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Abstract

In this paper, a family of quasiperiodically forced piecewise linear maps is considered. We prove
that there exists a unique strange nonchaotic attractor for some set of parameter values. It is the
graph of an upper semi-continuous function which is invariant, discontinuous almost everywhere
and attracts almost all orbits. Moreover, both Lyapunov exponents are nonpositive, a necessary
condition for the existence of a strange nonchaotic attractor.
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1. Introduction

There has been considerable interest in recent years in quasiperiodically forced system-
s, partly due to the fact that these commonly exhibit strange nonchaotic attractors (SNAs).
For instance, damped pendulum with quasiperiodic forcing [1, 2], Chua’s circuit with two-
frequency quasiperiodic excitation [3], Harper map, which is intimately related to certain dis-
crete Schrödinger operators with quasiperiodic potential [4], see also [5]. This type of attractors
were uncovered by Grebogi et al. [6]. In dynamical systems, the types of attractors usually
include periodic attractors, quasiperiodic attractors and chaotic attractors. However, SNA is
considered as the fourth type of attractor. In 2015, strange nonchaotic star dynamics has been
demonstrated in the RR Lyra Constellation, which further validates the presence of strange
nonchaotic phenomena in nature [7]. An SNA has fractal structure [8, 9], but is nonchaotic in
the dynamical sense. Pikovsky and Feudel [10] introduced the methods of phase sensitivity and
rational approximations to characterize the strange property of SNAs.

Precisely, what constitutes a distinct mechanism for the formation of an SNA is somewhat
nebulous since the bifurcations of quasiperiodically driven systems have not been studied in
formal mathematical detail. However, several routes to SNAs have been described in the litera-
ture, such as torus collisions route [11, 12], fractalization route [13], intermittency route [14, 15],
quasiperiodic route [8], blowout bifurcation route [16], grazing bifurcation route [17] and so on.
Prasad et al [18] gave a good overview and further reference for this.

The theoretical results of SNAs are mainly limited to skew product maps. Keller [19] studied
a class of quasiperiodically forced interval maps which are monotonically increasing and is strictly
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concave, and proved the existence of attracting invariant graphs that are discontinuous almost
everywhere. Jäeger [20] studied quasiperiodically forced interval maps which are monotonically
increasing and have negative Schwarzian derivative, and gave a classification, with respect to
the number and to the Lyapunov exponents of invariant graphs, for this class of systems. It
turns out that the possibilities for the invariant graphs are exactly analogous to those for the
fixed points of the unperturbed fibre maps. Alsedà et al. [21] generalized the results of [19] to
quasiperiodically forced unimodal maps; the strictly concavity of fibre maps plays a basic role
in the proof.

In this paper we consider a skew product system F : S1 × R+ → S1 × R+ defined by

(θ, x) 7→ (R(θ), f(x)g(θ)),

where R(θ) = θ + ω(mod 1), S1 = R/Z denotes the unit circle, and ω is an irrational number.
We take g(θ) = sin(πθ) and

f(x) =

¨
ax if x ≤ 1

2 ,

bx+ a−b
2 if x ≥ 1

2 ,
a, b > 0.

The map F is similar to the one considered by Keller in [19], except that the function f in
his case is strictly concave. Since in our case f is piecewise linear, the results in [19] cannot be
applied directly here. On the other hand, if we use the known results of general quasiperiodically
forced monotonic maps, then we can merely show that the Lyapunov exponents on the SNAs
in the x direction is nonpositive. The purpose of this paper is to prove that, when a > 2 and
0 ≤ b < 1, the map F possesses a unique SNA. It is the graph of a semi-continuous function
which is invariant, discontinuous almost everywhere and attracts almost all orbits.

2. Invariant graph and Lyapunov exponent in the x direction

Due to the aperiodicity of the quasiperiodic forcing, there cannot be any fixed points or
periodic points for such system. Therefore, invariant graphs are the most simple invariant
objects that can occur.

Definition 2.1. A function η : S1 → [0,∞) is said to have an invariant graph with respect to
the map F , if for all θ ∈ S1:

F (θ, η(θ)) = (R(θ), η(R(θ))).

Obviously, S1 × {0} is an invariant graph of F .

Definition 2.2. If η : S1 → [0,∞) has an invariant graph Gr(η) := {(θ, η(θ)) : θ ∈ S1} for F ,
then the induced measure µη on Gr(η) is defined by

µη(U) = m({θ ∈ S1 : (θ, η(θ)) ∈ U})

for each measurable set U ∈ Gr(η), where m(·) is the Lebesgue measure on S1.

It turns out that any such measure is F -invariant and ergodic.
The stability of an invariant graph Gr(η) is determined by its Lyapunov exponents. For a.e.

(θ, η(θ)) ∈ Gr(η) with respect to µη, the Lyapunov exponent at (θ, η(θ)) in the x direction

λ(θ, η(θ)) = lim
n→∞

1

n

nX
k=1

log |Df(η(θ)k)g(θk)|
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is well defined, where (θk, η(θ)k) = F k(θ, η(θ)). Since the map R preserves the Lebesgue measure
on S1 and is ergodic, by Birkhoff’s ergodic theorem,

λ(θ, η(θ)) =
Z
S1
log(Df(η(θ))g(θ))dθ (1)

for a.e. θ ∈ S1.
By Oseledec’s multiplicative ergodic theorem (see e.g. [22]), for µη-almost every (θ, η(θ))

there are two Lyapunov exponents, the first one is λ(θ, η(θ)) and the second one is denoted by
ϱ(θ, η(θ)). Moreover, for µη-almost every (θ, η(θ)) we have

λ(θ, η(θ)) + ϱ(θ, η(θ)) = lim
n→∞

n−1X
k=0

1

n
log | det(DF (θk, η(θ)k))|

= lim
n→∞

n−1X
k=0

1

n
log

�����det
�

1 0
f(η(θ)k)Dg(θk) Df(η(θ)k)g(θk)

������
= lim

n→∞

n−1X
k=0

1

n
log |Df(η(θ)k)g(θk)| = λ(θ, η(θ)).

Therefore, ϱ(θ, η(θ)) = 0. This shows that the stability of the graph of η is completely determined
by the Lyapunov exponent in the x direction λ(η) :=

R
S1 log(Df(η(θ))g(θ))dθ.

3. Existence of SNAs

In this section we will prove the existence of an SNA for the map F for certain parameter
set. First, we list some notations and definitions.

Definition 3.1. A function η : S1 → R is upper semi-continuous at θ0 if

lim sup
θ→θ0

η(θ) ≤ η(θ0).

The function η is called upper semi-continuous if it is upper semi-continuous at every point of
its domain.

For any set A ⊆ S1 × [0,∞), denote by Aθ its intersection with the θ-fibre, i.e., Aθ :=
({θ} × [0,∞)) ∩ A. The following concept turned out to be very important in the study of
quasiperiodically forced maps (see [23, 24]).

Definition 3.2. A set A ⊆ S1 × [0,∞) is called pinched, if for some θ ∈ S1 the set Aθ consists
only of a single point. In this case we call A is pinched at θ.

Since the map R preserves the Lebesgue measure on S1 and is ergodic, if A is invariant and
pinched, then it is pinched on a whole dense set, namely on the forward orbit of a pinched fibre.
If in addition A is compact then the set of θ at which A is pinched is even residual. This follows
from a Baire argument, as in this case all sets {θ ∈ S1 : diam(Aθ) < 1/n} are open and dense,
and their intersection gives exactly the set of θ where A is pinched.

Denote by P the space of functions from S1 to [0,∞). Define the transfer operator T : P → P
as

(Tη)(θ) = f(η(R−1(θ)))g(R−1(θ)).
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Remark 3.1. Observe that φ ∈ P has an invariant graph if and only if Tφ = φ.

Denote by PT the set of fixed points of T .

Remark 3.2. When f is monotone increasing, in view of the definition of T , for φ, ϕ ∈ P if
φ ≤ ϕ then Tφ ≤ Tϕ.

Remark 3.3. If η ∈ PT then for all θ ∈ S1 we have

η(R(θ)) = f(η(θ))g(θ).

Therefore, if η(θ) = 0 then η(R(θ)) = 0. Together with the ergodicity of R, this implies that
either η is zero a.e. or it is positive a.e. Here and in what follows, a.e. means almost everywhere
with respect to the Lebesgue measure on S1.

Note that the fixed point of the map f are 0 and a−b
2(1−b) . Set I = [0,M ] for some M ≥ a−b

2(1−b) .

Denote by π1 and π2 the projections from S1 × [0,∞) to S1 and [0,∞), respectively.

Theorem 3.1. Suppose that a > 2 and 0 ≤ b < 1. There exists a function ϕ : S1 → I such that
(i) ϕ is an upper semi-continuous function and has an invariant graph;
(ii) ϕ is positive a.e.;
(iii) ϕ is discontinuous a.e.

Proof. Let

ϕn : S1 → [0,∞), ϕn(θ) = Tn(M) = π2 ◦ Fn(R−n(θ),M) (2)

for all n ∈ Z+. Then

ϕ1(θ) = π2 ◦ F (R−1(θ),M) = f(M) sinπ(R−1(θ)) ≤ M. (3)

Hence, by (3) and Remark 3.2 we get

M ≥ TM ≥ T 2M ≥ T 3M ≥ · · · . (4)

This, together with the fact that TnM ≥ 0 for all n ∈ Z+, shows that there is a function ϕ ∈ P
such that

ϕ(θ) = lim
n→∞

ϕn(θ) = inf
n

ϕn(θ).

As the infimum of a decreasing sequence of continuous function ϕ is upper semi-continuous.
Observe that

f(ϕ(θ))g(θ) = lim
n→∞

f(ϕn(θ))g(θ) = lim
n→∞

π2 ◦ F (θ, ϕn(θ))

= lim
n→∞

π2 ◦ F (Fn(R−n(θ),M)) = lim
n→∞

ϕn+1(R(θ))

=ϕ(R(θ)).

Therefore, ϕ has an invariant graph.
To prove (ii), note that by the formula in (1) we have

λx(θ, 0) =
Z
S1
logDf(0)dθ +

Z
S1
log sin(πθ)dθ = log a− log 2 > 0 (5)
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for a.e. θ ∈ S1. Due to f(0) = 0, the set {θ ∈ S1 : ϕ(θ) = 0} is invariant under rotation by ω.
Since R preserve the Lebesgue measure on S1 and is ergodic, {θ ∈ S1 : ϕ(θ) > 0} has Lebesgue
measure 1 or 0.

Assume that ϕ(θ) = 0 for a.e. θ ∈ S1. By (2) and (4), we have

f ◦ (TnM)

TnM
=

(Tn+1M) ◦R
(TnM) · g

≤ (TnM) ◦R
(TnM) · g

.

f◦(TnM)
TnM is bounded and away from 0 as a function of θ. Therefore its logarithm is integrable.

Hence,

log
f ◦ (TnM)

TnM
+ log g ≤ log

(TnM) ◦R
(TnM) · g

and the left-hand side is itegrable. Therefore, by Lemma 3.4, the integral of the right-hand side
is 0. We need this argument because a priori the right-hand side could be not integrable. Thus,

Z
S1
log

f ◦ (TnM)

TnM
+
Z
S1
log g ≤ 0. (6)

Under the above assumption, (Tn)n≥0 is a monotone sequence of function converging a.e. to
ϕ = 0. Then the inequality in (6) can pass to the limit with n and we get λ(θ, 0) ≤ 0 for a.e.
θ ∈ S1. This contrasts with (5). Therefore ϕ(θ) is positive for a.e. θ ∈ S1.

For each θ ∈ S1 with ϕ(θ) > 0, we can take a sequence {θk} such that ϕ(θk) = 0 for all k and
limk→∞ θk = θ, then limk→∞ ϕ(θk) = 0. Therefore, ϕ is almost everywhere discontinuous.

We will show that ϕ is the unique function which has an invariant graph (with respect to
F ) and is positive a.e. There is a subtle issue in the definition of invariant graphs that has
to be addressed. Any invariant graph η can be modified on a set of measure zero to yield
another invariant graph η̂, equal to η a.e. We usually do not distinguish between such graphs.
We make the following convention. We will consider two invariant graphs as equivalent if they
are a.e. equal and implicitly convey about equivalence classes of invariant graphs. If any
further assumptions about invariant graphs are made, such as semi-continuity, measurability or
inequalities between invariant graphs, we will understand it in the way that there is at least one
representative in each of the respective equivalence classes such that the assumptions are met.
These representatives will then be used in the proofs, and all conclusions which are drawn from
the assumed properties will be true for all such representative.

Lemma 3.1. Each element of PT is a measurable function.

Proof. Assume that η1, η2 ∈ PT with η1 ≤ η2 and that there is no other element of PT in
between. Take a measurable function η such that η1 ≤ η ≤ η2. By Remark 3.2, we get T kη ≤ η2
for all k ≥ 0. This together with the assumption show that T kη → ϕ as k → ∞. Therefore, η2
is a measurable function.

Lemma 3.2. Let a and b be as in Theorem 3.1. For each η ∈ PT with η(θ) > 0 a.e., the
essential supremum of η is > 1/2.

Proof. Since η is positive a.e., assume that η ≤ 1/2 a.e. Then

log η(θ) = log T (η(θ)) = log f(η(R−1(θ))) + log g(R−1(θ))

≥ log a+ log η(R−1(θ)) + log g(R−1(θ))
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a.e. By induction we get

log η(θ)− log η(R−n(θ)) ≥ n log a+
nX

k=1

log g(R−k(θ))

a.e. By replacing θ by Rn(θ) this can be rewritten as

log η(Rn(θ))− log η(θ) ≥ n log 2 +
n−1X
k=0

log g(Rk(θ))

a.e. By the ergodic theorem the right hand side of above goes to infinity as n → ∞. This
contrasts with the fact that η is positive a.e. and is bounded. Therefore, the essential supremum
of η is > 1/2.

Theorem 3.2. Let a and b be as in Theorem 3.1. ϕ is the unique element of PT with ϕ > 0
almost everywhere.

To prove Theorem 3.2, we need some preliminaries. Given points x, y ∈ I with x ̸= y (note
that f(x) ̸= f(y)), set

κ(x, y) =
|x− y|

max{x, y}
and

τ(x, y) =
κ(f(x), f(y))

κ(x, y)
.

Observe that |Df(x)| = f(x)
x for x ∈ (0, 1/2) and |Df(x)| < f(x)

x for x ∈ (1/2,M ].

Lemma 3.3. Let a and b be as in Theorem 3.1. Fix n ∈ Z+, θ0 ∈ S1 and x0, y0 ∈ I. Denote
(θk, xk) = F k(θ0, x0) and (θk, yk) = F k(θ0, y0) for k ∈ 1, 2, . . . , n−1. Then |xn−yn| ≤ Mµm(n),
where m(n) is the number of indices k ∈ {0, 1, . . . , n− 1} such that xk, yk > 1/2.

Proof. Note that if 0 < x < y < 1
2 then τ(x, y) = 1. If 0 < x < y ≤ M and y > 1

2 then

τ(x, y) =
f(y)− f(x)

f(y)
· y

y − x
=

f(y)− f(x)

y − x
· y

f(y)

which is a strictly decreasing function of x. Therefore, τ(x, y) < 1. In particular, there exist a
constant µ < 1 such that if x, y > 1/2 then τ(x, y) ≤ µ.

If xn = yn then there is nothing to prove. Assume that xn ̸= yn. Then also xk ̸= yk for
k = 0, 1, . . . , n− 1. We have

κ(xk+1, yk+1) =
|xk+1 − yk+1|

max {xk+1, yk+1}
=

|f(xk)g(θk)− f(yk)g(θk)|
max {f(xk)g(θk), f(yk)g(θk)}

=
|f(xk)− f(yk)|

max {f(xk), f(yk)}
= κ(f(xk), f(yk)).
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Therefore,

|xn − yn| = ynκ(xn, yn) = ynκ(x0, y0)
n−1Y
k=0

κ(xk+1, yk+1)

κ(xk, yk)

= ynκ(x0, y0)
n−1Y
k=0

τ(xk, yk) ≤ M
n−1Y
k=0

τ(xk, yk).

Thus, we get |xn − yn| ≤ Mµm(n).

The proof of Theorem 3.2. Due to the monotonicity of the transfer operator T , there is
a natural order for the elements of PT . Let ϕ̂ be the smallest element of PT with ϕ̂ > 0 a.e. By
Lemma 3.2, there exists a set A ∈ S1 with positive Lebesgue measure such that ϕ̂(θ) > 1/2 for
θ ∈ A. By the ergodicity of R, for almost every θ ∈ S1 we have R−k ∈ A for infinitely many
positive integer k. We choose such θ.

Fix n > 0. Denote θ0 = R−n(θ) and choose any x0, y0 ∈ [ϕ̂(θ0), ϕ(θ0)]. We also denote
(θk, xk) = F (θ0, x0) for k = 1, 2, . . . . Whenever θk ∈ A, we have xk, yk > 1/2. By Lem-
ma 3.3, we get |xn − yn| ≤ Mµm(n) for some µ < 1, where m(n) denotes the number of
indices k ∈ {0, 1, . . . , n − 1} such that θk ∈ A. By our choice of θ the length of the segment
Fn({R−n(θ)} × [ϕ̂(R−n(θ)), ϕ(R−n(θ))]) goes to 0 as n → ∞. Therefore their intersection con-
sists of a one point. �

It remains to prove that λ(ϕ) < 0. To this end we need the following lemma.

Lemma 3.4. [19, Lemma 2]. Let (X,F , µ) be a probability space, T : X → X a measurable
transformation leaving the measure µ invariant, and f : X → R a measurable function. If the
function f ◦ T − f has a minorant g ∈ L1

µ, then f ◦ T − f ∈ L1
µ and

Z
(f ◦ T − f)dµ = 0.

Now we can prove the attracting property of the invariant graph {(θ, ϕ(θ)) : θ ∈ S1}.

Theorem 3.3. The Lyapunov exponent on the graph of ϕ in the x direction λ(ϕ(θ), θ) < 0 for
a.e. θ ∈ S1.

Proof. Recall that

λ(θ, ϕ(θ)) =
Z
S1
log |Df(ϕ(θ))|dθ +

Z
S1
log g(θ)dθ.

for a.e. θ ∈ S1. Since f(0) = 0, f(ϕ(θ))g(θ) = ϕ(R(θ)) and Df(x) < f(x)
x for x > 1/2, by

Lemma 3.2 there exists a set A ∈ S1 with positive Lebesgue measure such that

Df(ϕ(θ)) <
f(ϕ(θ))

ϕ(θ)
=

ϕ(R(θ))

ϕ(θ)g(θ)

for θ ∈ A and that

Df(ϕ(θ)) ≤ f(ϕ(θ))

ϕ(θ)
=

ϕ(R(θ))

ϕ(θ)g(θ)
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for θ ∈ S1 − A. Thus, log ϕ(R(θ))
ϕ(θ) has the integrable minorant logDf(ϕ(θ)) + log g(θ). Using

Lemma 3.4, it follows that log ϕ(R(θ))
ϕ(θ) is integrable and

R
S1 log

ϕ(R(θ))
ϕ(θ) dθ = 0. Hence

Z
S1
logDf(ϕ(θ))dθ +

Z
S1
log g(θ)dθ <

Z
S1
log

ϕ(R(θ))

ϕ(θ)
dθ = 0.

This proves λ(θ, ϕ(θ)) < 0 for a.e. θ ∈ S1.

Remark 3.4. Since λ(ϕ(θ), θ) < 0 for a.e. θ ∈ S1, there exists a δθ > 0 such that for every
(θ, x) ∈ Bδθ(θ, ϕ(θ)) := {(θ, x) ∈ {θ} × I : |x− ϕ(θ)| < δθ} we have

|π2 ◦ Fn(θ, x)− ϕ(Rn(θ))| → 0

as n → ∞. See [20] for a proof.

By Remark 3.4, µϕ is an SRB measure of the map F .

4. Topological properties of the invariant graph

Denote by A the topological closure of a set A.

Theorem 4.1. Gr(ϕ) contains S1 × {0}. For a.e. θ ∈ S1 and all x ∈ I, we have ω(x, θ) = B+,
where ω(x, θ) is the ω-limit set of the point (θ, x).

Proof. S1 × {0} ⊂ Gr(ϕ) follows from the fact that ϕ(θ) = 0 for a dense set of S1.
Denote by A the set {θ ∈ S1 : ϕ(θ) > 0}. For θ ∈ A and x ∈ I, ω(θ, x) is a non-empty

compact invariant set of F . Then π1(ω(θ, x)) is a compact subset of S1, which is invariant under
the irrational rotation R. As it is non-empty, it must be the whole circle (minimality of R). Let

γ+(θ) := sup{x ∈ [0,M ] : (θ, x) ∈ ω(θ, x)},
γ−(θ) := inf{x ∈ [0,M ] : (θ, x) ∈ ω(θ, x)}.

Then by the monotonicity and continuity of the fibre maps, γ+ and γ− are invariant graph
of F . As ω(θ, x) is closed we get lim supθ′→θ γ

+(θ′) ≤ γ+(θ), which means that γ+ is upper
semi-continuous. In the same way γ− is lower semi-continuous. This also gives the measurability
of the two graphs. By Theorem 3.2 there is no semi-continuous function in between 0 and ϕ.
Therefore, we get γ+ = ϕ and γ− = 0, and hence Gr(ϕ) ⊂ ω(θ, x). On the other hand, by
Remark 3.4 for each θ ∈ S1 with λ(ϕ(θ), θ) < 0 there is an open neighborhood Bδθ of (θ, ϕ(θ))
in the fibre {θ} × I such that |xn − ϕ(θn)| → 0 as as n → ∞ for all (θ, x) ∈ Bδθ . This together
with the fact that Gr(ϕ) ⊂ ω(θ, x) imply that ω(x, θ) = Gr(ϕ).

Remark 4.1. Since K := ∩n≥0F
n(S1 × [0,M ]) is pinched and supKθ = ϕ(θ) is a.e. discontin-

uous and inf Kθ = 0, by Corollary 4.5 of [25] F has sensitive dependence on initial conditions
on S1 × [0,M ].

5. Numerical results

Take ω =
√
5−1
2 and the initial condition (θ, x) = (0.01, 0.01). In the plot, we discard the

first 105 images and plot the next 106 ones. For a = 2.2 and b = 0.5, the phase portrait of the
map F is shown in Fig 1(a). This agrees fully with the mathematical results. In the previous
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(a) a = 2.2, b = 0.5

(b) a = 2.2, b = −0.5

Figure 1: The attractors of the map F .

proofs the hypothesis Df(x) < f(x)
x for x > 1

2 plays an important role. When a > 2 and b < 0,
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f is a unimodal map. In such case, showing a complete agreement we conjecture that F has an
SNA provided |Df(x)| < f(x)

x for 1
2 < x ≤ f(1/2). See Fig 1(b).

6. Conclusions

Quasiperiodically driven dynamical systems are, on general grounds, expected to display
regimes wherein the dynamics is on SNAs. However, there are relatively few rigorous results
available. The most extensively studied cases all have a skew-product dynamical structure. In
this paper we consider a family of quasiperiodically forced piecewise linear maps. We prove
that, for some set of parameter values, there exists a unique graph of a semi-continuous function
which is invariant, discontinuous almost everywhere and attracts almost all orbits. Moreover,
the Lyapunov exponent in the x direction is negative. Therefore, the invariant graph is an SNA.
Though the proof is made for a concrete family, many of the arguments can be applied to other
families.
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