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Abstract

Background: Plague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa,
with the island of Madagascar reporting almost one third of human cases worldwide. Plague’s occurrence is affected by
local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation
(ENSO). The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate
phenomenon, the Indian Ocean Dipole (IOD). It is known that ENSO and the IOD interact as drivers of disease. Yet the
impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to
the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on
plague in Madagascar.

Methodology/principal findings: We use a forty-eight year monthly time-series of reported human plague cases from 1960
to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations
between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature
in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more
by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship
between plague anomalies and an increase in the intensity of ENSO events and precipitation.

Conclusions/significance: This work widens the understanding of how climate factors acting over different temporal scales
can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in
Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the
complex and changing relationship between climate factors and plague in Madagascar.
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Introduction

Plague is a vector-borne, highly virulent zoonotic disease

present today in the Americas, Asia and Africa. It is caused by

infection with the bacterium Yersinia pestis, which triggers serious

illness with up to seventy percent case fatality in human

populations if left untreated. The infection is easily treated with

antibiotics, yet these are often difficult to access in time in low

income settings.

The increasing frequency of the disease in many parts of the

world [1,2,3] has been partly attributed to changes in climate [4].

Presently Africa accounts for more than ninety percent of all

human plague cases reported worldwide. Within African coun-

tries, the majority of cases are reported from Madagascar and the

Democratic Republic of Congo [5], with Madagascar reporting

almost one third of human cases worldwide. Plague is endemic in

the highland region of Madagascar and more than one hundred

human cases are reported every year, though the true number of

cases is likely to be higher. The reasons for such pronounced foci

in these areas include extreme poverty and lack of health

infrastructure, as well as unique climate features.

Yersinia pestis bacteria are transmitted between rodent hosts via

their fleas; humans are accidentally infected when in contact with

rodent fleas or infected animal tissue. Like many vector-borne

diseases, plague’s occurrence varies temporally and spatially on a

variety of scales. The primary mechanisms directing this

heterogeneity are thought to be driven by local variation in

factors such as temperature and rainfall. For example temperature
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influences the rate of development of the bacterium in the flea, and

the survival and development times of the fleas themselves, while

precipitation affects food availability and thus fecundity of the

rodent host [6], as well as having impacts on habitat characteristics

and human-rodent contact (via rodent responses to flooding).

Seasonal climate in many parts of the world is affected by the El

Niño Southern Oscillation (ENSO), a periodic fluctuation in sea

surface temperature and air pressure in the Pacific Ocean which

modifies the general flow of the atmosphere in the tropics. Warm

(cold) phases of the ENSO, called El Niño (La Niña), are

associated with a warming (cooling) of the tropical troposphere [7].

ENSO impacts on the climate of Madagascar in a manner similar

to that observed over southern Africa by Nicholson and Selato [8].

In general, an austral spring-summer El Niño starting from

September causes warmer and drier conditions than usual during

the austral summer-autumn four to seven months later, and cooler

and wetter conditions eight to twelve months later. La Niña has

the opposite effect, leading to wetter and cooler, followed by drier

and warmer, conditions than average.

The Indian Ocean Dipole (IOD) [9] is a periodic fluctuation in

the relative sea surface temperatures of the western and eastern

parts of the Indian Ocean. As the western pole of the IOD is

located near to Madagascar, IOD events affect the convection

locally and in turn influence the climate of the island. Thus, a

positive IOD event is associated with warmer and wetter

conditions over the island, while the opposite is true for a negative

event [9].

We present here the first analysis of the effects of ENSO and

IOD on the temporal distribution of confirmed human plague

cases in Madagascar. We use a forty-eight year time-series from

1960–2008. First we identified periods of anomalous incidence

and evaluated their occurrence against any coinciding trends of

various climate variables. Second we use wavelets to investigate

the strength and direction of association between the incidence of

plague and ENSO, IOD, temperature and precipitation. Wavelet

analysis allows detection of relationships between two time series

in time-frequency space. Our approach uses analytical methods

which allow a more thorough analysis than the usual identification

of long-term unidirectional trends.

Methods

Plague incidence data
Data on all confirmed human plague cases reported in

Madagascar from 1956 to 2008 were made available by the

World Health Organisation Plague Reference Laboratory of the

Institut Pasteur de Madagascar. A time-series of monthly

incidence from 1960 to 2008 was created using the date of onset

of symptoms for each confirmed bubonic, pneumonic or

septicaemic case, 5-yearly human population growth estimates

from the United Nations and the last population census from 1993

[10]. Incidence was calculated for each month using the number

of cases, multiplying it by 100,000 for scale and dividing it by the

relevant time-specific population estimate. Data from before 1960

was available but was omitted due to vaccination campaigns which

ceased in 1959. For effective immunisation, people have to be re-

vaccinated yearly. Malaria prevention programs, which occur in

some areas of Madagascar and use indoor residual spraying of

insecticide, have the potential to impact flea populations.

However, this could not be quantified or corrected for.

Plague seasonality and incidence anomalies. The sea-

sonality of human plague incidence was obtained by taking the

average monthly values over all years to get monthly means.

Monthly plague incidence anomalies were obtained for the entire

time series by applying a four year moving average for each month

to the human incidence data and subtracting it from the original

incidence value to establish the deviation of the data point from

the mean value.

Explanatory variable datasets
Re-calculated climate variables were downloaded via the

climate explorer website [11] based on the National Center for

Environmental Prediction (NCEP) and the National Center for

Atmospheric Research (NCAR) reanalysis data [12] or the Centre

of Environmental Data Archival website (precipitation) [13]. For

the El Niño Southern Oscillation variable the index of the Japan

Meteorological Agency (JMA) was retrieved from the Centre for

Ocean-Atmospheric Prediction Studies website [14]. Monthly

surface temperature and precipitation anomalies for the geo-

graphical area of Madagascar (42.18uE–49.68uE; 24.76uS-

11.42uS) for the period 1960–2008 were used to describe seasonal

cycles and in wavelet analyses.

Temperature and precipitation anomalies and

seasonality. The seasonal cycle of temperature and precipita-

tion variables was obtained by averaging monthly values over the

entire study period based on the CRUTS3.1 dataset [13].

Temperature and precipitation anomalies were produced by

calculating the mean for each calendar month across the whole

time-series and subtracting it from the mean value for each

particular month based on the NCEP-NCAR reanalysis [12].

El Niño Southern Oscillation. The ENSO phenomenon is

represented here as spatially averaged monthly sea surface

temperature (SST) anomalies over the tropical Pacific (4uN to

4uS and 150uW to 90uW) with an applied 5-month running mean

to smooth out possible intra-seasonal variations for the period

1960–2010.

The Indian Ocean Dipole. The IOD is represented here by

the Dipole Mode Index (DMI) which is the difference between the

Western Tropical Indian Ocean (50uE–70uE and 10uS-10uN) sea-

surface temperature index and the South-eastern Tropical Indian

Ocean (90uE–110uE and 10uS-0uN) sea-surface temperature

index. Here too, a 5-month running mean was applied.

Standardisation of anomaly time-series. Anomaly time-

series of all explanatory variables and plague incidence anomalies

Author Summary

Plague is a vector-borne bacterial infection with rodents
and their fleas as its principal hosts. Transmission to
humans occurs via the bite of an infected flea. In the
highlands of Madagascar, plague is endemic and more
than one hundred human cases are reported every year.
Global climate is known to affect many infectious diseases
and has been shown to affect plague incidence in other
areas of the world. The ENSO and the IOD are global
climate drivers affecting rainfall and temperature in
Madagascar. Our study investigates the effect of global
climate drivers on human plague incidence on the island.
We found a link between ENSO, IOD, temperature and
precipitation and plague incidence throughout the 48-year
time-series although it was not constant over time. The
correlation between ENSO and plague turned from weakly
positive to strongly negative and then to positive, and the
association with the IOD became stronger with time. We
demonstrate that during periods of high ENSO intensity,
plague incidence is likely to increase via ENSO’s impact on
temperature and precipitation. This shows that climate
indices can be a tool to help predict human plague
incidence.

Climate and Human Plague in Madagascar
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were standardised by dividing each monthly value by the

maximum of the absolute value across the whole time period to

allow for graphical comparison.

Plague anomaly analysis
A plague incidence anomaly of .0.1 or ,20.1 was used to

define months of anomalously high/low plague incidence respec-

tively. When months of anomalously high or low plague incidence

were sequential or less than 3 months apart, they were considered

to be part of the same plague event; otherwise, they were treated as

separate plague events. A plague event could therefore be for a

single month or for several months. For plague events of .1

month duration, the single month which had the maximum or

minimum incidence anomaly (depending on whether it was a high

or low incidence event) was identified.

We tested for three types of association between plague

incidence anomaly and the explanatory variables: (i) using Analysis

of Variance, to test for associations between positive or negative

plague anomalies and the value of the explanatory variables (JMA,

IOD, temperature, precipitation) in the month or peak month of a

plague event; (ii) using Analysis of Variance, to test for associations

between positive or negative plague anomalies and the mean value

of the explanatory variable for the year centred on the month or

peak month of a plague event; (iii) using Fisher Exact Test, to test

for associations between positive or negative plague anomalies and

positive or negative trends in the explanatory variables for the year

centred on the month or peak month of a plague event. For the

third analysis, we obtained the sign of the linear regression

coefficient for the trend of the 12 monthly values (with the 7th

month as the peak plague anomaly month) and use this to

determine if the explanatory variable was tending to increase

(positive coefficient), or decrease (negative coefficient), at the time

of a plague event.

Wavelet analysis
Time-series analysis using wavelets was undertaken on ENSO/

IOD/temperature/precipitation and human plague incidence

anomaly datasets spanning the 48-year study period. The objective

was to establish any associations in time between plague and the

climate variables, and, if present, their direction and periodicity.

Wavelet analysis [15,16] is a powerful means to identify statistical

relationships between signals, and is especially useful when there is

non-stationarity; i.e. the periodicity changes with time [15,17].

Wavelet analysis is a widely recognised tool to investigate temporal

dynamics of infectious diseases [18,19,20,21,22], but has never

been used to study the relationship between climate variables and

plague in Madagascar.

To detect temporal patterns, their variations and coherence, we

applied wavelet analysis according to the methods of Grinsted [17]

using the software R v. 2.15 [23] and Matlab 8.0 v. R2012a with

Wavelet Toolbox [24].

The following procedure was used. First, the five variables of

interest - precipitation, temperature, ENSO, IOD and plague

incidence - were tested for normality, and where necessary,

normalised using a Johnson transformation [25]. A low-pass

Gaussian filter was used to remove the intra-seasonal variability in

the time-series. Second, the stationarity or non-stationarity of each

variable was determined using continuous wavelet decomposition.

Each time-series was decomposed and the continuous wavelet

transform plot was examined to confirm the presence of high

significant variance and to establish its periodicity and any changes

within the time-series.

Third, the strength of any relationship between certain pairs

of variables was investigated using cross-wavelet analysis, which

identifies high common power between two signals (time

frames where both signals vary together). The direction of the

vectors reveals information about the phase relationship (i.e.

time-lags) between two time-series. A vector pointing to the

right indicates the time-series cycle in-phase and a vector to the

left indicates cycling in anti-phase. Thus, any red/yellow areas

within figures show periods during which the signals cycle with

high common power with the vectors signifying the phase and

the time lag.

Lastly, the presence and direction of any relationship (positive/

negative) between variables was established using wavelet coher-

ency analysis, with vectors again indicating the direction of

association and time lag. Here, a vector pointing to the right

indicates positive association and a vector to the left indicates

negative association. Downward or upward pointing vectors reveal

information about which time-series leads. Wavelet coherence can

be understood as an association between signals in the power

spectrum space. It identifies regions of the power-space spectrum

where vectors point in one direction.

For both cross-wavelet and wavelet coherence analysis, infor-

mation on time-lags between the time-series is revealed by the

direction of the vectors. If two signals cycle with significant

common power in cross-wavelet analysis or show association in

wavelet coherence analysis with a 2 year periodicity, a right-

pointing vector means they are cycling in phase; a left pointing

vector means they are cycling in anti-phase (one lags the other by

half the periodicity, i.e. 1 year); a downward pointing vector means

the first signal leads the second signal by one quarter of the

periodicity (half the difference between in-phase and anti-phase,

i.e. 6 months; and so forth) while an upward pointing vector means

the second signal leads the first signal by one quarter periodicity.

A cone of influence (COI) was applied to the cross-wavelet and

wavelet coherence transforms to mark the limits of the time scale

within which signal behaviour can be discussed with confidence.

The statistical significance level of the wavelet coherence is

estimated using Monte Carlo methods [16]. Further information

about these methods is provided by Grinsted et al. [17].

Results

Plague incidence and seasonality
Plague cases occur year-round but there is strong seasonality,

with most cases occurring from September to March (the austral

summer) and reaching a peak from November to January

(Figure 1A). The largest inter-annual variability in plague cases

occurs from October to December. The seasonal cycles of

temperature and rainfall show highest values from November to

April, and December to March respectively (Figure 1B and 1C).

December to March are also the months with the largest inter-

annual range in rainfall. The inter-annual range in temperature

values is approximately equal in all months. Thus, the warm, wet

season is the time of the highest plague incidence and greatest

variation in incidence.

Anomaly time-series. Annual anomalies in plague incidence

were mostly small (,0.1) but in some years were as high as 0.3 or

as low as 20.4 (Figure 2A). Both the frequency and magnitude of

anomalies appears to have increased in the last two decades.

Notably, despite filtering the data, there remains a trend towards

higher variance later in the time-series. An increase in the number

of confirmed plague cases can also be seen towards the end of the

incidence time-series (Figure S1).

In the ENSO anomaly time-series (JMA) the usual annual range

of positive and negative events reaches from just above 1.0 in El

Niño years to 21.0 in La Niña years respectively. At the beginning

Climate and Human Plague in Madagascar
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of the time-series from 1960 to 1975 La Niña events dominate

with only one strong El Niño event in 1972. Thereafter in the time

period 1976 to 1981, no strong anomalies occur until in 1982/83

the second strongest positive anomaly of the time-series occurs,

with a value of ,2.8. The early 1990s are dominated by moderate

positive anomalies until after a weak negative period in 1995 and

1996 the strongest El Niño on record can be seen in 1997/98

reaching a value of 3.2 (Figure 2B).

The IOD index (DMI) anomaly series shows an unusually high

positive range in 1961/62 followed by alternating positive and

negative events of similar ranges ($2.2; #21.4). A positive event

in 1994/95, reaching a value of 2.8 precedes a negative anomaly

value of 22.8 in the following year. During the period of the

strongest El Niño event in the time-series (1997/98), the IOD also

shows its largest positive range with an anomaly value of 3.2

(Figure S2).

The anomalies for temperature show negative ranges until the

late 1970s and early 1980s after which the time-series is dominated

by positive values (Figure S3). In other words, there has been a

gradual increase of Madagascar’s temperatures.

Precipitation shows regularly alternating negative and positive

ranges in fast succession. Positive anomalies are more frequent

than negative anomalies from mid-1978 until 1985, and again

from 1993 until the end of the time-series (Figure S4).

Figure 1. Seasonality of human plague incidence, temperature and rainfall. (A) Seasonal plague incidence cycle in Madagascar for the
period 1960–2008 (B) Seasonal temperature cycle over Madagascar for the period 1960–2008 (bars) based on the CRUTS3.1 dataset [24]. (C) Seasonal
rainfall cycle over Madagascar for the period 1960–2008 (bars) based on the CRUTS3.1 dataset. The vertical lines depict the minimum/maximum
observed over the period for a given month.
doi:10.1371/journal.pntd.0003155.g001

Figure 2. Monthly anomaly time-series of human plague incidence and JMA (ENSO index). (A) Monthly plague incidence anomalies in
Madagascar for the period 1960–2008 (B) Monthly JMA index for the period 1960–2008. Positive values are depicted in red, negative values are blue.
doi:10.1371/journal.pntd.0003155.g002
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Graphical comparison of time-series
Comparison of anomaly time series. From the 1960s to

the mid-1970s, plague incidence anomalies precede ENSO

anomalies by about a quarter period (Figure 3). For the 1980s

the indices appear to be in anti-phase. However, from the mid-

1990s until almost the end of the time series ENSO and plague

incidence seem to be in phase. The IOD and plague incidence

anomaly time-series show no evident pattern until the period from

the mid-1990s to 2007 when they vary in-phase (Figure S5).

Temperature anomalies and plague incidence anomalies appear

to vary anti-phase from the 1960s to early 1990 (Figure S6). In

later years temperature seems to lag incidence by about 6 months.

Precipitation anomalies and plague incidence anomalies do not

show any clear pattern except in the early 2000s when they seem

to vary in-phase (Figure S7).

No clear patterns are apparent between ENSO and precipitation

or IOD and precipitation by graphical comparison of the anomaly

time-series (Figure S8 and Figure S9). However, ENSO seems to

lead temperature anomalies by about a year throughout the time-

series (Figure S8). For IOD and temperature there is an in-phase

relationship, with IOD leading by about 6 months until the early

1990s when the signals start to vary in anti-phase (Figure S9).

Association between positive/negative plague incidence

anomalies and explanatory variables. We tested this asso-

ciation as follows. Table 1 lists 29 periods of anomalously low and

high incidence identified from Figure 2A. Of 12 negative plague

anomalies (anomaly ,20.1), 9 are associated with decreasing

JMA and only 3 are associated with increasing JMA. By contrast,

of 17 positive plague anomalies (anomaly .0.1), only 7 are

associated with decreasing JMA and 11 are associated with

increasing JMA. In other words, negative plague anomalies tend to

occur during periods of decreasing JMA (strengthening La Niña),

and positive plague anomalies tend to occur during periods of

increasing JMA (strengthening El Niño). This association is

significant at the 90% level (Fisher Exact Test, P = 0.07). We

detect no equivalent associations between plague incidence

anomaly and the trend in the anomalies of IOD, precipitation

or temperature.

One-Way ANOVA was used to test for associations between

positive or negative plague anomalies and the value of JMA, IOD,

temperature and precipitation in the anomaly month, and the

average of these variables in the year centred on the anomaly

month. No associations were detected for JMA, IOD or

temperature; however, positive plague anomalies were significantly

Figure 3. 1D plot of the monthly JMA index (black) and the monthly filtered plague incidence anomalies (red) for the period 1960–
2008.
doi:10.1371/journal.pntd.0003155.g003
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associated with higher average rainfall, and negative plague

anomalies with lower average rainfall (positive/negative plague

anomalies, mean rainfall anomaly of year = 0.137/20.120;

F1,28 = 6.01, P = 0.021).

These results suggest that positive plague anomalies (times of

higher than usual plague incidence) are in association with

increasing JMA index and higher than usual rainfall.

Wavelet analyses
Continuous wavelet transform of plague incidence

anomalies. The continuous wavelet power spectrum is shown in

Figure 4B. There is good correspondence between large variance in

the continuous wavelet power spectrum and the incidence anomalies

time-series in Figure 4A. Figure 4B shows non-stationarity of the

incidence series and confirms the presence of some significant

variance around 1970 and highly significant variance from 1985

onwards, as indicated by the yellow-red areas. This variance changes

periodicity from 2 to 4 years in around 1970 to 1.5 to 8 years.

Figure 4C shows the integrated magnitude of the periodicities

identified in Figure 4B with a peak centred around 6–7 years.

Continuous wavelet transforms of explanatory

variables. The wavelet power spectrum for the ENSO index

(JMA) depicts high periodic variance in the 2–5 year band from

1960 onwards, indicating significant 2–5 year periodicity in sea

surface temperatures. This variation slowly shifts to a 2–7 year

periodicity by the end of the time-series (Figure S10).

The wavelet power spectrum for the IOD index (DMI) shows

significant periodic variance in the 1.5 to 6 year band with

increased significance from 1990 onwards (Figure S11). The

wavelet power spectrum for the temperature anomaly data set

shows a band of significant variance throughout the time-series

with a periodicity of 8–12 years starting in the early 1970s.

Additionally, significant periods of variance are present during the

first 30 years from 1960 to 1990. Here the periodicity shifts from a

range of 1 to 7 years until 1972 to a slightly smaller range of 3 to 5

years until 2000 (Figure S12).

The wavelet power spectrum for the precipitation anomaly data

set shows significant, yet weak variance in the 1–2 year band,

denoting inter-annual variability throughout much of the time-

series, but no significant times of variance at higher periods (Figure

S13).

Influence of ENSO on plague incidence anomalies. Cross-

wavelet analysis (Figure 5A) indicates a high covariance between

the power spectrums of ENSO and plague incidence anomalies

Table 1. Periods of anomalously low and high incidence and the associated trend in ENSO (JMA) for the period 1960–2008.

Period of anomaly Month of greatest anomaly Incidence anomaly Sign of JMA trend

Nov 1962 Nov 0.2741 +

Jan 1969 Jan 0.2942 +

Dec 1969 Dec 20.1686 2

Jan 1971 Jan 20.1806 +

Nov 1971 Nov 0.1633 +

Feb 1973 Feb 20.1111 2

Nov 1973 Nov 20.1230 2

Jan 1981 Jan 0.1029 2

Jan 1985 Jan 0.1609 2

Jan 1988 Jan 20.1335 2

Feb 1989 Feb 0.1676 +

Jan 1990 Jan 0.3022 +

Aug 1991 Aug 0.1026 +

Dec 1991 Dec 20.1065 +

Jan 1995 Jan 0.1716 2

Sep 1995 Sep 0.2383 2

Feb 1997 Feb 0.1109 +

Oct 1997 Oct 0.3042 +

Oct 1998 Oct 20.1306 2

Jan 1999 Jan 0.1487 2

Oct 1999 Oct 20.1297 2

Dec 2000 Dec 0.1115 +

Dec 2001 Dec 20.2043 +

Jan 2003 Jan 0.2084 2

Feb 2004 Feb 0.2130 2

Nov 2004 Nov 0.3534 +

Mar 2005 Mar 20.1115 2

Nov 2005 Nov 20.4003 2

Nov 2006 Nov 20.2217 2

doi:10.1371/journal.pntd.0003155.t001
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throughout the time-series (red areas). The signals vary together

with a 2–5 to 2–8 year cycle.

The wavelet coherence plot (Figure 5B) reveals that during parts

of the time series the ENSO signal is strongly associated with

plague incidence anomalies. However, the nature of this associ-

ation varies in terms of time lag and direction. From the 1960s to

the mid-1970s, there is a strong coherence between ENSO and

plague incidence in the 2–5 year periodicity band. As in the cross-

wavelet the vectors are pointing up, confirming plague leading

ENSO by 9 months. In the 1980s, both signals show a significant

coherence in the 3–5 year band. Left pointing vectors indicate that

ENSO and plague incidence anomalies are in anti-phase

Figure 4. Plague incidence anomalies data. (A) Monthly human plague incidence anomalies from 1960 to 2008 for Madagascar. (B) Associated
continuous wavelet power spectrum. The dark contours denote power significance at the 95% level. (C) Global wavelet spectrum. A Gaussian filter
has been applied before calculating the continuous wavelet power spectrum and the global spectrum.
doi:10.1371/journal.pntd.0003155.g004

Figure 5. Plague incidence anomalies and ENSO index time-series wavelets. The vectors indicate the phase difference between the time-
series. A vector pointing to the right side indicates an in-phase relationship and for positive correlation in the wavelet coherence plot whilst a vector
to the left stands for anti-phase and for negative correlation in the wavelet coherence plot. The x-axis refers to time. The y-axis is the wavelet period in
years. The thick black contour designates the 5% significance level against red noise. The cone of influence (COI) where edge effects might distort the
results is shown as a lighter shade. (A) Cross-wavelet plot showing common spectrum power of ENSO and plague incidence anomalies time-series.
Red denotes areas of high common power, blue of low common power. (B) Wavelet transform coherency plot of ENSO and plague incidence
anomalies time-series showing periods of coherency between the signals. Red denotes areas of high coherency, blue of low coherency.
doi:10.1371/journal.pntd.0003155.g005
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(negatively correlated) over this period. In the final period of

significant correlation, which lasts from the mid-1990s until almost

the end, ENSO is strongly associated with plague incidence

anomalies at a periodicity of about 1–2 years. The vectors denote

that both time series are locked in phase (positively correlated) over

this period.

Influence of the IOD on plague incidence

anomalies. Cross wavelet analysis (Figure 6A) shows high

common power between plague incidence anomaly and the

IOD in the 2–7 year period band throughout the time-series (red

areas). However, the phase relationship between the signals varies

greatly depending on the periodicity until the early 1980s when

vectors point to the left at a 3–5 year band indicating the signals

cycle in anti-phase. From 1995 this changes to an in-phase

relationship between the IOD and plague incidence with a

periodicity of 1.5 to 4.5 years.

The associated wavelet coherence plot (Figure 6B) confirms a

short significant period of association around 1963/65 of negative

correlation with a 1–2 year periodicity. Around the 7–12 year

band another period of association is seen from the early 1990s to

2000 where the IOD is leading plague by 9 months (vectors

pointing downward). In the late 1990s a positive association

between anomalous plague incidence and the IOD emerges for a

short time. This link cycles with a 1 to 2.5 year periodicity. Lastly,

from 2003 to 2005, the IOD is lagging plague by around 3 months

with a 1–2 year periodicity.

Influence of temperature and precipitation anomalies on

plague incidence anomalies. The cross-wavelet analyses show

periods of common power of plague incidence anomalies with

temperature anomalies throughout the time-series (Figures 7A).

The signals cycle together with a 2–6 year periodicity and are anti-

phase locked at the 4 year band extending throughout the time-

series. Interestingly a second period of common power emerges at

the end of the 1980 until the end of the time-series with a 7–10

year periodicity showing in-phase cycling of temperature and

plague incidence at the edge of the COI. The coherency analysis

(Figure 7B) shows a strong association between temperature and

incidence anomalies from the 1960s to early 1990 with a 2–4 year

period, followed by an association at a higher periodicity of 24–30

months from the mid 1990s until the end. Until the 1990s both

signals appear to be almost in anti-phase indicating negative

correlation. Vectors are pointing left and left-upward so the signals

vary in anti-phase and with a 4–5 month lag respectively. After the

1990s a strong coherence around the 2 year band emerges with

vectors denoting that the temperature anomaly series lags the

plague incidence series by about 6 months.

For precipitation the cross-wavelet analysis reveals significant

common power from the 1980s onwards with increasing

bandwidth from 4 years to 2–8 years cycling mostly in-phase

(Figure 8A). The associated wavelet coherence plot only shows

short intermittent periods of coherency between signals until the

mid 1990 when precipitation anomalies and plague incidence

anomalies show significant positive association at the 7 year band

extending to a 30 months–8 year band by the end of the time-

series (Figure 8B).

Discussion

It is widely accepted that ENSO and IOD are dominant drivers

of earth’s year-to-year climate variability, and have wide-ranging

implications for public health, including influencing the periodicity

of many infectious diseases [26,27,28,29,30,31]. This study is the

first, however, to demonstrate an influence of global climate

drivers on plague incidence in Madagascar.

The results demonstrate a strong association between ENSO and

plague in Madagascar, a country where about one third of the

world’s human cases occur and there is still significant mortality from

the disease. For much of the time series ENSO cycles on a 2–5 year

time scale (later 2–7 years). This appears to lead to a similar

periodicity (also changing with time) in the occurrence of plague.

However, the association is non-stationary: early in the time series,

plague leads ENSO by a few months; later they are anti-phase; and

at the end of the time series they are in phase. An analysis of the

climate conditions around the time of high and low plague anomalies

found evidence for larger plague outbreaks being associated with

increasing ENSO signal (i.e. increasing El Niño conditions).

Figure 6. Plague incidence anomalies and IOD index time-series wavelets. The vectors indicate the phase difference between the time-
series. A vector pointing to the right side indicates an in-phase relationship and for positive correlation in the wavelet coherence plot whilst a vector
to the left stands for anti-phase and for negative correlation in the wavelet coherence plot. The x-axis refers to time. The y-axis is the wavelet period in
years. The thick black contour designates the 5% significance level against red noise. The cone of influence (COI) where edge effects might distort the
results is shown as a lighter shade. (A) Cross-wavelet plot showing common spectrum power of ENSO and plague incidence anomalies time-series.
Red denotes areas of high common power, blue of low common power. (B) Wavelet transform coherency plot of ENSO and plague incidence
anomalies time-series showing periods of coherency between the signals. Red denotes areas of high coherency, blue of low coherency.
doi:10.1371/journal.pntd.0003155.g006
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Our analyses find some association, also non-stationary,

between IOD and plague. This association is less strong, however,

than the association of ENSO and plague.

ENSO and IOD are unlikely to directly affect plague in

Madagascar. Instead they influence local climate which in turn

affects the disease. In this study we demonstrate that ENSO and

IOD influence temperature in Madagascar and that temperature

cycles are associated with plague cycles. Furthermore, the pattern

of association between ENSO and temperature in terms of

changes in lag and periodicity is similar to the pattern of

association between the cycles of plague and temperature. We did

not find a clear effect of ENSO or IOD on precipitation; and we

found only limited evidence for association between cycles of

precipitation and plague. However, while ENSO and IOD may

have limited influence on precipitation, we nevertheless found

that larger than usual plague outbreaks were significantly

Figure 7. Temperature anomalies and plague incidence anomalies time-series wavelets. The vectors indicate the phase difference
between the time-series. A vector pointing to the right side indicates an in-phase relationship and for positive correlation in the wavelet coherence
plot whilst a vector to the left stands for anti-phase and for negative correlation in the wavelet coherence plot. The x-axis refers to time. The y-axis is
the wavelet period in years. The thick black contour designates the 5% significance level against red noise. The cone of influence (COI) where edge
effects might distort the results is shown as a lighter shade. (A) Cross-wavelet plot showing common spectrum power of ENSO and plague incidence
anomalies time-series. Red denotes areas of high common power, blue of low common power. (B) Wavelet transform coherency plot of ENSO and
plague incidence anomalies time-series showing periods of coherency between the signals. Red denotes areas of high coherency, blue of low
coherency.
doi:10.1371/journal.pntd.0003155.g007

Figure 8. Precipitation anomalies and plague incidence anomalies time-series wavelets. The vectors indicate the phase difference
between the time-series. A vector pointing to the right side indicates an in-phase relationship and for positive correlation in the wavelet coherence
plot whilst a vector to the left stands for anti-phase and for negative correlation in the wavelet coherence plot. The x-axis refers to time. The y-axis is
the wavelet period in years. The thick black contour designates the 5% significance level against red noise. The cone of influence (COI) where edge
effects might distort the results is shown as a lighter shade. (A) Cross-wavelet plot showing common spectrum power of ENSO and plague incidence
anomalies time-series. Red denotes areas of high common power, blue of low common power. (B) Wavelet transform coherency plot of ENSO and
plague incidence anomalies time-series showing periods of coherency between the signals. Red denotes areas of high coherency, blue of low
coherency.
doi:10.1371/journal.pntd.0003155.g008
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associated with rainier than usual years. Hence, the effects of

ENSO and IOD on plague appear to be mediated more by

temperature, but precipitation also undoubtedly influences plague

in Madagascar.

During the late 1990s, ENSO events became progressively

stronger, increasing in both frequency and amplitude. From 1976,

a shift towards warmer and wetter conditions in the tropical Pacific

was detected, with widespread climatic and ecological conse-

quences [32]. Thus, changes in the association between ENSO,

sea surface temperature and several diseases may be explained by

their modulation by the decadal background and changes in

variability. The analysis of ENSO and its association with plague

incidence revealed a relationship between plague anomalies and

an increase in the intensity of ENSO events and precipitation.

In our study the correlation between ENSO and plague turned

from weakly positive to strongly negative and finally to positive

again while the association between incidence and the IOD

changed from negative to positive and became stronger with time.

This non-stationarity is likely caused by changes to the lags in the

response of Madagascar’s climate to ENSO/IOD, or changes to

the lags in the response of plague to local climatic conditions. The

epidemiology of plague is sufficiently complex that the lag between

climate and plague incidence may be long; as, for example, rodent

and flea populations respond to favourable conditions. Thus,

cycling of ENSO and plague in phase during the later part of the

time-series does not necessarily imply that plague was responding

immediately to ENSO. Instead, it could be that its response is an

entire cycle behind (1–2 years). Equally, at first sight it seems hard

to reconcile that ENSO affects plague, and yet in the early part of

the time series plague leads (comes before) ENSO. It is possible,

however, that plague is actually most of a cycle behind ENSO.

The plague system is highly seasonal in the plague focus area

which suggests that the dry and cold months from May to

September are not favourable for transmission. However, there is

a changing relationship between ENSO and its effects on

temperature and in turn on plague. Until the 1980s ENSO affects

temperature positively on the island 12 to 18 months later, while

temperature is associated negatively with plague. From then

onwards until the end of the time-series, the temperature response

to ENSO accelerates to 8–9 months. This shift in response is most

likely related to changes in the frequency and magnitude of ENSO

events and a warmer decadal background as shown by the overall

increase in temperature.

At times ENSO and IOD may interact in their effects on

plague. During the first phase of positive association between

ENSO and incidence from 1960 to 1975, a period dominated by

La Niña events, notable plague outbreaks are related to El Niño

causing warmer than usual temperatures during a time of cooler

and drier conditions usually brought by La Niña. In the second

phase during the 1980s, plague is negatively associated with

ENSO during a time when the temperature response to ENSO

accelerates, changing the timing of an increase in temperature.

Finally, from 1995 onwards, the intensity and magnitude of ENSO

events increases drastically and plague shows positive correlation

with ENSO again. At the same time the IOD starts impacting on

plague probably via its effects on temperature 6 months later and

almost immediate effects on rainfall. Together, positive ENSO and

IOD events are creating warmer and wetter conditions. This is

exemplified by 1997 which saw one of the largest positive plague

incidence anomalies, and was the year with the strongest El Niño

and positive IOD in the time-series.

The intensity of ENSO and IOD events and corresponding

increases in temperature, as well as increases in rainfall, show

strong associations with an increase in plague incidence in

Madagascar. The seasonality of plague confirms the strong link

between disease transmission and optimal environmental condi-

tions, via their effects on vector and host. Higher temperature and

increased precipitation during the cold and dry season in

Madagascar are likely to increase flea survival and shorten flea

development time [33,34,35,36]. An ENSO event influencing the

temperature around this time of year would therefore create more

favourable conditions for plague transmission.

Changes in the climate–disease relationship over time, as

detected here, have been found for certain other diseases like

cholera [37], most likely modulated by long-term climate change

effects and their influence on epidemiological systems.

Plague incidence has also been linked to global climate in other

parts of the world, and several studies have hypothesized about the

potential mechanisms. Temperature thresholds exist for pathogen

survival and transmission, and temperature and precipitation

affect the environment of both vector and rodent host. In China,

an increased rate of human plague at the province level was

associated with the Southern Oscillation Index and Sea Surface

Temperature of the tropic Pacific east of the equator [38].

Similarly, inter-annual variability of disease incidence in the

Americas correlates with global climate phenomena, with the link

hypothesised to be caused by effects on the rodent host community

[39,40,41]. In the US the association between global climate and

plague was shown to depend on time-lagged precipitation events,

presumably increasing rodent populations via food availability,

and on relatively cool summer temperatures during the plague

transmission season, potentially increasing the abundance of

infectious fleas [21]. Therefore a coherency of ENSO and plague

incidence is most likely due to the influence of ENSO on

temperature which in turn affects host and vector ecology and

transmission potential [2,41,42].

There are of course other drivers for plague, which have not

been considered here. These might also be related to climate

effects and act on plague indirectly through anthropogenic and

socioeconomic factors such as poverty, migration and cultural

practises, all of which can influence disease transmission risks

[43,44,45]. Global climate influences an array of factors which

affect the epidemiology of plague, many of which will depend on

both ecological and anthropogenic characteristics. The implica-

tions of a link between human plague and ENSO and IOD in

Madagascar are exceedingly complex but this study leads the

way to understanding the relationship between large scale

climate and plague in a country where one third of the world’s

cases occur.

Supporting Information

Figure S1 Monthly human plague incidence time-series
for Madagascar for the period 1960–2008. Incidence was

computed using 5-yearly human population growth estimates from

the United Nations and the last population census from 1993 and

the number of plague cases per month. Incidence is presented per

100000.

(EPS)

Figure S2 Monthly anomaly time-series of DMI (IOD
index) for the period 1960–2008. Positive values are depicted

in red, negative values are blue.

(TIF)

Figure S3 Monthly anomaly time-series of temperature
(NCEP) for the period 1960–2008. Positive values are

depicted in red, negative values are blue.

(TIF)
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Figure S4 Monthly anomaly time-series of precipitation
(NCEP) for the period 1960–2008. Positive values are

depicted in red, negative values are blue.

(TIF)

Figure S5 1D plot of the monthly DMI index (black) and
the monthly filtered plague incidence anomalies (red)
for the period 1960–2008.
(TIF)

Figure S6 1D plot of the monthly temperature anoma-
lies (red) and the monthly filtered plague incidence
anomalies (black) for the period 1960–2008.
(TIF)

Figure S7 1D plot of the monthly precipitation anoma-
lies (blue) and the monthly filtered plague incidence
anomalies (black) for the period 1960–2008.
(TIF)

Figure S8 1D plots of the monthly JMA (ENSO index)
(black) and (A) the monthly precipitation anomalies
(blue) for the period 1960–2008 (B) the monthly temper-
ature anomalies (red) for the period 1960–2008.
(TIF)

Figure S9 1D plots of the monthly DMI (IOD index)
(black) and (A) the monthly precipitation anomalies
(blue) for the period 1960–2008 (B) the monthly temper-
ature anomalies (red) for the period 1960–2008.
(TIF)

Figure S10 ENSO (JMA index), time-series decomposi-
tion. Continuous wavelet decomposition plot of the JMA index

time-series. The x-axis refers to time. The y-axis is the wavelet

period in years. The thick black contour designates the 5%

significance level against red noise. The cone of influence (COI)

where edge effects might distort the results is shown as a lighter

shade. Red denotes areas of high power, blue of low power.

(TIF)

Figure S11 IOD (DMI index), time-series decomposi-
tion. Continuous wavelet decomposition plot of the DMI index

showing IOD time-series. The x-axis refers to time. The y-axis is

the wavelet period in years. The thick black contour designates the

5% significance level against red noise. The cone of influence

(COI) where edge effects might distort the results is shown as a

lighter shade. Red denotes areas of high power, blue of low power.

(TIF)

Figure S12 Temperature time-series decomposition.
Continuous wavelet decomposition plot showing temperature

time-series. The x-axis refers to time. The y-axis is the wavelet

period in years. The thick black contour designates the 5%

significance level against red noise. The cone of influence (COI)

where edge effects might distort the results is shown as a lighter

shade. Red denotes areas of high power, blue of low power.

(TIF)

Figure S13 Precipitation time-series decomposition.
Continuous wavelet decomposition plot showing precipitation

time-series. The x-axis refers to time. The y-axis is the wavelet

period in years. The thick black contour designates the 5%

significance level against red noise. The cone of influence (COI)

where edge effects might distort the results is shown as a lighter

shade. Red denotes areas of high power, blue of low power.

(TIF)
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10. Anonymous (1996) Recensement général de la population et de l’habitat. Institut

national de la statistique, Madagascar

11. Climate-explorer (2008) wwwclimexpknminl.

12. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, et al. (1996) The

NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteoro-

logical Society 77: 437–471.

13. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids

of monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34:

623–642.

14. Centre of Oceanic and Atmospheric Prediction Service website: http://new.

coaps.fsu.edu.

15. Cazelles B, Chavez M, Berteaux D, Macnard Fdr, Vik J, et al. (2008) Wavelet

analysis of ecological time series. Oecologia 156: 287–304.

16. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am

Meteorol Soc 79: 61–78.

17. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet

transform and wavelet coherence to geophysical time series. Nonlinear Processes

in Geophysics 11: 6.

18. Thai KTD, Cazelles B, Nguyen NV, Vo LT, Boni MF, et al. (2010) Dengue

Dynamics in Binh Thuan Province, Southern Vietnam: Periodicity, Synchro-

nicity and Climate Variability. PLoS Negl Trop Dis 4: e747.

19. Constantin de Magny G, Cazelles B, Guegan J (2006) The cholera threat to

humans in Ghana is influenced by both global and regional climatic variability.

EcoHealth 3: 223–231.

20. Cazelles B, Chavez M, McMichael A, Hales S (2005) Nonstationary influence of

El Nino on the synchronous dengue epidemics in Thailand. PLoS Med 2: e106.

21. Ben Ari T, Gershunov A, Tristan R, Cazelles B, Gage K, et al. (2010)

Interannual Variability of Human Plague Occurrence in the Western United

States Explained by Tropical and North Pacific Ocean Climate Variability.

Am J Trop Med Hyg 83: 624–632.

22. Cazelles B, Chavez M, Constantin de Magny G, Guegan J, Hales S (2007)

Time-dependent spectral analysis of epidemiological time-series with wavelets.

J R Soc Interface 4: 625–636:

23. Core-Team RD (2011) R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria.

24. MathWorks T (2012) MATLAB 8.0 and Wavelet Toolbox. Natick, Massachu-

setts, United States: The MathWorks, Inc,

25. Farnum NR (1996) Using johnson curves to describe non-normal process data.

Quality Engineering 9: 8.

26. Baylis M, Mellor PS, Meiswinkel R (1999) Horse sickness and ENSO in South

Africa. Nature 397: 574–574.

27. Gagnon AS, Bush ABG, Smoyer-Tomic KE (2001) Dengue epidemics and the

El Niño Southern Oscillation. Climate Research 19: 35–43.

28. Johansson MA, Cummings DAT, Glass GE (2009) Multiyear Climate

Variability and Dengue and the El Niño Southern Oscillation, Weather, and

Climate and Human Plague in Madagascar

PLOS Neglected Tropical Diseases | www.plosntds.org 12 October 2014 | Volume 8 | Issue 10 | e3155

http://new.coaps.fsu.edu
http://new.coaps.fsu.edu


Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data

Analysis. PLoS Med 6: e1000168.
29. Kausrud K, Viljugrein H, Frigessi A, Begon M, Davis S, et al. (2007)

Climatically-driven synchrony of gerbil populations allows large-scale plague

outbreaks. Proc Biol Sci 274: 1963–1969.
30. Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and

health. The Lancet 362: 1481–1489.
31. Patz J, Campbell-Lendrum D, Holloway T, Foley J (2005) Impact of regional

climate change on human health. Nature 438: 310–317.

32. Graham NE (1994) Decadal-scale climate variability in the tropical and North
Pacific during the 1970s and 1980s: observations and model results. Climate

Dynamics 10: 135–162.
33. Gage KL, Burkot TR, Eisen RJ, Hayes EB (2008) Climate and Vectorborne

Diseases. American journal of preventive medicine 35: 436–450.
34. Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001) Effect of air

temperature and humidity on the survival of pre-imaginal stages of two flea

species (Siphonaptera: pulicidae). Journal of Medical Entomology 38: 629–637.
35. Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NV (2001) Development

rates of two Xenopsylla flea species in relation to air temperature and humidity.
Medical and Veterinary Entomology 15: 249–258.

36. Sharif M (1949) Effects of Constant Temperature and Humidity on the

Development of the Larvae and the Pupae of the Three Indian Species of
Xenopsylla (Insecta: Siphonaptera). Philosophical Transactions of the Royal

Society of London Series B, Biological Sciences 233: 581–633.

37. Rodo X, Pascual M, Fuchs G, Faruque A (2002) ENSO and cholera: a

nonstationary link related to climate change? Proc Natl Acad Sci USA 99:
12901–12906.

38. Zhang D, Brecke P, Lee H, He Y-Q, Zhang J (2007) Global climate change,

war, and population decline in recent human history. Proc Natl Acad Sci USA
104: 19214–19219.

39. Jaksic FM, Lima M (2003) Myths and facts on ratadas: Bamboo blooms, rainfall
peaks and rodent outbreaks in South America. Blackwell Science Pty. pp. 237–

251.

40. Lima M, Jaksic FM (1999) Population rate of change in the leaf-eared mouse:
The role of density-dependence, seasonality and rainfall. Australian Journal of

Ecology 24: 110–116.
41. Kartman L (1969) Effect of differences in ambient temperature upon the fate of

Pasteurella pestis in Xenopsylla cheopis. Transactions of the Royal Society of
Tropical Medicine and Hygiene 63: 5.

42. Parmenter RR, Yadav EP, Parmenter CA, Ettestad P, Gage KL (1999)

Incidence of plague associated with increased winter-spring precipitation in New
Mexico. American Journal of Tropical Medicine and Hygiene 61: 814–821.

43. WHO (2006) Interregional Meeting on Prevention and Control of Plague -
Antananarivo, Madagascar, 7–11 April 2006. WHO/HSE/EPR/20083 3.

44. Singh AR, Singh SA (2008) Diseases of poverty and lifestyle, well-being and

human development. Mens Sana Monogr 6: 187–225.
45. Butler C (2012) Infectious disease emergence and global change: thinking

systemically in a shrinking world. Infectious Diseases of Poverty 1: 5.

Climate and Human Plague in Madagascar

PLOS Neglected Tropical Diseases | www.plosntds.org 13 October 2014 | Volume 8 | Issue 10 | e3155


