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Abstract	

When	searching	for	an	object,	do	we	minimize	the	number	of	eye	movements	we	need	to	

make?	Under	most	circumstances,	 the	cost	of	saccadic	parsimony	likely	outweighs	the	

benefit,	 given	 the	 cost	 is	 extensive	 computation	 and	 the	 benefit	 is	 a	 few	 hundred	

milliseconds	 of	 time	 saved.	 Previous	 research	 has	 measured	 the	 proportion	 of	 eye	

movements	 directed	 to	 locations	 where	 the	 target	 would	 have	 been	 visible	 in	 the	

periphery,	as	a	way	of	quantifying	the	proportion	of	superfluous	fixations.	A	surprisingly	

large	range	of	 individual	differences	has	emerged	from	these	studies,	suggesting	some	

people	are	highly	efficient	and	others	much	less	so.	Our	question	in	the	current	study	is	

whether	 these	 individual	differences	can	be	explained	by	differences	 in	motivation.	 In	

two	experiments,	we	demonstrate	that	neither	time	pressure,	nor	financial	incentive,	led	

to	 improvements	of	visual	 search	strategies;	 the	majority	of	participants	 continued	 to	

make	 many	 superfluous	 fixations	 in	 both	 experiments.	 The	 wide	 range	 of	 individual	

differences	in	efficiency	observed	previously	was	replicated	here.	We	observed	small	but	

consistent	 improvements	 in	strategy	over	 the	course	of	 the	experiment	 (regardless	of	

reward	or	time	pressure)	suggesting	practice,	not	motivation,	makes	participants	more	

efficient.	
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Significance	statement:	

In	this	study,	neither	time	pressure	nor	financial	incentive	led	to	improvements	in	visual	

search	 strategies,	 ruling	 out	 motivation	 as	 the	 explanation	 for	 the	 large	 individual	

differences	 in	 search	 efficiency	 seen	 in	 previous	 studies.	 Small	 but	 consistent	

improvements	 in	 strategy	 over	 time	 suggest	 experience,	 rather	 than	 differences	 in	

motivation,	could	help	explain	why	some	participants	are	more	efficient	than	others.	

Word	count:	7683	words	(excluding	title,	affiliations,	references	and	abstract) 	
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We	select	and	process	only	a	small	subset	of	available	information.	Selective	sampling	is	

achieved	 in	 part	 by	 directing	 the	 eyes	 to	 a	 given	 location,	 thus	 allowing	 detailed	

processing	by	 the	high-resolution	 fovea.	Understanding	 the	processes	 that	govern	eye	

movements	 can	 therefore	help	us	understand	and	predict	which	 aspects	of	 the	 visual	

environment	humans	will	be	most	likely	to	process	in	greater	depth.	In	the	current	study,	

we	measure	the	extent	to	which	eye	movements	are	directed	to	locations	where	central	

vision	 is	 most	 needed;	 that	 is,	 can	 they	 be	 considered	 efficient	 in	 how	 they	 sample	

information?	This	is	not	a	new	question:	we	already	know	that	people,	in	general,	do	not	

tend	to	search	very	efficiently.	Profound	failures	to	find	and	use	information	effectively	

have	been	shown	in	a	range	of	different	search	contexts	(e.g.,	Araujo	et	al.,	2001;	Hout	et	

al.,	2017;	Rajsic	et	al.,	2015,	2017;	Morvan	and	Maloney,	2012;	Clarke	and	Hunt,	2016).	

The	question	we	address	here	is	whether	people	can	be	efficient	when	they	need	to	be.	

Specifically,	we	ask	whether	differences	in	priorities	and	motivation	might	explain	why	

some	 individuals	 are	 inefficient	 with	 their	 eye	movements,	 while	 others	 are	 close	 to	

optimal	(Nowakowska	et	al.,	2017).		

Search	for	a	specified	target	among	distractors	is	a	widely	used	task	for	studying	how	the	

visual	features	of	the	target,	distractors	and	background	influence	visual	selection	(e.g.	

Treisman	and	Gelade,	1980;	Wolfe,	1994).	But	visual	search	entails	a	complex	cascade	of	

perceptual	 and	 cognitive	 processes,	 and	performance	 is	 influenced	not	 only	 by	 visual	

factors,	but	also	by	decision-level	factors	like	strategy,	heuristics,	and	biases	(e.g.	Clarke,	

Nowakowska	and	Hunt,	2019;	Leber	and	Irons,	2019).	In	the	decision	literature,	the	role	

of	motivation,	 reward,	 effort,	 and	 tolerance	 for	error	have	historically	been	central	 to	

methods	and	 theories	 (Dreher	and	Tremblay,	2009).	 In	visual	search,	decision-related	

issues	such	as	target	prevalence	(Wolfe	and	Van	Wert,	2010)	and	stopping	rules	(Chun	
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and	Wolfe,	 1996)	have	 also	been	 studied,	 but	 have	been	 given	 far	 less	 attention	 than	

factors	 of	 perception	 and	 attention	 (Nakayama	 and	 Martini,	 2011).	 Accounting	 for	

contributions	to	variance	in	search	performance	at	all	stages	of	processing	--	from	low-

level	visual	properties	like	salience,	to	cognitive	factors	like	strategy	and	risk	tolerance	-

-	is	fundamental	to	a	complete	understanding	of	visual	search.		

Large	 individual	 differences	 have	 been	 documented	 across	 a	 range	 of	 different	 visual	

search	 tasks	 (Nowakowska,	Clarke	&	Hunt,	2017;	 Irons	and	Leber	2016;	Kristjánsson,	

Jóhannesson	&	Thornton,	2014).	 “Individual	differences”	 in	 this	 context	 is	used	 in	 the	

literal	sense	that	individual	participants	do	not	converge	on	a	single	pattern,	but	display	

a	wide	range	of	different	behaviours	under	the	same	conditions.	A	concerted	effort	to	try	

and	 account	 for	 these	 differences	 has	 had	 mixed	 results.	 Kristjánsson	 et	 al.	 (2014)	

showed	 individual	 differences	 in	 search	 strategy	 were	 apparent	 during	 complex	

conjunction-based	foraging,	but	not	during	easy	feature-based	foraging.	They	suggested	

the	 cognitive	 capacity	 of	 individual	 foragers	 might	 explain	 the	 differences.	 Similar	

between-subject	 variation	 was	 documented	 in	 oculomotor	 orienting	 (Tagu	 &	

Kristjánsson,	 2020),	 with	 a	 suggestion	 that	 selection	modality	 (using	 a	mouse,	 touch	

screen	or	eye	movements)	mediated	individual	differences.	Although	these	differences	

appear	 to	 be	 relatively	 stable	 over	 time	 within	 an	 individual,	 a	 given	 person’s	

performance	on	one	search	task	appears	to	tell	us	very	little	about	how	they	will	perform	

on	the	others	(Clarke	et	al.,	2020),	and	efforts	to	explain	the	differences	in	search	using	

other	psychometric	 tests	have	not,	 to	date,	been	very	successful	 (e.g.	 Irons	and	Leber,	

2018;		Jóhannesson	et	al.,	2017).		

Persistent	 individual	 differences	 present	 challenges	 for	 efforts	 to	 develop	 models	 of	

visual	search,	or	even	to	draw	simple	conclusions	about	how	people,	as	a	group,	search	
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for	objects.	Human	search	has	been	proposed	to	be	consistent	with	an	“ideal”	model,	in	

which	each	fixation	is	directed	to	locations	that	maximize	the	accrual	of	new	information	

(Najemnik	&	Geisler,	2005;	2008).	On	the	other	end	of	the	spectrum,	search	has	also	been	

demonstrated	to	be	consistent	with	a	stochastic	model,	in	which	fixations	are	randomly	

selected	from	a	population	of	fixations	constrained	by	habit	and	biases.	Nowakowska	et	

al.	(2017)	demonstrated	that	human	fixation	behaviour	is	in	fact	consistent	with	both	of	

these	models,	in	that	some	individuals	were	consistent	with	the	predictions	of	the	ideal	

model,	and	some	with	a	stochastic	model.	Other	individuals,	however,	were	consistent	

with	 neither	 account.	 While	 these	 individual	 differences	 do	 partially	 resolve	 the	

contradiction	between	different	accounts	of	fixation	selection,	they	also	lead	to	new,	more	

complicated	questions	about	why	these	differences	exist	and	how	to	develop	a	model	of	

search	that	accounts	for	them.			

	

	 	

Figure	1:	Example	of	the	search	stimuli.	The	target	 is	present	on	the	heterogenous	side	of	the	

array	(10th	row,	8th	column).	

In	the	paradigm	that	uncovered	these	 large	 individual	differences,	called	split-half	 line	

search	(SHLS),	participants	searched	an	array	of	lines	for	a	line	tilted	45	degrees	to	the	
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right	while	their	eye	movements	were	recorded.	The	mean	orientation	of	the	distractors	

was	perpendicular	to	the	target,	but	on	one	side	the	distribution	of	distractor	orientations	

was	narrow	(“homogeneous”),	and	on	the	other	side	the	distribution	was	much	wider	

(“heterogeneous”,	see	Figure	1).	When	the	target	is	present	on	the	homogeneous	side,	it	

can	 be	 easily	 detected	 using	 peripheral	 vision.	 When	 the	 target	 is	 present	 on	 the	

heterogeneous	side,	foveal	vision	is	required	to	discriminate	it	from	the	distractors.	The	

SHLS	experiment	can	therefore	measure	the	extent	to	which	eye	movements	are	directed	

to	the	locations	where	foveal	vision	is	required.	In	other	words,	eye	movement	efficiency	

is	 operationally	 defined	 as	 the	 proportion	 of	 eye	 movements	 directed	 to	 the	

heterogeneous	side	of	the	search	array	on	target	absent	trials1.	Models	of	optimal	visual	

search	in	which	fixation	selection	is	based	on	expected	information	gain	(e.g.	Najemnik	&	

Geisler,	2005)	would	predict	this	proportion	to	approach	1.	Nonetheless,	in	Nowakowska	

et	al.	(2017),	nearly	half	of	the	first	five	search	related	fixations	on	each	trial	were	made	

to	the	homogenous	(easy)	side.	Underlying	this	general	lack	of	efficiency	was	the	large	

variation	between	participants	already	mentioned,	with	some	participants	performing	

near	 optimal,	 some	 being	 extremely	 inefficient,	 and	 the	 rest	 falling	 in	 between.	 Two	

factors	contributed	to	this	search	inefficiency:	making	more	fixations	than	was	necessary,	

and	not	directing	eye	movements	 to	 the	 locations	 that	would	be	most	 informative	 for	

finding	the	target.		

It	is	possible,	however,	that	participants	are	capable	of	searching	more	efficiently	but,	for	

reasons	 of	 motivation	 or	 distraction,	 fail	 to	 implement	 an	 efficient	 strategy.	 In	

Nowakowska	et	al.	(2017),	even	though	participants	were	encouraged	to	be	as	fast	and	

 
1 	We	acknowledge	that	many	other	definitions	of	“efficiency”	exist,	both	within	and	
beyond	the	visual	search	literature	(e.g.	Townsend	&	Ashby,	1983;	Liesefeld	&	Janczyk,	
2019;	Wolfe,	1998).	 
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as	accurate	as	possible,	participants	had	60	seconds	to	search	before	each	trial	timed	out.	

Thus	they	could	“afford”	to	make	the	redundant	confirmatory	eye	movements	that	were	

observed,	without	sacrificing	accuracy.	Some	participants	may	prefer	 to	explore	every	

region	to	increase	their	confidence	that	the	target	is	not	present,	while	others	prefer	to	

respond	as	quickly	as	possible.	 Indeed,	there	was	a	very	wide	range	of	reaction	times,	

particularly	on	 target	absent	 trials,	on	which	 individual	median	reaction	 times	ranged	

from	less	than	2	seconds	to	more	than	15.	If	the	display	time	had	been	limited,	fixations	

on	the	easy	side	would	leave	no	time	for	inspecting	the	hard	side,	while	not	adding	to	the	

accuracy	to	detect	 targets	on	the	easy	side	(as	 it	 is	already	at	ceiling).	 	Therefore,	one	

factor	that	could	induce	more	efficient	fixation	behaviour	could	be	tighter	restrictions	on	

how	long	participants	can	spend	searching.	

Time	pressure	was	 found	previously	 to	affect	decision-making	and	 judgement,	 in	 that	

observers	 tended	 to	 use	 different	 decision	 rules	when	 time	was	 constrained	 (Edland,	

1994;	 Svenson	 &	 Edland,	 1987).	 In	 consumer	 choice	 tasks,	 time	 pressure	 has	 been	

associated	with	decreased	average	fixation	duration	(Pietersa	and	Warlopb,	1999)	and	a	

reduction	 of	 the	 amount	 of	 information	 fixated	 (van	 Herpen	 and	 Trijp,	 2011).	 Time	

pressure	also	moderated	 the	effect	of	visual	saliency	on	consumer	choices	 (Mormann,	

Navalpakkam,	Koch,	&	Rangel,	2012).	Specifically,	 the	visual	saliency	of	an	 item	was	a	

better	predictor	of	consumer	choices	than	their	personal	preferences	when	the	time	to	

make	 a	 choice	 between	 a	 number	 of	 items	was	 constrained.	 This	 study	 in	 particular	

suggests	that	time	constraints	lead	to	the	‘rational’	decision	being	overridden	by	the	low	

level	 saliency	 of	 the	 visual	 items.	 In	 the	 context	 of	 eye	 movements	 during	 search,	

however,	we	predict	 the	opposite	effect,	where	 the	 time	constraints	would	encourage	

more	rational	fixation	behaviour.	In	Thornton	et	al.	(2019)	participants	adapt	strategies	
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according	 to	 task	 demands,	 suggesting	 participants	 might	 be	 able	 to	 switch	 to	 more	

efficient	eye	movement	behaviour	when	the	time	to	complete	the	task	is	 limited.	With	

time	constraints,	inefficient	fixations	could	lead	to	errors	and	trial	time-outs,	which	may	

be	more	effective	in	motivating	efficient	fixations	than	search	speed.		

Another	way	to	increase	efficiency	may	be	financial	incentives.	The	study	of	reward	as	a	

mechanism	driving	visual	selective	attention	has	been	of	close	interest	to	researchers	in	

recent	 years	 (Anderson,	 Laurent,	 &	 Yantis,	 2011;	 MacLean	 &	 Giesbrecht,	 2015;	

Navalpakkam,	Koch,	Rangel,	&	Perona,	2010).	Learning	to	associate	visual	stimuli	with	

reward	 creates	 a	 persistent	 attentional	 bias	 that	 continues	 to	 involuntarily	 drive	

attentional	selection	in	favor	of	previously	rewarded	stimuli,	even	when	those	stimuli	are	

no	longer	task	relevant	or	rewarded	(Anderson,	Laurent	&	Yantis,	2011;	2012,	Anderson	

&	Yants,	2012),	and	 the	modulating	effect	of	 reward	might	 last	up	 to	half	a	year	after	

acquisition	(Anderson	&	Yantis,	2014).	In	visual	search,	Zhang,	Gong,	Fougnie	and	Wolfe	

(2017)	 found	evidence	 that	when	searching	 for	multiple	 targets,	humans	change	 their	

strategy	in	response	to	different	patterns	of	reward,	searching	for	longer	when	rewards	

were	high,	and	for	less	time	when	they	were	low.	Navalpakkam,	Koch,	Rangel,	and	Perona	

(2010)	 model	 visual	 search	 by	 presenting	 participants	 with	 brief	 search	 displays	

containing	 two	 targets	 associated	 with	 a	 monetary	 reward.	 The	 reward	 value	 and	

salience	 associated	 with	 the	 targets	 varied	 from	 trial	 to	 trial,	 and	 both	 measures	 of	

performance	 used	 in	 the	 experiment	 -	 saccadic	 eye	 movements	 and	 key	 presses	 -	

indicated	 that	 strategy	was	 flexibly	adapted	 to	 the	 changing	demands	 to	achieve	near	

optimal	performance,	in	line	with	assumptions	of	the	ideal	Bayesian	Observer	model.	It	

is	 important	 to	 note,	 however,	 that	 optimal	 saccades	were	 directly	 associated	with	 a	
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reward.	In	the	real	world,	the	aim	of	the	eye	movements	is	to	accumulate	’evidence’	to	aid	

the	decision/action	to	be	rewarded	(Eckstein,	2011).	

Chelazzi,	 Perlato,	 Santandrea	 and	 Libera	 (2013)	 outline	 two	 potential	 mechanisms	

modulating	attentional	selection	by	means	of	reward.	Firstly,	attention	could	be	biased	

through	 direct	 incentive	motivation.	 Varying	 reward	with	 respect	 to	 different	 spatial	

locations	or	stimuli	is	associated	with	preferential	deployment	of	attention	to	the	location	

or	stimuli	associated	with	the	maximum	incentive	value	(see	for	example	Small,	Gitelman,	

Simmons,	 Bloise,	 Parrish,	 &	Mesulam,	 2005).	 Secondly,	 the	 availability	 of	 the	 reward	

biases	attentional	priority	by	means	of	learning,	which	results	in	alteration	of	the	current	

performance	 by	 stimuli	 previously	 associated	 with	 a	 reward	 (see	 for	 example	 Della	

Libera	and	Chelazzi,	2009).	In	the	context	of	eye-movements,	Hayhoe	and	Ballard	(2005;	

2015)	 link	 the	 evidence	 from	 neural	 recording,	 reinforcement	 learning	 studies,	 and	

research	into	graphic	simulations,	and	suggest	a	model	of	eye	movements	integrated	with	

the	 ongoing	 task.	 This	 model	 samples	 multiple	 sources	 of	 dynamic	 information	 at	

moments	of	increasing	uncertainty,	and	is	shaped	by	reward.	In	order	to	make	a	decision	

about	 the	relevance	of	a	stimulus,	observers	need	to	 learn	through	practice	(Haider	&	

Frensch,	 1999);	 this	 learning	 could	 be	 achieved	 through	 feedback,	 associated	 with	 a	

reward	 value	 of	 attending	 to	 the	 relevant	 stimuli	 (Hayhoe	 &	 Rothkopf,	 2011;	 Tatler,	

Hayhoe,	Land,	&	Ballard,	2011).		

In	our	first	experiment,	we	manipulated	the	duration	of	the	search	display	and	measured	

the	effect	on	eye	movement	efficiency.	Participants	were	asked	to	complete	two	blocks	of	

the	split-half	visual	search	task	from	Nowakowska	et	al	(2017).	In	one	block,		participants	

only	had	two	seconds	to	search	before	the	search	array	was	masked	(we	will	call	this	the	

brief	condition);	after	two	seconds	a	grey	mask	covered	the	search	array,	but	participants	



11 

could	 still	 respond.	 The	 dependent	 variable	 of	 interest	 in	 the	 experiment	 is	 eye	

movements;	to	be	useful,	they	need	to	be	executed	while	the	visual	display	is	presented.	

With	a	two-second	display,	more	efficient	eye	movements	become	a	requirement	for	an	

accurate	response.	We	left	manual	response	times	unconstrained	to	avoid	unnecessary	

pressure	to	press	response	keys	quickly,	which	would	lead	to	errors	and	data	loss.	In	the	

other	block,	the	observers	had	up	to	60sec	to	view	the	search	array	and	respond	(which	

we	will	call	the	long	condition).	Half	of	the	participants	completed	the	brief	block	first	and	

the	other	half	completed	the	long	block	first.	Participants	completed	both	brief	and	long	

conditions	 because	 this	 permits	 a	 measurement	 of	 the	 effect	 of	 timing	 within	 each	

participant,	 which	 is	 important	 given	 the	 very	 large	 individual	 differences	 in	 search	

efficiency	observed	in	previous	studies.		

In	Experiment	2	we	manipulated	incentives	offered	to	participants	in	order	to	examine	

the	 effect	 of	 reward	on	 search	 strategy.	We	divided	participants	 into	 two	 groups:	 the	

reward	group	and	the	flat	payment	group.	Both	groups	completed	two	blocks	of	the	split-

screen	search	task	and	both	groups	were	initially	informed	that	they	would	receive	£5	

after	completing	 the	 first	block.	After	completion	of	 the	 first	block,	participants	 in	 the	

reward	group	were	told	that	they	would	receive	£5	additional	reward	if	they	responded	

10%	faster	than	they	did	in	the	first	block,	and	£10	additional	reward	if	they	responded	

20%	 faster,	 thus	 potentially	 topping	 up	 their	 reimbursement	 to	 £10	 or	 £15.	We	 also	

stipulated	that	accuracy	in	the	second	block	had	to	stay	at	least	as	high	as	accuracy	in	the	

first	 block	 to	 receive	 the	 additional	 reward.	 Participants	 in	 the	 reward	 group	 were	

therefore	 highly	 motivated	 to	 improve	 their	 search	 speed.	 Participants	 in	 the	 flat	

payment	group	were	told	they	would	receive	additional	£5	after	completing	the	second	

block	regardless	of	their	performance.	
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If	individual	differences	observed	in	previous	studies	were	due	in	part	to	differences	in	

error	tolerance	or	motivation	to	search	quickly,	we	should	see	an	overall	increase	in	eye	

movement	 efficiency,	 as	measured	by	 a	 higher	 proportion	 of	 fixations	 directed	 to	 the	

heterogeneous	 side	 of	 the	 search	 array,	 under	 conditions	 of	 restricted	 time	 and/or	

financially	 incentivized	 search	 speed.	 We	 should	 also	 see	 an	 overall	 reduction	 in	

individual	variation	under	these	conditions,	as	all	individuals	should	approach	the	ceiling	

of	efficiency.	Baseline	conditions	should	replicate	the	wide	variation	in	individual	search	

efficiency	seen	in	previous	experiments	(Nowakowska	et	al,	2016;	2017;	2019;	Clarke	et	

al.,	2020).	Search	strategy	is	also	likely	to	fluctuate	within	participants,	not	only	between	

experimental	blocks,	but	also	within	the	blocks,	or	even	within	the	trial.	We	therefore	also	

present	 an	 exploratory	 analysis	 across	 both	 experiments	 of	 how	 search	 efficiency	

changes	over	blocks,	trials,	and	fixations.	

	Experiment	1:	Deadline	

Methods	

Participants		

18	naive	observers	gave	informed	consent	to	participate	in	the	experiment	(females=9;	

age	 range	 =17-33;	 mean	 age=24.1).	 The	 experimental	 protocol	 was	 reviewed	 and	

approved	by	the	Aberdeen	Psychology	Ethics	Committee.	

Stimuli	and	procedure		

The	 search	 arrays	 were	 similar	 to	 the	 ones	 used	 in	 Nowakowska	 et	 al.	 (2017).	 Line	

segments	were	aligned	in	22	columns	and	16	rows	on	a	uniform	grey	background.	The	

line	was	1.2 cm	 long	(1.5°	at	a	viewing	distance	of	45 cm).	The	 target	 line	was	always	
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tilted	45°	to	the	right.	The	distractors	had	random	orientations,	sampled	from	a	uniform	

distribution	with	a	mean	angle	perpendicular	to	the	target	angle.	The	target	was	easy	to	

spot	 on	 one	 half	 of	 each	 search	 array,	 and	 difficult	 on	 the	 other	 (see	Figure	 1	 for	 an	

example).	 Difficulty	 was	 manipulated	 by	 varying	 the	 range	 of	 the	 distractor	 line	

orientations,	with	a	narrow	range	(right	side	of	Figure	1)	producing	easy	search	and	a	

wider	range	(left	side	of	Figure	1)	producing	more	difficult	search.		In	Nowakowska	et	al.	

(2017),	 the	 distractor	 orientations	 were	 sampled	 from	 a	 30˚	 range	 of	 distractor	 line	

orientations	(“homogeneous”)	or	a	106˚	range	(“heterogeneous”).	However,	in	a	related	

study,	Nowakowska	et	al.	(2019)	found	that	participants	tended	to	improve	at	spotting	

the	target	line	on	the	heterogeneous	background	with	practice,	independent	of	their	eye	

movement	strategies.	To	ensure	heterogeneous-side	targets	continue	to	not	be	visible	in	

the	periphery	for	the	entire	duration	of	the	current	experiment,	we	made	the	search	more	

difficult	on	the	heterogeneous	side	by	 increasing	the	range	of	distractor	angles	to	120	

degrees.	 We	 also	 slightly	 decreased	 the	 range	 of	 distractor	 orientations	 on	 the	

homogeneous	side	to	18	degrees	(thus	making	the	line	array	even	more	uniform).		

To	 compare	 the	 extent	 to	 which	 participants	 explored	 the	 homogeneous	 vs	

heterogeneous	side	of	the	array,	all	the	search	arrays	were	translated	into	the	same	visual	

coordinate	 space,	 with	 0	 at	 centre,	 negative	 values	 on	 the	 heterogeneous	 side,	 and	

positive	values	on	the	homogenous	side.	We	only	use	target	absent	trials	in	this	analysis	

to	ensure	we	examine	“searching”	 fixations,	 rather	 than	 those	directed	 towards	 found	

targets.	

There	were	96	arrays	of	lines	in	each	of	the	two	blocks	(192	trials	in	total),	and	the	target	

was	present	on	half	of	the	trials.	Whether	the	heterogeneous	side	was	on	the	left	or	right	

was	 randomly	 determined	 on	 each	 trial.	 The	 side	 of	 the	 target	 relative	 to	 the	 search	
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difficulty	 was	 counterbalanced.	 The	 target	 could	 be	 located	 in	 any	 of	 the	 possible	

locations	apart	from	the	middle	two	vertical	columns.	Participants	were	told	they	would	

see	an	array	of	line	segments	on	the	screen,	and	that	their	task	was	to	determine	whether	

a	line	tilted	45°	to	the	right	was	present	among	other	lines.	Participants	were	asked	to	

respond	as	quickly	and	accurately	as	possible	by	pressing	either	the	left	(present)	or	right	

(absent)	arrow	key.	In	one	block,	the	search	array	would	remain	on	the	screen	until	the	

participant	responded.	In	the	other	block,	the	search	array	would	remain	on	the	screen	

for	 two	seconds.	Participants	were	 told	which	 condition	 they	were	about	 to	 complete	

before	each	block	started.	Participants	were	encouraged	to	be	as	fast	and	as	accurate	as	

possible	 in	 both	 conditions.	 The	 order	 of	 blocks	 was	 counterbalanced,	 with	 nine	

participants	completing	each	order.	

Each	 trial	 consisted	 of	 a	 black	 fixation	 point	 (letter	 x)	 subtending	 1.5cm	 x	 2.5cm	

(1.9°x3.1°),	 presented	 at	 the	 centre	 of	 the	 computer	 screen.	We	 asked	participants	 to	

fixate	 the	 centre	 of	 the	 fixation	 cross.	 	 On	 the	 press	 of	 a	 space	 bar	 the	 fixation	 cross	

disappeared,	then	the	array	of	line	segments	was	displayed	until	the	participant	made	a	

response	 (or	 timed	 out	 after	 60	 seconds).	 Auditory	 feedback	 in	 the	 form	 of	 a	 beep	

immediately	 followed	 incorrect	 key	 presses.	 Before	 the	 start	 of	 the	 experiment,	

participants	 underwent	 a	 nine-point	 calibration	 sequence	 and	 a	 block	 of	 10	 practice	

trials.		

A	19	inch	CRT	ViewSonic	Graphics	Series	G90fB	monitor	with	a	resolution	of	1024	x	768	

and	 refresh	 rate	 of	 100Hz	 was	 used	 to	 display	 stimuli.	 MATLAB	 2014	 running	

Psychtoolbox	(Pelli,	1997;	Brainard,	1997)	and	EyelinkToolbox	(Cornelissen	et	al.,	2002)	

was	 used	 to	 present	 stimuli	 and	 record	 data	 on	 a	 Macintosh	 PowerMac.	 A	 desktop-

mounted	EyeLink	1000	eye	tracker	sampling	at	1000	Hz	was	used	to	record	the	position	
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of	one	eye.	The	right	eye	was	recorded	by	default,	however,	if	we	failed	to	calibrate	the	

right	eye,	the	left	eye	was	used	instead.	

Analysis	

We	summarise	each	participant’s	scan-path	by	reporting	the	proportion	of	fixations	made	

to	the	heterogeneous	side	of	the	display.	Following	Clarke	et	al	(2020),	we	only	consider	

fixations	2	-	6	made	during	correct	target	absent	trials.	We	use	only	target	absent	trials	

to	ensure	all	the	fixations	are	related	to	the	process	of	searching,	rather	than	being	target-

directed.	We	limit	to	the	first	five	search-related	fixations	(the	first	fixation	was	always	at	

the	 centre)	 for	 two	 reasons.	 First,	 nearly	 all	 target	 absent	 trials	 contain	 at	 least	 six	

fixations,	so	limiting	to	six	means	we	get	an	unbiased	sample	of	search	behaviour.	Second,	

search	 strategies	 vary	 most	 widely	 early	 in	 the	 trial;	 later	 on,	 participants	 tend	 to	

converge	on	the	heterogeneous	side,	leaving	little	variation	in	this	metric.		

We	 used	 Bayesian	 generalised	 multi-level	 linear	 models	 to	 investigate	 how	 our	

experimental	manipulations	influenced	visual	search	strategy.	Because	we	are	modelling	

proportional	data,	we	use	beta	distributions,	which	are	defined	over	 (0,	1).	The	 small	

number	 of	 0	 and	1	 data	 points	 values	 are	 set	 to	 0.01	 and	0.99	 respectively.	 For	 both	

Experiments	 1	 and	 2,	 the	 model	 formula,	 we	 will	 use	 the	 maximal	 random	 effects	

structure.	 

Models	are	fit	using	R	(v3.6.1)	with	the	brms	(v2.12)	package	(Bürkner,	2017).	In	general,	

we	 follow	 the	advice	given	by	McElreath	 (2020),	using	weakly	 informative	priors	and	

plotting	the	predictions	made	by	both	the	prior	and	posterior	distributions.	In	the	text,	

we	use	the	95%	Highest	Posterior	Density	interval	(HPDI)	to	summarise	the	posteriors	

from	our	models.	HPDI	should	be	interpreted	in	the	following	way:	if	we	were	to	sample	
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a	point	at	random	from	the	distribution,	there	is	a	95%	chance	that	it	would	be	within	

this	interval.	In	order	to	assess	the	extent	to	which	the	results	support	our	hypothesis,	we	

need	 to	 estimate	 the	 difference	 between	 the	 distributions.	 One	 of	 the	 advantages	 of	

Bayesian	analysis	 is	 that	 this	 calculation	 is	 comparatively	 simple,	 and	we	can	directly	

calculate	 the	 probability	 that	 the	 difference	 is	 greater	 than	 zero	 (given	 our	 data	 and	

assumptions).			

Power	Analysis	

A	 simulation-based	 power	 analysis	 was	 carried	 out	 by	 assuming	 a	 target	 posterior	

distribution	 in	 which	 the	 average	 participants	 fixated	 the	 heterogeneous	 side	 of	 the	

display	51%	of	the	time	in	the	long	condition	and	57%	of	the	time	in	the	brief	condition.	

We	selected	51%	based	on	results	from	previous	experiments	(which	show	a	very	slight	

tendency	to	fixate	the	heterogeneous	side),	and	57%	as	a	hypothetical	small	increase	in	

this	tendency	associated	with	our	intervention.	This	is	a	highly	conservative	estimate	of	

the	 difference	 we	 expect	 under	 the	 hypothesis;	 if	 a	 lack	 of	 motivation	 makes	 some	

participants	inefficient,	our	intervention	should	produce	close	to	100%	heterogeneous	

fixations.	We	selected	 this	 far	smaller	number	(57%)	to	ensure	we	have	 the	power	 to	

detect	effects	that	partially	confirm	the	hypothesis.	We	then	simulated	our	experiment	by	

sampling	data	for	15	observers	each	carrying	out	32	target	absent	trials.	This	simulated	

dataset	was	then	analysed	as	if	it	were	the	real	data,	and	the	result	was	summarsed	by	

p(x	>	0	|	d):	the	probability,	given	the	data	(d),	that	the	difference	between	the	brief	and	

long	conditions	(x)	was	greater	than	zero.	Over	50	repetitions	of	this	process,	all	values	

of	p(x	>	0	|	d)	were	greater	than	0.95.	This	analysis	demonstrates	that	our	sample	size	

(n=18)	is	sufficient	to	detect	relatively	small	differences	(i.e.	51%	compared	to	57%)	in	
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eye	 movement	 efficiency.	 For	 the	 full	 specification	 of	 our	 data	 generation	 process,	

including	all	code,	please	see	the	Supplementary	Materials.		

Results	

Manual	response	data		

We	report	search	accuracy	and	reaction	time	in	Figure	2.	It	is	clear	from	this	figure	that	

median	 brief	 reaction	 times	 (seconds)	 were	 faster	 (2.07,	 SD=1.00)	 than	 long	 (4.75,	

SD=9.25);	 this	 shows	 that	 taking	 the	 information	 away	 after	 2	 seconds	 led	 to	 faster	

responses	than	displaying	it	(more	or	less)	indefinitely,	as	would	be	expected.	There	was	

a	modest	speed-accuracy	trade-off,	with	accuracy	(%)	lower	in	the	brief	(74.30,	SD=	6.94)	

than	the	long	condition	(81.82%,	SD=	7.91).	
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Figure	2:	Accuracy	(top)	and	reaction	time	(bottom)	data	in	the	two	conditions	(long	and	

brief)	for	each	of	the	target	conditions.	The	lower	and	upper	hinges	correspond	to	the	first	

and	third	quartile.		

The	results	across	target	present	and	absent	trials	look	as	expected,	with	slower	reaction	

times	when	the	target	is	absent	or	when	it	is	present	on	the	heterogeneous	side	of	the	

array	 relative	 to	 the	 homogeneous	 side,	 when	 it	 is	 detected	 very	 quickly.	 Similar	 to	

previous	 experiments	 (Nowakowska	 et	 al.,	 2017	 and	Clarke	 et	 al.,	 2020),	 participants	

tend	to	report	that	the	target	is	absent	when	they	are	unable	to	find	it,	so	accuracy	is	high	

in	target	absent	trials,	and	low	when	the	target	is	present	on	the	heterogeneous	side.	The	

level	of	difficulty	of	 the	search	task	was	 increased	slightly	 in	 the	current	experiments,	

compared	to	the	original	experiment	(Nowakowska	et	al.,		2017),	because	of	the	findings	

from	a	related	experiment	(Nowakowska	et	al.	2019)	that	observers’	ability	to	spot	the	

target	using	peripheral	 vision	 improves	quickly,	 even	on	 the	heterogeneous	 side.	One	

minor	concern	about	this	change	was	that	when	faced	with	this	more	difficult	search	task,	

participants	might	have	given	up	searching	at	all.	However,	this	concern	was	alleviated	

by	the	long	reaction	times	observed	when	the	target	was	present	on	the	heterogeneous	

side	or	absent;	this	suggests	they	were	continuing	to	try	to	find	the	target	even	when	it	

was	not	immediately	visible.	Participants	were	also	successful	in	finding	the	target	on	the	

heterogeneous	background	on	around	a	third	of	the	long-duration	trials.	

Eye	movement	efficiency	

Figure	3a	shows	our	measure	of	search	efficiency:	the	proportion	of	the	first	five	search-

related	fixations	on	target	absent	trials	that	were	made	on	the	heterogeneous	side	of	the	

display.	Similarly	to	the	previous	experiment	of	Nowakowska	et	al.	2017,	a	strict	criteria	

for	an	optimal	strategy	in	this	experiment	would	be	to	not	look	to	the	homogeneous	side	
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at	all,	leading	to	proportions	close	to	1.	As	we	can	see	in	Figure	3,	most	participants	waste	

a	 considerable	 number	 of	 fixations	 on	 the	 homogeneous	 side,	 and	 there	 was	 large	

variability	between	participants	 in	terms	of	 the	proportion	of	 fixations	directed	to	the	

heterogeneous	side	(as	seen	in	the	individual	points	for	each	participant).	Despite	these	

individual	 differences,	 the	 strategies	 appeared	 relatively	 stable,	 with	 participants	

implementing	a	similar	eye	movement	strategy	across	both	blocks	(discussed	in	greater	

detail	below).		

Figure	3.	(a)	The	mean	proportion	of	fixations	to	the	heterogeneous	side	for	the	long	and	

brief	condition	 for	 individual	participants	(the	 lines	connect	mean	proportion	 in	the	two	

conditions	for	each	individual	participant).	(b)	The	prior	predictions	of	our	model.	(c)	The	

posterior	predictions,	after	fitting	the	model	to	our	data.	Both	(b)	and	(c)	show	predictions	

for	the	average	participant,	i.e,	assuming	that	all	random	effects	are	set	to	zero.			

As	 can	be	 seen	 in	 Figure	3c,	 there	 is	 no	 evidence	 of	 a	 difference	 in	 the	proportion	 of	

fixations	directed	to	the	heterogenous	side	between	brief	and	long	exposure	conditions.	

The	HPDIs	are	[0.45,	0.67]	and	[0.46,	0.69]	for	the	long	and	brief	conditions	respectively.	

The	probability	that	the	difference	between	the	two	conditions	is	greater	than	0,	given	

the	data,	is	0.62.	Therefore,	we	conclude	that	the	addition	of	a	short	time	limit	did	not	

substantially	or	consistently	increase	search	efficiency.	
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Experiment	2:	Reward	

Methods	

Participants	

42	naive	observers	participated	in	the	experiment	(reward:	females=18;	age	range	=19-

65;	mean	age=24.90	(SD=10.12);	 flat:	 females=16;	age	range	=19-36;	mean	age=23.15	

(SD=4.24)	).	Three	participants	were	excluded	from	further	analysis:	Two	participants	

scored	below	50%	correct	 in	 the	easy	condition	(i.e.	when	the	 target	appeared	on	the	

homogenous	side),	and	one	participant	had	a	mean	reaction	time	of	over	8s	 	on	these	

same	trials,	suggesting	these	three	participants	did	not	understand	the	task.	Thus,	we	had	

18	observers	in	the	flat	payment	group	and	21	in	the	reward	group.	The	protocol	was	

reviewed	and	approved	by	the	Aberdeen	Psychology	Ethics	Committee.	Participants	in	

the	control	group	always	received	£10	for	participating	in	the	experiment;	participants	

in	the	reward	group	received	between	£5	and	£15	(mean	was	£8.41).		

Material	and	Procedure	

The	stimuli	were	exactly	the	same	as	in	Experiment	1.	The	procedure	was	also	the	same	

as	 in	 Experiment	 1	 long	 condition,	 and	 additional	 reward	 instructions	were	 given	 to	

participants	in	the	reward	group	following	the	completion	of	the	first	block.	At	the	end	of	

the	first	block	of	96	trials,	the	experimenter	told	participants	that	they	would	be	paid	£5	

for	 their	 participation	 in	 the	 experiment	 regardless	 of	 their	 performance.	 The	

experimenter	added	that	the	participant	would	receive	an	additional	£5	if	they	improved	

their	overall	reaction	times	(decrease	RTs)	in	the	second	block	by	at	least	10%.	If	they	

improved	their	performance	by	at	least	20%,	compared	to	their	performance	in	the	first	

block,	 they	 would	 receive	 an	 additional	 £10.	 To	 receive	 the	 additional	 reward	 for	
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improvement	 in	RT,	 their	 accuracy	had	 to	 stay	 at	 least	 the	 same	as	 in	 the	 first	 block.	

Participants	were	given	this	information	only	after	completing	the	first	block	to	ensure	

they	 would	 not	 deliberately	 under-perform	 to	 make	 receiving	 the	 maximum	 reward	

easier	to	achieve.	Participants	were	not	given	feedback	on	their	RT	after	every	trial	but	

they	were	given	feedback	at	the	end	of	block	one	and	block	two.	

Power	Analysis	

As	with	Experiment	1,	we	ran	a	 simulation	of	 the	experiment	 in	which	we	assumed	a	

relatively	small	difference	between	conditions,	simulated	data,	and	then	ran	the	analysis	

as	 if	 it	were	 the	 real	data.	Over	50	 simulations	with	40	observers	 each	 competing	32	

target	absent	trials,	we	found	that	the	minimum	p(x	>	0	|	d)	to	be	over	0.95.	Please	see	

Supplementary	Materials	for	full	technical	details.		

Results	

We	 pre-registered	 the	 methods,	 hypothesis,	 and	 analysis	 plan	 for	 this	 experiment	

(https://osf.io/efg8n).	However,	 the	pre-registered	 analysis	 plan	 specified	 an	ANOVA,	

and	after	completing	the	analysis	and	developing	an	approach	to	the	exploratory	analysis	

that	follows,	we	decided	to	apply	a	consistent	Bayesian	approach	to	the	statistical	analysis	

throughout	the	study.	Both	analyses	lead	to	the	same	conclusions,	and	the	original,	pre-

registered	ANOVA	is	presented	in	the	supplementary	materials.	

Accuracy	&	RT	

From	Figure	4,	it	is	clear	that	there	are	baseline	differences	between	the	control	(flat)	and	

reward	groups:	even	though	the	conditions	are	identical	in	block	1,	performance	in	the	

control	 group	 is	 slower.	 We	 are	 confident	 that	 these	 differences	 are	 due	 to	 chance;	
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participants	were	randomly	assigned,	and	did	not	know	what	group	they	were	in	until	

after	 the	end	of	block	1.	Participants	 in	 the	reward	group	were	overall	 faster	but	 less	

accurate	(Figure	4	top	row),	and	a	few	participants	in	the	flat	payment	group	who	had	

extremely	long	reaction	times	that	inflated	the	RTs	in	that	group.	We	therefore	need	to	

be	careful	to	focus	on	the	performance	difference	from	block	1	to	block	2,	rather	than	to	

interpret	the	differences	between	groups	in	the	second	block	alone.	Together	the	reaction	

time	and	accuracy	data	suggest	that	participants	improved	their	performance	in	the	Block	

2	compared	to	Block	1,	both	in	terms	of	RT	and	accuracy,	but	the	type	of	payment	did	not	

have	significant	influence	on	the	performance.	

	

Figure	4:	Accuracy	and	median	reaction	times	for	the	three	target	conditions	in	the	first	

and	second	block	for	flat	and	reward	groups.	Block	1	was	identical	for	both	groups,	so	the	

differences	in	Block	1	seen	here	are	baseline	group	differences.	
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Eye	movement	efficiency.	

As	in	Experiment	1,	in	this	analysis	we	only	include	the	first	five	search-related	fixations	

on	 correct	 target	 absent	 trials,	 and	 excluded	 the	 first	 (central)	 fixation	 and	 any	

subsequent	 fixations	 that	 fell	 inside	 of	 the	 central	 64-pixel	 strip	 of	 the	 search	 array	

(approx.	1°).	The	proportion	of	these	fixations	falling	on	the	heterogeneous	(hard)	side	is	

shown	in	Figure	5a.	Two	participants	in	the	reward	group	(second	block)	do	not	have	any	

trials	that	meet	this	further	criterion,	hence	we	were	left	with	18	participants	in	the	flat	

payment	group	and	19	participants	in	the	reward	group.		

As	can	be	seen	in	Figure	5c,	there	is	some	evidence	that	participants	in	both	the	flat	and	

reward	 conditions	 improved	 their	 eye	 movement	 efficiency	 from	 block	 1	 to	 block	 2	

(HPDIs	of	[0.04,	0.13]	and	[-0.02,	0.12]	respectively).	However,	there	is	no	evidence	that	

the	 size	of	 this	 improvement	was	 larger	 for	participants	 in	 the	reward	 condition:	The	

probability	that	the	difference	between	the	two	conditions	is	greater	than	0,	given	the	

data,		is	p(x	>	0	|	d)	=		0.10.	Therefore,	we	conclude	that	the	introduction	of	rewards	did	

not	lead	to	more	efficient	visual	search	strategies.		

The	 correlation	 between	 the	 proportion	 of	 fixations	 to	 the	 hard	 side	 in	 the	 first	 and	

second	 block	 was	 relatively	 high	 (r=.63,	 95%	 confidence	 interval	 [0.17,	 0.83]).	 The	

finding	 that	 the	pattern	 is	variable	between	participants	but	 consistent	over	 repeated	

measures	is	consistent	with	the	results	of	Clarke,	Irons,	James,	Leber	&	Hunt	(2020)	who	

found	similar	 test-retest	 reliability	 [0.63-0.86]	The	new,	 lower	 correlation	 seen	 in	 the	

present	study	is	likely	due	to	the	experimental	manipulation	between	one	block	and	the	

next,	given	that	the	correlation	between	block	1	and	block	2	in	the	flat	payment	condition	

alone	was	stronger	(r=.90,	CI[.77,.97]).	
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Figure	5:	(a)	Proportion	of	fixations	to	heterogeneous	side	on	target	absent	trials	only.	The	left	

panel	shows	participants	who	received	flat	payment,	and	right	panel	those	who	were	offered	a	

reward	 for	 improving	performance.	Most	 participants	 improve	 their	 strategy	 (make	more	 eye	

movements	to	the	heterogenous	side)	in	the	second	block,	regardless	of	the	payment	condition.	(b)	

The	prior	predictions	of	our	model.	 (c)	The	posterior	predictions	after	 fitting	the	model	 to	our	

data.	Both	(b)	and	(c)	show	predictions	for	the	average	participant,	i.e,	assuming	that	all	random	

effects	are	set	to	zero.	The	x	axis	shows	the	difference	in	efficiency	(block	2	-	block	1).	

	Exploratory	Time	Course	Analysis	

In	 the	 two	 experiments	 described	 above,	 neither	 the	 time	 pressure	 nor	 the	 reward	

manipulation	 reliably	 improved	 search	 strategies.	 What	 did	 emerge	 were	 small	 but	

consistent	 effects	 of	 practice.	 The	 improvement	 from	 block	 1	 to	 block	 2	 in	 search	
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efficiency	in	Experiment	2	(also	observed	in	Experiment	1,	as	discussed	below)	suggests	

a	gradual	process	whereby	classes	of	eye	movements	associated	with	faster	search	(those	

directed	 towards	 the	 heterogeneous	 side)	 become	more	 likely,	 and	 less	 efficient	 eye	

movements	 (those	 directed	 towards	 the	 homogeneous	 side)	 become	 less	 likely.	

Participants	were	unable	 to	 implement	better	strategies	when	they	were	 incentivized,	

suggesting	these	improvements	must	instead	be	gradually	acquired	through	practice.		

Practice	 effects	 are	 important	 because	 they	 offer	 a	 possible	 explanation	 for	 the	 large	

individual	differences	observed	between	participants	in	this	and	previous	experiments	

(Nowakowska	et	al.,	2017;	2019;	Clarke	et	al.,	2020);	perhaps	these	differences	are,	at	

least	in	part,	a	consequence	of	sampling	each	participant	at	a	different	stage	of	learning,	

rather	than	(or	in	addition	to)	being	a	stable	indicator	of	cognitive	style	or	personality	

(i.e.,	 Lonnqvist,	 Elsner,	 Hunt	 &	 Clarke,	 2020).	 While	 some	 personality	 and	 cognitive	

characteristics	(such	as	conscientiousness	and	working	memory	capacity)	seem	likely	to	

contribute	 to	 certain	 types	 of	 search	 skills,	 this	 has	 proven	 difficult	 to	 demonstrate	

empirically	(e.g.	for	a	recent	review	see	Leber	and	Irons,	2019).	Differences	in	experience	

with	 search	 and	 in	 learning	 rates	 for	 particular	 skills	 and	 tasks	 are	 also	 likely	 to	

contribute	 to	 individual	differences	 in	search,	and	 the	practice	effects	observed	 in	 the	

current	experiments	offer	an	opportunity	to	quantify	and	understand	their	contribution.	

In	 this	 final	 section,	 we	 therefore	 combine	 the	 results	 from	 the	 two	 experiments	 to	

explore	 the	 effects	 of	 practice	 on	 search	 strategy.	 Four	 specific	 questions	 can	 be	

addressed	in	this	analysis.	The	first	relates	to	a	possible	limitation	of	Experiment	1,	which	

is	that	we	counterbalanced	the	conditions	without	regard	to	possible	effects	of	the	order	

of	 exposure.	 If	 restricted	 exposure	 to	 the	 search	 array	 leads	 to	more	 efficient	 search	

strategies,	 participants	 who	 performed	 the	 brief	 condition	 first	 may	 utilize	 a	 more	
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efficient	 strategy	 not	 only	 in	 the	 timed	 condition,	 but	 also	 in	 the	 long	 condition	 that	

follows	it.	This	would	have	reduced	the	differences	between	conditions	for	this	group.	A	

second	question	is	the	rate	of	change	over	time;	do	participants	gradually	improve	their	

strategies,	or	is	there	a	step-change	between	blocks	1	and	2	in	the	experiment	where	a	

more	efficient	approach	 is	discovered?	Third,	 is	 the	rate	of	 learning	similar	across	the	

different	conditions	(i.e.	with	time	constraints	or	reward),	or	do	differences	emerge	with	

a	more	nuanced	comparison?		

A	fourth	and	final	question	explored	in	this	analysis	is	how	search	strategies	unfold	over	

each	 trial.	 In	 this	 study	 and	 previous	 ones,	we	 have	 restricted	 our	 analysis	 of	 search	

strategy	to	the	first	six	fixations	on	target	absent	trials	in	part	because	these	are	the	most	

diagnostic;	by	 the	end	of	each	 trial	all	participants	 tend	 to	direct	 the	majority	of	 their	

fixations	to	the	heterogeneous	side	by	necessity.	What	differs	between	participants	is	the	

earlier	stages	of	the	trial,	in	which	some	participants	direct	fixations	to	the	heterogeneous	

side	from	the	start,	and	others	seem	to	check	the	homogeneous	side	first,	or	make	more	

distributed	eye	movements,	before	focusing	on	the	locations	that	yield	new	information.	

In	 the	 analysis	 below,	 we	 look	 at	 practice	 effects	 separately	 for	 each	 of	 the	 first	 six	

fixations	 on	 each	 trial,	 to	 better	 understand	 whether	 practice	 effects	 are	 making	 all	

fixations	 uniformly	 more	 efficient,	 or	 if	 they	 are	 improving	 earlier	 or	 later	 fixations	

exclusively.	These	analyses	are	exploratory:	our	goal	is	to	describe	the	pattern	of	practice	

effects	and	quantify	their	size	and	stability,	not	to	test	any	particular	hypothesis.		
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Methods	

Data	

Data	from	the	first	two	experiments	were	pooled	together.	The	control	conditions	(long	

(block	1)	and	flat)	were	merged	into	a	new	condition	named	baseline.	Block	2	of	the	long	

condition	 in	 Experiment	 1	 was	 renamed	 transfer,	 as,	 due	 to	 counterbalancing,	

participants	who	completed	this	condition	had	previously	completed	the	brief	condition	

in	Block	1,	allowing	for	potential	transfer	effects.	Unlike	in	Experiments	1	and	2,	which	

used	the	proportion	of	fixations	averaged	over	multiple	trials,	the	analysis	in	this	section	

uses	 a	 binary	 variable,	 indicating	 for	 each	 fixation	 whether	 it	 landed	 on	 the	

heterogeneous	side	of	the	display	or	not.	

Analysis	

A	Bayesian	generalised	multi-level	linear	model	(family		=	binomial)	was	used,	following	

the	same	general	approach	as	above.	Fixation	number	(2-6),	block	(1-2)	and	condition	

(baseline,	brief,	 reward,	 transfer)	were	 included	 in	 the	model	 as	 categorical	 variables,	

while	 trial	 number	 (1-196)	 was	 scaled	 and	 centred	 to	 have	 mean	 0	 and	 standard	

deviation	1,	and	included	as	a	continuous	variable.	Model	comparisons	will	be	made	using	

approximate	leave-one-out	(loo)	cross-validation	(Vehtari,	Gelman,	and	Gabry,	2017).	

Results	

The	results	of	the	model	including	all	four	variables	and	their	interactions	are	shown	in	

Figure	 6.	 From	 this	 figure	 we	 can	 see	 that	 there	 is	 a	 steady	 improvement	 in	 search	

efficiency	 for	 fixations	 5	 and	 6	 over	 the	 course	 of	 the	 experiment	 (trials	 1	 to	 196).	

Interestingly,	this	learning	does	not	appear	to	be	present	for	the	initial	first	few	fixations.	
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(As	we	have	noted	elsewhere,	eventually,	all	participants	spend	the	majority	of	their	time	

fixating	the	heterogeneous	side	of	the	display	if	they	have	not	yet	found	the	target,	and	so	

ceiling	effects	on	higher	fixation	numbers	(i.e.,	>	10)	limit	the	opportunity	to	learn.)	

Figure	6:	The	proportion	of	fixations	2	through	6,	made	to	the	heterogeneous	side	of	the	

display	for	the	four	conditions	in	our	experiments.	The	wiggly	line	shows	a	rolling	average	

of	the	empirical	data,	while	the	shaded	regions	show	the	50%	and	90%	HPDI	regions	for	the	

regression	lines.	The	vertical	grey	line	shows	the	split	between	the	first	and	second	block.		

While	 it	 is	 clear	 from	 Figure	 6	 that	 fixation	 number	 and	 trial	 have	 an	 effect	 on	 the	

likelihood	of	a	fixation	to	be	directed	towards	the	heterogeneous	side	of	the	display,	it	is	

less	clear	whether	block	has	an	effect	above	and	beyond	what	can	be	accounted	for	by	

trial,	and	whether	there	are	any	differences	between	our	experimental	manipulations.	To	

investigate	this,	we	fit	four,	simpler	versions	of	the	model,	each	dropping	one	of	our	four	

factors,	along	with	all	related	interactions.		
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The	model	weights	are	shown	in	Table	1.	We	can	see	that,	in	line	with	our	conclusions	

based	on	Figure	6,	the	models	with	trial	and	fixation	number	removed	perform	poorly.	

We	 can	 also	 see	 that	 the	model	 that	 ignores	block	performs	poorly,	 suggesting	 that	 a	

steady	improvement	from	one	trial	to	the	next	is	not	enough	to	account	for	the	rate	of	

learning	seen	in	our	participants.	The	two	models	that	contain	block,	trial	number,	and	

fixation	number	receive	over	80%	of	the	weight,	split	approximately	equally	between	the	

two	of	them.	Given	that	the	model	without	the	condition	variable	is	nested	within	the	full	

model,	 this	 is	equivalent	 to	halfing	 the	model	coefficients	 for	condition	and	all	 related	

interactions.	 As	 the	 full	 model	 (Figure	 6)	 already	 shows	 little	 difference	 between	

conditions,	and	in	the	interest	of	parsimony	(the	addition	of	condition	and	its	interactions	

requires	over	50	new	coefficients	to	be	estimated	from	the	data),	we	conclude	that	there	

is	little	evidence	that	the	introduction	of	the	short	time	limit,	or	the		financial	incentive	

that	we	used,	had	sizeable	impact	on	the	rate	of	which	participants	improved	their	search	

efficiency	over	time.	

Model	 Number	of		Parameters	 Model	Weights	

All	 80	 0.424	

Ignore	Trial	 40	 <0.001	

Ignore	Block	 40	 0.063	

Ignore	Condition	 20	 0.430	

Ignore	Fixation	 16	 0.083	

Table	1:	Model	stacking	weights.	These	show	the	weight	we	should	put	on	each	model’s	

prediction	to	generate	the	best	average	prediction.		
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Saccadic	latency	analysis	

A	plausible	explanation	for	inefficient	fixation	behaviour	we	also	considered	is	that	the	

homogeneous	side	may	appear	more	visually	salient,	and	out-compete	the	heterogeneous	

side	 for	 control	 of	 attention.	 In	 this	 case,	 a	 failure	 to	 inhibit	 a	 reactive	 saccade	 to	 the	

homogenous	 side	 could	 explain	 why	 participants	 look	 here,	 despite	 the	 fact	 that	 it	

provides	 no	 information.	 If	 this	 is	 the	 case,	 the	 latency	 of	 initial	 saccades	 to	 the	

homogeneous	side	should	be	faster	than	to	the	heterogeneous	side.	To	evaluate	this,	we	

examined	the	latency	of	the	first	saccade	on	each	trial,	as	a	function	of	where	that	saccade	

was	directed	(homogeneous	or	heterogeneous	side).	We	excluded	one	observer	who	had	

a	median	 latency	 greater	 than	 1100ms	 (although	 the	 results	 are	 essentially	 the	 same	

whether	this	person	is	included	or	not).		

The	mean	of	the	median	latencies	showed	no	difference	with	the	direction	of	the	saccade:	

across	long,	brief,	flat	and	reward	conditions,	no	differences	between	homogeneous	and	

heterogeneous	latencies	larger	than	5ms	were	observed.	A	table	with	the	results	across	

conditions	 is	 presented	 in	 the	 supplementary	material.	 Saccades	 to	 the	 homogeneous	

side	are	not	executed	faster	than	saccades	to	the	heterogeneous	side.		

DISCUSSION	

These	 experiments	 tested	 the	 hypothesis	 that	 the	 sub-optimal	 fixation	 strategies	

observed	in	previous	studies	arose	because	participants	did	not	consistently	prioritize	

fast	 search.	 That	 is,	we	 considered	 the	 possibility	 that	 a	 persistent	 tendency	 to	 fixate	

locations	that	provide	no	new	information	could	occur	because	most	individuals	were	not	

trying	to	search	efficiently.	Were	this	true,	stronger	incentives	to	search	quickly	should	

have	been	effective	in	reducing	individual	variation,	bringing	all	individuals	closer	to	an	



31 

efficient	strategy.	 	We	replicated	the	previous	pattern	of	wide	individual	differences	in	

search	 strategy,	 and	 in	 two	 experiments,	 we	 found	 that	 experimentally	 inducing	

incentives	to	search	more	quickly	did	not	have	a	substantial	effect	on	fixation	strategies.	

We	 can	 therefore	 rule	 out	 insufficient	 motivation	 as	 the	 explanation	 for	 inefficient	

fixations.	Whether	the	participants	were	already	motivated	in	previous	studies	in	the	first	

place,	 or	whether	 increasing	motivation	 just	 has	 no	 bearing	 on	 efficiency,	 we	 cannot	

discriminate	 from	 these	 experiments.	 Still,	 we	 saw	 consistent	 gradual	 increases	 in	

fixation	 efficiency	 with	 practice,	 irrespective	 of	 whether	 we	 put	 time	 pressure	 on	

participants	or	rewarded	them	for	faster	performance.	Exploring	these	timecourse	effects	

further	revealed	that	the	first	few	fixations	in	each	trial	were	impervious	to	practice	and	

that	 it	was	the	efficiency	of	the	fourth	to	sixth	fixation	that	gradually	 improved.	These	

observations	provide	some	preliminary	insights	into	how	search	strategies	evolve	over	

time.		

The	 SHLS	 task	 employed	 in	 these	 experiments	 provides	 a	 straightforward	 metric	 of	

fixation	efficiency	that	can	be	easily	compared	across	conditions.	In	previous	studies,	we	

verified	 that	 participants	 can	 easily	 spot	 the	 target	 using	 peripheral	 vision	 when	 it	

appears	on	the	homogeneous	side,	demonstrating	that	fixations	directed	to	this	side	are	

superfluous	and	can	only	slow	search	(Nowakowska	et	al.,	2017).	We	have	also	shown	

that	 the	 tendency	 to	 fixate	 the	homogeneous	side	of	 the	search	array	 is	nonetheless	a	

common	behaviour	among	the	majority	of	individuals,	and	that	it	persists	over	multiple	

testing	sessions	(Nowakowska	et	al.,	2019;	Clarke	et	al.,	2020).	In	the	two	experiments	

reported	 here,	we	 show	 a	 similarly	wide	 range	 of	 behaviours	 in	 this	 task,	with	 some	

participants	 highly	 inefficient,	 some	 intermediate,	 and	 some	 highly	 efficient.	 The	

existence	of	 individual	differences	 in	strategy	suggests	eye	movements	are	not	driven	
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preferentially	to	locations	that	produce	the	most	information,	as	Najemnik	and	Geisler	

(2005)	 would	 suggest.	 However,	 a	 stochastic	model	 (Clarke	 et	 al.,	 2016)	 also	 cannot	

explain	human	search,	because	it	would	suggest	both	sides	of	the	search	array	should	be	

equally	likely	to	be	fixated.	 	What	is	required	is	a	model	that	can	account	for	variation	

between	individuals	and	over	time.		

The	 current	 results	provide	 some	groundwork	 for	 this	more	 comprehensive	model	of	

visual	 search	by	ruling	out	one	set	of	possible	explanations	 for	 individual	differences:	

those	based	on	motivation	and	differences	in	speed/accuracy	trade-offs.		Although	these	

manipulations	of	motivation	did	not	lead	to	changes	in	strategy,	more	efficient	strategies	

did	 gradually	 emerge	 with	 practice:	 participants	 improved	 in	 the	 second	 session	

regardless	of	the	presence	of	a	response	deadline	or	offer	of	additional	incentive.	Using	a	

task	with	a	similar	rationale,	we	previously	tested	the	same	20	participants	each	day	for	

five	days	 	 and	 found	 gradual	 improvements	 in	 strategy	 and	high	 correlation	between	

performance	on	each	consecutive	day	(Nowakowska	et	al.,	2019).	The	current	study	takes	

this	further	by	documenting	the	size	and	progression	of	these	practice	effects	in	a	larger	

set	of	data.	It	is	possible	that	some	observers	use	a	model-based	search	that	calculates	

the	 cost	 in	 terms	 of	 time	 or	 effort	 against	 the	 expected	 value	 (Gershman,	 Horvitz,	 &	

Tenenbaum,	2015),	and	in	the	context	of	the	current	studies,	use	their	knowledge	of	their	

own	 acuity	 to	 calculate	 the	most	 efficient	 eye	 landing	 position,	 in	 other	words,	 using	

computations	like	those	in	Najemnik	and	Geisler’s	(2005)	model.	Such	a	strategy	could	

be	 contrasted	 with	 a	 more	 error-prone	 but	 inexpensive	 look-up	 table	 mechanism	

(Gershman,	Horvitz,	&	Tenenbaum,	2015),	whereby	fixations	are	determined	by	visual	

and	motor	constraints,	biases,	and	low-level	properties	of	the	visual	scene,	similar	to	the	

stochastic	model	(Clarke	et	al.,	2016).	Increasingly	efficient	search	behaviour	could	occur	
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through	 a	 transition	 from	 a	 look-up	 table	 mechanism	 to	 a	 model-based	 strategy.	

Alternatively,	the	look-up	table	mechanism	could	simply	become	better	adapted	to	the	

search	conditions	over	time.	Our	results	showing	a	gradual	improvement	with	practice,	

which	 is	 insensitive	 to	 manipulations	 of	 time	 pressure	 or	 reward,	 suggest	 the	 latter	

account	is	more	likely.		

The	practice	effects	observed	 in	 the	current	experiments	are	partially	 consistent	with	

previous	findings	demonstrating	that	participants	can	learn	to	direct	eye	movements	to	

relevant	 stimuli	 in	 their	 environment	 and	 adjust	 eye	movement	 statistics	 to	 adapt	 to	

scenes,	 fixating	 sooner	 and	 longer	 on	 dynamic	 and	 potentially	 hazardous	 sources	 of	

information	(e.g.	Jovancevic-Misic	and	Hayhoe,	2009;	Sullivan	et	al.,	2012).	These	studies	

have	provided	support	for	a	set	of	promising	models	of	visual	exploration	during	complex	

and	naturalistic	tasks	like	walking	and	driving,	in	which	eye	movements	are	related	to	

the	 sub-tasks	 of	 ongoing	 sequences	 of	 actions.	 Reward	 is	 an	 important	 component	 in	

driving	efficient	information-gathering	in	these	models		(e.g.	Hayhoe	and	Ballard,	2014),	

however,	and	it	is	inconsistent	with	these	models	that	the	rewards	in	Experiment	2	did	

not	 accelerate	 the	 learning	 of	 effective	 eye	 movement	 strategies.	 Like	 in	 those	

experiments,	 the	 current	 studies	 rewarded	 efficient	 eye	 movement	 behaviour	

intrinsically,	by	rewarding	the	faster	search	times	that	efficient	eye	movements	would	

engender.	A	potentially	important	distinction	between	our	approach	and	many	others,	

however,	is	that	“efficient”	eye	movement	behaviour	in	our	experiment	is	not	as	directly	

defined	 by	 the	 visual	 context.	 That	 is,	 in	 many	 studies,	 eye	 movements	 gathered	

rewarding	information	by	targeting	specific	events,	locations,	or	object	classes,	such	as	

anticipating	 the	 bounce-point	 of	 a	 cricket	 ball	 and	 thereby	 reaching	 this	 source	 of	

information	in	time	to	process	the	event	(Land,	2000).	In	our	studies,	the	eye	movements	
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accrue	evidence	for	a	decision,	and	some	locations	are	a	richer	source	of	information	than	

others.	This	distinction	between	better	and	worse	sources	of	 information	in	the	visual	

environment	 can	 clearly	 be	 learned	 over	 time,	 as	 our	 results	 suggest,	 but	 additional	

reward	 does	 not	 facilitate	 this	 learning	 or	 lead	 participants	 to	 adopt	 more	 efficient	

strategies.		

Previous	research	from	Paeye	et	al.	(2016)	provides	converging	evidence	that	effective	

reinforcement	 of	 eye	 movements	 requires	 a	 contingent	 mapping	 between	 an	 eye	

movement	and	an	event.	Their	participants	did	not	spontaneously	learn	or	capitalize	on	

changes	in	the	probability	of	the	target	appearing	in	a	particular	quadrant	of	the	search	

area.	 In	 contrast,	 when	 instead	 the	 contingency	 between	 the	 eye	movement	 and	 the	

information	 was	 made	 more	 direct	 by	 having	 the	 target	 appear	 after	 a	 saccade	 to	 a	

particular	 region,	 or	 in	 a	 particular	 direction,	 participants	 quickly	 began	 repeating	

saccades	of	this	type	at	a	higher	frequency.	The	conditions	of	our	experiment	were	more	

similar	 to	 the	 first	manipulation	 (of	 the	 target’s	 likely	quadrant)	 in	 that	 there	was	no	

direct	contingency	between	the	saccade	and	the	presentation	of	the	target.	Nonetheless,	

unlike	the	probability	manipulation,	the	visual	information	in	our	scenes	is	not	uniform,	

which	may	have	permitted	the	small	but	steady	improvements	we	observed	over	time	in	

our	experiments.	Our	results	suggest	this	less	direct	learning	might	occur	through	small,	

gradual,	trial-and-error	adjustments	in	scanning	behaviour.			

The	 timecourse	 analysis	 revealed	 that	 the	 first	 few	 fixations	 on	 each	 trial	 were	

impervious	 to	 the	 effects	 of	 practice,	 and	 that	 the	 improvements	 over	 time	 could	 be	

largely	attributed	to	the	fourth	fixation	onward.		This	is	an	interesting	pattern	worthy	of	

confirmation	 and	 further	 exploration	 because	 of	 the	 potential	 links	 with	 existing	

literature	 looking	 at	 the	 timecourse	 of	 stimulus-driven	 versus	 goal-driven	 overt	
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attention.	Several	previous	visual	search	studies	have	shown	that	saccades	executed	soon	

after	the	search	array	appears	are	driven	more	by	visual	salience	than	those	executed	

later	(e.g.	Donk	and	van	Zoest,	2008;	Hunt	et	al.,	2007;	for	reviews	see	van	Zoest	et	al.	

2010;	Hunt	et	al.,	2011).	Eye	movements	during	extended	search	provide	snapshots	of	

dynamic	visual,	cognitive,	and	decision	processes	as	they	emerge	and	develop	from	the	

onset	of	the	search	array	to	when	the	response	key	is	pressed.	That	early	fixations	are	not	

influenced	by	practice	is	consistent	with	the	characterization	of	early	visual	processing	

as	“reflexive”	and	therefore	more	rigid	and	predictable	than	later	stages.		However,	it	is	

also	important	to	note	that	the	large	individual	differences	observed	across	individuals	

applies	 to	 early	 as	well	 as	 later	 fixations.	 By	 the	 end	 of	 each	 trial,	most	 fixations	 are	

directed	to	the	heterogeneous	side	of	the	search	array;	reaction	time	is	determined	in	a	

large	part	by	how	quickly	participants	are	able	to	start	focusing	fixations	on	this	side,	and	

this	is	what	seems	to	improve	with	practice.	An	important	implication	is	that	whether	eye	

movements	during	search	can	be		characterised	as	“ideal”	could	depend	not	only	on	the	

individual,	 but	 also	 on	 the	 extent	 of	 their	 experience	 with	 the	 task,	 and	 on	 which	

timepoint	of	a	single	trial	is	being	considered.		
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