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Abstract: Even though seaweeds have been recognized as
key players in the ocean-to-atmosphere transfer of iodine
in other parts of the world, there is a complete lack of
knowledge about iodine accumulation in seaweeds of the
Arabian Gulf. Similarly, very little is known about fluorine
in seaweeds, anywhere in theworld. Given that theArabian
Gulf is of particular interest due to being an extreme
environment, featuring some of the highest temperatures

and salinities observed in any marine water body world-
wide, this study endeavoured to conduct a preliminary
survey of iodine and fluorine levels in 11 of the most com-
mon seaweed species in the region, supported by
morphological and molecular (DNA barcode)-based iden-
tification. Iodine was determined by inductively-coupled
plasma-mass spectrometry,while ion chromatographywas
employed for analysis of fluoride. Species surveyed
included Iyengaria stellata, Padina boergesenii, Chondria
sp. Dictyota dichotoma, Colpomenia sinuosa, Feldmannia
indica, Codium papillatum, Sargassum ilicifolium,
S. ilicifolium var. acaraeocarpum, Sargassum asperifolium
and Sargassum aquifolium. The findings of S. ilicifolium
and S. ilicifolium var. acaraeocarpum reported here are
new records both for Kuwait and the Arabian Gulf. P.
boergesenii and D. dichotoma are new records for Kuwait.
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1 Introduction

The discovery of iodine (atomic number 53, with an atomic
weight of 126.9 Da) is credited to Courtois in 1811, who was
trying tomanufacture saltpetre (needed tomake gunpowder
in the context of the Napoleonic wars) from seaweed ash.
After the initial discovery, Joseph Gay-Lussac, another
French chemist, gave the new element its name iodine (from
the Greek word “ιώδης” due to its purple colour; historical
details reviewed by Küpper et al. 2011). Iodine levels are
much higher in seawater (60 μg l−1, corresponding to
0.47 μM) than in estuaries (about 5 μg l−1, corresponding
to 0.04 μM) or rivers (less than 0.2 μg l−1, corresponding to
1.6 nM in some Triassic mountain regions of northern Italy),
and, consistent with this, freshwater trout contain 20 μg kg−1

of iodine compared to saltwater fishes (herring) with about
500–800 μg kg−1 (Venturi et al. 2000). The oceans are the
largest reservoir of bioavailable iodine on the planet (Wong
1991) where total iodine levels are typically in the range of
0.5 μM (Truesdale et al. 1995a). From there, the element is
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transferred from the oceans to the atmosphere in the form of
gas or aerosols and from there, by wind and rain, to land
areas (Küpper et al. 2011; Truesdale et al. 1995b). Seaweeds
contribute to this through a process called iodovolatiliza-
tion which was discovered as early as the 1920s (Dangeard
1928; Kylin 1929). It has been proposed that iodide had the
ancestral function of an ancient antioxidant in animals and
that this resulted in the evolution of the thyroid gland
(Venturi and Venturi 1999). Iodine plays a central role in
thyroid physiology, being the essential element in thyroid
hormones (THS) and the major constituent regulator of
thyroid gland function (Thilly et al. 1992, reviewed by
Küpper et al. 2011). Iodine from the diet is rapidly and
efficiently absorbed (>90%) throughout the gastrointes-
tinal tract (in particular, the duodenum; Yarrington and
Pearce 2011). The kelp Laminaria digitata accumulates
iodine to more than 30,000-times the concentration found
in seawater, often representing an average content of 1% of
dry weight and much higher levels in young thalli (Küpper
et al. 1998). More recently, it was found that, in Laminaria,
the accumulation of iodide serves the provision of a simple,
inorganic antioxidant, which protects the thallus surface
against reactive oxygen species (Küpper et al. 2008). If
ozone is present, molecular iodine is released, which can
undergo further photolytic and oxidative reactions with
ozone yielding hygroscopic iodine oxides, resulting in
aerosol particle formation, thus impacting coastal climate
(Küpper et al. 2008). More recently, it was found that bro-
mide complements iodide as antioxidant in Laminaria
(Küpper et al. 2013). The world’s largest seaweed, the giant
kelpMacrocystis pyrifera, shares key features of its halogen
metabolism with Laminaria, even though the overall
accumulation of iodine is lower (Tymon et al. 2017). Mac-
rocystis forests were found to impact iodine speciation in
surrounding seawater (Gonzales et al. 2017). In Laminaria,
inorganic iodine emission rates exceed organic emissions
(i.e. of halocarbons) by several orders of magnitude (Küp-
per et al. 2008; Palmer et al. 2005). Rates of halocarbon
production vary considerably between species (Carpenter
et al. 2000) and marine macroalgae are thought to be the
dominant source of CH3I in the coastal ocean (Gschwend
et al. 1985; Giese et al. 1999; Itoh 1997). Most studies
exploring halocarbon emission by seaweeds were con-
ducted on temperate and somepolar seaweed species,while
only a fewhave considered tropical species. Brown seaweeds
from temperate regions including Laminariales and Fucales
release large amounts of iodinated compounds (Carpenter
et al. 2000, reviewed by Küpper et al. 2011; Küpper and
Kroneck 2015). Much less is known about seaweeds from
tropical regions. In this context, recent studies fromMalaysia
(Keng et al. 2020; Leedham et al. 2013) have investigated

seaweeds, including Sargassum binderi, Padina australis,
and Turbinaria conoides, which were dominant in a tropical
coral reef, for their emissions of various volatile halocarbons.

Fluorine (F, atomic number 9, with an atomic weight of
18.9984 Da) is considered an essential element for animals
including humans,which is primarily because of its benefits
to dental health and its suggested role in maintaining the
integrity of bones (Prystupa 2011), while continuing expo-
sure to elevated levels are of concern. According to the
WorldHealth Organization (WHO), the recommended upper
limit of fluoride in drinking water is between 0.8 and
1.5 mg l−1 (WHO 2019). The European Food Safety Authority
(EFSA) recommends an intake of 0.05 mg of fluoride per kg
of body weight per day for children and adults (EFSA Panel
on Dietetic Products, Nutrition and Allergies 2013). Fluoride
has been one of the most effective and widespread agents
used to prevent dental caries (Petersen 2003). It is important
to metabolism, formation and structure of bone and teeth,
growth and reproduction and other physiological process in
thehumanbody (Liteplo et al. 2002). Fluoride species can be
taken up by aquatic organisms directly from the water or, to
a lesser extent, via food. Uptake depends on the anthropo-
genic sources, the local geology and the physicochemical
conditions (Camargo 2003; Liteplo et al. 2002). Studies on
the distribution of certain halogens in seaweeds show the
equivalent concentrations of halogens in seaweeds are in
the order I > F > Br > Cl, whereas in seawater the order of
concentrations is Cl > Br > F > I (Rao and Indusekhar 1989).
Little is known about the biological significance of fluorine
in algae. Fluoride possibly increases the growth and meta-
bolic activities of brown seaweeds (Camargo 2003). On the
other hand, it was found that aluminofluoride and beryllo-
fluoride, which are structural analogues of vanadate and
phosphate, inhibited apo-(halo-)bromoperoxidase (a key
enzyme in halogen metabolism of brown and red algae;
Küpper and Kroneck 2015) from the North Atlantic brown
alga Ascophyllum nodosum (Tromp et al. 1991). Haloperox-
idases cannot catalyse fluorination reactions because
hydrogen peroxide lacks the thermodynamic potential to
oxidize fluoride; thus, enzymes catalysing fluorination re-
actions are not peroxidases (Butler and Sandy 2009). At
present, it is not clear whether algae of any phylum contain
fluorinating enzymes; in fact, the only fluorinase so far
known to science is from the bacterium Streptomyces cat-
tleya (O’Hagan et al. 2002). Also, it should be noted that
among all marine organisms investigated so far, anywhere
in the world, only one marine-derived Streptomyces xing-
haiensis strain has been reported to produce a fluorinated
metabolite, the structurally simple fluoroacetate (Huang
et al. 2014; Ma et al. 2016). No fluorinated compounds have
been reported from the entire breadth of algal diversity,
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including seaweeds. They are mainly producers of chlori-
nated, brominated and iodinated compounds due to the
presence of vanadium haloperoxidases (e.g. Butler and
Sandy 2009; Carter-Franklin and Butler 2004; Küpper et al.
2008; Küpper and Kroneck 2015). This may also be due to
traditionallymuch less investigator effort focussingon algae
in the natural products community compared to bacteria,
fungi, sponges, etc. Considering that algae also harbour
abundant and diverse bacterial communities, especially on
their surfaces as biofilms, it would be surprising that there
are no fluorinated compounds. Young and Langille (1958)
found thatfluoride content ranges from3.02 to 18.86, 4.78 to
17.82 and 4.35–20.04 mg kg−1 dry weight in green, brown
and red algae, respectively. Even though variations in
fluoride content are observed in each class of algae, red
algae, in general, tend to containmore fluoride compared to
brown and green algae. Recently, there has been increasing
interest in the potential of dried seaweed biomass for bio-
sorption of fluoride from fluoride-contaminated water. In
this context, itwas found that driedPadina sp. (Phaeophyta)
from the Red Sea (Mohamed et al. 2020) and Gracilaria sp.
(Rhodophyta) from the Bay of Bengal (Babu et al. 2020)
could be applied as eco-friendly biosorbents for fluoride.

The Arabian Gulf is a shallow basin that has been in
existence, i.e. filled with sea water, for only around 15,000
years. Except at its entrance in theStraits ofHormuz, it is less
than 60 m deep and it is located in one of the most arid
regions of the world, characterized further by the greatest
seasonal temperate range in theworld as well as the highest
annual sea temperature (Sheppard et al. 2010). The coastal
environment ofKuwait (ca. 500 kmcoastline) canbe divided
into the Northern Region, Kuwait Bay, and the Southern
Region. The Northern Region extends from the northern
border of the state to Ras Al-Ardh. This area is influenced by
outflows of freshwater from theShatt Al-Arabwaterway. The
Southern Region extends from Ras Al-Salmiyah to the
southern border of the state. Marine biota of the Gulf are
mostly of Indo-Pacific affinity, however cold winds from the
Anatolian and Iranian highlands limit the occurrence of
more cold-sensitive taxa. For much of its area, the photic
depth is 15mor less. High evaporation (up to 2myr−1) results
in salinities generally of at least 39, reaching 70 in theGulf of
Salwah off south-western Qatar. The Arabian Gulf is char-
acterized by sandy seabeds and shores on its western side
including the Qatar Peninsula with occasional limestone
outcrops formed of fossilised reef rock, while genuine rocky
shores occur mostly on the eastern (Iranian) shore. Indeed,
organisms in the Gulf experience high levels of salinity as
well as exceptional levels of temperature stress, which
makes the region and its biota interesting models for
studying the impacts of climate change (Sheppard et al.

2010). For almost all groups of biota, the Arabian Gulf has to
be considered impoverished compared to the neighbouring
Indian Ocean, which is due to both harsh environmental
conditions and its young age as a sea area, while population
densities of several groups of biota are similar to those of
other tropical areas (Sheppard et al. 2010). For example, the
Arabian Gulf harbours an impoverished subset of reef-
building corals of the Indian Ocean (Sheppard 1998). How-
ever and despite a fairly general pattern of low diversity for
most groups, more in-depth surveys have revealed a higher
diversity than expected for some groups such as fish (Krupp
et al. 2000; Price et al. 2002) and ocypodid crabs (Al-Khayat
and Jones 1996). When the size of the water body was
compensated for in a recent study of 2894 species of marine
macroalgae from 66 sites in the Indian Ocean region, the
Arabian Gulf overall ranked 62nd out of 66 in terms of algal
diversity in all phyla/higher divisions, based on species
richness, range rarity and average taxonomic distinctness
(Price et al. 2006). Soft bottom substratamakeupmost of the
surface of benthic habitats of the Arabian Gulf, yet rocky
outcrops and coral reefs are common too and harbour sig-
nificant biodiversity. Indeed, the largest high-diversity types
of benthic environments in the Arabian Gulf are coral reefs
and coral-dominated substrata, seagrass meadows and
algal beds.

As the hottest and the most saline part of the world’s
ocean, theArabianGulf is aunique environment. Yet, little is
known about how organisms in the Arabian Gulf tolerate
such extreme conditions and how this tolerance influences
biodiversity. In this context, nothing at all is known about
the accumulation and metabolism of halogens in seaweeds
of the Arabian Gulf. This study was conducted in order to
obtaina first insight intowhether typical, commonseaweeds
of the Arabian Gulf, whose identification was underpinned
by morphological and DNA barcoding, accumulate any
iodine and fluorine at levels comparable to those in colder
climates. Inductively coupled plasma-mass spectrometry
(ICP-MS) and ion chromatography (IC)were employed as the
key technique for this, since it provides excellent selectivity
and sensitivity for the measurement of iodine (Oliveira et al.
2010; Pacquette et al. 2012; Picoloto et al. 2015; Schnetger
and Muramatsu 1996; Sullivan and Zywicki 2012).

2 Materials and methods

2.1 Algal collections

Sampling locations were selected to represent a variety of
geographical and ecological regions along the coastline of Kuwait
(Table 1). Seaweed samples were collected during low tide
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(maximum tidal range is 3m) from supratidal to subtidal zones of the
intertidal regions of the selected locations. Although a few macro-
algae were free-floating, most were found attached to stable sub-
strata such as rocks, dead corals, pebbles, shells and seagrasses.
Algal samples were rinsed thoroughly with seawater on-site and
placed in plastic bags, transferred to the laboratory and were again
washed three times with sea water. Subsequently, the fresh samples
were frozen in a freezer for 24 h followed by drying in a freeze dryer
(Labconco, USA) at −45 °C for 48 h and kept in the presence of silica
gel to prevent re-moisturing.

2.2 Determination of total iodine concentrations in
tissue samples

Iodine was extracted from algal tissues by alkaline leaching with
tetramethylammonium hydroxide (TMAH; Sigma Aldrich, USA) and
the total iodine concentration was subsequently determined by
ICP-MS. Replicate field-collected samples of blade, holdfast and
stipe of a given species were lyophilized and ground to a fine powder
using amortar and pestle. Approximately 0.1 g of the powdered algal
material was incubated with 2 mL of 25% TMAH for approximately
72 h at room temperature. The sample was centrifuged and the su-
pernatant was decanted and diluted to approximately 0.25% TMAH.
For the determination of the total element content an Agilent 8800
Triple Quadrupole ICP-MS (Agilent Technologies, UK) equippedwith
a Scott-type spray chamber and a MicroMist concentric glass nebu-
lizer (Glass Expansion, West Melbourne, Australia) was used. The
sample and skimmer cones were composed of Ni. The ICP-MS/MS
was operated in oxygen (MS/MS-mode) mode for different elements.
Collision/reaction cell (CRC) gas flow rates for oxygen were 30%
(∼ 0.3 mL min−1). Instrument calibration was performed by employing
iodine standards of up to 1000 ngmL−1 in dilute TMAH. Duplicate trials
were averaged.

2.3 Determination of total fluoride concentrations in
tissue samples by ion chromatography (IC)

The dried seaweed (obtained from 4.5 - 11 kg fresh weight) was ground
to power with an electric grinder mixture. The powder sample of each
species was macerated in water at room temperature. After the filtra-
tion, water was evaporated under vacuum using a rotary evaporator
down to a final volume of 1 ml (which was adjusted by adding water if
appropriate). The obtained crude extracts were then kept in a cold
room at 4 °C. After that, 100 µL from each species were diluted to
30,000 µL to fit in the calibration working range. Fluoride concen-
trations in the seaweed were analysed using a Metrohm IC 882
(Herisau, Switzerland) with conductivity detector, a Metrohm A Supp
(150× 4.0mm) chromatographic columnandmetrosepRP guard 3.5. The
eluent was 3.2 mM sodium carbonate and 0.1 mM sodium bicarbonate
with flow rate of 0.7 m min−1; run time was 7 min with a 20 μL injection
volume. Calibrationwas carried out using 1, 5, 10, and 20mgL−1 fluoride,
prepared from 1000 mg L−1 fluoride standard stock solution.

2.4 Morphological and molecular identification of
seaweed taxa

For each taxon collected, a herbariumvoucher specimenwasprepared
on Bristol paper with a subsample being kept both in silica gel and
CTAB for subsequent DNA extraction. Herbarium specimens were
deposited in the Kuwait University Herbarium (KTUH).

2.5 DNA extraction

About 20 mg of silica gel-dried or CTAB-stored algal material were
ground using a mortar and pestle or QIAGEN Tissue Lyser II (Hilden,
Germany) at 30 Hz for 10 min, followed by total DNA extraction using
the GenElute™ Plant Genomic DNA Miniprep Kit (Sigma, Aldrich)
according to the manufacturer’s instructions.

2.6 DNA amplification and sequencing

The extracted DNA was amplified by PCR using 11 primers pairs (Ta-
ble 2). PCR master mix was prepared using a Taq PCR Kit (Qiagen,
Hilden, Germany). Samples were subjected to the PCR programs
detailed in Table 3.

PCR products were examined on 0.7% (w/v) agarose gel (Bio-Rad
Laboratories, USA) to confirm length and concentration of the PCR
products. PCR products were purified using the QIAquick PCR purifi-
cation kit (QIAGEN, Maryland, USA) and were fluorescently labeled
using Big-dye V-3.1 reagent mix (Applied Biosystems/ABI, USA)
followingmanufacturers’protocols. Productswere then purified using
sodium acetate and ethanol before being sequenced using a 3130 × 1
Genetic Analyzer (Applied Biosystems/ABI, USA). Some were purified
and adjusted to the required concentration and sent away for com-
mercial Sanger sequencing (Source Bioscience, UK). Obtained se-
quences were initially analyzed by comparative methods on
established public-domain databases using the BLAST (Basic Local
Alignment Search Tools) algorithm (http://www.ncbi.nih.gov) (Alt-
schul et al. 1997). The BioEdit (http://www.mbio.ncsu.edu/ BioEdit/
bioedit.html) programwasused for sequence alignment of the forward

Table : Locations of sampling sites in Kuwait during the surveys
and collections in May and June  and February ,
respectively.

Date Location Coordinates Offshore seawater
surface temper-

ature (ᵒC)

// Salwa Enjefa

Beach

°′.″N
°′.″E

.–.

// Bnaider Beach °′.″N
°′.″E

.–.

//,

//,

//

Abu Al

Hasaniya

°′.″N
°′.″E

.–.

// Nuwaiseeb °′.″N
°′.″E

.–.

// Khiran °′.″N
°′.″E

.–.

// Lagoon of

Khiran resort

°′.″N
°′.″E

.–.
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and reverse sequence. The resulting alignment was corrected manu-
ally. The sequence was analyzed again by BLAST for sequence simi-
larities in order to support identification of the seaweed taxa. The
sequences were deposited in GenBank (Table 4).

3 Results

Iodine was detectable in all seaweed samples collected
fromKuwait, with concentrations ranging from49.59 μg g−1

DW in Codium papillatum, 129.04 μg g−1 DW in Chondria
sp. and 925.10 μg g−1 DW in Sargassum asperifolium
(Table 4). Likewise, fluoride levels ranged from 0.20 μg g−1

DW in Sargassum aquifolium to 72.32 μg g−1 DW in
C. papillatum (Table 3).

Species identification of seaweeds used in this study
was based on morphological criteria supported by DNA
sequencing andmolecular phylogenetics. Froma total of 11
seaweed samples, eight sequences were obtained (Tables 3
and 4) which could clearly be recognized as one red, one
green, and seven brown algae. Using DNA sequences of
different markers the following taxa were identified:
Padina boergesenii (psaA); Iyengaria stellata (psaA), Dic-
tyota dichotoma (nrSSU), Colpomenia sinuosa (psaA),
S. aquifolium (COI-3P), S. ilicifolium var. acaraeocarpum
(ITS2), S. ilicifolium (COI-5P) and Chondria sp. (COI-5P).
Codium papillatum, Feldmannia indica and S. asperifolium
were identified based on morphological criteria, since no
useable sequences could be obtained.

Table : Primer pairs and PCR conditions used in this study.

Locus Marker Primer Length of
amplified

target (bp)

Position Direction Sequence ′-′ PCR parameters Reference

Nuclear nrSSU NSF

NSR

 



F

R

GTAGTCATATGCTTGTCTC

CTTCCGTCAATTCCTTTAAG

 min at  °C, followed
by  cycles of  min at

 °C,  s at  °C, and
 min at  °C, and
finally an elongation

step of  min at  °C.

White et al. 

ITS ITS KP

ITS KG

NA F

R

ACAACGATGAAGAACGCAG

CTTTTCCTCCGCTTAGTTATATG

 min at  °C, followed
by  cycles of  min at

 °C,  s at  °C, and
 min at  °C, and
finally an elongation

step of  min at  °C.

Lane et al. 

Chloroplast psaA psaA F

psaAR
 



F

R

GGNGGWYTATGGTTAAGTGA

CCTCTWCCWGGWCCATCRCAWGG

 °C for  min, 

cycles of  °C for

 min s,  °C for  min

and  °C for  min and

a final elongation step

of  min at  °C.

Yoon et al. 

psaA PsaA
psaA 

 



F

R

AACWACWACTTGGATTTGGAA

GCYTCTARAATYTCTTTCA

 °C for  min, 

cycles of  °C for min,

 °C for min and  °C
for  minand a final

elongation step of min

at  °C

Yoon et al. 

Mitochondrial COI-P COI-F

COI-R

 



F

R

TNTAYCARCATTTATTTTGGTT

TCYGGNATACGNCGNGGATACC

 min at  °C, followed
by  cycles of  s at

 °C,  s at  °C, and
 s at  °C, and finally

an elongation step of

 min at  °C

Silberfeld et al. 

COI-P GazF

GazR

 



F

R

CCAACCAYAAAGATATWGGTAC

GGATGACCAAARAACCAAA

 min at  °C, followed
by  cycles of  s at

 °C,  s at  °C, and
 min at  °C, and
finally an elongation

step of  min at  °C

Saunders ,

Lane et al. 

NA: not applicable.
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4 Discussion

The results presented here constitute the first report of
iodine and fluorine concentrations in seaweeds of the
Arabian Gulf – and are among the first for warm-temperate
and tropical seaweeds. The iodine levels observed in this
study are in a range comparable to those reported from the
same genera elsewhere (Ar Gall et al. 2004; Küpper et al.
1998; Saenko et al. 1978). Given the established role of
iodide in controlling oxidative stress on seaweed surfaces
(Küpper et al. 2008) and also given the reduced iodine
levels observed in the North Atlantic kelp L. digitata during
the summer, likely due to high irradiance and high tem-
peratures (Ar Gall et al. 2004), it would be of interest to
conduct a seasonal survey of iodine levels in the species
which were found to contain the highest iodine levels – in
particular S. aquifolium, S. asperifolium and S. ilicifolium
var. acaraeocarpum. It should be noted that most samples
used in the present study were collected during the cold
season, when seawater temperatures are 15–20 °C lower
than during the summer (Al-Yamani, 2004). Overall, there
is a tendency that the brown algae surveyed here have
higher iodine levels than the red and especially than the
green algae –which is a pattern also reported from another
part of the world (Saenko et al. 1978).

Halogens, such as iodine and bromine and their
respective organohalides, shape major atmospheric pro-
cesses mainly through destruction of toxic surface ozone
and provision of condensation nuclei for cloud formation

(Küpper et al. 2008; Palmer et al. 2005). Seaweed-derived
atmospheric iodine emissions also have a high significance
for human and animal health by supplying the essential
element for thyroid functioning (Küpper et al. 2011). Sea-
weeds have been identified as major emitters of these ele-
ments to the coastal atmosphere in different parts of the
world, especially the cold-temperate North Atlantic
(Küpper et al. 2011). Most of this knowledge is based on
studying the native North Atlantic model seaweed,
L. digitata, thus constituting a strong sampling bias with
regard to species diversity and the geographic extent of this
phenomenon. The potential contribution of dominant
seaweed species to halogen production along continental
coasts in warm-temperate and tropical climates, particu-
larly along theArabian Gulf, is virtually unknown. Because
the Gulf region experiences some of the highest ground-
level ozone concentrations in the world (Lelieveld et al.
2009), examining the contribution of region-specific
seaweed species to halogen production has direct impli-
cations for the understanding of atmospheric/climatic
processes and the public health of the region. Gaseous
emissions from iodine metabolism in seaweeds have both
an atmospheric impact (depleting surface ozone and acting
as condensation nuclei for cloud formation) and contribute
to the supply of thyroid iodine in the coastal population
(Küpper et al. 2011). In this context, a better understanding
of the extent to which the region’s seaweeds potentially
constitute a natural scavenger for harmful ground-level
ozone, and contribute to cloud formation and to human
thyroid iodine supply, would be desirable.

Table : List of seaweeds used in this study with markers used for molecular identification, closest sequencematch and accession numbers.

Morphological
identification

Locus Markers Primer Closest match Query cover Identity Accession no.
of closest match

Genbank
accession no.

Feldmannia indica Identification based on morphology

Padina boergesenii Chloroplast psaA psaAF

psaAR

Padina boergesenii % % JQ. MT

Iyengaria stellata Chloroplast psaA PsaA F

psaA R

Iyengaria stellata % % MN. MT

Dictyota dichotoma Nuclear nrSSU AFPF

AFPR

Dictyota dichotoma % .% AF. MT

Colpomenia sinuosa Chloroplast psaA PsaA F

psaA R

Colpomenia sinuosa % .% MN. MT

Sargassum aquifolium Mitochondrium COI-P cox-F

cox-R

Sargassum aquifolium % .% KT. MT

Sargassum asperifolium Identification based on morphology

Sargassum ilicifolium
var. acaraeocarpum

Nuclear ITS ITS KP

ITS KG

Sargassum ilicifolium
var. acaraeocarpum

% % KP. MT

Sargassum ilicifolium Mitochondrium COI-P cox-GazF

cox-GazR

Sargassum ilicifolium % .% MG. MT

Codium papillatum Identification based on morphology

Chondria sp. Mitochondria COI-P cox-GazF

cox-GazR

Chondria cf. curdieana .% .% MG. MT
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Also, fluoride was present in similar, significant con-
centrations comparable to those found for iodine. Given
how little is known about fluorine accumulation in sea-
weeds, this constitutes a particular novelty of the present
study in general – not limited to the Arabian Gulf. Inter-
estingly, while Codium sp. showed among the lowest
iodine levels here, the same sample contained the highest
fluorine levels – and vice versa for Sargassum species,
which were among the strongest accumulators of iodine
but among the weakest for fluorine. This deserves further
investigation, but at present, one can only speculate about
the underlying reasons. Very little is known about the
regulation and homoeostasis of halogen accumulation in
seaweeds in general. Ar Gall et al. (2004) found iodine
levels in the kelp L. digitata to be around half of their winter
levels during summer, while a competitive inhibition of
bromide accumulation by increased, exogenous iodide
levels (which may be somewhat reminiscent of the results
of the present study) was observed in the filamentous
brownalga Ectocarpus (Küpper et al. 2018). However, given
the very different physico-chemical properties of iodide
and fluoride, it seems unlikely that the same transport and
storage mechanisms are operative for both. In particular,
while iodine and bromine uptake inmarine algae is usually
driven by V haloperoxidases (Küpper et al. 2011; Küpper
et al. 2013; Küpper andKroneck 2015), this class of enzymes
cannot mediate fluoride uptake since hydrogen peroxide
cannot oxidize fluoride (Butler and Sandy 2009); thus,
another, likely totally different pathwaymust be at play for
fluoride accumulation.

Significantly, the findings of S. ilicifolium and
S. ilicifolium var. acaraeocarpum reported here are new
records both for Kuwait and the Arabian Gulf, while
P. boergesenii andD. dichotoma are new records for Kuwait.
C. papillatum, P. boergesenii, D. dichotoma, S. asperifolium
and S. aquifolium have previously been reported from the
Arabian Gulf (John and Al-Thani 2014). Likewise, I. stellata
and C. sinuosa are known specifically from Kuwait
(Al-Yamani et al. 2014; Silva et al. 1996). It is worth noting
that the DNA sequences reported here are the first for any
seaweeds from the entire Arabian Gulf, highlighting also
how understudied the region is with regards to molecular
algal taxonomy. However, this also highlights a general
challenge when working in this region – a robust identifi-
cation of the taxa investigated in this study will only be
possible when a larger dataset is available. Thus, the sit-
uation is even more complicated than e.g. in the Mediter-
ranean where a recent review highlighted the need for
obtaining DNA barcode sequences for a much larger
breadth of taxa (Bartolo et al. 2020).
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