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Abstract This work explores complex dynamics of a
new mass excited impact oscillator reported in Wier-
cigroch et al. (Nonlinear Dyn 99:323–339, 2020) both
experimentally and numerically in the context of devel-
opment of chaos theory and its applications. The
parameters of the rig were characterised and are pre-
sented in the paper. To improve quality of the recorded
phase portraits, a new technique for processing of the
experimental data allowing to reduce the influence of
noise and to obtain clear orbits especially for higher
periods is proposed. A comparison with the previous
studies on the base excited impact oscillator confirms
that the rig is much more accurate as well as it has
capability to generate a wide range of excitation pat-
terns. It is demonstrated that a precise control of the
excitation is achieved by changing the coil current. It
is also shown that the rig is able to capture co-existent
attractors and multi-stability by reproducing various
predicted numerical responses, which has not been
possible before. The results obtained using a simple
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impact oscillator model are in a good agreement with
the experimental results, which indicates that the rig
can be used for further fundamental studies of impact
phenomena including grazing. It can also serve as a tool
to study nonlinear control including bifurcation control
and control of co-existing orbits.
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1 Introduction

The impacting systems represent a field of research
that is fundamentally important and it has a wide range
of applications. The recent fundamental studies on
impact oscillators include those with a focus on graz-
ing bifurcations [2–7], control [8,9], uncertainty [10],
energy flow and harvesting [11,12] and nonlinear res-
onances [13–15]. Machining [16], drilling [17] and
rotor dynamics [18] can be given as illustrative exam-
ples of application fields. The understanding of impact
mechanics is essential for getting a deeper insight into
the intricacies of dynamical systems with impacts,
which have been studied by various authors, e.g., [19–
21]. In some cases, impacts are an essential part of
system’s operation, for example, in drill-string jarring
operations [22], Resonance Enhanced Drilling (RED)
[23–25] and seismicmitigation [26]. In other instances,
the impact phenomena can be a side effect due to age-
ing of the mechanical parts, thermal deformation or
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design tolerances. In any case, impacts introduce non-
linearities to those systems, which in turn may induce
various behaviours ranging from periodic responses
of high period to chaotic motions [27,28]. On one
hand, these new types of vibration can be highly unde-
sired, for example in machining where imperfections
are directly related to nonlinear phenomena [16,29].On
the other hand, in some applications such as energy har-
vesters, one can take advantage of chaotic phenomena
to improve the frequency bandwidth of energy genera-
tion [30].

The cantilever beam impact dynamics has been a
target of various studies reviewed in [31], including
experimental and numerical investigations that can be
traced back to the decade of 1980 [32–34]. Most of
them consider hard impact behaviour, where a sim-
ple Newton law with a restitution coefficient is used
to describe the impact. The works done by Wagg et
al. [35–37] try to characterize the coefficient of resti-
tution and predict the dynamics of the cantilever sys-
tem. Other studies look directly into the first grazing
incidence and the dynamics of the system near this
frequency [13,38]. Taking into account soft impacts,
newer numerical studies focus on adding other nonlin-
earities to the system, like nonlinear damping [39] or
structural nonlinearities [40], while experimental stud-
ies manage to identify the stiffness of the impact beam
through the system dynamics and indirect measure-
ments [41].

From the experimental point of view, early studies
often had focus on hard impacts [42,43] while more
recent ones lookmore into symmetrical [44] and asym-
metrical soft impacts [45].A series of publications from
the Centre of Applied Dynamics at Aberdeen presents
the dynamics of a base excited experimental impact
oscillator rig, with a free one-sided impact [46–49]
and a pre-loaded impact [50]. In these studies, various
nonlinear phenomena were observed experimentally
including chaos and periodic motions of high period,
but amuchwider range of responseswere foundnumer-
ically including co-existing of multiple attractors. The
base excited experimental apparatus could only pro-
vide indirect excitation through the structure, which
means that amplitude was coupled with the excitation
frequency.

One of the most interesting phenomena observed
in impact systems is the multi-stability including co-
existing of impacting and non-impacting responses. It
can be observed when depending on the initial condi-

tions, the system’s response gravitates towards one of
two (or more) co-existing attractors. This phenomenon
occurs in many systems including rattling gears sys-
tems [51], impact oscillators [52] and in rotor systems
[53,54]. Depending on the specific system require-
ments, switching between co-existing attractors should
either be avoided to increase operational lifetime or
desired to rapidly bring the system from one stable
state to another while minimizing the control effort
and the transition time. The latter case can have useful
applications in smart structures (see, e.g. [55,56]) or
energy harvesters, e.g. [57]. Several control strategies
can be implemented to perform or suppress switch-
ing between co-existing attractors, such as intermittent
(see e.g. [52]) or extended time delayed feedback con-
trol [58,59]. Bifurcation control can also be studied
following the works by De Paula et al. [60,61]. Hav-
ing a versatile experimental rig, which exhibits multi-
stability, would be ideal for implementing, testing and
developing new control strategies.

Recently, a new experimental impact oscillator rig
with easily tunable parameters has been developed by
the Centre for Applied Dynamics Research at the Uni-
versity of Aberdeen, and the detailed description of the
rig, its design and capabilities, together with prelim-
inary experimental results, are given in [1]. The cur-
rent work is a comprehensive study on the oscillator
described in [1], and it focuses on parameters char-
acterisation and comparison with the results obtained
using previous base excited impact oscillator rig.

This paper is structured as follows. In Sect. 2 the
experimental rig schematics, its main components and
data acquisition system are described. This section
also discusses calibration of the sensors, the influence
of higher-order modes of the impact beam, the pre-
cision of measurements and filtering. In addition, a
new way to process the experimental data based on
the periodicity of the response is proposed here. Sub-
sequently, a full characterization of the excitation sys-
tem is performed and the numerical model of the rig is
introduced, together with its experimentally calibrated
parameters. In Sect. 3, we compare the results obtained
using the base excited impact oscillator rig [49] with
the ones recorded using the newdesign, where the com-
pared scenarios are constructed so that both rigs exhibit
the same grazing frequency. In Sect. 4, bifurcation anal-
ysis using frequency and forcing amplitude as branch-
ing parameters are presented to explore the rich dynam-
ics of the experimental rig. A particular attention is

123



Chaos in impact oscillators not in vain: Dynamics of new mass excited oscillator 837

Fig. 1 Schematic diagram (left) and the corresponding photo-
graph (right) of the experimental rig. The main components of
the system are highlighted as: sensors (eddy current probe, piezo-
electric load cell and accelerometers mounted on themass, frame

and impact beam) in blue, coil in orange, main mass in grey,
impact beams in pink, leaf springs in red and permanent magnet
in white

paid to the observed chaotic experimental response, and
the 0-1 test is performed on the experimental results,
whereas Lyapunov exponents are calculated numeri-
cally to verify the chaotic behaviour. Finally, a sen-
sitivity analysis is performed studying how frequency
bifurcation diagrams change with different gaps and
forcing amplitudes. In Sect. 5, concluding remarks are
drawn.

2 Experimental apparatus

In this work, dynamics of the impact oscillator rig
shown in Fig. 1 is studied. A detailed description of
the experimental apparatus and its design is presented
in [1], while the current configuration is depicted in
Fig. 1. The oscillator is fixed upon a base plate that pro-
vides alignment of components and flexibility of their
placement. The rig includes a stabilizing rigid structure
mounted on the base to suppress any spurious external
vibrations that may affect the main mass (highlighted
in grey in Fig. 1). The main mass is attached to the
leaf springs (coloured in red), which themselves are
clamped between twobeams and a grooved base, ensur-
ing their proper alignment. A strong permanent cylin-
drical neodymiummagnet,with a 15 kg pull, is attached
to one side of the main mass by a stainless steel rod and

fixed by two stainless steel nuts. The magnet itself is
placed approximately in themiddle of an in-house built
coil (coloured in orange), capable of generating a vari-
able magnetic field that provides direct excitation to
the system. The inner diameter of the coil is close to
the diameter of the cylindrical magnet to improve the
coupling between the varying field of the coil and the
fixed field of themagnet, thereby limiting the nonlinear
effects in the excitation system.

The current I running through the coil is supplied
by a signal generator composed of a current ampli-
fier, two power suppliers and an National Instruments
board. There are secondary supports on either side of
the main mass (coloured in pink) made of the beams
which can be inserted to produce impact. The distance
g between an impact beam and the main mass can be
adjusted by a treated bolt fixed to the tip of the beam.
The beams themselves can be replaced by others made
of different material and/or cross sections. The design
accommodates a range of leaf springs lengths ranging
from 50 to 120 mm.

The experimental data are collected by a LabView
data acquisition system. The coil input current is mea-
sured by a multimeter, while the displacement of the
main mass is measured by an eddy current probe
attached to the structure close to the base of the leaf
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(a) (b)

(c) (d)

Fig. 2 Fast Fourier transforms of a acceleration of the mass, b
acceleration of the impact beam, c acceleration of the base and
d time histories of the beam displacement (in black) and accel-
eration (in blue) used to measure impact events and vibration of

the impact beam. Vertical red dashed lines indicate where the
impacts start and green vertical lines indicate when they finish.
The impact boundary is shown by dashed grey horizontal line

springs. Accelerometers are placed on the structure, the
main mass and the impact beam, as shown in Fig. 1.
Finally, a piezoelectric load cell is also placed between
the coil and the rigid structure to measure the reaction
force due to the mass excitation.

The eddy current probe signal is calibrated using
the voltagemeasured for specified displacements of the
mass, which are generated by inserting metric gauges
between the main mass and a fixed support. A linear
correlation between eddy current signal and displace-
ments is obtained for interval from −8 up to 8 mm,
with a proportional coefficient of −1.76 mm/V. Note
that the reference signal is always considered to be the
one where the mass is at the rest position. The force
sensor is also calibrated and compensates for the static
force due to the weight of the coil acting on the sensor,
which is measured when there is no input current. All
other calibrations are as specified by the sensors’ man-
ufacturers. It is important to highlight a need for the

eddy current probe to be re-calibrated after any change
to the leaf springs (length, position or type).

2.1 Filtering of structural support and higher-mode
vibrations

An analysis of the structural vibration (especially the
higher modes) is carried out in order to eliminate the
spurious vibration that can interfere with the experi-
ment and to verify whether any higher modes of the
impact beam or leaf spring are activated and to deter-
mine their influence on the main behaviour of the oscil-
lator. Hence, the fast Fourier transforms (FFT) of the
main mass, structure’s and impact beam accelerations
are calculated for theworst-case scenariowith themax-
imum excitation amplitude of 3.2 N and forcing fre-
quency of 11 Hz.
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The acceleration of themainmass is obtained by dif-
ferentiating the displacement signal, and its FFT shown
in Fig. 2a presents three families of peaks, one below
100 Hz, one between 100 Hz and 200 Hz and another
around 250 Hz. Analysing the FFT of the accelera-
tion for the impact beam (Fig. 2b), it becomes clear
that the peaks around 250 Hz are in fact related to the
first mode of vibration of the impact beam, which fre-
quency is calculated as 252 Hz. Therefore, it appears
that only the first mode of vibration should be con-
sidered, as no other peaks are distinguishable from
the background noise. The FFT of the base acceler-
ation (Fig. 2c) reveals that the peaks from 100 Hz to
200 Hz are related to the vibrations of the rig’s struc-
ture. Finally, the peaks below 100 Hz can be identified
as higher modes of vibration of the leaf springs. The
influence of these modes is much smaller than the first
mode when the position signal is considered, roughly
one order of magnitude less than the first mode, and
have no direct influence on the main behaviour of the
system for the analysed cases. Finally, in Fig. 2d one
can verify that a sudden peak of the impact beam accel-
eration signal can be identified when an impact event
occurs, which in turn allow us to precisely measure the
time of impact and the gap between the impact beam
and themainmass. As shown, the vibration of the beam
does not interfere with the position of impact events
or produce any secondary impacts, since there is only
one peak on the base acceleration for each impact and
no interference in the displacement of the mass from
previous impacts have been observed. Hence, the gap
between the impact beam and the mass can be consid-
ered as constant throughout the analysis presented in
this work.

2.2 New technique for data processing of periodic
responses

The main idea behind the method is to use the peri-
odicity of the system response itself to filter noise and
obtain a clearer trajectory.

Let us consider an experimental observation of a
system which has a periodic behaviour of period Tres.
These observations are generated for one variable of
the system with a sampling frequency of fs , producing
an experimental data set P. In this case for each period
of the response, a number of points Nper = Tres fs are
recorded. The data set P is recorded with N data points
that is amultiple of Nper.We assume that eachmeasure-

ment will have a noise component E. Hence, P follows
the equation:

P[n] = S[n] + E[n], (1)

where S is noise-free system response. The idea of this
processing is to create another set, P∗, containing Nper

points, which are obtained by the averages of all points
in P separated by Nper. This is expressed by the fol-
lowing equation:

P∗[n] = 1

Naver

Naver∑

j=1

P[n + ( j − 1)Nper],

with n = 1, 2, ..., Nper, (2)

where Naver = N/Nper. Substituting Eq. (1) into Eq.
(2), one obtains:

P∗[n] = 1

Naver

Naver∑

j=1

S[n + ( j − 1)Nper]

+ 1

Naver

Naver∑

j=1

E[n + ( j − 1)Nper]. (3)

The first term of Eq. (3) represents the average of a
constant value as S[n] = S[n+Nper], while the second
term is the expected value of a noise process sampled
with a period Tres, divided by Naver. Given Naver is large
enough the second term of Eq. 3 vanishes leading to:

P∗[n] = S[n]. (4)

Hence, this averaging technique can eliminate noise
and improve clarity of the periodic signal.

Figure 3a shows an example of experimental data
(P) extracted from a dynamical system exhibiting a
period-3 behaviour. Figure 3b depicts the system phase
diagramwith noise in grey for 100 periods of excitation
while the nominal behaviour (S) is shown in blue. Fig-
ure 3c demonstrates 10 periods of the raw data super-
imposed in grey and the processed dataP∗ in red, while
Fig. 3d compares the phase diagram of the processed
signals with the nominal response. It is clear that the
proposed technique can remove noise from the rawdata
available and depicts a behaviour much closer to the
nominal one.

When the technique is applied to identify period M
responses of a dynamical system, or if the period of the
signal is unknown, extra considerations are necessary.
Consider that the method is applied to verify a period
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Fig. 3 Example of the
experimental data set P and
processed set P∗ compared
with the nominal data S. a
Raw data set P time series;
b phase diagram of the
experimental data in grey
and nominal response in
blue; c 10 superimposed
periods of the raw data set
in grey and processed data,
P∗, in red; d phase diagram
comparing the nominal
behaviour in blue and
processed data set in red
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Tres response when a system is exhibiting a period 2Tres
response. In this case, Eq. (3), becomes:

P∗[n] = 1

Naver

( Naver/2∑

j=1

S[n + (2 j − 2)Nper]

+
Naver/2∑

j=1

S[n + (2 j − 1)Nper]

+
Naver∑

j=1

E[n + ( j − 1)Nper

)
. (5)

And using the periodicity of the signal and the white
noise properties, Eq. (5) becomes:

P∗[n] = S[n] + S[n + Nper]
2

. (6)

Equation (6) generates a closed orbit on a phase dia-
gram that traces the average of the period 2 orbit points
separated by Tres in time. This orbit can be misread as a
Tres periodic one. In fact, it can be proven following the
same procedure that any response or sum of responses
with a period MTres will generate a closed orbit and
can be mistaken to a period Tres response. Therefore,
it is proposed to use 2Nper points and a period of 2Tres
to calculate P∗ for the identification of a period Tres
behaviour, modifying Eq. (2) to:

P∗[n] = 2

Naver

Naver/2∑

j=1

P[n + ( j − 1)2Nper],

with n = 1, 2, ..., 2Nper. (7)

This ensures that any higher periodic signal will pro-
duce at least a set P∗ with a period of 2Tres, which can
be distinguished from a Tres response.

Finally, if there is no periodic behaviour with period
MTres or Tres/M , the proposed method will produce a
very small or open orbit on the phase diagram. It is also
important to highlight that this method is very sensitive
to the period Tres and small variations may result in
phase diagrams with only destructive interference.

Figure 4 presents an example of the cases discussed
above. The raw data (P) containing a period-8 orbit
are shown in Fig. 4a, while Fig. 4b depicts the pro-
cessed data (P∗) obtained by targeting this period-8
orbit. Figure 4c depicts a test using the same set of
data when the processed data are obtained targeting a
non-existent period-2 response. In this case, the data
should be discarded as the orbit displays a period-
4 behaviour instead of the tested period-2 response;
thereby, the closed orbit is just a numerical artefact. Fig-
ure 4d depicts the case where the number of recorded
points in processed set 2Nper is slightly changed from
the periodic solution giving only destructive interfer-
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Fig. 4 Example of processed data using the proposed method. a
RawSignal;bprocesseddata for a period-8 response; c processed
data for a period-2 response. In this case a numerical period-4
response is observed; however, this solution is discarded as it

represents a numerical artefact produced by the method; d pro-
cessed data with a slightly different period than the original one,
which leads only to destructive interference

ence, as there is no dynamic response of the considered
period in the data, which should be discarded.

2.3 Excitation system calibration

A calibration of the electromagnetic exciter to deter-
mine a constant describing a relationship between the
applied current and the generated force on the mass
was carried out. Four different tests were carried out
to establish the limits of a linear relation between the
applied current and the reaction force: Fcoil(t) = aI (t).
In the first case we fix the main mass in its resting
position and vary the coil current, while measuring
the reaction force. Initially, the current changes quasi-
statically. As shown in Fig. 5a, a linear response is
observed for the currents up to 4.0 A, with a constant
a = −0.799 N/A and variance of 0.005 N/A. This
indicates that the maximum force amplitude generated
through the excitation system can be up to 3.2 N.

The second test is focused on analysing the correla-
tion between current and mass displacement to verify
whether the moving magnet has any effect on the coils
current I . The main mass was displaced up to ± 6 mm
from its rest position and, afterwards, released to per-
form free vibrationmotion. These tests were performed
with various static currents in the coil ranging from
−3.5 to 3.5 A. No meaningful correlation has been
observed between position and current, as the maxi-
mum correlation achieved cor(I ; x) = 0.008, shown
in Fig. 5b, was not significant.

The effect of hysteresiswas explored in the third test.
Two experimentswere performed for each frequency in
the range varying from 6 to 10 Hz. One test was carried

out by applying a sinusoidal signal to the coil current
and fixing the mass into its rest position, and the other
is conducted by applying a sinusoidal current to the
coil and letting the mass to vibrate freely. In Fig. 5c we
depict the force signal against position for a frequency
of 10 Hz in a dynamical test, which is the most likely
scenario to exhibit hysteretic behaviour. However, no
hysteresis was found for this excitation frequency or
for any other frequencies up to 10 Hz.

The fourth test was performed with a sinusoidal
current I (t) = I0sin(2π t/ f ) for various frequencies
f , with an amplitude I0 = 2.5 A. The proportion-
ality coefficient between measured reaction force and
current in relation Fcoil(t) = aI (t) was obtained to
verify the influence of frequency variations, as shown
in Fig. 5d. The proportional coefficient a varies less
than 0.5 % and almost all values are within precision
tolerance, hence, the coefficient a can be considered
constant for the frequency range from 6 to 10 Hz, for
which experiments were performed. Also, the linear
dependency between the current and the force holds
for all frequencies analysed. Hence, the linear relation
between the current and the reaction force appears to
be valid for signals with frequencies from 6 to 10 Hz,
current amplitudes up to 2.5 A and displacements from
−6 to 6 mm resulting in:

Fcoil(t) = −0.799I (t). (8)

As shown in Fig. 6, for a non-impacting and impacting
cases of gap g = 0.94 mm for a sinusoidal excitation
signal of f = 9.1 Hz and I0 = 0.298 A, a good agree-
ment between the measured reaction force (in black)
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(a) (b)

(c) (d)

Fig. 5 Tests for characterization of force versus current depen-
dency. Experimental data are shown by black points and cali-
brated linear fit as red line. a Static current I versus measured
force at the rest position.bCorrelation of voltage versus displace-
ment for the main mass on the static current free vibration test. c

Force versus applied current for a sinusoidal signal, f = 10Hz.d
Linear parameter a versus forcing frequency of a sinusoidal sig-
nal. The linear relations hold for all values of current and force
achieved, and no apparent hysteresis is presented in the obtained
curves either

and the force predicted (in red) using Eq. (8) has been
obtained.

2.4 Numerical model and parameter identification

The schematic of the mathematical model representing
the experimental rig, depicted in Fig. 1, can be seen in
Fig. 7. Here a piecewise linear impact oscillator model
is used to describe the displacement X of the main
mass m. The excitation force, Fcoil, is applied directly
onto the main mass, while the leaf springs are charac-
terised by a linear stiffness k1. The impact beam can be
described by another linear spring of stiffness k2, sep-
arated from the main mass by gap g. A linear viscous

damping coefficient c is used to represent an equiva-
lent damping in the system, leading to the equation of
motion:

mẌ =−k1X−cẊ − k2(X − g)H(X − g)+Fcoil(t),

(9)

where H is aHeaviside step function and dot represents
derivative with respect to time t .

If non-dimensional variables are considered, the
equation of motion takes the form:

x ′′ = −x − 2ζ x ′ − κ(x − 1)H(x − 1) + Fcoil(τ/ω0)

k1g
,

(10)
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(a) (b)

(c) (d)

Fig. 6 Tests for characterization of force versus current dependency. Input current time histories for a non-impacting and c impacting
cases. Predicted and measured force time histories in red and black respectively for b non-impacting case d impacting case

m

X

k1

k2

Fcoil
g

Fig. 7 Schematics of physical model representing the experi-
mental rig (Fig. 1), with its main components: main massm, leaf
springs of stiffness k1, impact beam of stiffness k2, coil gener-
ating force Fcoil and the gap g between the main mass and the
impact beam

where x = X/g, τ = ω0t , ω0 = √
k1/m, ζ =

c/
(
2
√
k1m

)
, κ = k2/k1 and prime represents deriva-

tives with respect to non-dimensional time τ .
Two types of excitation are studied in this work.

The first one is the excitation provided by the previous
design [47] that has the frequency and amplitude of
vibration coupled

Fcoil = Adω
2

ω2
0

sin

(
ω

ω0
τ

)
, (11)

where Ad is amplitude of the base displacement. The
second one is the uncoupled excitation given by:

Fcoil = A sin

(
ω

ω0
τ

)
, (12)

where A is the forcing amplitude.
There are three main parameters that dictate the

dynamics of Eq. (10) for both types of excitation,which
are the stiffness ratio κ = k2/k1, the damping ratio
ζ = c/

(
2
√
k1m

)
and the relation between dynamic

force amplitude and static force necessary to reach the
gap F∗ = A/k1g. When using the uncoupled exci-
tation, these parameters can be easily independently
modified on the rig by exchanging the impact beam
(k2), the main mass (m) and the forcing amplitude (A)
or gap (g), respectively, which enables us to explore a
range of possible phenomena and ensures the rig ver-
satility. However, if the coupled excitation is used, the
coefficient F∗ becomes F∗ = Adω

2/
(
ω2
0g

)
and the

non-dimensional parameters cannot be easily indepen-
dently changed.

All experimental results are recorded for a leaf
spring of 125mm length, a lumpedmass which include
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(a) (d)

(b) (c)

Fig. 8 Non-impacting responses at I0 = 0.125 A: a Ampli-
tude diagram with frequency as a branching parameter. Numer-
ical results are shown by black line, experimental data points
obtained for increasing frequency (forward diagram) are given by
blue triangles and experimental data points obtained for decreas-
ing frequency (backward diagram) are shown by red circles. b
Trajectories on the phase plane (velocity [mm/s] versus displace-
ment [mm]) at the excitation frequency of 8.20Hz. (Linearmodel

response is shown in black and experimental orbit is in red.) cCo-
existing orbits recorded experimentally at 9.15Hzcomparedwith
the numerical responses obtained using nonlinear cubic restoring
force at 9.21 Hz. d An FFT of the displacement at the frequency
of 9.15 Hz for high-amplitude orbit. Dashed vertical black lines
represent frequencies where the phase portraits are taken. (Color
figure online)

themainmass, steel rod, and amagnet, in total 1.325 kg
and a mild steel impact beam with dimensions of
6×15×105mm. Bifurcation diagrams are constructed
by discarding the first 40 s of data for each quasi static
variation of frequency and afterwards recording 100
periods of the excitation force. This ensures that at least
240 periods are discarded as transient responses of the
system. Finally, the resolution of bifurcation diagrams
goes to 0.01 Hz to capture grazing.

Initially, the impact beam is removed, so that the
spring stiffness k1 and the viscous linear damping coef-
ficient c can be identified. Six free vibration tests were
performed with different initial conditions to extract
the linear parameters, while keeping the displacements

within −4 to 4 mm to ensure a linear behaviour of the
leaf spring. A damped sine function is fitted into each
set of experimental data to extract the linear coefficients
leading to k = 4331 N/m with variance of 150 N/m
and c = 0.27 kg/s2 with variance of 0.01 kg/s2.

To determine the range of the linear oscillator model
applicability, a series of tests has been carried out
with the secondary constraints removed. The current
amplitude was fixed at I0 = 0.125 A, and ampli-
tude bifurcation diagram was constructed by varying
the excitation frequency. Figure 8a presents ampli-
tude of the calculated linear system response shown
by black line and the amplitude of the experimental
responses shownby red circles for increasing frequency
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and by blue triangles for decreasing frequency. As can
be seen from this figure, the experimental data fol-
low the linear model prediction up to displacement
amplitude of 6 mm, and an example of the trajec-
tory comparison is given in Fig. 8b for frequency of
8.2 Hz. However, near the resonance peak at approxi-
mately 9.15 Hz two co-existing attractors are recorded
experimentally, which are demonstrated in Fig. 8c. An
FFT of displacement recorded for the high-amplitude
orbit is shown in Fig. 8d where the peaks related to
higher-order frequencies have an amplitude two orders
of magnitude lower than the peak associated with the
period-1 behaviour, demonstrating that nonlinearities
are present in the response. Our analysis indicates that
this co-existence of attractors and associated hardening
behaviour is related to the large deformation of the leaf
springs [62] which at these amplitudes can no longer
be described by a linear stiffness. Modelling the restor-
ing force of the leaf spring with a cubic nonlinearity as
Fleaf = −k1x − kbx3 where kb = 3, 368, 400 N/m3,
one can trace the numerical orbits depicted in Fig. 8c
achieving a good correspondence with the recorded
experimental orbits. However, as can be seen from
Fig. 8c there is still a symmetry break which is not cur-
rently explained by the cubic restoring force. Hence, to
lower the influence of the cubic term and the asymmet-
ric nonlinearity a restriction of displacements of 6 mm
should be placed.

As the main objective of this study is to explore the
grazing incidence and the nonlinearities arising from
the impacts, we restrict the displacements of the main
mass to the interval from−6 to 6mm. This ensures that
any other nonlinear effects are mitigated, enabling us
to focus on the impact nonlinearities only.

Initially, the gap between the main mass and the
impact beam is set andmeasured precisely by analysing
the peaks on the beam acceleration signal resulting in
a value of g = 0.94 mm. It was also verified using
amplitude diagrams shown in Fig. 9a (increasing fre-
quency) and Fig. 9b (decreasing frequency) which are
constructed using experimental data by taking themax-
imum positive value of displacement of the steady state
response. The data were recorded at the input current
amplitude of I0 = 0.215 A (non-dimensional forcing
amplitude of F∗ = 0.042). In Fig. 9a, b the ampli-
tude of the linear non-impacting response is shown
by pink line, experimental responses are depicted by
blue and red circles, and numerical non-impacting and
impacting responses are given by black and green tri-

angles. As can be seen from this figure at the frequency
of 8.87 Hz, the non-impacting response becomes an
impacting one resulting in impact oscillator response
amplitude deviating from pink line of linear oscillator
amplitude. Thus, the value of the amplitude at this fre-
quency allows to establish the gap value of g = 0.95
which is in agreement with the method using the beam
acceleration peaks. The beam’s stiffness k2 in Eq. (9)
can be determined by fitting the model forward ampli-
tude diagram to the experimental data in the region
after grazing incidence. Using this method, we obtain
k2 = 87125 N/m with variance of 1500 N/m, which
is in agreement with the stiffness estimated by a quasi
static test.

The forward amplitude diagramshown inFig. 9a fol-
lows the non-impacting model solution up to the first
grazing incidence. Afterwards, it presents an impact-
ing response that extends for frequencies where the
linear non-impacting system amplitude is smaller than
the gap. On the other hand, the backward diagram from
Fig. 9b follows the linear non-impacting system for all
amplitudes lower than the gap.This highlights the coex-
istence of impacting and non-impacting responses after
the second grazing frequency around 9.30 Hz (Fig. 9c).
At thefirst grazing incidence at 8.87Hz results also sug-
gest a continuous transition instead of an abrupt change
of the system periodicity or amplitude. All results were
tested to verify that the system presented a period-
1 behaviour. Finally, the impacting model has good
agreement with the experimental results, as shown in
the diagrams and trajectories in Fig. 9c.

Some additional experimental studies were carried
and are presented here to further validate themathemat-
ical model demonstrating more complicated dynamic
behaviour. Bifurcation diagrams are constructed for a
gap of g = 0.66 mm and excitation current I0 =
1.000 A (non-dimensional forcing amplitude of F∗ =
0.28) and depicted in Figs. 10a, b for increasing and
decreasing frequency respectively,while trajectories on
the phase planes are shown in Figs. 10c-e for selected
values of frequencies. In the forward diagram shown
in Fig. 10a, a non-impacting response is observed until
grazing incidence occurring at 7.66 Hz, where the sys-
tem response jumps to a period-7 orbit which is demon-
strated in Fig. 10d. As the frequency increases, the
period-7 orbit disappears at 7.7 Hz and the system
responds with a period-3 orbit shown in Fig 10c. Fur-
ther increases in frequency make the system jump to
an impacting period-1 orbit at 8.22 Hz, which is main-
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(a)

(c)

(b)

Fig. 9 Amplitude bifurcation diagram with frequency as a
branching parameter for a gap of g = 0.94 mm and input cur-
rent amplitude I0 = 0.215 A. The dashed grey horizontal line
represents the impact boundary, whereas the black dashed ver-
tical lines represent the frequencies where the trajectories on
the phase planes are shown. a Forward (increasing frequency)
numerical and experimental bifurcation diagrams. b Backward

(decreasing frequency) experimental and numerical bifurcation
diagrams. c Trajectories on the phase planes [velocity (mm/s)
versus displacement (mm)] at 8.7, 8.87, 9.15 and 9.5 Hz, respec-
tively. Dashed grey vertical lines represent the impact boundary
on the phase plane. Colours of the trajectories are the same as
for the system responses shown in the bifurcation diagrams

tained up to the end of the diagram. In the backward
diagram shown in Fig 10b, at around 8.2 Hz the system
undergoes a transition from the impacting period-1 to
a period-2 orbit which has only one impact per period.
As the frequency decreases, the grazing incidence of
period-2 orbit’s inner loop, depicted in Fig. 10e, causes
it to become unstable and disappear at around 8.14 Hz
where a jump to period-3 orbit is observed which lasts
up to 7.68Hz. Further decreases in frequency leads to
the same behaviour as was observed and discussed in
the forward diagram. The results presented demon-
strate a good agreement between the numerical and
experimental data as seen on the selected trajectories
and bifurcation diagrams for almost all frequencies.
The only discrepancy is recorded for the transition of
the period-1 to the period-2 orbit on the backward dia-

gramat the range from8.14 to 8.25Hz. Finally, because
of this discrepancy the numerical data present the coex-
istence of attractors between 8.14 and 8.2 Hz while the
experimental results do not present this co-existence.

3 Comparison with the base excited system

In this section, the new rig experimental responses
are compared with the previously recorded results for
the base excited impact oscillator rig presented by Ing
et al. [45–47,49,50], with particular attention to the
behaviour shown in [45] and [49]. Note that all exper-
iments presented in this section are performed for the
gap of g = 0.84 mm. The other parameters of the
new rig were chosen so that the non-dimensional coef-
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(a) (b)

(c) (d) (e)

Fig. 10 Bifurcation diagram with frequency as control parame-
ter, an impact gap g = 0.66 mm and input current amplitude
I0 = 1.00 A. Black dashed vertical lines represent the fre-
quencies where the trajectories on the phase planes are shown.
a Forward numerical and experimental bifurcation diagrams. b
Backward numerical and experimental bifurcation diagrams. c

Period-3, d period-7 and e period-2 responses recorded at fre-
quencies of 8.00 Hz, 7.65 Hz and 8.26 Hz, respectively. The
numerical period-2 orbit is computed for f = 8.18 Hz. Dashed
grey vertical lines represent the impact boundary on the phase
plane. Colours of the trajectories are the same as for the system
responses shown in the bifurcation diagrams

ficients are closely related to the ones reported in the
literature and the rig is able to reproduce the same sce-
narios. To fine tune the non-dimensional grazing fre-
quency ωg/ω0 to the ones presented in the literature,
the excitation frequency was set to the desired value
and then the forcing amplitude was raised until grazing
incidence occurs.As the experimental results in [45,49]
are obtained using a value y0 = 1 mm as its non-
dimensionalisation reference, we perform a re-scaling
of the new results by the quotient of old, gold, and
new, gnew, gaps, leading to a coefficient gold/(y0gnew),
which compensates for the non-dimensional units in
previous works.

In Fig. 11 we compare the diagrams obtained using
the new impact oscillator rig with the bifurcation dia-
gram presented in [45] and produced using the based
driven system. In order to generate the new experi-

mental results for this comparison, for each value of
the applied excitation frequency, ω, the value of the
excitation amplitude was adjusted to simulate the base
excitation, i.e. A(ω) = Adω

2. Figures 11a and b
present the results obtained by two different rigs for
the same phase shift. Comparing these two figures, one
can clearly see a better frequency resolution as well as
a better spatial resolution which enables one to distin-
guish the period three branches at the non-dimensional
frequency of 0.88, while the old results only depict
two clearly distinguishable branches. The bifurcation
diagrams shown in Fig. 11d, e depict the comparison
between the previously published numerical results and
new experimental ones generated for the phase shift
used to compute the numerical diagram. The diagrams
show a great similarity to each other, which is also
confirmed using the phase portraits as can be seen in
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(d)

(c)

(f)

(e)

(a) (b)

Fig. 11 Comparison between the experimental bifurcation dia-
grams for the base and directly excited impact oscillator rigs. The
non-dimensional parameters are close to the ones presented in
[45] for the base excited system, while the forcing amplitude is
adjusted so that grazing occurs for the same frequency. a Exper-
imental results for the base excited impact oscillator rig for the
base excitation amplitude of 0.38 mm, [45]. b New experimen-
tal results with the same phase as in (a). c Phase portraits of
new experimental results for the non-dimensional frequency of

0.847, 0.885, 0.915 and 0.930, respectively. dNumerical bifur-
cation diagram for the base excited impact oscillator, [45]. eNew
experimental bifurcation diagramwith the same phase as in (d). f
Numerical phase portraits for the non-dimensional frequency of
0.853, 0.885, 0.9151 and 0.930, respectively. The black dashed
lines indicate the frequencies where the trajectories on the phase
plane are presented, and dashed grey lines represent the impact
boundary on the phase planes
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Fig. 12 Comparison between the experimental bifurcation dia-
grams for the base and directly excited impact oscillator rigs.
The non-dimensional parameters are close to the ones presented
in [49] for the base excited system, while the forcing ampli-
tude is adjusted so that grazing occurs for the same frequency.
a Experimental results for the base excited impact oscillator rig
for the base excitation amplitude of 0.44 mm, [49]. bNew exper-
imental results with the same phase as in (a). c Phase portraits
and Poincaré maps of new experimental results for the non-

dimensional frequency of 0.802, 0.840, 0.91 and 0.912 respec-
tively. d Numerical bifurcation diagram for the base excited
impact oscillator rig, [49]. e New experimental diagram with the
same phase as in (a). f Numerical phase portraits and Poincaré
maps for the non-dimensional frequency of 0.802, 0.840, 0.910
and 0.915, respectively. The black dashed lines indicate the fre-
quencies where the trajectories on the phase plane are presented,
and dashed grey lines represent the impact boundary on the phase
planes
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Fig. 11c and Fig. 11f demonstrating experimental and
numerical results, respectively.

Figure 12 shows the second scenario used for the
comparison. The published experimental results [49]
are shown in Fig. 12a and new experimental results in
Fig. 12b. Again, one can see a better resolution in dis-
placement and frequency for the new results, which
provides better insight into the system’s behaviour.
If the experimental results, shown in Fig. 12d, are
compared (for the same phase shift) to the published
numerical data [49] (Fig. 12c), one can verify that the
new results have a greater similarity to the predicted
responses, specially around the chaotic response at the
non-dimensional frequency of 0.9, where previously
published experimental results present only the chaotic
region at different frequencies.

Moreover, in the second case a great number of coex-
istent attractors are identified at the non-dimensional
frequency of 0.8044 [49], which are shown in the
numerical bifurcation diagram in Fig. 13a. However,
previous studies failed to capture these co-existing
orbits experimentally as the basins of attraction have
a fractal structure and the co-existence only happened
in a small frequency interval, as shown in Fig. 13b [49].
Using the new rig, we perform a series of tests aimed
at locating experimentally the co-existing attractors by
two different approaches. The first one is based on sta-
bilising the system response on a more favourable fre-
quency, which has a less fractal basin of attraction and
afterwards slowly bringing the system to the desired
frequency. In the second approach, we apply small
perturbations to one of the responses, which basically
means that the system is restarted from different initial
conditions. Both of those two approaches can be suc-
cessfully applied, as there is a much better control on
the excitation of the system and a higher frequency res-
olution. This allows us to obtain the co-existing attrac-
tors, which have an excellent agreement with the pre-
dicted orbits, as shown in Fig.13c, d. The experimental
results were enhanced using the new processing tech-
nique proposed in Sect. 3, allowing us to observe the
period-3 and period-8 orbits, which were not distin-
guishable otherwise due to noise.

4 Mass excited impact oscillator

In this section, we investigate the dynamics of the
impact oscillator with uncoupled excitation numeri-

cally and experimentally by constructing bifurcation
diagrams near grazing using frequency and forcing
amplitude as the branching parameters. Two cases are
considered: in the first one, frequency bifurcation dia-
grams are obtained for different values of the excita-
tion amplitudes and gaps, while in the second one the
excitation amplitude is used as branching parameter. It
should be noted that the latter case was not previously
analysed in the base excited impact oscillator.

4.1 System dynamics

In Fig. 14 the system dynamics is explored for the
current amplitude I0 = 1.10 A and the same gap
of g = 0.66 mm as in Fig 10 (F∗ = 0.305). This
slight change in the systemparameters results in numer-
ical and experimental bifurcation diagrams display-
ing a very different scenario, shown in Fig. 14a, b,
than the one presented earlier in Fig. 10a, b for the
model validation. For lower frequencies, both numeri-
cal and experimental diagrams present a non-impacting
response until approximately f = 7.30 Hz, where a
region with co-existence of solutions begin. At this
frequency, a long-lasting chaotic transient behaviour
is observed shown in Fig. 14c together with the sta-
ble non-impacting solution. The co-existence of a non-
impacting period-1 orbit and period-3 orbit with two
impacts per period presented in Fig. 14d lasts up to
7.5 Hz. In the interval from 7.61 to 7.72 Hz period-
3 orbit with two impacts per period and period-3 orbit
with one impact per period co-exist and they are shown
in Fig. 14e. Between 7.72 Hz and 8.20 Hz only the
period-3 orbit with one impact per period is present,
and around 8.20 Hz this period-3 orbit co-exists with
a period-2 orbit with two impacts per period as shown
in Fig. 14f.

Finally, above 8.24 Hz, an impacting period-1 orbit
persists up to the end of the frequency range analysed.
Experimental and numerical results are in a very good
agreement. The only discrepancy visible is on the back-
ward diagram near the jump from a period-2 orbit to the
period-3 behaviour due to small variations in excitation
amplitude.

Numerical and experimental bifurcation diagrams
recorded for the gap of g = 0.61 mm and the cur-
rent amplitude I0 = 1.250 A (F∗ = 0.38) are shown
in Fig. 15a, b respectively. These diagrams present a
period-1 non-impacting orbit up to the grazing fre-
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(a)

(c)

(d)

(b)

Fig. 13 Numerical and experimental analysis of co-existing
orbits. a Numerical bifurcation diagram displaying various co-
existent attractors (the dashed black line represents the frequency
where the trajectories on the phase plane are plotted) [49]. b
Basins of attraction for co-existent orbits at non-dimensional
frequency of 0.8043 [49]. c Numerical phase portraits of co-
existent orbits at non-dimensional frequency of 0.8044. d Exper-

imental phase portraits of co-existent orbits at non-dimensional
frequency of 0.804. The period-8 response is extracted by apply-
ing the average method to 100 recorded periods of excitation.
Vertical dashed grey lines represent the impact boundary, and
Poincaré sections of the orbits are marked by red dots. (Color
figure online)

quency of 7.18 Hz. At 7.1 Hz this non-impacting orbit
co-exists with a period-7 orbit with four impacts per
period shown in Fig. 15c that lasts up to 7.15 Hz,
where a narrow band of chaos [48] is recorded for a
frequency range of 0.03 Hz. Shortly after grazing the
system presents the co-existence of a period-2 orbit
with one impact per period and a period-5 orbit with
three impacts per period which are shown in Fig. 15d.
At 7.38 Hz other period-5 orbit with two impacts per
period is observed which still co-exists with the period-

2 orbit as shown in Fig. 15e until the frequency of
7.52 Hz. At 7.80 Hz a chaotic response appears on both
diagrams and the structure of the calculated chaotic
attractor is demonstrated in Figure 15f. It is observed
until 8.24 Hzwhere it is suddenly replaced by a period-
1 impacting response which lasts until the end of the
diagram. The main dynamics of the impact oscillator
rig is captured by the model; however, in the chaotic
region observed in the experimental rig, themodel indi-
cates windows of a period-3 orbit seen in the lower
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Fig. 14 Bifurcation diagram obtained with the frequency as
branching parameter with the gap g = 0.66 mm and input cur-
rent amplitude I0 = 1.100 A. Black dashed vertical lines repre-
sent the frequencies where the trajectories on the phase planes
are shown. Forward and backward a numerical and b experi-
mental bifurcation diagrams. cNon-impacting period-1 orbit and
Poincaré section of the chaotic transient response, d co-existing

period-1 and period-3 orbits, e co-existing period-3 orbits and
f co-existing period-3 and period-2 orbits. Phase portraits are
presented at 7.31, 7.40 Hz, 7.65 Hz and 8.26 Hz, respectively.
The numerical period-2 orbit in panel f is calculated at 8.20 Hz.
Dashed grey vertical lines represent the impact boundary on the
phase plane. Colours of the trajectories are the same as for the
system responses shown in the bifurcation diagrams

panel of Fig. 15f, hinting on the co-existence of chaotic
and periodic behaviours. Hence, another forward and
backward experimental diagrams, starting at 7.99 and
8.04 Hz respectively, were recorded to capture this
attractor and the results, shown by purple squares in

Fig. 15b, show the predicted orbit in almost the same
frequency range as the calibrated numerical model.
Finally, as results presented above suggest a possible
large chaotic region in the window between 7.80 and
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(a) (b)

(c) (e) (f)(d)

Fig. 15 Bifurcation diagram obtained with the frequency as
branching parameterwith the gap g = 0.61mmand input current
amplitude I0 = 1.250A.Blackdashedvertical lines represent the
frequencies where the trajectories on the phase planes are shown.
The dashed magenta lines represent the chaotic behaviour anal-
ysed in Fig. 16. Forward and backward a numerical and b exper-
imental bifurcation diagrams. cCo-existing Period-1 and period-

7 orbits at 7.16 Hz. d Co-existing period-5 and period-2 orbits
at 7.25 Hz. e Second pair of co-existing period-5 and period-2
orbits at 7.40 Hz. f Poincaré section of chaotic behaviour and
co-existing period-3 response at 8.00 Hz. Dashed grey vertical
lines represent the impact boundary on the phase plane. Colours
of the trajectories and Poincaré section are the same as for the
system responses shown in the bifurcation diagrams

8.25Hz, further analysis is carried out for the frequency
of 8.20 Hz.

Experimental and numerical Poincaré maps were
obtained to verify the chaotic behaviour at f =
8.20 Hz, and the results are shown in Fig. 16a, b. The

stroboscopic Poincaré maps were constructed by tak-
ing 4000 points once per period of the external force.
Also, the sampling frequency of the experimental data
was set to be amultiple integer of the forcing frequency.
This was to minimize the frequency differences when
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(a) (b)

(d)(c)

Fig. 16 Analysis of the experimentally observed chaotic
behaviour. a Numerical and experimental phase portraits in grey
[velocity (mm/s) versus displacement (mm)] with the corre-
sponding Poincaré sections in red. b Detailed Poincaré section

for numerical and experimental results, respectively. c 0-1 test
convergence with number of points analysed. d Maximum Lya-
punov exponent convergence for the numerical data

constructing the experimental Poincaré maps. As can
be seen from Fig. 16b, the simulated and experimen-
tal Poincaré maps have similar structures; however,
the experimental data are more defused due to signal
noise. Lyapunov exponentswere calculated resulting in
amaximum exponent of λmax = 4.14 bit/s, which indi-
cates that the motion obtained numerically is chaotic,
and the convergence of the maximum Lyapunov expo-
nent can be seen in Fig. 16d. To analyse the experimen-
tal response, a 0-1 test described in [63] was performed
on the experimental data, using the correlation method
on the modified mean square displacement, which mit-
igates the influence of noise on the data. If the result
K (N ) tends to 0 as the number of points N increases,
the response is regular while if K (N ) tends to 1, the test
indicates a chaotic response. The convergence of K (N )

to 1 is shown in Fig. 16c, clearly pointing towards a
chaotic motion.

Bifurcations diagrams with the current amplitude
as the branching parameter were constructed next. The
diagrams shown in Fig. 17a, b are obtained for a forcing

frequency of 7.3 Hz around the first grazing incidence.
As can be seen from these figures, at lower amplitudes,
the linear non-impacting response is observed up to the
first grazing incidence where a narrow band region of
chaotic behaviour [48] appears. As the current ampli-
tude increases, it is followed by a period-2 response
with one impact per period which is observed until
the end of the diagrams. Both backward and forward
diagrams present the same behaviour. The numerical
Poincaré map of the chaotic response at 1.605 A is
shown in Fig. 17c. This observed behaviour of the sys-
tem is the same as the one reported in the earlier stud-
ies [49], where period-1 impacting orbit loses stability
shortly after grazing where the region of chaotic attrac-
tor begins. The unstable period-1 orbit then undergoes
period doubling bifurcation which results in period-2
orbit with two impacts per period. Shortly after, the
grazing incidence of one of the loops of the period-
2 orbit creates a period-2 orbit with one impact per
period which becomes stable. This grazing incidence
ends the region of the chaotic behaviour. The recorded
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(a)

(c) (d) (e) (f)

(b)

Fig. 17 Bifurcation diagram obtained with input current ampli-
tude as branching parameterwith a gap of g = 0.84mmand forc-
ing frequency f = 7.3 Hz. Forward and backward a numerical
andb experimental bifurcationdiagrams.Here blackdashed lines
indicate the amplitude values where the trajectories on the phase
planes are shown in c numerical and d experimental Poincaré

section of chaotic response at current amplitudes of 1.605 A. e
Period-2 orbit near internal grazing at 1.635 A. f Period-2 solu-
tion recorded at 1.755 A. The dashed grey lines represent impact
boundaries. Colours of the trajectories and Poincaré sections are
the same as for the system responses shown in the bifurcation
diagrams. (Color figure online)

period-2 response with one impact per period is shown
in Fig. 17d, and as the current amplitude increases, the
non-impacting loop of this period-2 response moves
away from the impact boundary as shown in Fig. 17e.
Finally, it should be noted that the experimental bifur-
cation diagrams and phase portraits have a good agree-
ment with the calibrated numerical model.

Another case obtained for an excitation frequency
of 7.60 Hz is shown in Figure 18. Initially, the dia-
grams presented in Fig. 18a, b demonstrate a lin-
ear non-impacting response and, between 1.24 and
1.31 A, a period-3 with two impacts per period and
a period-1 non-impacting orbit depicted in Fig. 18c
co-exist. After the first grazing, the period-1 orbit
disappears and a period-3 orbit with one impact per
period is recorded which co-exists up to 1.4 A with the
previously observed period-3 orbit with two impacts

as shown in Fig. 18d. As the excitation amplitude
increases, the system exhibits a chaotic response shown
in Fig. 18e between 1.505 A and 1.6 A. Afterwards,
the chaotic region gives way by a reversed period dou-
bling cascade to a period-2 orbit with one impact per
period in Fig. 18f that lasts for the rest of the diagram.
The period doubling behaviour is verified by numeri-
cal simulations. Again the calibrated model presents a
very good estimate of the system behaviour as can be
seen from the presented phase portraits and bifurcation
diagrams.

4.2 Parameter sensitivity

The very different behaviour of the system demon-
strated in the bifurcation diagrams shown in Figs. 10
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(a)

(c) (d) (e) (f)

(b)

Fig. 18 Bifurcation diagram obtained with input current ampli-
tude as branching parameter with a gap of g = 0.84 mm and
forcing frequency f = 7.60Hz. Forward and backward a numer-
ical and b experimental bifurcation diagrams. Here black dashed
lines indicate the amplitude values where the trajectories on
the phase planes are shown. c Co-existing impacting period-
3 orbit with two impacts and non-impacting orbits recorded at

current amplitude of 1.325 A. d Co-existing period-3 orbits at
1.370 A. e Numerical (upper panel) and experimental (lower
panel) Poincaré maps of chaotic attractor at 1.580 A. f Period-2
orbit with one impact at 1.610 A. The dashed grey lines repre-
sent impact boundaries. Colours of the trajectories and Poincaré
sections are the same as for the system responses shown in the
bifurcation diagrams. (Color figure online)

and 14 occurs for only a slight change in the excitation
amplitude reflected in the parameter F∗ = aI0/k1g
values. Therefore, this ratio between the dynamic force
amplitude (aI0) and the static force needed to reach
the gap (k1g) dictates the system dynamics and is the
parameter most prone to variations in many applica-
tions. In fact, due to ageing, the size of the gapmay vary

drastically over time, leading to significant changes in
the system dynamics. Hence, a sensitivity analysis to
the variations of this parameter is of extreme impor-
tance on establishing tolerances and safe regions of
operation.

Figure 9 shows the bifurcation diagrams for a low
value F∗ = 0.042. Increases in F∗ result in observ-

123



Chaos in impact oscillators not in vain: Dynamics of new mass excited oscillator 857

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 19 Bifurcation diagrams with excitation frequency as branching parameter for increasing values of F∗. a, c, e, g Numerical and
b, d, f, h experimental bifurcation diagrams for F∗: 0.31, 0.33, 0.35 and 0.37, respectively
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 20 Evolution of the chaotic attractors presented byPoincaré
maps near first grazing frequencies at a F∗ = 0.35 and f =
7.288 Hz; b F∗ = 0.36 and f = 7.288 Hz; c F∗ = 0.37 and

f = 7.16 Hz; d F∗ = 0.38 and f = 7.17 Hz; and above the
first grazing at the frequency f = 7.78 Hz and e F∗ = 0.35; f
F∗ = 0.36; g F∗ = 0.37 and h F∗ = 0.38

ing the first grazing incidence at a lower frequency
while maintaining the same non-impacting period-1
orbit before it. This goes up to the point where fur-
ther increases in F∗ generate a period-3 orbit right after
grazing incidence.At this point, a high-period orbit also
appears on the backward diagram,which co-exists with
a linears non-impacting period-1 orbit. Figure 10 shows
these phenomena and the related orbits for F∗ = 0.28,
while Fig. 19 presents numerical and experimental
bifurcation diagrams for higher values of F∗. As can
be seen in Fig. 19a, b and 19c, d, further increases
in F∗ up to F∗ = 0.33 do not change the bifurca-
tion structure presented in Fig. 10. The only difference
is the narrowing of the region where non-impacting
period-1 and the period-3 orbit with two impacts per
period co-exist and emergence of this period-3 orbit
closer to the grazing frequency for the higher values
of F∗. For F∗ = 0.35 a sudden change in the sys-
tem behaviour happens at grazing incidence, when two
chaotic regions separated by awindowof period-3 orbit
with two impacts pers period appear, whereas one of
the previously observed period-3 orbits vanishes. The
first chaotic region appears only in a small range of fre-

quencies between f = [7.26, 7.3] Hz, and the second
one is recorded for f = [7.46, 7.8] Hz and co-exists
with the previously observed period-3 orbit with one
impact per period from f = 7.7 Hz up to 7.8 Hz. At
F∗ = 0.37 the system has a behaviour very similar
to Fig. 15 obtained for F∗ = 0.38. Here a period-2
orbit with one impact per period observed in the range
f = [7.26, 7.74] Hz separates two chaotic regions.
Two period-5 orbits are similar to the ones presented
in Fig. 15d,e (upper panels) and exist in the same fre-
quency range,while the chaotic region to the right of the
diagram co-exists with the period-3 orbit as described
before. On the last diagram, the co-existence of the
period-3 and the chaotic response is not captured on the
experimental data. However, if the system is brought to
the proximity of the period-3 orbit, the rig is able to cap-
ture the co-existent behaviour in the same way as was
done to obtained the results shown in Fig. 15. Also, all
model results have a good agreementwith experimental
data.

Ananalysis of the evolutionof the twochaotic attrac-
tors presented in Fig. 19 was carried out numerically.
Figure 20 depicts the results for the chaotic attractors
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recorded around first grazing frequencies in Fig. 20a–d
and in the second chaotic interval at 7.78 Hz in Fig.
20e–h for increasing values of F∗. At lower values of
F∗ the attractor near first grazing frequency presents a
small void in the centre due to the basin of attraction
of the period-1 non-impacting co-existing orbit. As F∗
increases, the grazing frequency decreases restricting
the co-existence of chaotic and period-1 non-impacting
orbits to a small range of frequencies, which reflects on
the chaotic attractor that slowly grows and engulfs the
period-1 basin as the co-existence is eliminated. The
attractor in the second chaotic interval presents at the
lower values of F∗ three regions where branches seem
to swirl around. As F∗ increases, these swirls become
smaller and more clustered as the arms that connect
each swirling region get smaller and the attractor itself
becomes smaller until the three points merge into
one.

5 Conclusions

In this work, the dynamics of a newly constructed
mass excited impact oscillator [1] was investigated
both experimentally and numerically. The parameters
of the rig were characterised and are presented in the
paper. The detailed study of the excitation provided
by the magnetic coil revealed a linear relationship
between the applied current and the force acting on
the mass in the considered parameters range. It was
shown that in this case a precise control of the excita-
tion through the coil current becomes possible resulting
in improvements in obtained resolution of the exci-
tation amplitude and frequency for the construction
of bifurcation diagrams. It was identified that exper-
imentally recorded nonlinear effects observed in the
oscillator rig without impacts are associated with large
deflections of the leaf springs which provide the elas-
tic support of the mass. To improve the quality of the
recorded phase portraits, a new method for processing
the experimental data was proposed allowing to reduce
the influence of noise and to generate clear high-period
orbits.

The comparison with previous base excited impact
oscillator confirms that the rig has better spatial and
frequency resolution as well as the ability to provide
much more flexible excitation. Also, the rig is able to
capture co-existent attractors and multi-stability exper-
imentally by reproducing various predicted numeri-

cal responses, which was not possible before. The
characterisation of the rig and its parameters sug-
gests a linear behaviour of the leaf spring in low
peak to peak amplitude forces (< 3.5 N) and low
amplitudes of displacement (< 6 mm). The results
obtained using simple impact oscillator model are
in a good agreement with the experimental results,
which indicates that the rig can be used for further
fundamental studies of impact phenomena. The rig
is also sensitive enough to study grazing incidence
and to characterize chaotic attractors through the 0–1
test.

The conducted experimental and numerical sensi-
tivity analysis of the frequency bifurcation diagrams
show that there is a window of excitation amplitude
F∗ ∈ [0.28, 0.33], where there is no significant change
in the system dynamics, while for small changes of
F∗ ∈ [0.33, 0.35], chaotic and high-period orbits
emerge abruptly and quickly change the behaviour near
grazing.

The rig described in this paper can be a useful tool to
study nonlinear control, including bifurcation control
and control of co-existing orbits, which will be consid-
ered in future works. In addition, the rig has potential
to be adopted to study energy harvesting by the attach-
ment of piezoelectric materials to the impact beam or
to the leaf spring.

Finally, reflecting on the chaotic dynamics and the
lessons learned from studying impacts systems, it is
clearly seen that this field have brought many fun-
damental and practical benefits. We have discovered
and classified new type of bifurcations occurring in
impacting systems. We have shed more lights on graz-
ing and grazing induced bifurcations. Most of all we
have demonstrated that a new technology can be devel-
oped from the new findings rooted in chaotic behaviour
of impacting systems [23–25].
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