the bifurca-
tion parameter is ttrain = 3200, which contains approximately
80 oscillation cycles. The validation time length is tvalidating =
1200 corresponding to about 30 periods of oscillations. Av-
eraged over an ensemble of 100 random reservoir machines,
the validation root-mean-square error (RMSE) is about 0.17.
Typically the reservoir system is able to predict about four to
six Lyapunov times with error less than 5% of the oscillation
range of the dynamical variables.

While our approach has yielded good predictions of the
critical transition point and the transient lifetime distribution,
the reservoir machine is unable to predict the actual final state
after the collapse correctly [e.g., Fig. 3(b2)]. A reason is that
only the information about the sustained chaotic attractor of
the target system has been learned by the machine through the
training data set, and the machine has never been exposed to
any information about the collapsed state of the system after
the critical point. This phenomenon also occurs for the power
system in Sec. III B.

B. Power system model

Voltage collapse is a major type of instability in electrical
power systems [37], where the dynamical variables of the
system fluctuate chaotically for a finite amount of time, i.e.,
exhibiting transient chaos, before suddenly collapsing to zero.
Initially, the system operates normally with a stable attractor.
Disturbances cause a change in the system parameter through
the critical value at which a boundary crisis occurs [38],
driving the system into transient chaos in which the final
asymptotic state is a voltage collapse. A generic model of the
electrical power system with voltage collapse, as illustrated in
Fig. 5, uses four ordinary differential equations [37,38]:

δ̇m = ω, (6)

Mω̇ = −dmω + Pm − EmVYm sin (δm − δ), (7)

Kqw δ̇ = −Kqv2V
2 − KqvV + Q(δm, δ,V ) − Q0 − Q1, (8)

T KqwKpvV̇ = KpwKqv2V
2 + (KpwKqv − KqwKpv )V

+Kqw[P(δm, δ,V ) − P0 − P1]

−Kpw[Q(δm, δ,V ) − Q0 − Q1], (9)

where V∠δ is the load voltage, the generator terminal voltage
is Em∠δm, the infinite bus has terminal voltage E0∠0, and ω is
the speed of the generator rotor. The load includes a constant
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FIG. 6. Bifurcation diagram of the power system. The vertical
black dashed line represents the critical point Q1c = 2.9898256. The
three vertical blue dashed lines specify the three values of Q1 used for
training the reservoir machine: Q1 = 2.98968, 2.98973, and 2.98978.

PQ load in parallel with an induction motor. The real and
reactive powers supplied to the load by the network are

P(δm, δ,V ) = −E ′
0VY ′

0 sin δ + EmVYm sin (δm − δ), (10)

Q(δm, δ,V ) = E ′
0VY ′

0 cos δ − (Y ′
0 + Ym)V 2

+EmVYm cos (δm − δ). (11)

These equations contain a Thévenin equivalent circuit with the
following adjusted values:

E ′
0 = E0(

1 + C2Y −2
0 − 2CY −1

0 cos θ0
)1/2 , (12)

Y ′
0 = Y0

(
1 + C2Y −2

0 − 2CY −1
0 cos θ0

)1/2
, (13)

θ ′
0 = θ0 + tan−1

(
CY −1

0 sin θ0

1 − CY −1
0 cos θ0

)
. (14)

The constant system parameters are set as [38] M = 0.01464,
C = 3.5, Em = 1.05, Y0 = 3.33, θ0 = 0, θm = 0, Kpw = 0.4,
Kpv = 0.3, Kqw = −0.03, Kqv = −2.8, Kqv2 = 2.1, T = 8.5,
P0 = 0.6, P1 = 0.0, Q0 = 1.3, E0 = 1.0, Ym = 5.0, Pm = 1.0,
and dm = 0.05.

Figure 6 shows the relevant bifurcation diagram. A rep-
resentative and often studied bifurcation parameter of the
system is Q1, which measures the reactive power demand at
the load bus [37,38]. A boundary crisis occurs at the critical
value Q1c = 2.9898256, where there is a chaotic attractor for
Q1 < Q1c and there is transient chaos leading to an eventual
collapse for Q1 > Q1c, as shown in Figs. 7(a1) and 7(a2).

We train the reservoir machine at three different values
of the bifurcation parameter, Q1 = 2.98968, 2.98973, and
2.98978, all in the normal operation regime with a chaotic
attractor, as denoted by the three vertical blue dashed lines
in Fig. 6. (The reason that the Q1 values used for training
appeared close to the critical value is that the value range of Q1

exhibiting chaos is narrow, which is an intrinsic feature of this
type of power system, as shown in the bifurcation diagram in
Fig. 6.) After training, we apply systematic changes in Q1 and
test, for each resulting parameter value, whether the predicted
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FIG. 7. Predicting voltage collapse in an electrical power system.
(a1), (a2) True time evolution of the load voltage V before and after
a voltage collapse for Q1 = 2.989823 < Q1,c and Q1 = 2.989828 >

Q1,c. There is transient chaos preceding the collapse for Q1 > Q1,c.
(b1), (b2) The corresponding time series predicted by reservoir com-
puting. In spite of training done exclusively in the precollapse regime
Q1 < Q1,c, the neural machine successfully predicts the occurrence
of the collapse in Q1 > Q1c. (c1), (c2) Black dots denote return maps
constructed from the local minima of V (t ) from the actual time series
for Q1 = 2.989818 < Q1,c and Q1 = 2.989832 > Q1c, respectively.
The small gap about Vmin,i = 0.81 in (c2) is the “escaping” channel in
the phase space through which trajectories escape the “safe” region,
leading to voltage collapse. Red dots denote the corresponding return
maps predicted by the machine. (d) Actual (black) and predicted
(red) transient lifetime distributions, where the shaded region indi-
cates the range of the machine learning prediction.

result is a chaotic attractor or a chaotic transient. A pair of
predicted voltage time series for Q1 < Q1c and Q1 > Q1c are
shown in Figs. 7(b1) and 7(b2). While the asymptotic value
of the predicted voltage in the transient regime is not exactly
zero, it is remarkable that the reservoir machine is able to
predict a sudden drop in the voltage after a chaotic transient,
as shown in Fig. 7(b2). Examining the prediction results for
a set of systematically varied �Q1 values enables determi-
nation of the predicted critical bifurcation point, denoted as
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FIG. 8. Histogram of the predicted critical point Q∗
1c, with 500

random realizations of the reservoir machine. The black and red
vertical dashed lines indicate the true critical value Q1c = 2.9898256
and the average predicted value 〈Q∗

1c〉 = 2.9898265, respectively.

Q∗
1c. Averaging over 500 independent random realizations of

the reservoir configurations, we get Q∗
1c = 2.9898265 ± 4 ×

10−6, with relative error δ = 2% (the relative error δ in this
work is defined as the error in the predicted critical point
divided by the distance between the real critical point and the
nearest training point). A histogram of the predicted critical
points Q∗

1c from 500 statistical realizations is shown in Fig. 8.
The position of the peak of the distribution and the mean value
of the predicted critical point both are close to its true value
Q1c. Our framework can also predict the fundamental statisti-
cal characteristic of transient chaos: the lifetime distribution.
To demonstrate this, we set Q1 = Q1c + 5 × 10−6 so that the
system is in the transient chaotic regime and the distribution
of the transient lifetime is exponential. The reservoir system
predicts correctly the exponential distribution, as shown in
Fig. 7(d), where 100 stochastic realizations of the reservoir
system and 2000 random initial conditions for each realization
are used to generate the range of the predicted distribution. We
see that the true distribution is contained in the range of pre-
dictions, demonstrating the predictive power of our reservoir
computing scheme for transient chaos.

The hyperparameters of the reservoir machine are n = 800,
d = 250, ρ = 1.6, kin = 2.1, kb = 1.6, b0 = −3.1, α = 1, and
β = 1 × 10−4. The time step with which the reservoir state is
updated is �t = 0.05. The length of the training time for each
value of the bifurcation parameter is ttrain = 500, during which
the system exhibits approximately 300 oscillation cycles. The
validating time is tvalidate = 25. Averaged over an ensemble
of 100 random reservoir machines, the validation RMSE is
about 0.07. Usually the reservoir machine is able to accurately
predict the system state for about four to six Lyapunov times,
with the absolute prediction error in the voltage variable V (t )
less 5% of its oscillation range.

C. One-dimensional Kuramoto-Sivashinsky system

We demonstrate that our “parameter-aware” reservoir com-
puting machine can predict transient chaos in spatiotemporal
dynamical systems. In particular, we consider systems
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FIG. 9. Predicting transient chaos in spatiotemporal systems
described by the one-dimensional KSE. (a), (b) Spatiotemporal evo-
lution of the field u(x, t ) in the sustained (φ < φc) and transient (φ >

φc) chaotic regime, respectively, where the time (horizontal) axis is
in units of the Lyapunov time and φ is the bifurcation parameter. In
the transient regime, the spatiotemporal chaotic solution eventually
collapses into a regular, traveling wave solution. (c), (d) Reservoir
computing predicted spatiotemporal evolution patterns for the same
parameter value as in (a) and (b), respectively, where the machine
successfully predicts the collapse.

described by the one-dimensional (1D) Kuramoto-
Sivashinsky equation (KSE):

∂u

∂t
+ υ

∂4u

∂x4
+ φ

(
∂2u

∂x2
+ u

∂u

∂x

)
= 0, (15)

where u(x, t ) is a scalar field, and υ and φ are the system
parameters. While the 1D KSE has been used in recent studies
as a paradigmatic model to demonstrate model-free prediction
of spatiotemporal chaotic evolution [20], in the parameter
regime studied there is only sustained chaos. Transient chaos
can arise in the 1D KSE [35] but in a quite different region in
the parameter plane (υ, φ). To generate transient spatiotem-
poral chaos in the 1D KSE, we set υ = 4 and let φ be the
bifurcation parameter. The spatial domain is 0 � x � π with
a periodic boundary condition. A crisis occurs at φc ≈ 200.04,
where there is sustained and transient spatiotemporal chaos
for φ � φc and φ � φc, respectively. The two types of solu-
tions are shown in Figs. 9(a) and 9(b), respectively.

We train the reservoir machine at three different values
of the bifurcation parameter: φ = 196, 197, and 198, all in
the regime of sustained spatiotemporal chaos. Figures 9(c)
and 9(d) show the predicted spatiotemporal evolution patterns
corresponding to the values of φ in Figs. 9(a) and 9(b), re-
spectively. It can be seen that the reservoir machine is able to
predict correctly transient spatiotemporal chaos.

Because of the high dimensionality of the KSE system
and the need to test a large number of values of the bifur-
cation parameter for any given reservoir structure, exploiting
a large number of reservoir realizations to obtain the pre-
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FIG. 10. Distribution of the relative error in the predicted transi-
tion point for the KSE system. The number of random realizations of
the reservoir network is 250. About 74% of the predicted φ∗

c values
have relative error |δ| < 5%. Within the accuracy |δ| < 10%, the
fraction of correct prediction is 98%.

dicted critical bifurcation point and statistical distribution of
the transient lifetime is computationally infeasible. Our so-
lution is to divide the test range into six coarse subregions
according to the relative error δ in the prediction of the criti-
cal point φ∗

c : δ < −10%, −10% < δ < −5%, −5% < δ < 0,
0 < δ < +5%, +5% < δ < +10%, and δ > +10%. We then
determine, for each random realization, to which subregion
the predicted transition point φ∗

c belongs by observing the
prediction of the trained reservoir machine for φ = 199.84,
199.94, 200.04, 200.14, and 200.24. The result with 250 ran-
dom realizations is shown in Fig. 10, where about 74% of the
predicted φ∗

c values have relative error |δ| < 5%. However, if
the accuracy is relaxed to |δ| < 10%, the fraction of correct
prediction becomes 98%.

The hyperparameters of the reservoir system are n = 4000,
d = 450, ρ = 0.89, kin = 0.057, kb = −0.052, b0 = −185,
α = 1, and β = 8 × 10−5. The spatial dimension is evenly
discretized into 32 nodes, i.e., Din = 32. The reservoir’s
working time step is 2 × 10−5. The largest Lyapunov expo-
nent of the KSE system at the training parameter values is
about m � 520. The training and validation time lengths
for each value of the bifurcation parameter are ttrain = 0.24
and tvalidation = 10 Lyapunov times ≈0.019. The prediction
horizon is usually about four or five Lyapunov times.

D. An alternative machine learning approach: Measurements
with a continuously varying bifurcation parameter

In all the results above, the reservoir machines are trained
at a few discrete values of the bifurcation parameter. In many
real-world systems, parameters may never be constant and in
fact can drift continuously in time. For instance, suppose one
wishes to train a reservoir machine with the climate data with
the global yearly averaged temperature being the bifurcation
parameter to predict if this temperature may exceed a critical
point in the future after which the climate system would col-
lapse. The global temperature is not a constant but increases
with time in a continuous fashion. A viable approach is then
to train the reservoir with a single time series collected in time
with a continuously varying bifurcation parameter. We use
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FIG. 11. Training a reservoir machine with a continuously
varying bifurcation parameter for the chaotic food chain system.
(a) Predator density P in the training time series. (b) Time series of
the bifurcation parameter K (t ).

the same reservoir settings as above, but the input parameter
channel now receives a time series representing the variations
of the bifurcation parameter with time.

To demonstrate the power of the reservoir machine to pre-
dict the critical transition point to system collapse subject to
continuous parameter drifting, we use the chaotic food chain
system as an example. For training, the bifurcation parameter
K (t ) is assumed to vary quadratically with time from K =
0.96 to K = 0.99, fully contained in the regime of sustained
chaos or periodical oscillations. The single time series K (t )
has the length T = 4000, which contains about 100 oscillation
cycles, as shown in Fig. 11. An average over an ensemble of
150 reservoir realizations yields the predicted critical point
K∗

c = 1.000 ± 0.002 (relative error δ = 2%), attesting to the
power of the reservoir to predict transient chaos and system
collapse subject to continuous parameter drifts.

IV. DISCUSSION

If predicting system collapse is viewed as a binary classi-
fication problem (i.e., with or without collapse), it would be
useful to train the neural machine with data from both below
and above the critical point. A difficulty is that, beyond the
critical point, the system will collapse after a transient chaotic
phase of random duration. Practically, it is infeasible to obtain
sufficient training data from the system in the postcritical
regime. Moreover, our machine learning method can be used
to assess the likelihood of the occurrence of a crisis in the near
future where no postcritical data are available.

Our results suggest that the reservoir machine trained with
data from a few distinct values of the bifurcation parameter
represents a “regression” between the dynamical behavior of
the target system and the bifurcation parameter. The machine
is able to make statistically accurate predictions outside the
training region. Since training is done on as few as three
different values of the bifurcation parameter, the prediction of,

e.g., the critical transition point from any individual reservoir
realization will involve large errors. However, the collective
prediction from an ensemble of statistically independent reser-
voir machines can be quite accurate. In general, the prediction
error would increase if the training parameter values are fur-
ther from the critical transition point, suggesting that reservoir
machines represent a low-order approximation of the real
dynamical systems about the training points of the bifurcation
parameter. This is a natural and inevitable trade-off.

In summary, we have articulated a parameter-aware
scheme of reservoir computing to predict collapse as a result
of parameter drift driving the system into transient chaos by
designating an additional input channel to accommodate the
bifurcation parameter, which is equivalent to introducing ad-
justable biases between the input and the hidden layers. With
parameter-dependent training, all in the regime of sustained
chaos, the reservoir machine acquires the ability to capture
the variations in the “climate” of the target system, thereby
gaining the power to predict the system state for different
parameter values. When a parameter drift pushes the system
through a critical point into a regime of transient chaos where
collapse is inevitable, our design of machine learning is capa-
ble of accurate prediction of the critical value of the parameter,
and of the statistical characteristics of transient chaos and the
eventual collapse. These features are demonstrated using a
food chain model in ecology, an electrical power system, and
the one-dimensional Kuramoto-Sivashinsky system. Not only
can our parameter-aware reservoir computing machine predict
the critical transition point, it can also predict the distribution
of the transient lifetime in the parameter regime beyond the
transition, which is a fundamental physical characteristic of
transient chaos.
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APPENDIX A: PROPOSED “PARAMETER-AWARE”
RESERVOIR COMPUTING FRAMEWORK

Our proposed reservoir computing framework for predict-
ing transient chaos and system collapse involves various types
of parameters. It is useful to clarify the meanings of these
parameters. For convenience, we call the nonlinear dynamical
system that the reservoir machine is designed and trained to
predict the target system. We classify all parameters involved
in the target and reservoir systems into five categories:

(1) Bifurcation parameter: This parameter belongs to the
target system. Varying the bifurcation parameter can drive
the system out of normal operation with sustained chaos into
the regime of transient chaos. The values of the bifurcation
parameter are fed into the reservoir neural machine through
the input parameter channel to empower the machine with
“parameter awareness” to achieve the goal of predicting tran-
sient chaos and system collapse.
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(2) Fixed parameters of the target system: This includes
all parameters (except the bifurcation parameter) involved in
defining the target system. In the present work, the values of
these parameters are preassigned and fixed.

(3) Hyperparameters of the reservoir machine: This is the
set of predetermined parameters defining the machine, which
includes the size, average degree, and spectral radius of the
neural network, as well as a set of parameters controlling the
training process. There are standard methods such as Bayesian
optimization [39,40], surrogate optimization (SGO) [41–43],
particle swarm optimization [44,45], and genetic algorithm
[46–48], which can be used to determine an optimal set of
hyperparameters.

(4) Elements of the two input matrices and of the reservoir
adjacency matrix [cf. Fig. 1(a)]: These are chosen randomly
prior to training and fixed during training and prediction for
any given reservoir realization. Their distributions are con-
trolled by the hyperparameters.

(5) Training parameters: These are the set of parameters
associated with the reservoir machine, whose values are to be
determined through training. The values of these parameters
depend on the training data sets.

Figure 1(a) illustrates the proposed reservoir computing
machine. Differing from conventional reservoir computing
used to predict chaotic systems [13–28], we have an addi-
tional “parameter sensing” input channel through which the
specific values of the bifurcation parameter are fed into the
reservoir neural network. A reservoir computing machine is
a recurrent neural network of three layers: an input layer, a
hidden recurrent layer, and an output layer. The input layer
has two components, one receiving the time series constitut-
ing the Din-dimensional input vector u(t ) and another taking
in the value of the bifurcation parameter of the target sys-
tem. The weighted, Dr × Din matrix Win maps u(t ) to the
Dr-dimensional state vector r(t ) of the hidden layer. The
Dr × Db matrix Wb specifies the connection weights between
the input bifurcation parameter to r(t ), where we use Db =
1 in this work. The Dr × Dr adjacency matrix A defines
the structure of the reservoir network in the hidden layer,
where the dynamics of each node are described by an in-
ternal state and a nonlinear (hyperbolic tangent) activation
function. The weighted Dout × Dr matrix Wout maps the state
vector r(t ) to the Dout-dimensional output vector v(t ). We
set Din = Dout. The matrices Win, Wb, and A are generated
randomly prior to training, while all elements of Wout are to
be determined through training.

A step-by-step description of the training, validating, and
testing processes of our prediction framework is as follows.

Training phase I: The preparation phase. The elements
of the matrices Win, Wb, and A are generated randomly and
fixed, a process controlled by four hyperparameters kin, n, d ,
and ρ, where kin is a scaling factor of the elements of the
two input matrices Win and Wb, n is the number of hidden
nodes (Dr = n), and d and ρ are the average degree and
spectral radius of A, respectively. When the target system is
low dimensional, the input matrix Win is dense: each node
in the input layer is connected to all nodes in the reservoir
network. In this case, we set the reservoir network to be an
undirected (symmetric) random network and choose the ele-
ments of A from a zero mean normal distribution. If the target

system is a spatiotemporal dynamical system (of arbitrarily
high dimension), we make each input node connected only to
a fraction of 1/Din of nodes in the hidden layer, and we choose
the reservoir network to be a directed (asymmetric) random
network with weighed elements chosen from a uniform dis-
tribution between zero and a fixed threshold value. (These
choices were made rather arbitrarily, and other choices may
also work.) In both cases, the nonzero elements of Win and all
elements of Wb are generated from a uniform distribution in
the interval [−kin, kin].

Training phase II: Feed-forward process from input to
hidden layer. We input the time series constituting the u(t )
vector, feed it forward to the hidden layer, and record the state
vector r(t ) as a function of time. The dynamical updating
rule for r(t ) is given by Eq. (1), where �t is the time step,
the vector tanh (p) is defined to be [tanh (p1), tanh (p2), . . .]T

for a vector p = [p1, p2, . . .]T , and b stands for the bifurca-
tion parameter associated with the current time series. The
quantities kb and b0 are two hyperparameters associated with
the parameter input matrix Wb. The initial condition for the
network state evolution is set to be r(t = 0) = 0.

With respect to training, the main feature that distinguishes
our work from previous ones is training at multiple values
of the bifurcation parameter. In particular, after the reservoir
has been trained with data associated with one value of the
bifurcation parameter, we reset the time and the initial states
to zero, and repeat the training with data from another value
of the parameter. After training is done for the available data
from all preassigned values of the bifurcation parameter, we
obtain multiple recordings of r(t ), irrespective of the order of
training.

The bifurcation parameter can be viewed as an additional
dimension of the input time-series data, where Eq. (1) can be
rewritten by combining Win and Wb into a single matrix Dr ×
(Din + Db). Likewise, the two input vectors u and kb(b + b0)
can be combined. Alternatively, we may regard kb(b + b0)Wb

as an adjustable bias matrix between the input layer and the
hidden layer. In this point of view, for different values of the
bifurcation parameter, the reservoir has a different set of inner
parameters, with a global bias for each and every node as
determined by the value of the bifurcation parameter.

In dealing with spatiotemporal chaotic systems, for com-
putational feasibility, every input dimension from the target
system’s time series is connected to only a subset of the
nodes in the hidden layer, but the bifurcation parameter is
still connected with all hidden nodes. From the point of view
of the input vectors, there is then an asymmetry between the
input time series of the variables of the target system and the
bifurcation parameter. However, for predicting transient chaos
and collapse in a low-dimensional system, this asymmetry
between state variable and parameter does not arise because
the input matrix Win is dense in the sense that every input
dimension is connected to all nodes in the hidden layer. It is
worth emphasizing that, even if the input parameter channel is
connected to only a fraction of the hidden nodes, the reservoir
computing scheme is still capable of the prediction task.

Training phase III: Regression.We determine the elements
of Wout through a regression between the true data vector
u(t ) and the network state vector r(t ). We stack the multiple
recordings of r(t ) from different values of the bifurcation
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parameter on top of each other in the temporal dimension
(after removing a small segment, e.g., ten time steps, of the
recording to minimize the effect of possible transient behav-
ior of the reservoir system) to form a vector function rall(t )
and treat the data vector u(t ) accordingly to form another
vector function uall(t ). Following the suggested regression
method for predicting chaotic systems [16], we first replace
rall(t ) by r′

all(t ), where r′
all(t )i = rall(t )i for odd rows and

r′
all(t )i = rall(t )2

i for even rows. We then perform a linear
regression between uall(t ) and r′

all(t ) with l2 regularization by
minimizing the loss function

L =
∑

t

||uall(t ) − Wout · r′
all(t )||2 + β||Wout||2, (A1)

where β > 0 is the regularization coefficient—a hyperpa-
rameter. The regularized regression can be accomplished by
calculating

Wout = U · R′T (R′ · R′T + βI )−1, (A2)

where I is the identity matrix of dimension Dr , and U and
R′ are the matrix forms of uall(t ) and r′

all(t ), respectively,
with each column being the values of the vector at a certain
t and different rows representing different dimensions, so U
and R′ have Din and Dr rows, respectively. Both U and R′
have nb(Ttrain − Tcut ) columns, where nb = 3 is the number of
different values of the bifurcation parameter trained on the
reservoir, Ttrain is the number of time steps of the training
phase for each parameter value, and Tcut = 10 is the number
of time steps removed to ensure that the reservoir system has
passed the transient phase.

Validation. For validation, we use the set of training bi-
furcation parameter values to predict the dynamical evolution
of the target system at the same set of parameter values.
Specifically, we replace the original input data vector by the
output vector v(t ), while keeping the parameter channel intact.
The iterative equation [Eq. (1)] becomes

r(t + �t ) = (1 − α)r(t ) + α tanh[A · r(t )

+ Win · Wout · r′(t ) + kbWb(b + b0)], (A3)

making the reservoir system a self-evolving dynamical system
with external parameter input. During the validation process,
for each value of the bifurcation parameter trained, we set the
state vector of the hidden nodes at the last step of training,
denoted as rlast , as the initial condition and let the reservoir
system evolve according to Eq. (A3) for a certain number
of time steps. The predicted output vector can then be com-
pared with the true vector for these time steps, generating
the average RMSE. We calculate the RMSE for all values of
the training bifurcation parameters and use the largest RMSE
value among them to measure the performance of training.
For instance, in this work we are using three bifurcation pa-
rameters for training. Thus the validation would first result in
three RMSE values for each parameter, and then we only pick
the largest one among the three as the validation error. When
the target is a spatiotemporal dynamical system, to reduce
the computational burden, we calculate the RMSE at each
time step and record the minimal time required for the RMSE
to reach a certain tolerance threshold. We use this effective
prediction time to measure the training performance.

Testing. Testing differs from validation in that we now
set the bifurcation parameter to values that have never been
trained before: these parameter values are completely “new”
to the reservoir machine. This generalizability of the reservoir
computing scheme is key to predicting transient chaos and
system collapse. Specifically, the dynamical evolution of the
reservoir machine is still governed by Eq. (A3), but with
a different value of the bifurcation parameter b. To set the
initial condition for the reservoir machine, we use a short
period of the real time series from the target system (e.g.,
several oscillation cycles), taking from an arbitrary value of
the bifurcation parameter in the sustained chaos regime as the
input to “warm up” the neural network. After this “warmup,”
we set the hidden states at the last time step rlast as the initial
condition for testing.

Taken together, there are eight hyperparameters: kin, n, d ,
ρ, kb, b0, α, and β. Their values for the three examples in
this paper are listed in Sec. III in the main text, with the
optimization process behind explained in Appendix B below.

APPENDIX B: SENSITIVITY TO HYPERPARAMETERS

A well-trained reservoir machine is key to its ability to
predict transient chaos and system collapse. Here by “well
trained” we mean that the reservoir, after training, is able
to accurately predict the dynamical evolution of the tar-
get system for several Lyapunov times with relative error
less than 5% for all the selected values of the bifurcation
parameter (validation process). As is known [13–28], the de-
pendence of the prediction results on the hyperparameters can
be quite sensitive. This is especially so in our study because of
the necessity for the reservoir machine to possess the pre-
dictive power for several values of the bifurcation parameter.
To equip the reservoir machine with the power to predict the
behavior of the target system at bifurcation parameter values
other than those used in training, it is necessary to optimize
the hyperparameters. We have used the Bayesian optimization
method [25] that is contained in the PYTHON package “skopt”
[49]. An issue is that the optimization algorithm typically
gives multiple sets of hyperparameter values. Our solution is
to use these hyperparameter values to train multiple reser-
voirs and obtain the average validation RMSE that can be
fed back to the Bayesian algorithm where, for each set of the
hyperparameter values, we repeat the training and validation
processes multiple times with different random realizations
of the reservoir to reduce the fluctuations in RMSE. After
several hundreds of iterations of the Bayesian algorithm, we
choose the hyperparameter values with the lowest validation
RMSE in all the iterations (not necessarily the hyperparameter
values from the last iteration). It is worth emphasizing that
all the training and validation data used in the optimization
process are for the values of the bifurcation parameter before
the transition point (in the regime of sustained chaos). That is,
the system has no knowledge of the crisis and possible system
collapse during the optimization process.

A deficiency of the Bayesian optimization algorithm is that
sometimes it generates solutions that are not optimal, which
occurs when the solution trajectory is trapped in a local mini-
mum of the landscape of the cost function, especially when the
RMSE from the validation process has large fluctuations. An
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TABLE I. Hyperparameter values for comparison and the corre-
sponding results of predicted transition point K∗

c in the chaotic food
chain system.

Hyperparameters Set A Set B Set C

n 900 900 900
d 4 48 27
ρ 2.3 1.5 1.9
kin 3.6 3.8 3.1
kb 0.5 0.8 0.7
b0 −2.2 −1.8 −1.8
α 0.3 0.3 0.3
β 3 × 10−5 4 × 10−5 3 × 10−5

Kc,predicted 0.99967 0.99978 0.99975
Relative error, δ 0.9% 0.2% 0.1%
Standard deviation 4.2 × 10−4 2.4 × 10−4 3.0 × 10−4

empirical solution is to run the whole Bayesian optimization
process independently a number of times and choose the best
result with the smallest error.

A question is this: If one has different sets of hyperpa-
rameter values with comparable validation performance, will
they have similar testing performance as well? To address this
question, we test the chaotic food chain system with three
different sets of hyperparameter values, with the results listed
in Table I and shown in Fig. 12, where A denotes the set of
hyperparameter values used to generate the results in the main
text. The quantities examined are the predicted average crisis
point and the average transient lifetime beyond the critical
point for the bifurcation parameter value K = KC + 2 × 10−4.
We obtain uniformly small errors for all the three sets of
hyperparameter values.

Another important issue is whether the hyperparameter
optimization would require substantially more data than the
data used for training. Our results suggest that the answer is
no. The process of hyperparameter optimization is performed
by repeating the training and validating processes many times
with different values of the hyperparameters, and the values
with the lowest validating errors are identified. In fact, opti-

mization can be done for a fixed pair of training and validation
data sets. Table II and Fig. 13 show the results of three sets of
hyperparameters optimized in this way for the chaotic food
chain system, which lead to accurate prediction of both the
critical point and the transient lifetime distribution. For the
Ikeda map system, the hyperparameter values are optimized
with a single data set as well. In general, when the hyperpa-
rameter values are not optimized, the predictions are unstable
in the sense that they are sensitive to small variations in the
parameters with large fluctuations. In contrast, for optimal hy-
perparameter values, the prediction results are typically stable.
It is thus quite feasible to assess if the hyperparameters have
been optimized.

APPENDIX C: EFFECTS OF INPUT
AND RESERVOIR MATRICES

The elements of the two input matrices Win and Wb as
well as those of the reservoir network matrix A are generated
randomly, which can vary among the different realizations of
the reservoir machines. We find that the performances during
validation and testing are dependent on the matrices, even
when learning the same system with the same set of optimal
hyperparameter values. The relationship between the elements
in the random layers and the reservoir’s performance is an
important but not yet solved problem. A simple solution to
reducing the uncertainties in the prediction is to generate a
number of different random realizations of the reservoir and
choose the ones with the lowest validation RMSE. In this
work, we generate five different reservoir machines at a time
and abandon four of them and only record the results from
the one left. Besides, suppose that the reservoirs have been
well trained in the sense that they have learned the chaotic
attractors at the selected values of the bifurcation parameter.
When predicting the system dynamics outside the training
bifurcation parameter set, fluctuations can still arise among
the different reservoir realizations. Conceptually, this can be
understood by viewing the prediction problem as some sort
of “regression” between the system dynamics (attractor) and
the bifurcation parameter. While the reservoir machine has
learned the dynamics of the target system at several different
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FIG. 12. Results of the transient lifetime distributions with the hyperparameter values from Table I for the chaotic food chain system. (a)–(c)
Results from the parameter sets A, B, and C, respectively. Red and black dots represent the predicted and actual distributions, respectively.
Dashed lines are the linear fits. The distributions are obtained for K = KC + 2 × 10−4, where the results in each panel are the averages over 50
different reservoir realizations, each with 400 different initial conditions.
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TABLE II. Hyperparameter values optimized by a single pair of
training and validating data sets and the corresponding predicted
value of the critical transition point K∗

c for the chaotic food chain
system.

Hyperparameters Set D Set E Set F

n 900 900 900
d 673 724 109
ρ 1.6 0.48 1.2
kin 2.9 3.0 2.5
kb 1.5 1.6 2.0
b0 −1.1 −1.5 −0.97
α 0.51 0.43 0.40
β 7 × 10−5 6 × 10−5 9 × 10−5

Kc,predicted 1.00054 1.00051 1.00104
Relative error, δ 8% 8% 13%
Standard deviation 5.1 × 10−4 4.6 × 10−4 5.2 × 10−4

values of the bifurcation parameter, there are infinitely many
ways to “connect” these dynamical behaviors (attractors).
This bears similarities to the case of fitting three data points
with a polynomial: there are infinite possibilities if the polyno-
mial has a degree larger than 2. It is thus necessary to average
the prediction results in the testing phase from an ensemble
of reservoir realizations. For predicting the critical transition
point, we use the simple algebraic average. In particular, for
the electrical power and the chaotic food chain systems, we
carry out an average over 500 realizations, leading to the
relative errors of δ = 2% and δ = 0.6%, respectively. For pre-
dicting the average lifetime of the chaotic transient, the simple
averaging method can generate results only to the correct
order of magnitude, due to the sophisticated relation between
the error in the average lifetime and that in the value of the
critical point. Another source of error comes from the fact
that the dimensionality of the reservoir machine is typically
much larger than that of the target chaotic system and, as a
result, the reservoir machine may generate “fake” dynamical
behaviors that do not arise in the real system. For example, for
the electrical power system, the return map from the original
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FIG. 14. Accuracy of the predicted values of the critical point
K∗

c versus the magnitude of observational noise for the food chain
system. The red dashed line represents the real value of the critical
point, Kc = 0.99976. The error bars are obtained from 400 different
random realizations.

system is approximately one dimensional [1] but the reservoir
machine may generate a return map with multiple branches,
where some branches correspond to sustained but not transient
dynamics! We find that many reservoir realizations give the
value of the average transient lifetime twice as large as the
real value due to the occurrence of the additional branches in
the predicted return map that correspond to sustained chaos.

APPENDIX D: NOISE RESISTANCE

We study the effect of measurement noise on predic-
tion using the chaotic food chain system. The training
time series of all the dynamical variables are subject to
additive Gaussian noise of zero mean and standard devia-
tion ε. Figure 14 shows the predicted critical transition point
versus ε, where 400 reservoir realizations are used. It can
be seen that, for ε < 10−3 (the oscillation amplitude of the
target system can often be as small as about 0.2), the predicted
critical point is relatively accurate.
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FIG. 13. Results of the transient lifetime distributions with the hyperparameter values from Table II for the chaotic food chain system,
which are optimized by a single pair of training and validating sets. (a)–(c) Results from the parameter sets D, E, and F, respectively. Red
and black dots represent the predicted and actual distributions, respectively. Dashed lines are linear fits. The distributions are obtained for
K = KC + 2 × 10−4, where the results in each panel are the averages over 50 different reservoir realizations, each with 400 different initial
conditions.
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